WorldWideScience

Sample records for ifs 66v spectrometer

  1. The BTeV main spectrometer

    International Nuclear Information System (INIS)

    Sheldon, P.D.

    2001-01-01

    BTeV is a second generation B-factory experiment that will use a double-arm, forward spectrometer in the C0 experimental hall at the Fermilab Tevatron. I will describe the motivation and design of the 'main spectrometer', consisting of a ring-imaging Cherenkov system for charged particle identification, an electromagnetic calorimeter of lead-tungstate crystals, a proportional tube muon system with magnetized filtering steel, and a straw-tube and silicon strip charged particle tracking system

  2. High resolution 14 MeV neutron spectrometer

    International Nuclear Information System (INIS)

    Pillon, M.

    1986-01-01

    A neutron spectrometer, based both on the track position identification and the energy measurement of recoiling protons from a hydrogenous radiator is proposed. The expected performance limits of this spectrometer with regard to energy resolution (deltaE/E), efficiency (epsilon) and counting rate are evaluated in five different configurations. The results show the possibility of deriving an optimized spectrometer design for applications on large fusion devices such as JET and NET with an energy resolution up 1% at 14 MeV

  3. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  4. New Decay Studies of 66Ga

    Science.gov (United States)

    Kumar, Suresh; Ahmad, I.; Carpenter, M. P.; Chen, J.; Greene, J. P.; Kondev, F. G.; Zhu, S.

    2014-03-01

    High-energy γ rays with energies up to 5.0 MeV are emitted in the radioactive decay of 66Ga (T1/2 = 9.49 h). Thus, this radionuclide appears to be a suitable candidate for energy and efficiency calibrations of high-resolution, γ-ray spectrometers that are employed in studies of very neutron-rich nuclei which have large Qβ values. In addition, accurate emission probabilities of this isotope are of interest to medical imaging applications, owing to the existence of large β+ decay branches, which need to be characterized with better accuracy. Decay studies of 66Ga were initiated using the γ-ray spectroscopy technique. The source was produced by means of the 66Zn(p,n) reaction at a beam energy of 12 MeV. Singles and γ - γ coincidences measurements were carried out using a single Ge detector and Gammasphere, respectively. The previously known 66Ga decay scheme was extended and many new γ rays were placed in the daughter nuclide 66Zn. The work at ANL was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. S. Kumar acknowledges support from the Indo-US Science and Technology Forum for the award of a Research Fellowship.

  5. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  6. The development of a spectrometer for 14 MeV neutrons from fusion

    International Nuclear Information System (INIS)

    Aronsson, D.

    1991-01-01

    A spectrometer for 14 MeV neutrons, to be used for fusion plasma diagnostics at JET, was developed. The spectrometer utilizes neutron scattering in a polyethylene foil with the detection of the scattered neutron and its associated recoil proton. For the detection of 12 MeV protons we have tested silicon surface barrier detectors, lithium-drifted silicon detectors and high purity germanium detectors. The lithium-drifted detectors were finally selected for use in the spectrometer. The lithium-drifted silicon diodes have also been used for direct spectrometry, utilizing the neutron induced charged particle reactions in silicon. The methods used for the energy calibration and the timing calibration of the diodes, both during the installation of the spectrometer and during operation, are described. The detection of 2 MeV neutrons is done by fast plastic scintillators. Since the neutron generator which was used to test the detectors supplies 14 MeV or 2.5 MeV neutrons only, a neutron energy converter has to be constructed to study the detectors at other neutron energies. In the actual spectrometer an array of scintillation neutron detectors is used. A method of calibrating such an array of detectors with a gamma source was elaborated and is also described here. The result of the calibration is a set of parameters than can be used to determine the high voltage settings and the discriminator levels that are needed to achieve homogeneous sensitivity for all the detectors of the array. The energy scale itself was then calibrated by using gamma sources of various energies. To test the spectrometer as a whole at a neutron generator, a test bed was constructed. A lithium-drifted silicon diode was used to measure the neutron flux and the neutron energy resolution in the test bed. (au)

  7. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...... to the decay. Two previous measurements of the shape have revealed deviations from an allowed spectrum but disagree about whether the shape factor has a positive or negative slope. As a test of a new iron-free superconducting β spectrometer, we have measured the shape of the ground state branch of the 66Ga β...... spectrum above a positron energy of 1.9 MeV. The spectrum is consistent with an allowed shape, with the slope of the shape factor being zero to within ±3 × 10−3 per MeV. We have also determined the endpoint energy for the ground state branch to be 4.1535 ± 0.0003 (stat.) ±0.0007 (syst.) MeV, in good...

  8. 30 CFR 203.66 - What happens if MMS does not act in the time allowed?

    Science.gov (United States)

    2010-07-01

    ... Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects § 203.66 What happens if MMS does not act in the time allowed? If we do not act within the timeframes established under § 203... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What happens if MMS does not act in the time...

  9. A sub-50meV spectrometer and energy filter for use in combination with 200kV monochromated (S)TEMs.

    Science.gov (United States)

    Brink, H A; Barfels, M M G; Burgner, R P; Edwards, B N

    2003-09-01

    A high-energy resolution post-column spectrometer for the purpose of electron energy loss spectroscopy (EELS) and energy-filtered TEM in combination with a monochromated (S)TEM is presented. The prism aberrations were corrected up to fourth order using multipole elements improving the electron optical energy resolution and increasing the acceptance of the spectrometer for a combination of object area and collection angles. Electronics supplying the prism, drift tube, high-tension reference and critical lenses have been newly designed such that, in combination with the new electron optics, a sub-50 meV energy resolution has been realized, a 10-fold improvement over past post-column spectrometer designs. The first system has been installed on a 200 kV monochromated TEM at the Delft University of Technology. Total system energy resolution of sub-100 meV has been demonstrated. For a 1s exposure the resolution degraded to 110 meV as a result of noise. No further degradation in energy resolution was measured for exposures up to 1 min at 120 kV. Spectral resolution measurements, performed on the pi* peak of the BN K-edge, demonstrated a 350 meV (FWHM) peak width at 200 kV. This measure is predominantly determined by the natural line width of the BN K-edge.

  10. Combined proton-recoil and neutron time-of-flight spectrometer for 14 MeV neutrons

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Aronsson, D.; Arvidsson, E.; Beimer, K.-H.; Pekkari, L.-O.; Rydz, R.; Sjoestrand, N.G.

    1983-05-01

    The main effort put into this work is the foundation of a reliable physical basis for a 12-16 MeV neutron-spectrometer at JET. The essential problem is the amount of scatterer that can be incorporated without losing resolution. We have found two possible methods, the use of a pure hydrogen scatterer and the use of a polyethylene foil scatterer. The pure hydrogen solution gives a very complicated spectrometer with large detectors. The polyethylene solution is limited by the thickness and the width of the foil. We judge the solution with the polyethylene foil to be the most promising one for a reliable spectrometer. However, a large foil area is needed. This gives a spectrometer design with an annular foil, an annular neutron detection system, and a central proton-detector. An efficiency of 10 - 6 counts/s per n/cm 2 ,s at the foil can be obtained with a resolution in the order of 100 keV for 14 MeV neutrons. Following the General Requirements given in the contract of this work, we concluded that an instrument with the desired properties can be made. The instruments is able to give useful information about the plasma from plasma temperatures of about 5 keV. (Authors)

  11. Microprocessor-controlled portable neutron spectrometer

    International Nuclear Information System (INIS)

    Hunt, G.F.; Kaifer, R.C.; Slaughter, D.R.; Strout, R.E. II; Rueppel, D.W.

    1979-01-01

    A neutron spectrometer that acquires and unfolds data in the field has been developed for use in the energy range from 1 to 20 MeV. The system includes an NE213 organic scintillation detector, automatic gain stabilization, automatically stabilized pulseshape discrimination, an LSl-11 microprocessor for control and data reduction, and a multichannel analyzer for data acquisition. The system, with the exception of the multichannel analyzer, is mounted in a suitcase 47 by 66 by 23.5 cm. The mass is 23.5 kg

  12. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer.

    Science.gov (United States)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William

    2016-11-01

    We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.

  13. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    Science.gov (United States)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William

    2016-11-01

    We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.

  14. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  15. Testing a newly developed single-sphere neutron spectrometer in reference monochromatic fields from 147 keV to 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Introini, M.V. [Politecnico di Milano - Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); Bortot, D. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Politecnico di Milano - Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); Gentile, A.; Esposito, A.; Mazzitelli, G.; Buonomo, B.; Quintieri, L.; Foggetta, L. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy)

    2013-06-21

    A new neutron spectrometer, designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons, was designed and built in the framework of the INFN project NESCOFI@BTF. It has been called SP{sup 2} (SPherical SPectrometer) and it consists of 31 thermal neutron detectors embedded in a 25 cm diameter polyethylene sphere with an internal 1 cm thick lead shell. The new spectrometer shows similar performance as the Bonner sphere spectrometer, but has the notable advantage of requiring only one exposure to determine the whole spectrum. The SP{sup 2} response matrix, previously calculated with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 147 keV to 14.8 MeV at PTB Braunschweig. As suitable thermal neutron detectors, Dysprosium activation foils were adopted at this stage. The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±3%. The next phase of the NESCOFI@BTF project will be the replacement of passive detectors with active counters, thus leading to a real-time spectrometric monitor that is expected to significantly innovate the neutron control task in neutron-producing facilities, such as the beam-lines for industrial irradiation or condensed matter studies.

  16. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  17. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  18. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    Science.gov (United States)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  19. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    International Nuclear Information System (INIS)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frédéric; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-01-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  20. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d' astrophysique, 91191 Gif-sur-Yvette (France)

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  1. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  2. Dosimetry and LET spectrometry in C 290 MeV/n and Ne 400 MeV/n HIMAC ion beam by different TLD's, TED based LET spectrometers, and Si energy-deposition spectrometer

    International Nuclear Information System (INIS)

    Spurny, F.; Brabcova, K.; Jadrnickova, I.; Uchihori, Y.; Kitamura, H.; Yasuda, N.; Molokanov, A. G.

    2009-01-01

    The sets of track etched detectors based (TED) spectrometer's of the linear energy transfer (LET) have been, together with two types of thermoluminescent detectors (TLD)and MDU- Liulin energy deposition spectrometer exposed in the C 290 MeV/n and Ne 400 MeV/n ion beams at the HlMAC installation at NIRS, Chiba, Japan. The experiment has been performed in the frame of NPI project 20P241 agreed by HlMAC P AC at the beginning of 2008 year. Up to now, moxstle only results obtained in C-ion beam have been treated and analyzed. Sets of TED spectrometer's and TLD detectors have been exposed in 19 depths in the C-ion beam with expected LET values of primary particles from 13 keV/μm in water, through the Bragg peak area up to two depth behind the Bragg peak. The contribution of fragments to total number of events, and to the energy absorbed in Si has been determined, when possible separately for different fragments. In all cases also total contribution of fragments (and other secondary particles) to the total number of energy deposition events and to the absorbed dose has been estimated. LET and energy deposition spectra obtained will be compared together , a good agreement of data has bee stated. Some of results have been also compared with those obtained by calculation by means of PHITS code. (authors)

  3. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency.

    Science.gov (United States)

    Brockmann, Sarah J; Freischmidt, Axel; Oeckl, Patrick; Müller, Kathrin; Ponna, Srinivas K; Helferich, Anika M; Paone, Christoph; Reinders, Jörg; Kojer, Kerstin; Orth, Michael; Jokela, Manu; Auranen, Mari; Udd, Bjarne; Hermann, Andreas; Danzer, Karin M; Lichtner, Peter; Walther, Paul; Ludolph, Albert C; Andersen, Peter M; Otto, Markus; Kursula, Petri; Just, Steffen; Weishaupt, Jochen H

    2018-02-15

    Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Intracavity Laser Photoacoustic Spectrometer with High Sensitivity

    International Nuclear Information System (INIS)

    Mitrayana; Muslim; Wasono, M.A.J.

    2002-01-01

    A photo acoustic spectrometer set-up has been upgraded from an extra cavity into an intracavity configuration using a sealed-off CO 2 laser as the spectrometer's radiation source. The detection level of the upgrade Intracavity Photoacoustic Spectrometer (IPS) reached (200 ± 50) ppt for C 2 H 4 and (20 ± 5) ppt for SF 6 with response time (6.6 ± 0.2) s. (author)

  5. Compact, rugged in-chamber transmission spectrometers (7-28 keV) for the Sandia Z facility.

    Science.gov (United States)

    Sinars, D B; Wenger, D F; Pikuz, S A; Jones, B; Geissel, M; Hansen, S B; Coverdale, C A; Ampleford, D J; Cuneo, M E; McPherson, L A; Rochau, G A

    2011-06-01

    We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments. © 2011 American Institute of Physics

  6. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  7. Magnetic analysis of the V51(d,p) V52 reaction

    International Nuclear Information System (INIS)

    Bolta Alandete, J. M.

    1966-01-01

    We have analysed the protons emitted after bombardment of a Vanadium target by deuterons of 10.1 MeV using a multichannel magnetic spectrometer of high resolving power, with which we measured 24 different scattering angles covering the angular interval from 5 degree centigree to 175 degree centigree. The characteristic variation of energy with angle enable us to identify 38 groups of protons corresponding to the ground state and 37 excited states of 52 V upto an energy of 3.66 MeV; the values obtained are in perfect agreement with previously published results and seven new levels are quoted for the first time. (Author) 16 refs

  8. Magnetic analysis of the V{sup 5}1 (d,p)V{sup 5}2 reaction; Analisis Magnetico de la Reaccion 51{sup V}(d,p) 52{sup V}

    Energy Technology Data Exchange (ETDEWEB)

    Bolta Alandete, J M

    1966-07-01

    We have analysed the protons emitted after bombardment of a Vanadium target by deuterons of 10.1 MeV using a multichannel magnetic spectrometer of high resolving power, with which we measured 24 different scattering angles covering the angular interval from 5 degree centigree to 175 degree centigree. The characteristic variation of energy with angle enable us to identify 38 groups of protons corresponding to the ground state and 37 excited states of 52{sup V} upto an energy of 3.66 MeV; the values obtained are in perfect agreement with previously published results and seven new levels are quoted for the first time. (Author) 16 refs.

  9. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  10. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  11. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  12. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T., E-mail: takashi.yazawa@toshiba.co.j [Toshiba Corporation, Power Systems Company (Japan); Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M. [Toshiba Corporation, Power Systems Company (Japan); Iijima, Y.; Saitoh, T. [Fujikura Ltd. (Japan); Amemiya, N. [Superconductivity Research Laboratory, ISTEC (Japan); Shiohara, Y. [Department of Electrical Engineering, Kyoto University (Japan); Ito, T. [Tokyo Gas Co., Ltd. (Japan)

    2009-10-15

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R and D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  13. Measurement of the Elastic Ep Cross Section at Q2 = 0.66, 1.10, 1.51 and 1.65 Gev2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    The nucleon form factors have been investigated by physicists for decades because of their fundamental importance. The world data of the proton magnetic form factor GMp has been focused on Q2 lower than 5 GeV2 and they have large uncertainties at higher Q2. Jefferson Lab experiment E12-07-108 aims to improve the accuracy of the e ? p elastic cross section to better than 2% over a Q2 range of 7 ? 14 GeV2. From 2015 to 2016, the e ? p elastic cross section was measured over a wide range of Q2 from 0.66 ? 12.56 GeV2 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. An unpolarized electron beam was scattered o? a cryogenic hydrogen target and the scattered electron was detected in the high resolution spectrometers. This thesis focuses on the cross section calculations of the data taken in the spring of 2015, where Q2 = 0.66, 1.10, 1.51 and 1.66 GeV2. At Q2 = 0.66 GeV2, an uncertainty < 3% was achieved and < 5% was achieved for the other three Q2 at the moment. The results were compared with the world data and the good agreement provides confidence for the experimental measurements at higher Q2.

  14. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    Science.gov (United States)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  15. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    International Nuclear Information System (INIS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C.A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.

    2011-01-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  16. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  17. The TRIUMF low energy pion spectrometer and channel

    International Nuclear Information System (INIS)

    Sobie, R.J.; Drake, T.E.; Barnett, B.M.; Erdman, K.L.; Gyles, W.; Johnson, R.R.; Roser, H.W.; Tacik, R.; Blackmore, E.W.; Gill, D.R.

    1983-08-01

    A low energy pion spectrometer has been developed for use with the TRIUMF M13 pion channel. The combined channel and spectrometer resolution is presently 1.1 MeV at T = 50 MeV. This is limited by the amount of gas and detector material in the spectrometer in addition to the inherent resolution of the channel. Improvements to both the spectrometer and channel are discussed

  18. X-ray spectrometer having 12 000 resolving power at 8 keV energy

    Science.gov (United States)

    Seely, John F.; Hudson, Lawrence T.; Henins, Albert; Feldman, Uri

    2017-10-01

    An x-ray spectrometer employing a thin (50 μm) silicon transmission crystal was used to record high-resolution Cu Kα spectra from a laboratory x-ray source. The diffraction was from the (331) planes that were at an angle of 13.26° to the crystal surface. The components of the spectral lines resulting from single-vacancy (1s) and double-vacancy (1s and 3d) transitions were observed. After accounting for the natural lifetime widths from reference double-crystal spectra and the spatial resolution of the image plate detector, the intrinsic broadening of the transmission crystal was measured to be as small as 0.67 eV and the resolving power 12 000, the highest resolving power achieved by a compact (0.5 m long) spectrometer employing a single transmission crystal operating in the hard x-ray region. By recording spectra with variable source-to-crystal distances and comparing to the calculated widths from various geometrical broadening mechanisms, the primary contributions to the intrinsic crystal broadening were found to be the source height at small distances and the crystal apertured height at large distances. By reducing these two effects, using a smaller source size and vignetting the crystal height, the intrinsic crystal broadening is then limited by the crystal thickness and the rocking curve width and would be 0.4 eV at 8 keV energy (20 000 resolving power).

  19. A high resolution reflecting crystal spectrometer to measure 3 keV pionic hydrogen and deuterium X-rays

    International Nuclear Information System (INIS)

    Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Knecht, L.; Leisi, H.J.; Schroeder, H.C.; Sigg, D.; Zhao, Z.G.; Chatellard, D.; Egger, J.P.; Jeannet, E.; Aschenauer, E.C.; Gabathuler, K.; Simons, L.M.; Rusi El Hassani, A.J.

    1993-01-01

    A reflecting crystal spectrometer consisting of three cylindrically bent quartz (110) crystals is described. It was designed to measure the 3 keV K β X-rays from pionic hydrogen and deuterium. Charge coupled devices (CCDs) were used as X-ray detectors. Projecting the reflexes of all three crystals on one common focus, an instrumental energy resolution below 1 eV was obtained at an energy of 2.9 keV. (orig.)

  20. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  1. High pressure Moessbauer spectrometer for the high-resolution 93.3 keV resonance in 67Zn

    International Nuclear Information System (INIS)

    Adlassnig, W.; Potzel, W.; Moser, J.; Schaefer, C.; Steiner, M.; Kalvius, G.M.

    1989-01-01

    A high pressure, low temperature Moessbauer spectrometer for the high-resolution 93.3 keV resonance in 67 Zn is described. The pressure is generated by applying the opposed anvil technique. Using B 4 C anvils and a sandwich gasket quasihydrostatic pressures up to 6 GPa were obtained for the required large samples of 7 mm diameter and 2 mm thickness. The piezoelectric Doppler drive is mounted on top of the pressure clamp. The whole system can be cooled to liquid He temperatures. The spectrometer was used to investigate at 4.2 K the pressure dependence of the Moessbauer parameters of Zn metal. (orig.)

  2. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  3. Study of the isomeric states of 66As

    International Nuclear Information System (INIS)

    Czajkowski, S.; Blank, B.; Andriamonje, S.; Attallah, F.; Boue, F.; Davi, F.; Del Moral, R.; Fleury, A.; Musquere, A.; Pravikoff, M.S.; Dufour, J-P; Grzywacz, R.; Janas, Z.; Karny, M.; Pfuetzner, M.; Donzaud, C.; Grewe, A.; Heinz, A.; Junghans, A.; Lewitowicz, M.; Sauvestre, J-E.

    1997-01-01

    The most neutron-deficient isotopes in the N = Z region are an important source of information on the neutron-proton interaction far off stability. The isotopes in this region are characterized by an extreme sensitivity of the deformation to the isospin variations. Here the structure of deformed shells are favoring the high spin states the lifetime of which being sufficient long to be observed after flight time of the order of the microsecond. The study of the decay of this isomeric states permits to approach the structure of the first excited levels of this isotopes. Recent experiments at GANIL with the SISSI - LISE 3 spectrometer were performed to study the neutron deficient nucleus 66 As. This nucleus was produced in the fragmentation of 70 MeV/u 78 Kr primary beam in a nickel target. Two new isomeric states have been observed. From the observed γ transitions a decay scheme is proposed

  4. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  5. Background reduction of the KATRIN spectrometers. Transmission function of the pre-spectrometer and systematic tests of the main-spectrometer wire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Prall, Matthias

    2011-07-04

    The KArlsruhe TRItium Neutrino experiment, KATRIN will determine the mass of the anti {nu}{sub e} with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the {beta}-spectrum of tritium decaying in a windowless gaseous molecular tritium source near its endpoint of 18.57 keV. This approach relies exclusively on the relativistic kinematics of the decay products rendering the experiment model independent and reducing the systematic uncertainty. An ultra-low background of a few mHz and an energy resolution of 0.93 eV are among the requirements to reach the sensitivity. These demands are fulfilled with the main spectrometer (MS). While the {beta}-decay electrons are guided by a magnetic field through the experiment, the MS acts as a high-pass filter for the {beta}-decay electrons. Only those above an energy barrier, the retarding potential, are transmitted to the detector. The last about 30 eV of the T{sub 2} {beta}-spectrum will be scanned in this way. The MS is equipped with a 650 m{sup 2}, two-layered, UHV compatible and quasi-massless wire electrode suppressing secondary electron background originating at the main-spectrometer walls and caused by residual radioactivity and cosmic muons. Its energy resolution of 0.93 eV is only achieved, if a large part of the 248 wire electrode modules, which determine the electric field inside the MS, has a mechanical precision of 0.2 mm. Not a single of the about 28.000 wires of the electrode must break during the lifetime of KATRIN. A 2-dimensional laser sensor for contact-less position (precision about 0.01 mm) and tension (precision about 0.04 N) measurements was developed and applied, to firstly, verify the mechanical precision of the electrode modules and secondly, to examine their reliability. A 3-dimensional coordinate measurement table was automated to perform these measurements in a clean room. This table was also used to verify the precision of components using a camera system and image recognition methods (0.05 mm

  6. Observations of the X-ray nova A0620-00 with the Ariel V crystal spectrometer/polarimeter

    International Nuclear Information System (INIS)

    Griffiths, R.E.; Rickets, M.J.; Cooke, B.A.

    1976-01-01

    The X-ray nova A0620-00 has been studied with the Ariel V crystal spectrometer/polarimeter for the presence of X-ray lines and polarization. Upper limits are obtained for the Si XIV, S XV and S XVI lines to a level of less than 2 eV at 3 sigma for the sulphur lines and 3.6 eV for Si XIV. No linear polarization is observed to a level of 2 per cent at 2.6 keV. These results are interpreted in terms of an accretion disk model for the source, in which the electron scattering depth tausub(es) approximately 20, and constraints are given on the disk geometry. (author)

  7. Silicon spectrometer with a Peltier refrigerator

    International Nuclear Information System (INIS)

    Belcarz, E.; Chwaszczewska, J.; Hahn, G.; Nowicki, W.; Sawicka, B.; Skoczek, K.; Slapa, M.; Szymczak, M.

    1974-01-01

    This paper describes a spectrometer with a Si(Li) detector cooled by a Peltier refrigerator. The spectrometer is able to analyse samples of practically all most frequently encountered emitters of alpha, beta and low energy gamma radiation. The energy resolution were about 1.3-1.5 keV for 14 keV gamma radiation. The system can also operate in field conditions in the fluorescence analysis. (author)

  8. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  9. Improvement of the instrumental line shape of X-ray spectrometers with Si(Li) - detectors

    International Nuclear Information System (INIS)

    Berdikov, V.V.; Zajtsev, E.A.; Iokhin, B.S.

    1983-01-01

    The possibility of decreasing the background of the X-ray spectrometer detector using the rise-time pulse selection method was investigated. Si(Li)-detectors of 10 and 25 mm 2 square were investigated. Spectrometer channel was composed of ORTEC-472 amplifier and ULTIMA/2 multichannel analyzer on the base of NOVA-3 minicomputer. The energy resolution was equal to 300 eV on 14 KeV line. The pulses of detection allowing were transmitted to analog-to-digital converter. The detection was allowed if front photopeak square) were measured at 17.4, 20.3 and 59.6 keV. 4-6-fold decrease of X-factor was obtained without any loss of detection efficiency. The combination of the method with collimation of radiation in the centre of the detector gives an extremely low value of X-factor which agress with theretical estimations

  10. Mastering vRealize operations manager analyze and optimize your it environment by gaining a practical understanding of vRealize operations 6.6

    CERN Document Server

    Kaloferov, Spas; Carnie, Alasdair; Norris, Scott

    2018-01-01

    Nowadays you can find companies that have virtualized 75%, or even more than 95% of their environment. Having a good forensic tool with comprehensive predictive analysis functionality, to monitor your virtual environment and software, is crucial. vRealize Operations 6.6 offers this and much more to help your business run uninterrupted.

  11. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    CERN Document Server

    Naimi, Sarah

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...

  12. Study of multimuon events in 0.4x3.0 TeV proton-proton collisions with multimuon spectrometer MMS

    International Nuclear Information System (INIS)

    Abramov, V.V.; Ajinenko, I.V.; Antipov, Yu.M.

    1990-01-01

    The physical motivation and the proposal of an experiment to study multimuon events with a major goal to search and study t-quark production at 0.4x3.0 TeV pp collider with 10 33 cm -2 s -1 luminosity at IHEP are prsented. A muon spectrometer based on magnetized iron combined with hadron and electromagnetic calorimeters not having a track system in the vicinity of beam crossing is described. The spectrometer is capable to cope with the mentioned luminosity. 13 refs.; 9 figs.; 2 tabs

  13. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV

    International Nuclear Information System (INIS)

    Vieira, A.A.; Linke, A.; Yoshimura, E.M.; Terini, R.A.; Herdade, S.B.

    2011-01-01

    Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 o , measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments.

  14. First experiments with the 200 keV electron beam ion trap at LLNL

    International Nuclear Information System (INIS)

    Marrs, R.E.; Knapp, D.A.; Elliott, S.

    1993-01-01

    A high-energy electron beam ion trap (Super EBIT) is operating at electron energies up to 200 keV and currents up to 200 mA. Highly charged ions up to Li-like U 89+ and H-like Pb 81+ have been produced and studied. Ionization cross sections for H-like Dy 66+ at E e = 170 keV have been measured with respect to radiative recombination from the observed Dy 66+ /Dy 67+ equilibrium ionization balance. A Bragg crystal spectrometer has been used to measure 2s 1/2 -2p 3/2 transition energies in Li-like U 82+ with respect to the Lymann-series transitions in lower-Z hydrogenic ions

  15. Analysis of Υ production in pp collisions at 7 TeV with the ALICE muon spectrometer

    International Nuclear Information System (INIS)

    Ahn, S.U.

    2011-12-01

    The ALICE experiment is a general-purpose detector designed to study the Quark-Gluon Plasma (QGP) in heavy-ion collisions at CERN LHC. One of powerful probe to the QGP is the heavy quarkonium production in heavy-ion collisions compared to the pp collisions. The interests of the heavy quarkonium production is not limited in heavy-ion physics since its production mechanism in pp collisions is still ambiguous. The aim of this thesis work is to estimate the production cross section of Υ(nS) in pp collisions at √(s)= 7 TeV in their muon decay channel with the ALICE muon spectrometer. The ALICE muon spectrometer is located at the forward rapidity region -4 + μ - ] = [0.62±0.38(stat.)+0.12-0.21(syst.)] nb per rapidity unit. (author)

  16. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  17. Large acceptance spectrometers for π0 mesons

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1984-01-01

    A spectrometer composed of lead-oxide loaded glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy ion reactions. The spectrometer detects the Cerenkov radiation emitted when the high energy photons (Eγ approx. 70 MeV) resulting from π 0 decay create electron-position pairs in the glass, initiating electromagnetic showers. A geometric acceptance of better than 5% of 4π is possible; the π 0 detection efficiency varies between this value at T/sub π/ = 0 MeV and 1% for T/sub π/ approx. 100 MeV

  18. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.

    2007-08-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  19. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.; Kaellne, J.; Weiszflog, M.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Sousa, J.; Popovichev, S.

    2008-01-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  20. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A. (and others)

    2007-08-15

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.

  1. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  2. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    Keppler, E.; Wilken, B.; Richer, K.; Umlauft, G.; Fischer, K.; Winterhoff, H.P.

    1976-10-01

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.) [de

  3. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1988-01-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs

  4. Calculational approach to ionization spectrometer design

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1974-01-01

    Many factors contribute to the design and overall performance of an ionization spectrometer. These factors include the conditions under which the spectrometer is to be used, the required performance, the development of the hadronic and electromagnetic cascades, leakage and binding energies, saturation effects of densely ionizing particles, nonuniform light collection, sampling fluctuations, etc. The calculational procedures developed at Oak Ridge National Laboratory that have been applied to many spectrometer designs and that include many of the influencing factors in spectrometer design are discussed. The incident-particle types which can be considered with some generality are protons, neutrons, pions, muons, electrons, positrons, and gamma rays. Charged kaons can also be considered but with less generality. The incident-particle energy range can extend into the hundreds of GeV range. The calculations have been verified by comparison with experimental data but only up to approximately 30 GeV. Some comparisons with experimental data are also discussed and presented so that the flexibility of the calculational methods can be demonstrated. (U.S.)

  5. Semiconductor X-ray spectrometer with light feedback

    International Nuclear Information System (INIS)

    Zubareva, A.M.; Iliev, S.; Kushniruk, V.F.; Rykhlyuk, A.V.; Subbotin, V.G.; Kharitonov, Yu.P.

    1978-01-01

    An X-ray spectrometer has been designed consisting of a preamplifier with light pulse feedback, and a Si (Li) detector. The electric(FET) circuit is given of the preamplifier designed on field effect transistors. An identification is made of the types of noises of a sink current of 7.5 mA. It is established that a significant part of the total noise comes from the detector-FET system, and white noise from leakage current in the detector. The use in the spectrometer of the preamplifier with light pulse feedback enables the white noise to be reduced to 40-45 eV with a detector leakage current of 10 -13 A. A decrease in the noise of the detector-FET system is only possible owing to the improved technology in the manufacture of FET's. The energy resolution of the spectrometer for the 5.9 keV line is 168 eV

  6. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    International Nuclear Information System (INIS)

    Naimi, S.

    2010-10-01

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer Isoltrap at CERN-Isolde. High-precision mass measurements of neutron-rich manganese ( 58 - 66 Mn) and krypton isotopes ( 96, 97 Kr) are presented, of which the 66 Mn and 96, 97 Kr masses are measured for the first time. In particular, the mass of 97 Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N=40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N=40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclear quantum shape/phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy. Another part of this work was the design of new decay spectroscopy system behind the Isoltrap mass spectrometer. The beam purity achievable with Isoltrap will allow decay studies with γ and β detection coupled to a tape-station. This system has been mounted and commissioned with the radioactive beam 80 Rb. (author)

  7. A 4π dilepton spectrometer: PEPSI

    International Nuclear Information System (INIS)

    Buda, A.; Bacelar, J.C.S.; Balanda, A.; Klinken, J. van; Sujkowski, Z.; Woude, A. van der

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2 Fe 14 B permanent magnets forming a compact 4π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient (α π ) of the 15.1 MeV M1 transition from a J π =1 + state to the ground state in 12 C. Our experimental value of α π =(3.3±0.5)x10 -3 is in good agreement with theoretical estimates. (orig.)

  8. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  9. Analysis of Location of Laminar-Turbulent Transition on the FX 66-S-196 V1 Airfoil

    Directory of Open Access Journals (Sweden)

    Laurynas Naujokaitis

    2011-04-01

    Full Text Available The transition location on the FX 66‑S‑196 V1 wing section was analyzed with the using interactive program XFOIL of Mark Drela, MIT. Calculated results of transition location were compared with published measurement data from a wind tunnel at Delft University of Technology (Netherlands. The airfoil was analyzed at the Reynolds number Re = 0,5·106 and Re = 1,5·106. Article in Lithuanian

  10. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  11. MESSENGER E/V/H GRNS 2 GAMMA RAY SPECTROMETER RAW DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER GRS uncalibrated observations, also known as EDRs. The GRS experiment is a gamma ray spectrometer designed...

  12. Results on search for a QGP with a TPC magnetic spectrometer at AGS and plans for an ∼4π TPC magnetic spectrometer at RHIC

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1991-01-01

    In the first part of this paper a search for a Quark-Gluon Plasma (QGP) with a TPC Magnetic Spectrometer at AGS by the BNL/CCNY/Johns Hopkins/Rice (E-810) Collaboration is discussed. At AGS energies the expected increase in baryon density is near maximum. If a QGP is formed even rarely this approach provides a sensitive method for its detection. We have found some interesting phenomena including strangeness enhancement, multi-Λ and K s 0 events and an increased slope for π - (corresponding to a reduced temperature) in the usual temperature plot for p perpendicular < 0.2 GeV/c. We plan to increase the statistics with the 14.5 GeV/c x A Si ions on targets from light to heavy and then to continue the program with incident Au ions. In Part 2 we discuss the BNL/CCNY/Notre Dame/Rice proposal for an ∼ 4π TPC Magnetic Spectrometer for RHIC which we believe will be a sensitive probe for hadronic QGP signals, and also capable of observing departures from QCD should they occur. 8 refs., 12 figs

  13. Deep-water gamma-spectrometer based on HP(Ge) detector

    International Nuclear Information System (INIS)

    Sokolov, A.; Danengirsh, S.; Popov, S.; Pchelincev, A; Gostilo, V.; Kravchenko, S.; Shapovalov, V.; Druzhinin, A.

    1995-01-01

    way. The calculation of spectrums and identification of nuclides is carried out using special methods and software. The spectrometer has the relative efficiency - 20%, energy resolution 1.0 keV on line 122 keV and 2,0 keV on line 1333 keV. Instability of transformation coefficient is not more, than 0.12% during 24 hours, the ratio of peak-to-compton is more, than 40 on line 1333 keV. The limit of radionuclide Cs-137 determination is not worse, than 0.1 Bk/l at the exposition of an 1 hour. To take account of the dimension and parameters of the spectrometer, it can be adapted also in neutron-activation investigations of geophysical and oil drillhole. (author)

  14. Study on Welding Mechanism Based on Modification of Polypropylene for Improving the Laser Transmission Weldability to PA66

    Science.gov (United States)

    Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao

    2015-01-01

    Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484

  15. Structures, stabilities, aromaticity, and electronic properties of C66 fullerene isomers, anions (C662-, C664-, C666-), and metallofullerenes (Sc2-C66)

    International Nuclear Information System (INIS)

    Cui Yanhong; Tian, Wei Quan; Feng Jikang; Chen Deli

    2010-01-01

    Among all the 4478 classical isomers of C 66 , C 66 (C s :0060) with the lowest number of pentagon-pentagon fusions was predicted to be the most stable isomer, followed by isomers C 66 (C 2v :0011) and C 66 (C 2 :0083). The infrared spectra and aromaticity of the most stable isomers were predicted. The relative stabilities of C 66 isomers change with charges or doping of metals. The structures and relative stabilities of the most stable metallofullerenes were delineated and compared with experiment. Sc 2 -C 66 (C 2 :0083) was predicted to be the most stable metallofullerene, although Sc 2 -C 66 (C 2v :0011) was observed. Charge-transfer from Sc 2 to the fused pentagons and the bonding between these two moieties significantly decrease the strain energies caused by the pair of fused pentagons thereby stabilizing the fullerene cage.

  16. Search for heavy neutral and charged leptons in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    A search for unstable neutral and charged heavy leptons as well as for stable charged heavy leptons has been made at center-of-mass energies $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV with the L3 detector at LEP. No evidence for their existence was found. We exclude unstable neutral leptons of Dirac (Majorana) type for masses below 78.0 (66.7), 78.0 (66.7) and 72.2 (58.2) GeV, if the heavy neutrino couples to the electron, muon or tau family, respectively. We exclude unstable charged heavy leptons for masses below 81.0 GeV for a wide mass range of the associated neutral heavy lepton. The production of stable charged heavy leptons with a mass less than 84.2 GeV is also excluded. If the unstable charged heavy lepton decays via mixing into a massless neutrino, we exclude masses below 78.7 GeV.

  17. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  18. Hyper-filter-fluorescer spectrometer for fusion x-ray diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.

    1981-01-01

    The filter-fluorescer spectrometer (FFS) is a powerful tool for measuring x-ray spectrum from high fluence x-ray sources. However, this technique is limited to energies less than 120 keV, because there are no practical absorption edges available above this energy. In this paper, we present a new method of utilizing the filter-fluorescer system for x-ray spectral measurement above 120 keV. The new apparatus is called hyper-filter-fluorescer spectrometer

  19. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  20. ''VECTON-1'' two-arm spectrometer for rho--meson photoproduction study

    International Nuclear Information System (INIS)

    Anokhin, M.V.; Kanetsyan, A.R.; Kukarev, V.M.

    1977-01-01

    A two-arm spectrometer for registering p - mesons according to a charged pion and one of the neutral pion disintegration photons has been designed. The spectrometer arm which registers charged pion comprises a deflecting magnet, dual wide-gap spark chambers and dual scintillation counters. The spectrometer arm for registering the disintegration photon comprises a scintillation counter, a dual wide-gap spark chamber and a shower detector. The principal characteristics of the spectrometer components are listed. The functional diagram of the useful events selection unit is discussed. It is shown that the experimental results obtained with the aid of the ''VEKTON-1'' set-up are in good agreement with the earlier results: P - meson rest energy is 731+-30 MeV, the resonant range width is 195+-58 MeV

  1. Studies on a modular high-energy photon spectrometer of pure CsI scintillators

    International Nuclear Information System (INIS)

    Kopyto, D.

    1994-04-01

    Aim of the present thesis is the optimization of components for the construction of a high-energy photon spectrometer of pure CsI for the detection of the neutral pseudoscalar mesons π 0 , η, and η' at COSY. These mesons are distinguished by their decay into two γ quanta and can therefore be detected by means of a photon spectrometer. A concept of a 2-arm shower counter of pure CsI is presented. Conclusions on the energy resolution of such a calorimeter shall yield a test module, which is constructed of 5.5 CsI(pure) pyramide trunk, each of which possesses a length of 30 cm and an angular acceptance of 6 .6 . The geometry of the moduls is formed in such a way that its extension to a 2-arm shower counter is possible at any time. Hitherto 14 by teflon foils wrapped up crystals for the test module were tested. Their energy resolution varies at 0.66 MeV between 20 and 25 % FWHM. Furthermore a method was found, which allows to trim the position dependence to the required values. So for the position dependence of a crystal even a value of 1.1 % could be reached. The energy resolution amounted thereby to 22 % FWHM. A measurement of the energy resolution with 20 MeV protons yielded a value of 7 %. For the energy calibration of the single detector elements in a dynamic range between 1 MeV and 12 GeV with low-energy γ sources the charge response function of the photoelectron multiplier to be applied in the test module was determined in dependence on the light intensity. The measurement resulted that the photomultiplier at 40 MeV (related to a CsI(pure) reference crystal with an about twofold so high efficiency of the detectable light in comparison to the long pyramide trunks) deviates by 4 % and at 300 MeV by 38 % from the linear behaviour, while it at 500 MeV shows a deviation of 50 %

  2. Evidence for proton-tagged, central semi-exclusive production of high-mass muon pairs at 13 TeV with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The process $pp \\rightarrow p \\mu^+\\mu^- p^{(*)}$ has been observed at the LHC for dimuon masses larger than $110~\\mathrm{GeV}$ in $pp$ collisions at $\\sqrt{s}=13~\\mathrm{TeV}$. Here $p^{(*)}$ indicates that the second proton is undetected, and either remains intact or dissociates into a low-mass state $p^{*}$. The scattered proton has been measured in the CMS-TOTEM Precision Proton Spectrometer (CT-PPS), which operated for the first time in 2016. The measurement is based on an integrated luminosity of approximately $10~\\mathrm{fb}^{-1}$ collected in regular, high-luminosity fills. A total of 12 candidates with $m(\\mu\\mu) > 110~\\mathrm{GeV}$, and matching forward proton kinematics, is observed. This corresponds to an excess of more than four standard deviations over the background. The spectrometer and its operation are described, along with the data and background estimation. The present results constitute the first evidence of this process at such masses. They also demonstrate that CT-PPS performs as expect...

  3. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  4. Users guide to the inelastic rotor spectrometer (IRS)

    International Nuclear Information System (INIS)

    Bunce, L.J.

    1987-11-01

    The paper is a users guide to the inelastic rotor spectrometer installed on the Harwell 136 Mev electron linear accelerator HELIOS. The spectrometer is designed to measure neutron inelastic scattering for energy transfers from 50 meV to 400 meV and covering a range of Q values from 1 to 15 A 0-1 . The guide contains a description of:- time-of-flight scales, run and sample changer control units, sample environment, detectors, rotor system, 600 Hz operation of rotor, a run, and data processing. (U.K.)

  5. Theory and optical design of x-ray echo spectrometers

    Science.gov (United States)

    Shvyd'ko, Yuri

    2017-08-01

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016), 10.1103/PhysRevLett.116.080801] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. Examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.

  6. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  7. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  8. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  9. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  10. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  11. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  12. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  13. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.

  14. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Senesi, R.; D'Angelo, A.; Gorini, G.; Imberti, S.; Tardocchi, M.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal (∝25 meV) to epithermal (∝70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238 U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6 Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6 Li glass, allowing us to measure F(y) up to the fourth 238 U absorption energy (E r =66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ℎω>1 eV) and low wavevector (q -1 ) transfers. (orig.)

  15. Satellite-borne time-of-flight particle spectrometer and its response to protons

    International Nuclear Information System (INIS)

    Shino, T.

    1994-01-01

    One of the purposes of the high energy particle (HEP) experiment of the GEOTAIL satellite launched in 1992 is the elucidation of plasma dynamics in the tail region of planetary magnetosphere. For that purpose, a low energy particle detector (LD) was on board, which mainly observed relatively low energy particles up to a few MeV. The LD is the particle spectrometer based on time of flight technique. In order to confirm further its sensitivity to high energy protons, the beam experiment was carried out at Waseda University using the engineering model of the LD spectrometer that is exactly the same as the launched one. The LD spectrometer is shown, and its functions are explained. The LD was designed to identify electrons of 30 - 400 keV, protons of 30 - 1500 keV, helium ions of 80 - 4000 keV, and heavy ions (mainly C, N and O) of 160 - 1500 keV. The relation of measured time of flight signals with energy signals is shown. There are several factors that determine the detection efficiency of the spectrometer, which are discussed. The experiment and the results are reported. (K.I.)

  16. Production of gallium-66, positron emitting nuclide for radioimmumotherapy

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Chu, Yung Yee

    1991-01-01

    Excitation functions for production of 66 Ga via α-induced nuclear reactions on enriched 66 Zn have been measured with E α ≤27.3 MeV and E α ≤43.7 MeV employing the stack-thin target technique. In addition, the induced activity of 67 Ga in the same sets of targets allowed an evaluation of the excitation functions of the corresponding nuclear reactions. 17 refs., 2 figs., 2 tabs

  17. X-ray semiconductor spectrometer with light feedback

    International Nuclear Information System (INIS)

    Zubareva, A.M.; Iliev, S.; Kushniruk, V.F.; Rykhlyuk, A.V.; Subbotin, V.G.; Kharitonov, Yu.P.

    1977-01-01

    An X-ray spectrometer with the pulse light feedback in the preamplifier has been designed. The resolution has been obtained to be 168 eV on line of 5.9 keV. The analysis of the electronics and detector contribution to the resolution has been performed

  18. A π0 and eta spectrometer of lead glass and BGO for momenta up to 1 GeV/c

    International Nuclear Information System (INIS)

    Adiels, L.; Bergstroem, I.; Carius, S.; Kerek, A.; Backenstoss, G.; Findeisen, C.; Pavlopoulos, P.; Repond, J.; Tauscher, L.; Troester, D.; Williams, M.C.S.

    1986-01-01

    A spectrometer consisting of two sets of bismuth germanium oxide (BGO) crystals and a lead-glass array has been used to measure the π 0 and eta momentum spectra produced from proton-antiproton annihilations at rest. We describe the test of the BGO sets in electron beams of energies from 50 to 450 MeV. We discuss the method of construction and calibration of the lead-glass array, as well as procedures to extract the energy and position resolutions for detected photons. A momentum resolution (sigma) for π 0 's and eta's of 4% and 3%, respectively has been achieved at momenta below 1 GeV/c. (orig.)

  19. Preparation of the study of the quark-gluon plasma in ALICE: the V0 detector and the low masses resonances in the muon spectrometer

    International Nuclear Information System (INIS)

    Nendaz, F.

    2009-09-01

    The ALICE (A Large Ion Collider Experiment) experiment at LHC will study from 2010 the quark-gluon plasma (QGP), phase of the matter in which quarks and gluons are deconfined. The work presented here was done within the ALICE collaboration, for preparing the analysis of the incoming experimental data. Besides a theoretical approach of the QGP and of the chiral symmetry, we develop three experimental aspects: the V0 sub-detector, the study of the low mass mesons and the deconvolution. First, we detail the measures of luminosity and multiplicity that can be done with the V0. We then develop the study of the dimuons in the muon spectrometer. We concentrate on the low masses mesons: the rho, the omega and the phi. Finally, we present a method for improving the spectrometer data: the Richardson-Lucy deconvolution. (author)

  20. 42 CFR 66.111 - Suspension, waiver, and cancellation.

    Science.gov (United States)

    2010-10-01

    ... breaks in the continuous service required under § 66.110(c), or extend the period of repayment under § 66.110(e) if the Secretary determines that: (1) An extension or break in service is necessary so the... estimated future financial resources and obligations; (3) The reasons for the individual's failure to...

  1. A multiplex coding imaging spectrometer for X-ray astronomy

    International Nuclear Information System (INIS)

    Rocchia, R.; Deschamps, J.Y.; Koch-Miramond, L.; Tarrius, A.

    1985-06-01

    The paper describes a multiplex coding system associated with a solid state spectrometer Si(Li) designed to be placed at the focus of a grazing incidence telescope. In this instrument the spectrometric and imaging functions are separated. The coding system consists in a movable mask with pseudo randomly distributed holes, located in the focal plane of the telescope. The pixel size lies in the range 100-200 microns. The close association of the coding system with a Si(Li) detector gives an imaging spectrometer combining the good efficiency (50% between 0,5 and 10 keV) and energy resolution (ΔE approximately 90 to 160 eV) of solid state spectrometers with the spatial resolution of the mask. Simulations and results obtained with a laboratory model are presented

  2. Low power ion spectrometer for high counting rates

    International Nuclear Information System (INIS)

    Klein, J.W.; Dullenkopf, P.; Glasmachers, A.; Melbert, J.; Winkelnkemper, W.

    1980-01-01

    This report describes in detail the electronic concept for a time-of-flight (TOF) ion spectrometer for high counting rates and high dynamic range which can be used as a satellite instrument. The detection principle of the spectrometer is based on a time-of-flight and energy measurement for each incident ion. The ionmass is related to these two quantities by a simple equation. The described approach for the mass identification systems is using an analog fast-slow concept: The fast TOF-signal preselects the gainstep in the much slower energy channel. The conversion time of the mass identifier is approximately 10 -6 s and the dynamic range of the energy channel is better than 10 3 (20 keV to 25 MeV). The purpose of this study was to demonstrate the feasibility of a TOF-spectrometer capable to measure the ion composition in planetary magnetospheres. (orig.) [de

  3. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-01-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of 3 He gas, can function simultaneously as efficient thermal neutron detectors

  4. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  5. Study of preshower in the PANDA target spectrometer

    International Nuclear Information System (INIS)

    Dutta, Kamal; Kalita, Kushal; Suzuki, K.; Steinschaden, D.; Roy, B.J.

    2015-01-01

    PANDA (antiProton ANnihilation at DArmstdt) is one of the major projects at FAIR, GSI, Germany. The main objective of this experiment is to study the fundamental questions of hadron physics and QCD in pp¯ annihilation using high intensity cooled anti-proton beams with momenta between 1.5 GeV/c and 15 GeV/c. To achieve high momentum resolution and full solid angle coverage, the PANDA detector is split in to two parts: target spectrometer and forward spectrometer. The target spectrometer is a complex detector consisting of several subsystems surrounding the interaction point. It is surrounded by a 2 T superconducting solenoid magnet. A Micro Vertex Detector (MVD), close to interaction point, detects secondary vertices of D and Hyperon decays. The Straw Tube Tracker (STT) is the central tracking system around the MVD. A cherenkov counter named DIRC (Detection of Internally Reflected Cherenkov light), provides π/K separation for particle momenta up to 3.5 GeV/c. The barrel Time-of-Flight (TOF) detector, consists of plastic scintillator tiles with a time resolution of 100 ps. It is used to identify particles of momentum below cherenkov threshold

  6. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  7. Composite particle production in relativistic Au+Au collisions at AGS: First results from the E866 forward spectrometer at sign 2, 4, and 10.8 A·GeV

    International Nuclear Information System (INIS)

    Ashktorab, K.

    1996-01-01

    Particle spectra were measured for Au + Au collisions at 2, 4, and 10. 8 A·GeV using the E866 spectrometers. Recent results on proton emission and composite particle production form the E866 forward spectrometer data taken in 1994 together with the first results from the 1995/6 AGS running period are presented. Preliminary results indicate a decrease in the coalescence scaling coefficient with increasing projectile energy and centrality

  8. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  9. A compact multichannel spectrometer for Thomson scattering

    International Nuclear Information System (INIS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-01-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T e e > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (∼2 ns) ICCD camera for detection. A Gen III image intensifier provides ∼45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  10. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  11. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  12. Development results of portable gamma-radiation HPGe spectrometer with electric cooling for field applications

    International Nuclear Information System (INIS)

    Kondrat'ev, V.; Loshevich, E.; Pchelintsev, A.; Sokolov, A.; Gostilo, V.

    2015-01-01

    The paper presents development results of a portable spectrometer based on high purity germanium (HPGe spectrometer) with Stirling electric cooler for field applications. The spectrometer cryostat allows installation of HPGe coaxial detectors with efficiency up to 40% and planar detectors with sensitive area up to 3000 mm2. The detector cooling time is not more than 8 hours. Despite the mechanical vibrations due to electric cooler operation, the obtained energy resolution of the spectrometer with coaxial detector of 10% efficiency was less than 1,0 and 2,0 keV by energies 122 and 1332 keV accordingly. Miniature processor device (Android) allows control for all operation modes of the spectrometer, provides self diagnostics, initial procession, indication and spectra accumulation

  13. Spectrometer of Cherenkov radiation rings with hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Baldin, B.Yu.

    1983-01-01

    Characteristics of SKOCH Cherenkov radiation ring spectrometer intended for identification of π- and K-mesons and protons in a wide divergent beam in the pulse range of 5.5-30 GeV/s are investigated. The spectrometer detecting system is based on using the hodoscopic photoelectron multipliers (HPEM). The HPEM specific feature is that they have an extended cathode and permit to determine the coordinate of an incident photon by measuring the time of photoelectron drift to a dinode system. The spectrometer has been tested at the FODS facility in the secondary particle beam with angular divergence equal to 16x6 mrad and aperture of 400x200 mm in the pulse range of 6-20 GeV/s. The range of Cherenkov radiation angle detection is 40-100 mrad which corresponds to the particle velocity range of 0.996-1. The angular and radial aperture is 30 mrad, the diameter is 420 mm. The obtained velocity resolution is 6x10 -5

  14. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    International Nuclear Information System (INIS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R

    2011-01-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO 2 molecule by the impact of keV electrons. Information about the ion pairs of CO + :O + , C + :O + and O + :O + resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO 2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO + and O + ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively

  15. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  16. Alignment of the ATLAS central muon spectrometer

    CERN Document Server

    Chevallier, F

    2008-01-01

    The muon spectrometer of the ATLAS experiment is one of the largest detectors ever built. At the LHC, new physics signs could appear through high momenta muons (1 TeV). Identification and precise momentum measurement of such muons are two of the main challenges of the ATLAS muon spectrometer. In order to get a good resolution for high energy muons (i.e. 10% at 1 TeV), the accuracy on the alignment of precision chambers must be of the order of 50 microns. Several procedures have been developed to reach such a precision. This document describes complementary techniques used to align the muon sub-detectors, and their results : the optical system, the muon cosmic rays and the straight tracks coming from collisions.

  17. Design and validation of a photon insensitive multidetector neutron spectrometer based on Dysprosium activation foils

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.; Bedogni, R.; Palermo, I.; Esposito, A.; Delgado, A.; Angelone, M.; Pillon, M.

    2011-01-01

    This communication describes a photon insensitive passive neutron spectrometer consisting of Dysprosium (Dy) activation foils located along three perpendicular axes within a single moderating polyethylene sphere. The Monte Carlo code MCNPX 2.6 was used to optimize the spatial arrangement of the detectors and to derive the spectrometer response matrix. Nearly isotropic response in terms of neutron fluence for energies up to 20 MeV was obtained by combining the readings of the detectors located at the same radius value. The spectrometer was calibrated using a previously characterized 14 MeV neutron beam produced in the ENEA Frascati Neutron Generator (FNG). The overall uncertainty of the spectrometer response matrix at 14 MeV, assessed on the basis of this experiment, was ±3%.

  18. Top-down and bottom-up characterization of nitrated birch pollen allergen Bet v 1a with CZE hyphenated to an Orbitrap mass spectrometer.

    Science.gov (United States)

    Gusenkov, Sergey; Stutz, Hanno

    2018-02-01

    Tyrosine (Tyr) residues of the major pollen allergen of birch Betula verrucosa, Bet v 1a, were nitrated by peroxynitrite. This modification enhances the allergenicity. Modified tyrosines were identified by analyzing intact allergen variants in combination with top-down and bottom-up approaches. Therefore, a laboratory-built sheath-liquid assisted ESI interface was applied for hyphenation of CE to an Orbitrap mass spectrometer to localize individual nitration sites. The major focus was on identification of primary nitration sites. The top-down approach unambiguously identified Tyr 5 as the most prominent modification site. Fragments from the allergen core and the C-terminal part carried up to three potential nitration sites, respectively. Thus, a bottom-up approach with tryptic digest was used as a complementary strategy which allowed for the unambiguous localization of nitration sites within the respective peptides. Nitration propensity for individual Tyr residues was addressed by comparison of MS signals of nitrated peptides relative to all cognates of homolog primary sequence. Combined data identified surface exposed Tyr 5 and Tyr 66 as major nitration sites followed by less accessible Tyr 158 whereas Tyr 81, 83 and 150 possess a lower nitration tendency and are apparently modified in variants with higher nitration levels. © 2018 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Opening the terahertz window on the OSIRIS spectrometer

    Directory of Open Access Journals (Sweden)

    Demmel F.

    2015-01-01

    Full Text Available A cooled and mechanically retractable beryllium filter has been installed and commissioned on the low-energy OSIRIS spectrometer at ISIS. This instrument development extends the energy-transfer range of the spectrometer up to ca. 20 meV (∼ 5 THz, leading to an excellent resolution at THz frequencies and substantial gains in detected flux relative to existing capabilities on the neighbouring IRIS spectrometer. Herein, we provide a concise account of this new capability for high-resolution neutron spectroscopy in the THz domain, as well as outline a number of ongoing and potential scientific opportunities in condensed-matter physics, chemistry, and materials science.

  20. Design and performance estimates for the l'OASIS experiment magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, G.; Misuri, A.; Leemans, W.

    2001-11-19

    Two double-focusing magnetic specrometers will be used to momentum analyze the electron beam produced by the l'OASIS laser plasma wakefield accelerator. One spectrometer, based on a round pole magnet, has an operating range up to 50 MeV/c, with a resolution in the 1 - 2 percent range. The other spectrometer, based on a wedge dipole magnet, has better resolution (about 0.5 percent) but an operating range limited to below 18 MeV/c. This note describes the optical design of the spectrometers, and provides detailed estimates of performance features such as dynamic range, operating range, calibration, resolution, acceptance, and aberrations.

  1. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  2. CdZnTe {gamma} detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, C.; Pietropaolo, A.; Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Tor Vergata (Italy); D' Angelo, A. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione, Roma II (Italy); Gorini, G.; Imberti, S.; Tardocchi, M. [Dipartimento di Fisica G. Occhialini, Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Milano-Bicocca (Italy); Rhodes, N.J.; Schooneveld, E.M. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, Oxfordshire (United Kingdom)

    2004-03-01

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ({proportional_to}25 meV) to epithermal ({proportional_to}70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in {sup 238}U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional {sup 6}Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to {sup 6}Li glass, allowing us to measure F(y) up to the fourth {sup 238}U absorption energy (E{sub r}=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy ({Dirac_h}{omega}>1 eV) and low wavevector (q <10 A{sup -1}) transfers. (orig.)

  3. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Hye Min Park

    2016-06-01

    Full Text Available In this study, a personal gamma (γ spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm3 Ce-doped Gd–Al–Ga–garnet (Ce:GAGG crystal that was coupled to a Si photomultiplier (SiPM to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for 133Ba at 0.356 MeV, 22Na at 0.511 MeV, 137Cs at 0.662 MeV, and 60Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery, and measured only 5.0 × 7.0 cm2.

  4. Design of an electronic charged particle spectrometer to measure (ρR), yield, and implosion symmetry on the OMEGA Upgrade

    International Nuclear Information System (INIS)

    Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Wenzel, K.W.; Knauer, J.P.

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes (∼10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10 6 single-hit detectors, giving the spectrometer a dynamic range of 1 - 10 5 particles/shot. For example, in the case of a DT yield of 10 9 neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow ρR's up to 0.15 g/cm 2 to be measured (for a 1 keV plasma), or 0.3 g/cm 2 2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine ρR up to 0.3 g/cm 2 . Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility

  5. Design, construction, and calibration of a nonfocusing neutron spectrometer

    International Nuclear Information System (INIS)

    Storey, W.

    1974-12-01

    A fourteen-channel time-resolved neutron spectrometer with associated Faraday cup has been designed and constructed for use in the field. A neutron energy range of 9.5 to 15 MeV is covered. Both instruments detect protons elastically scattered from a thin hydrogenous foil in interaction with the neutron beam, with magnetic analysis of the protons by the spectrometer. The design requirements of small size and weight and 0.6 to 0.7 MeV resolution have been met. Following a description of the instrument and of its geometry, there is a detailed presentation of the design and construction of the instrument. The section on instrument performance is concerned with the comparison between predicted performance based upon computation, in which the magnet is of primary interest, and upon measured performance based upon a calibration experiment, which is given a general description in Appendix A. Software used mainly for signal prediction and unfolding, for both the neutron spectrometer and Faraday cup, is described

  6. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  7. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  8. Standalone vertex finding in the ATLAS muon spectrometer

    DEFF Research Database (Denmark)

    Aad, A.; Abajyan, T.; Abbott, B.

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perf......A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths....... The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011....

  9. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  10. An EXAFS spectrometer on beam line 10B at the Photon Factory

    International Nuclear Information System (INIS)

    Oyanagi, Hiroyuki; Matsushita, Tadashi; Ito, Masahisa; Kuroda, Haruo.

    1984-03-01

    An EXAFS spectrometer installed on the beam line 10B at the Photon Factory is designed to cover the photon energy between 4 and 30 keV. Utilizing either a channel-cut or two flat silicon crystals as a monochromator, a beam intensity between 10 8 and 10 9 photons/sec is obtained at 9 keV with a resolution of 1 eV. The performance of the spectrometer, such as a signal-to-noise ratio or an energy resolution is demonstrated with examples of K edge absorption spectra of bromine, germanium, gallium arsenide, and zinc selenide. (author)

  11. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  12. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    □ Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  13. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  14. Production and quality control of 66 Ga as a PET radioisotope

    International Nuclear Information System (INIS)

    Rowshanfarzad, P.; Jalilian, A. R.; Akhlaghi, M.; Sabet, M.

    2004-01-01

    Background: 66 Ga (t 1/2 =9.49 h, β + : 4.153 MeV, γ: 511, 834, 1039, 2752 keV) has a wide range of applications in different fields of medical sciences. Production of 66 Ga became one of our main interests, according to its increasing applications in nuclear medicine, particularly in PET imaging. Materials and Methods: 66 Zn (p,n) 66 Ga reaction was determined as the best choice for the production of 66 Ga, according to the present facilities and conditions. The bombardment was performed by 15 MeV protons in Cyclone 30-IBA accelerator with a current intensity of 180 μA for 67 min. ALICE nuclear code and SRIM nuclear program were used to determine the optimum energy and target thickness. Targets were prepared by electroplating of 66 Zn (>95%) on a copper backing. Chemical processing was performed by a no carrier added method consisting of ion exchange chromatography and liquid-liquid extraction. Anion exchange chromatography was used for the recovery of target material. Quality control of the product was carried out in two steps of chemical and radionuclidic purity control. Results: the activity of 66 Ga was 2.41 Ci at the end of bombardment and the production yield was 12.04 mCi/μAh. The chemical separation yield was 93% and the yield of chemical recovery of the target material was 97%. Quality control tests showed a radionuclidic purity of more than 97% and the amounts of chemical impurities were in accordance with standard levels. Discussion: Our production yield was comparable with previous reports given in the literature. The chemical separation method used in this research was simple and brought up acceptable results. So, this process can be considered as one of the best choices for the production of 66 Ga

  15. UARS Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of temperature...

  16. Nimbus-4 Infrared Interferometer Spectrometer (IRIS) Level 1 Radiance Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-4 Infrared Interferometer Spectrometer (IRIS) Level 1 Radiance Data contain thermal emissions of the Earth's atmosphere at wave numbers between 400 and...

  17. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  18. Light response of YAP:Ce and LaBr{sub 3}:Ce scintillators to 4–30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cazzaniga, C., E-mail: carlo.cazzaniga@stfc.ac.uk [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Cremona, A. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Nocente, M.; Rebai, M.; Rigamonti, D. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Croci, G. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Ericsson, G. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Fazzi, A. [Department of Energy of the Politecnico di Milano, via Lambruschini 4, I-20156 Milano (Italy); Hjalmarsson, A. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Mazzocco, M.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, and INFN, Sez. di Padova, I-35131 Padova (Italy); and others

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr{sub 3}:Ce crystals has been measured with protons in the 4–8 MeV energy range at the Uppsala tandem accelerator and in the 8–26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with {sup 137}Cs and {sup 60}Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr{sub 3}:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  19. UARS Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of temperature...

  20. Fusion Power Measurement Using a Combined Neutron Spectrometer-Camera System at ITER

    International Nuclear Information System (INIS)

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.

    2008-01-01

    A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3% and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5%

  1. High-spin states in 66Zn

    International Nuclear Information System (INIS)

    Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.

    1975-01-01

    The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr

  2. On the design of the NIF Continuum Spectrometer

    Science.gov (United States)

    Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.

    2017-08-01

    In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.

  3. Possibilities of magnet prism β-spectrometer application in on-line experiments

    International Nuclear Information System (INIS)

    Akhmetov, K.M.; Arynov, S.

    1996-01-01

    The main attention is paid to works with particle beam in up-to-date nuclear investigations. The application of magnet prism β-spectrometer for works in 'on-line' experiments is considered in this article. The source chamber and detector chamber are distanted from each other on great distance (4 m) and are out of operation field of spectrometer. There is a reliable defence of operating field of device from external parasitic fields by the magnetic screens system. The additional advantage is a factor that source (target) and detector could replacing in specific directions about few centimetres during the device operating. The main β-spectroscopic performances of device are compared with Grenoble spectroscopic complex. The liner depression of prism spectrometer account for from 3,6 up to 6 m; light force - from 2·10 -4 up to 6·10 -4 up to 4π; operating resolving power - 0,02-0,05% by impulse. Investigation range is from several keV up to 3 MeV. There are all opportunities for installing of the on-line magnetic prism spectrometer on the U-150 accelerator and the WWR-K reactor. Spectrometer application in 'on-line' experiments gives possibility to obtain more wide information. 4 refs

  4. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response

  5. A neutron spectrometer for studying giant resonances with (p,n) reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Stuhl, L.; Krasznahorkay, A.; Csatlós, M.; Algora, A.; Gulyás, J.; Kalinka, G.; Timár, J.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M.A.

    2014-01-01

    A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV–10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angular resolution of less than 1°. Details of the design, construction and experimental tests of the spectrometer will be presented

  6. Double-arm time-of-flight mass-spectrometer of nuclear fragments

    International Nuclear Information System (INIS)

    Ajvazian, G.M.; Astabatyan, R.A.

    1995-01-01

    A double-arm time-of-flight spectrometer of nuclear fragments for the investigation of heavy nuclei photofission in the intermediate energy range is described. The calibration results and working characteristics of the spectrometer, obtained using 252 Cf as a source of spontaneous fission, are presented. A mass resolution of σ m ∼2-3 a.m.u. was obtained within the registered fragments mass range of 80-160 a.m.u. The spectrometer was tested in the experiment on the investigation of 238 U nuclei fission by Bremsstahlung photons with Eγ max=1.75 GeV

  7. Pulsed coherent spectrometer of nuclear magnetic and nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Karnachev, A.S.; Solov'ev, E.E.

    1996-01-01

    The spectrometer intended for studies on solid bodies was created on the basis of the X1-48 device for investigation of amplitude-frequency characteristics with the frequency range of 5-100 MHz, the receiver sensitivity by the signal-noise ratio at the outlet of 12 dB not worse than 0.5 μV and the feed-up capacity up to 80 W. The X1-48 minimal remodeling made it possible to use it in the spectrometer system as a signal feed-up source and measurer of the amplitude-frequency characteristic of the spectrometer receiver tract. 12 refs., 11 figs

  8. Magnetic spectrometer of the DEUTERON-2 set-up

    International Nuclear Information System (INIS)

    Ajvazyan, R.V.; Alanakyan, K.V.; Amaryan, M.J.

    1989-01-01

    A magnetic spectrometer of the two-arm DEUTERON-2 set-up of the Erevan Physical Institute is described. It is shown that the rejection factor for electrons and pions is 10 -2 - 10 -3 . The positively charged particles in the momentum range up to 1.5 GeV/c are identified by momentum and time-of-flight measurements. The main characteristics of the spectrometer are: momentum and angular acceptance δp/p = 46%, Δθ = 4 deg, solid angle ΔΩ = 2.75 msr, momentum resolution δp/p = 1.5%, angular resolutions δθ = 0.6 deg, δφ = 2 deg. The intervals of measured momentum and the polar scattering anlge are 0.5-3 GeV/c and 10-30 deg, 68-90 deg respectively. 7 refs.; 11 figs

  9. The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT

    International Nuclear Information System (INIS)

    Porter, F.S.; Beiersdorfer, P.; Brown, G.V.; Doriese, W.; Gygax, J.; Kelley, R.L.; Kilbourne, C.A.; King, J.; Irwin, K.; Reintsema, C.; Ullom, J.

    2007-01-01

    The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 (micro)s event timing, and capable of uninterrupted acquisition sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.

  10. The NIF x-ray spectrometer calibration campaign at Omega

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2014-11-15

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  11. The NIF x-ray spectrometer calibration campaign at Omega.

    Science.gov (United States)

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  12. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  13. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  14. The H1 forward proton spectrometer at HERA

    International Nuclear Information System (INIS)

    Esch, P. van; Kapichine, M.; Morozov, A.; Spaskov, V.; Bartel, W.; List, B.; Mahlke-Krueger, H.; Schroeder, V.; Wilksen, T.; Buesser, F.W.; Geske, K.; Karschnik, O.; Niebergall, F.; Riege, H.; Schuett, J.; Staa, R. van; Wittek, C.; Dau, D.; Newton, D.; Kotelnikov, S.K.; Lebedev, A.; Rusakov, S.; Astvatsatourov, A.; Baehr, J.; Harder, U.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.

    2000-01-01

    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in the so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 and 90 m from the interaction point

  15. The H1 forward proton spectrometer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Esch, P. van; Kapichine, M.; Morozov, A.; Spaskov, V.; Bartel, W.; List, B.; Mahlke-Krueger, H.; Schroeder, V.; Wilksen, T.; Buesser, F.W.; Geske, K.; Karschnik, O.; Niebergall, F.; Riege, H.; Schuett, J.; Staa, R. van; Wittek, C.; Dau, D.; Newton, D.; Kotelnikov, S.K.; Lebedev, A.; Rusakov, S.; Astvatsatourov, A.; Baehr, J.; Harder, U.; Hiller, K. E-mail: hiller@ifh.de; Hoffmann, B.; Luedecke, H.; Nahnhauer, R

    2000-05-21

    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in the so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 and 90 m from the interaction point.

  16. Investigation of background processes in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (IKP) (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino experiment aims to probe the mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of m{sub ν}=200 meV/c{sup 2} (90% C.L.). In order to determine the neutrino mass, the energy spectrum of electrons from the tritium β-decay is analyzed by a high-resolution electrostatic spectrometer which is based on the MAC-E filter principle. To keep the influence of the spectrometer background on the neutrino mass sensitivity small, KATRIN aims for a background level of 0.01 cps. For the investigation of different background components such as cosmic muons, external gamma radiation and the radioactive decay of isotopes in the volume of the spectrometer or on its surface, a series of dedicated measurements were performed with a combined system of main spectrometer and detector. This talk presents the results of measurements focusing on the secondary electron production at the inner surface of the spectrometer and compare them with electro-magnetic electron tracking simulations performed with the KATRIN developed simulation software KASSIOPEIA.

  17. Development of a junction β - spectrometer

    International Nuclear Information System (INIS)

    Hashizume, A.

    1966-01-01

    A β spectrometry unit using junctions of the silicon surface barrier type has been built. The resolving power of this spectrometer has been studied as well as the influence of a certain number of parameters (temperature, polarization voltage) on its characteristics. A study with this unit of some internal conversion electron spectra ( 113 Sn, 137 Cs, 139 Ce, 195 Au, 207 Bi) has led both to a determination of its characteristics and of an energy calibration, and to the determination of certain internal conversion ratios of these radionuclides. This spectrometer was then used for a study of (5-spectra in particular that of 35 S and 14 C. The calculations and corrections required for the setting-up of Kuries representation are described. The programmes required for the carrying-out of these calculations with an I.B.M. computer are given. It has been verified that Kuries representation for 14 C above 90 keV is in fact linear. The non-linear aspect observed by certain authors is probably due to the 'quality' of the sources used. The Fierz interference term has been determined. The maximum β energies found are respectively: 167 ± 1 keV for 35 S and 155 ± 2 keV for 14 C. (author) [fr

  18. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  19. High-sensitivity multidimensional gamma-ray spectrometer, PRIPYAT` for low-level measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andrukhovich, S K [and others

    1996-12-31

    The design of the gamma spectrometer PRIPYAT` intended for gamma spectra measurement in the energy range 0.2-3 MeV is discussed. The spectrometer may be used for the food and water control as well as for massive control of environmental contamination. Its background at Cs{sup 134} + Cs{sup 137} measurement regime is less then 9 c/s. 1 fig.

  20. Broadening of the x-ray emission line due to the instrumental function of the double-crystal spectrometer

    International Nuclear Information System (INIS)

    Tochio, T.; Ito, Y.; Omote, K.

    2002-01-01

    The influence of the instrumental function on the Cu Kα 1 emission line was investigated for the case of a double-crystal spectrometer. The magnitude of broadening for both Si(220) and Si(440) was calculated for a Lorentzian emission line with the width of 1-5 eV; the broadening for Si(220) is 0.12-0.18 eV while that for Si(440) is only 0.015-0.043 eV. The former is too large to be neglected, so the correction for the instrumental function is important. The spectrum affected by the instrumental function seems to keep the shape of Lorentzian though its width is larger. The fact indicates that the Lorentzian fitting analysis is effective if the appropriate correction for width is done

  1. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    Science.gov (United States)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  2. A novel spectrometer for neutrino experiments

    CERN Document Server

    Pasqualini, Laura

    2015-01-01

    The WA104-NESSiE program developed in the context of the CERN Neutrino Platform, includes an innovative spectrometer to measure the charge and the momentum of muons in 0.5-5 GeV/c range. A tracking apparatus with a spatial resolution of 1 mm was designed, to be placed in a magnetized air volume in order to achieve a charge resolution and mis-identification of better than 1% at 1 GeV/c. Preliminary results obtained by detecting cosmic ray muons are reported.

  3. Neutron spin echo spectrometer at JRR-3M

    International Nuclear Information System (INIS)

    Takeda, Takayoshi; Komura, Shigehiro; Seto, Hideki; Nagai, Michihiro; Kobayashi, Hideki; Yokoi, Eiji; Ebisawa, Tooru; Tasaki, Seiji.

    1993-01-01

    We have designed and have been constructing at C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimized magnets for neutron spin precession, a position sensitive detector (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.01 A -1 to 0.3 A -1 and that of energy E from 30neV to 0.1meV. This spectrometer makes it possible to study a mesoscopic spatial structure of the order of 1-100nm combined with a nanosecond temporal structure of the order of 0.1-100ns corresponding to dynamical behavior of large molecules such as polymer. A test experiment shows that the homogeneity condition of the precession magnet is loosened by means of PSD. (author)

  4. Inelastic rotor spectrometer at the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.

    1983-01-01

    The spectrometer is designed to measure energy transfer from 50 MeV to 400 MeV covering a range of Q values from 1 to 15 A - 1 . Particular emphasis has been placed on the low Q counter banks where measurements at low Q reduce multiphonon contributions in vibrational spectra, diffusional broadening in liquids and allow measurements to be made on magnetic excitations. All indications are that the energy resolution is as predicted and is certainly twice as good as that of any other spectrometer presently available to the UK users at these energy transfers. Backgrounds on the high angle banks 24 0 to 94 0 are excellent but at the low angles are too high at present for anything but hydrogenous samples. Tests have shown that much of this background comes from the main beam in the area of the collimation between the chopper and the sample, and steps are being taken to improve this area

  5. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  6. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  7. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andriashin, A.V.; Devkin, B.V.; Lychagin, A.A.; Minko, J.V.; Mironov, A.N.; Nesterenko, V.S.; Sztaricskai, T.; Petoe, G.; Vasvary, L.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra from (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (Auth.)

  8. Performance and evaluation for a single crystal gamma spectrometer in environmental laboratory

    International Nuclear Information System (INIS)

    Pan Jingquan

    1991-01-01

    The performance of a Ge(Li) spectrometer system for measuring low-level environmental γ0ray samples is presented. It has a resolution of 2 keV, and an efficiency of 30% relative to 3 by 3 inch NaI (Tl) for the 1332 keV γ-ray of 60 Co. The integral background counts of γ-ray photons is 140 ± 2 cpm in the energy range from 12 to 2000 keV. Based on applications of measuring different types of samples, it is proved that the performance of the Ge(Li) γ-spectrometer system with a 10 cm thickness lead shield, coordinating a good experimental method, will be enough for environmental sample analyses in environmental laboratory

  9. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    International Nuclear Information System (INIS)

    Burks, M.

    2008-01-01

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field

  10. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  11. Description of the double Compton spectrometer at Mayence MPI

    International Nuclear Information System (INIS)

    Borchert, H.; Ziegler, B.; Gimm, H.; Zieger, A.; Hughes, R.J.; Ahrens, J.

    1977-01-01

    The double Compton spectrometer of the Laboratories of the Mayence Linear Accelerator consists in two identical magnetic spectrometers, in which the electron scattered forwards by photons through a Compton process, are detected. The spectrometers have been built to detect 10-350 MeV photons and, as they involve thin Compton targets, their effect on the photon flux is negligible. They are put in cascade inside a well collimated bremsstrahlung beam. A thick absorbing target (max. thickness 2m) can be inserted inside the beam. The facility is outlined, some special properties of the accelerator and the bremsstrahlung beam are given. The properties of a Compton spectrometer involving eleven detectors are given by eleven response functions giving the relations between the photon flux impinging the Compton target and the counting rates of the detectors for a given adjustment of the magnets. A Monte-Carlo method is used for the calculation together with analytical methods neglecting the multiple scattering effects [fr

  12. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  13. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  14. At the European Hybrid Spectrometer (EHS) for the experiment NA27

    CERN Multimedia

    1983-01-01

    The experiment NA27 was intended to measure accurately the lifetime of Charm particles and to study their hadronic production and decay particles. The vertex detector was the hydrogen bubble chamber LEBC. The aim was to collect several hundreths of fully reconstructed D0 and D+-, and several tens of F+- and Lambda_c decays as produced by 360 GeV/c negative pions and 400 GeV/c protons. The photo gives a side view of a section of the spectrometer, with a 12 m long gas Cerenkov counter at the centre. The spectrometer axis enters the photo at bottom, left corner. See photo 8311661, 8311662X, 8311660X.

  15. A four-detector spectrometer for e--γ PAC on-line with the ISOLDE-CERN isotope separator

    International Nuclear Information System (INIS)

    Marques, J.G.; Correia, J.G.; Melo, A.A.; Silva, M.F. da; Soares, J.C.

    1995-01-01

    A four-detector e - -γ spectrometer has been installed on-line with the ISOLDE isotope separator. The spectrometer consists of two magnetic lenses for detection of conversion electrons, and two BaF 2 scintillators for γ-ray detection. The spectrometer has been equipped with a 20 kV pre-acceleration system which enables detection of conversion electrons down to 2 keV. Implantation and measurement can be performed simultaneously on a large temperature range by heating or cooling the sample holder. The advantages of using the e - -γ PAC technique on-line at ISOLDE are discussed. (orig.)

  16. VOXES: a high precision X-ray spectrometer for diffused sources with HAPG crystals in the 2–20 keV range

    Science.gov (United States)

    Scordo, A.; Curceanu, C.; Miliucci, M.; Shi, H.; Sirghi, F.; Zmeskal, J.

    2018-04-01

    Bragg spectroscopy is one of the best established experimental methods for high energy resolution X-ray measurements and has been widely used in several fields, going from fundamental physics to quantum mechanics tests, synchrotron radiation and X-FEL applications, astronomy, medicine and industry. However, this technique is limited to the measurement of photons produced from well collimated or point-like sources and becomes quite inefficient for photons coming from extended and diffused sources like those, for example, emitted in the exotic atoms radiative transitions. The VOXES project's goal is to realise a prototype of a high resolution and high precision X-ray spectrometer, using Highly Annealed Pyrolitic Graphite (HAPG) crystals in the Von Hamos configuration, working also for extended sources. The aim is to deliver a cost effective system having an energy resolution at the level of eV for X-ray energies from about 2 keV up to tens of keV, able to perform sub-eV precision measurements with non point-like sources. In this paper, the working principle of VOXES, together with first results, are presented.

  17. GeMini: The Next-Generation Mechanically-Cooled Germanium Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Burks, M

    2008-11-12

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (MINIature GErmanium spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice inspections, border patrol, port monitoring and emergency response, where positive nuclide identification of radioactive materials is required but power and liquid cryogen are not easily available. GeMini weighs 2.75 kg for the basic instrument and 4.5 kg for the full instrument including user interface and ruggedized hermetic packaging. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Three working prototypes have been built and tested in the lab. The measured energy resolution is 3 keV fwhm at 662 keV gamma-rays. This paper will focus on the design and performance of the instrument.

  18. The response of a Bonner Sphere spectrometer to charged hadrons

    OpenAIRE

    Agosteo, S; Dimovasili, E; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy ...

  19. The Omega spectrometer in the West Hall.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  20. A pulse spectrometer for NMR measurements on magnetically ordered materials

    International Nuclear Information System (INIS)

    Englich, J.; Pikner, B.; Sedlak, B.

    1975-01-01

    A simple design of a pulse nuclear magnetic resonance spectrometer is described. The spectrometer permits spin echo measurements on magnetically ordered substances. It operates in the frequency range 10 to 130 MHz, but this basic range can be extended by a replacement of the compact radiofrequency unit. The transmitter gives radiofrequency pulses with an amplitude of up to 1 kV on the coil with the investigated sample. The pulse programmer makes possible relaxation measurements in a time interval of 10 -5 to 10 -1 s. Attention was devoted to obtaining a maximum signal-to-noise ratio in the whole frequency range. Sensitivity of the spectrometer is demonstrated by spin echo measurement on pure iron powder. (author)

  1. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer

    Science.gov (United States)

    2014-08-01

    this is a negligible shift as far as the performance of the spectrometers are concerned, knowledge of the shift would allow for compensation if...Safety and Health NIST National Institute of Standards and Technology ODS Optical Devices and Sensors Team OSHA Occupational Safety and Health

  2. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  3. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andryashin, A.V.; Devlein, B.V.; Lychagin, A.A.; Minko, Y.V.; Mironov, A.N.; Nesterenko, V.S.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra form (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (author). 3 figs., 6 refs

  4. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  5. QQDDQ magnet spectrometer 'BIG KARL'

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S A; Hardt, A; Meissburger, J; Berg, G P.A.; Hacker, U; Huerlimann, W; Roemer, J G.M.; Sagefka, T; Retz, A; Schult, O W.B.

    1983-09-01

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q/sup 2/ < 540 u x MeV, an angular acceptance of d..cap omega..<12.5 msr, a high resolving power of p/..delta..p up to 3 x 10/sup 4/ and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. 51 references.

  6. Technique for comparing AES signals from different spectrometers using common materials

    International Nuclear Information System (INIS)

    Baer, D.R.; Thomas, M.T.

    1985-10-01

    A simple procedure is outlined to obtain relative sensitivity curves that allow data collected on one Auger electron spectrometer to be related to data collected on a different spectrometer or to a standard data set. Data collected on three CMA systems demonstrates that dN/dE peak to peak amplitude ratios for pure elements can vary considerably but in a systematic manner for different systems. Such differences can be produced by variations in system design, by specimen or electron gun alignment, spectrometer contamination or other problems. However if the differences in relative sensitivity are considered in the data analysis, data sets from different systems can be interrelated with reasonable accuracy

  7. Development of gamma spectrometer using silicon photomultiplier (SiPM)

    International Nuclear Information System (INIS)

    Kim, Chan Kyu

    2011-02-01

    matched with DETECT simulation results. Degrading of energy resolution due to light guide is 4∼8% at 662 keV. Photon loss during transport in the light guide is the main reason of this degrading. This degrading can be reduced by more reflective coating. When applying the light guide and the SiPM both in the third system, the best energy resolution is 25% at 662 keV. Considering resolution degrading due to light guide, degrading due to SiPM is about 10%. The main cause is the difference between pixels of SiPM array, and summing of signal from each pixel makes noise level high. It can improve through gain adjustment and preamplifier circuit for SiPM array. Developed gamma spectrometer has limited performance for special conditions, but it has possibility to be better and new type of gamma spectrometer

  8. 40 CFR 144.66 - State assumption of responsibility.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Financial Responsibility: Class I Hazardous Waste Injection Wells § 144.66 State assumption of responsibility. (a) If a State either assumes legal... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State assumption of responsibility...

  9. Fast neutron scintillation spectrometer in a heavy ion accelerator

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Tyurin, G.P.

    1984-01-01

    Scintillation fast neutron spectrometer in a heavy ion accelerator is described in short. The spectrometer is used to measure characteristics of neutrons emitted in heavy ion interaction with different nuclei. Experiment was performed on the base of particle flight from 0.7 up to 2 m. Within the angle range of 0-150 deg. The technique is based on recording of two-dimensional neutron spectra obtained due to combination of the time-of-flight method and the method of recoil proton energy detection. Two measuring channels were used in the spectrometer. Each channel comprise both amplitude and time tracks. Detector on the base microchannel plates (MCP) generated a signal in passing the next ion bunch was used in order to obtain the time mark. Data from the scintillation block are recorded with respect to three parameters: recoil proton amplitude, time of neutron or γ-quantum arrival in respect of MCP-sensor pulse. Apparatus is carried out within the CAMAC standard. The spectrometer calibration within the 1-20 MeV neutron range was conducted in the Van-de-Graaf accelerator, and for higher energies - with the use of lightguides. Spectrometer time resolution for neutron energies of 0.5-50 MeV constituted 1.5-1.8 ns. The above measuring of neutron spectra from 1 /H2C+ 181 Ta and sup(20, 22)Ne+sup(181)Ta reaction have revealed a possibility of the experiment organization in heavy ion accelerators in the presence of strong neutron and γ-fields. Organization of multi-dimensional analysis combining two methods allows one to separate accelerator cycle, a region of the most reliable information, free of a low-energy gamma background and limited both by a dynamic threshold and a region of permissible energy values

  10. A spectrometer using semi-conductor detectors; study and applications (1963)

    International Nuclear Information System (INIS)

    Roux, G.

    1963-01-01

    The low average energy, 2.5 to 3.5 eV, required to produce one hole-electron pair in a semiconductor allows an accurate measurement of the energy of the ionizing particles. A high resolution spectrometer has been built using semiconductor detectors. The limit of resolution, due to electronics associated to the detector, to the detector itself and to the source of particles is studied here. The present practical limit of resolution of the spectrometer is 1700 elementary electric charges (full width at half maximum of a ray of a spectrum) or 6 keV in terms of energy lost by a particle in a silicon detector. The physical resolution usually obtained is 20 keV (0.33 per cent) with α particles of the 212 Bi (6.087 MeV). It depends a lot of the kind of detector used. Some results, concerning the background of the detectors and limit of measurements for low energies are given. Various applications are presented: spectrometry β, spectrometry γ and X, spectrometry of mixtures of α radioactive elements, collection of α spectra. (author) [fr

  11. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei

    2017-01-01

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  12. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei, E-mail: sifenni@163.com

    2017-05-15

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  13. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  14. Branching ratio for the isoscalar transition 2+, T = 1, 1.95 MeV→0+, T = 1, 0.66 MeV in 22Na

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Poletti, A.R.

    1982-01-01

    The branching ratio for the isoscalar transition 2 + , T = 1, 1.95 MeV→0 + , T = 1, 0.66 MeV in 22 Na was measured as (0.29+-0.05)% of the total decays of the 1.95MeV level. This, together with the measured mean-life of this level, gives an E2 strength of (16+-5) Wu, in good agreement with the estimate of 18 Wu obtained from the analogue transitions in 22 Ne and 22 Mg assuming a linear relationship between M(E2) and Tsub(z). Upper limits for some weak decay branches in 19 F were also obtained. (author)

  15. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  16. The Marshall Grazing Incidence X-ray Spectrometer

    Science.gov (United States)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  17. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  18. 28 CFR 66.24 - Matching or cost sharing.

    Science.gov (United States)

    2010-07-01

    ... donated. (f) Valuation of grantee or subgrantee donated real property for construction/acquisition. If a... described in § 66.25(g).) (5) Services or property financed by income earned by contractors. Contractors... amounts earned from the party awarding the contract. No costs of services or property supported by this...

  19. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  20. Calibration of an electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J.; Adams, M.A.

    2011-01-01

    The procedure for calibrating the VESUVIO eV neutron spectrometer at the ISIS neutron source is described. VESUVIO is used primarily to measure the momentum distribution n(p) of atoms, by inelastic scattering of very high energy (5-150 eV) neutrons. The results of the calibrations show that measurements of n(p) in atoms with masses lower than 16 amu can be measured with a resolution width ∼25% of the intrinsic peak widths in the current instrument configuration. Some suggestions as to how the instrument resolution could be significantly improved are made.

  1. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  2. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    CERN Document Server

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  3. Wide-range scintillation spectrometer of fast neutrons

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Saidgareev, V.M.; Tyurin, G.P.

    1984-01-01

    A spectrometer of fast neutrons developed on the base of stilbene crystas and permitting to detect neutrons simultaneously by time-of-flight and recoil protons with analysis of pulse shape in the 0.5-50 MeV energy range is described. The detecting part is performed in the CAMAC standard. The ''Minsk-32'' computer was used for data storage and preliminary processing

  4. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  5. Optical conductivity of Ni1 − xPtx alloys (06.6 eV

    Directory of Open Access Journals (Sweden)

    Lina S. Abdallah

    2014-01-01

    Full Text Available Using spectroscopic ellipsometry and Drude-Lorentz oscillator fitting, we determined the dielectric function and optical conductivity versus photon energy from 0.76 to 6.6 eV of 10 nm thick Ni1 − xPtx alloy (0V due to interband optical transitions. There is a significant broadening of the UV peak with increasing Pt content, since the bandwidth of the 3d electrons in Ni is smaller than that of the 5d bands in Pt. Our experimental observation is consistent with ab initio calculations of the density of states for Ni, Pt, and the Ni3Pt compound. Annealing the metals at 500°C for 30 s increases the optical conductivity.

  6. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  7. The old open cluster Melotte 66

    International Nuclear Information System (INIS)

    Hawarden, T.G.

    1976-01-01

    Photoelectric and photographic photometry of the open cluster Melotte 66 is presented. The colour-magnitude (CM) diagram shows most of the characteristics of an old cluster. The giant branch is broad with its blue edge populated preferentially by stars from the outer parts of the cluster. There is no detectable horizontal subgiant sequence. The main sequence turn-off colour, two-colour diagram and the colour difference between the turn-off and the subgiants are used to estimate the age and composition. Melotte 66 appears to have reddening E(B-V) = 0sup(m).17 and ultraviolet excess delta(U-B) approximately 0sup(m).1. The cluster is probably between 6 and 7 x 10 9 yr old. A distance modulus (m-M) 0 =12sup(m).4 is derived, which implies that the cluster lies about 750 pc from the galactic plane. (author)

  8. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  9. Detector system of the first focal plane of the spectrometer SMART at RIKEN

    International Nuclear Information System (INIS)

    Okamura, H.; Izshida, S.; Sakamoto, N.; Otsu, H.; Uesaka, T.; Wakasa, T.; Satou, Y.; Sakai, H.; Ichihara, T.

    1998-01-01

    A detector system of the first focal plane of SMART, the 135 MeV/u high-resolution spectrometer at RIKEN accelerator research facility, is described. It consists of a pair of multi-wire drift chambers and a trigger scintillator hodoscope contained in a He-filled detector box. A major subject using this system is the measurement of the (d, 2 He) reaction making the most of its large angular and momentum acceptances. Without seriously sacrificing the detection efficiency, reasonably good energy and angular resolutions for 2 He, 460 keV and 9 mrad (FWHM), respectively, have been achieved after optimizing the optics property of the spectrometer. (orig.)

  10. The confocal plane grating spectrometer at BESSY II

    International Nuclear Information System (INIS)

    Könnecke, R.; Follath, R.; Pontius, N.; Schlappa, J.; Eggenstein, F.; Zeschke, T.; Bischoff, P.; Schmidt, J.-S.; Noll, T.

    2013-01-01

    Highlights: ► At the electron storage ring BESSY II a confocal plane grating RIXS endstation with a spot size of 4 μm × 1 μm is presently being installed. ► A resolving power above 10,000 is expected for low energy excitations below 500 eV. ► The sample will be excited with a photon flux up to 10 15 photons/(s 300 mA 0.1%bandwidth). ► Sample environments for solid, gaseous and liquid samples will be provided. ► A fast detecting system is being set up for future pump-probe experiments. -- Abstract: At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 × 1 μm 2 provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/ΔE of 5000–15,000. The beamline allows full polarization control and gives a photon flux of up to 7 × 10 14 photons/s/0.1 A/0.1%bandwidth by offering a resolving power E/ΔE of 4000–12,000

  11. Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of $\\sqrt{s}=7$ TeV

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew Christopher; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum $p_{\\rm T}>0.2$ GeV/$c$ in the pseudorapidity range $2.0<\\eta<4.5$, is measured by the LHCb experiment at a centre-of-mass energy of $\\sqrt{s}=7$ TeV. The cross-section in this kinematic range is determined to be $\\sigma_{\\rm inel}^{\\rm acc} = 55.0 \\pm 2.4$ mb within the spectrometer acceptance with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using PYTHIA 6, yields $\\sigma_{\\rm inel} = 66.9 \\pm 2.9 \\pm 4.4$ mb, where the first uncertainty is experimental and the second is due to the extrapolation.

  12. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  13. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  14. Performance of the ATLAS Muon Spectrometer and of Muon Identification at the LHC

    CERN Document Server

    Woudstra, MJ; The ATLAS collaboration

    2010-01-01

    The large cosmic data samples collected in fall 2009 by the ATLAS experiment have been used to study the performance of the Muon Spectrometer. Detailed studies of the basic Muon spectrometer performance in terms of sagitta resolution, tracking efficiency and momentum resolution are presented and provide an update with respect to the results recently published. The results are also compared with a cosmic data simulation recently improved with a more realistic drift chamber response. The recent collision data collected at a CM of 7 TeV have also been analyzed to determine basic Muon Spectrometer performance. The performance of the ATLAS muon identification was studied with 1 inverse nanobarn of LHC proton-proton collision data at a centre of mass energy of 7 TeV. Measured detector efficiencies, hit multiplicities, and residual distributions of reconstructed muon tracks are well reproduced by the Monte Carlo simulation. Exploiting the redundancy in the muon identification at detector and reconstruction level the...

  15. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O' Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  16. Inhomogeneous oscillatory electric field time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1977-01-01

    The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)

  17. Multi-wavelength emission from 3C 66A: clues to its redshift and gamma-ray emission location

    International Nuclear Information System (INIS)

    Yan Da-Hai; Fan Zhong-Hui; Zhou Yao; Dai Ben-Zhong

    2013-01-01

    The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model. It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular, the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR). Clues to its redshift and gamma-ray emission location are obtained. The results indicate the following. (i) On the redshift: The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra. Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light, it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3, with the most likely value being ∼ 0.2. (ii) On the gamma-ray emission location: To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR, the gamma-ray emission region is always required to be beyond the inner zone of the BLR. The BLR absorption effect on gamma-ray emission confirms this point.

  18. Identification and energy measurement of charged particles in the 50-300 MeV energy range by means of a magnet-free hardron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu D.; Bukiej, A.E.; Gavrilov, V.B.

    1980-01-01

    Studied are the main characteristics (efficiency, time delay and amplitude singal distribution) of a magnet-free hadron spectrometer, in which a plastic scintillator block is the main part. The plastic scintillator having the form of a cylinder of the 20 cm diameter and the 20 cm height is examined with a photomultiplier through a 50 cm light guide. The dependencies of the amplitude conversion coefficient and signal time delay on the distance between the scintillation point and the light guide are resented. The analysis of the results obtained has shown that the closer the beam passes to the light guide, the greater is the signal amplitude. The counter signal delay linearly increases with the distance increase between the beam and the light guide. The dependence of the spectrometer efficiency on the proton energy is measured as well. The investigations have proved possible utilization of the scintillation detector described for identification of charged particles in the 50-300 MeV range and measurement of their energy with the 3-8% accuracy

  19. Contribution to the study of 14 MeV neutron scattering by {sup 12}C using a time-of-flight spectrometer (1963); Contribution a l'etude de la diffusion des neutrons de 14 MeV par {sup 12}C, a l'aide d'un spectrometre a temps de vol (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, P [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-07-15

    Experimental measurements of 14 MeV fast neutrons scattering by {sup 12}C by time-flight spectrometer, with a 1.7 n. sec over-all resolution. The excitation of the 7.65 MeV level is observed. (author) [French] Etude experimentate de la diffusion par {sup 12}C des neutrons rapides de 14 MeV a l'aide d'un spectrometre de resolution totale de 17 n/s. Observation de l'excitation du niveau 0+ de 7,65 MeV. (auteur)

  20. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  1. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI 2 ) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E g = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG ampersand G/EM on 96 HgI 2 spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI 2 which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs

  2. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  3. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  4. Tracking performances of the dimuon spectrometer with a dipole magnet

    International Nuclear Information System (INIS)

    Cussonneau, J.P.; Gutbrod, H.; Lautridou, P.; Luquin, L.; Metivier, V.; Ramillien, V.

    1996-01-01

    The tracking performances of the ALICE forward muon spectrometer, with a dipole magnet, are investigated. The study concerns the track finding and the mass resolution as well as the acceptance of the spectrometer for the Φ's, J/Ψ's and Υ's. With the proposed setup, a mass resolution below 100 MeV is obtained and a track finding efficiency better than 90% is achieved for the heavy resonance. An absolute acceptance of 4.83% is found which is acceptable in order to reach the required statistic for Υ' and Υ'' in Pb-Pb collisions. (author)

  5. A summation free β+-endpoint spectrometer

    International Nuclear Information System (INIS)

    Keller, H.; Kirchner, R.; Klepper, O.; Roeckl, E.; Schardt, D.; Simon, R.S.; Kleinheinz, P.; Liang, C.F.; Paris, P.

    1990-08-01

    A β + -endpoint spectrometer is described, where positrons are observed in an 11-mm thick silicon detector in coincidence with subsequent γ-rays meausred in a germanium detector, and where the summing of the positron energy with the annihilation radiation is prevented by detecting both 511-keV quanta in opposite segments of a BGO ring surrounding the silicon detector. The procedure of measuring and analyzing the data is outlined for the decay of the 11/2 - -isomer of 149 Tb; its endpoint energy is determined to be 1853(10) keV, in agreement with the literature. The accuracy and reliability of β + -endpoint measurements is discussed in comparison to the EC/β + -ratio method. (orig.)

  6. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Weizman, Y.; Hirning, C.R.

    1995-01-01

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 μm, 72 μm or 98 μm thick. The back detector (C) is a Li compensated silicon detector, 5000 μm thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author)

  7. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    Science.gov (United States)

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  8. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    International Nuclear Information System (INIS)

    Bedogni, R.; Gómez-Ros, J.M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-01-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  9. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  10. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Gomez-Ros, J.M. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Perez, L. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Angelone, M. [ENEA C.R. Frascati, C.P. 65, 00044 Frascati (Italy); Tana, L. [A.O. Universitaria Pisana-Ospedale S. Chiara, Via Bonanno Pisano, Pisa (Italy)

    2012-08-21

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  11. Fission cross section measurement of Am-242m using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio

    1998-03-01

    By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)

  12. Strangelet search and particle production studies in Pb-Pb collisions at 158·A GeV/c with the H6 beamline spectrometer at CERN

    CERN Document Server

    Lindén, Tomas

    The charged particle beamline simulation program DECAY TURTLE (Trace Unlimited Rays Through Lumped Elements) has been modified to enable simulation of dipole magnet steering effects and simulation of hadronic interactions. These modifications together with the implementation of the measured misalignments of the magnetic elements of the H6 beamline at the CERN North Area and implementation of more accurate magnet apertures have been shown to allow a realistic simulation to be made of the complex 524 m long H6 beamline spectrometer used by NA52. The acceptance of the H6 beamline spectrometer has been computed using this modified version of DECAY TURTLE. Using these results better determined invariant differential production cross sections have been computed from the NA52 1994-1995 data, with improved error estimates. New limits for strangelet production in lead-lead collisions at 158.A GeV/c have been computed from the NA52 measurements from 1994-1995. The methods and results presented in this work can be appli...

  13. On the structure of negative-parity states in 66Zn and 70Ge

    Science.gov (United States)

    Cleemann, L.; Eberth, J.; Neumann, W.; Zobel, V.

    1982-09-01

    Mean lifetimes of negative-parity states in 66Zn and 70Ge have been measured using the recoil distance Doppler shift technique. The states in 66Zn have been studied through the reaction 55Mn( 14N, 2pnγ) 66Zn at E = 47 MeV, those in 70Ge through the reaction 56Fe( 16O, 2pγ) 70Ge at E = 46 MeV. The measurements were performed with a plunger apparatus with a piezo-electric distance regulation. The mean lifetimes in 66Zn were measured to be 66 ± 4ps (5 - state), 43 ± 2 ps (6 - state), 192 ± 15 ps (7 - state), and 2.7 ± 1.2 ps (9 - state), those of 70Ge 19.7 ± 2 ps (5 - state), 51 ± 4 ps (6 - state), and 25.2 ± 1.4 ps (7 - state). Deduced B ( Ml) and B( E2) values are compared with theoretical predictions of a two-proton cluster-vibration coupling model (CVM) which describes these states as couplings of g {9}/{2} ⊗ (fp shell) proton clusters to zero, one and higher phonon excitations of the corresponding Ni and Zn cores. Good overall agreement between the theoretical values and the experimental data was found.

  14. Short description of BMS/BMF MDT chamber production for the muon spectrometer of the ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Gongadze, I.B.; Gostkin, M.I.; Gus'kov, A.V.; Dedovich, D.V.; Demichev, M.A.; Evtukhovich, P.G.; Elagin, A.L.; Zhemchugov, A.S.; Il'yushenko, E.N.; Kotov, S.A.; Kotova, T.I.; Korolevich, Ya.V.; Kruchonok, V.G.; Krumshtejn, Z.V.; Kuznetsov, N.K.; Lomidze, D.D.; Nikolaev, K.V.; Potrap, I.N.; Rudenko, T.O.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Shiyakova, M.M.; Shcherbakov, A.A.; Podkladkin, S.Yu.

    2005-01-01

    The method of assembly of the MDT chambers for the muon spectrometer of the ATLAS experiment is described. During 2000-2004 ∼ 25000 drift tubes were produced at the DLNP, JINR. The tubes were assembled into 84 muon chambers of BMS/BMF type, one of the six main types for the barrel part of the ATLAS muon spectrometer. Particle momenta must be measured in the ATLAS spectrometer with very high precision (2% at 100 GeV/c and 10% at 1000 GeV/c), which required to produce the coordinate detectors with very high (∼80 μm) precision. We describe the method of assembly of large-scale 5-10 m 2 muon chambers with the signal wire mean deviation from the nominal position less than 20 μm

  15. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    International Nuclear Information System (INIS)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57 Co, 109 Cd, 125 I, 152 Eu and 192 Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given. (orig.)

  16. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    Science.gov (United States)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57Co, 109Cd, 125I, 152Eu and 192Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given.

  17. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Scime, E. E., E-mail: escime@wvu.edu; Keesee, A. M.; Elliott, D. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Dugas, M.; Ellison, S.; Tersteeg, J.; Wagner, G. [Advanced Research Corporation, White Bear Lake, Minnesota 55110 (United States); Barrie, A.; Rager, A. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-11-15

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  18. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Esposito, A.; Gentile, A.; Carinci, G. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Russo, S. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 44, 95123 Catania (Italy)

    2011-10-21

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0{sup o} and 90{sup o} with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and

  19. Interface for connectioin of a spectrometer with remoted computer by means of the internal telephony net

    International Nuclear Information System (INIS)

    Minin, V.V.; Gejst, A.G.; Larin, G.M.

    1989-01-01

    A device permitting to record spectrometers analog signals for computer memory using internal telephony net for connection of a spectrometer with remoted computer, is described. Two-way communication in half-duplex mode is established by a spectrometer operator. Analog-to-digital conversion of a signal is realized by means of a voltage-pulse frequency is 3-30 kHz. The computer may be remoted at up to 1 km. The line signal level is ≤3V, that does not induce transfersal noise

  20. Proposed 14-MeV neutron spectrometer system for jet

    International Nuclear Information System (INIS)

    Elevant, T.

    1983-09-01

    In order to cover a broad range of neutron spectra and fluxes during D-T operation in JET we propose the use of two different detector techniques neutron induced reactions in a silicon surface barrier detector and neutron-proton elastic scattering in a liquid scintillator. Experimental investigations of 28 Si(n,α) 25 Mg reactions have resulted in resolutions of ΔE(FWHM)/E=0.02 with intrinsic efficiency equal to 10 -4 and a maximum useful countrate equal to 1600 c.p.s. However, due to overlap of adjacent peaks, caused by excited states of 25 Mg, this spectrometer has an operation range limited to FWHM/E=0.04. For broader neutron distributions we propose the use of a conventional liquid scintillator system with a light guide, photomultiplier tube and modified conventional electronics. Experiments have demonstrated a resolution equal to 0.05 and a n/γ separation better than 90percent at total countrates equal to 2times10 5 c.p.s. (author)

  1. GIOVE, a shallow laboratory Ge-spectrometer with 100 μBq/kg sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Denz, T.; Hakenmueller, J.; Hofacker, R.; Lackner, R.; Lindner, M.; Maneschg, W.; Reisfelder, M.; Simgen, H.; Schreiner, J.; Stolzenburg, D.; Strecker, H.; Westermann, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-08-08

    A new germanium gamma spectrometer called GIOVE (Germanium spectrometer with Inner and Outer Veto) has been set up at the underground/shallow laboratory (15 m w.e.) of MPI-K. Its double plastic scintillator veto system and neutron moderation interlayer lower the background by more than one order of magnitude compared to the other existing spectrometer at this facility. The integral (40-2700 keV) background rate of about 290 counts (day kg){sup −1} is just a factor 4 to 8 above that of the GeMPI spectrometers operated at LNGS (3800 m w.e.) and thus proves that even under shallow overburden sub mBq/kg sensitivities are achievable. Extended material screening and neutron attenuation studies preceded the final design of the spectrometer. The technical realization of the spectrometer is described in detail with special emphasis on the inner veto system. For its optimisation a simulation model was developed for light collection on small low activity PMT’s under various geometrical conditions. Radon suppression is accomplished by employing a gas tight sample container and a nitrogen flushed glove-box system with an airlock. The active volume of the crystal was modelled by absorption scanning measurements and Monte Carlo simulations. The complete shield is implemented in a Geant4 based simulation framework.

  2. Do it yourself: optical spectrometer for physics undergraduate instruction in nanomaterial characterization

    International Nuclear Information System (INIS)

    Nuryantini, Ade Yeti; Mahen, Ea Cahya Septia; Sawitri, Asti; Nuryadin, Bebeh Wahid

    2017-01-01

    In this paper, we report on a homemade optical spectrometer using diffraction grating and image processing techniques. This device was designed to produce spectral images that could then be processed by measuring signal strength (pixel intensity) to obtain the light source, transmittance, and absorbance spectra of the liquid sample. The homemade optical spectrometer consisted of: (i) a white LED as a light source, (ii) a cuvette or sample holder, (iii) a slit, (iv) a diffraction grating, and (v) a CMOS camera (webcam). In this study, various concentrations of a carbon nanoparticle (CNP) colloid were used in the particle size sample test. Additionally, a commercial optical spectrometer and tunneling electron microscope (TEM) were used to characterize the optical properties and morphology of the CNPs, respectively. The data obtained using the homemade optical spectrometer, commercial optical spectrometer, and TEM showed similar results and trends. Lastly, the calculation and measurement of CNP size were performed using the effective mass approximation (EMA) and TEM. These data showed that the average nanoparticle sizes were approximately 2.4 nm and 2.5 ± 0.3 nm, respectively. This research provides new insights into the development of a portable, simple, and low-cost optical spectrometer that can be used in nanomaterial characterization for physics undergraduate instruction. (paper)

  3. Measurement of fission cross section with pure Am-243 sample using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Kai, T.; Fujita, Yoshiaki; Yamamoto, Hideki; Kimura, Itsuro [Kyoto Univ. (Japan); Shinohara, Nobuo

    1997-03-01

    By making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the fission cross section for the {sup 243}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, whose evaluated data were broadened by the energy resolution function of the spectrometer. General agreement was seen between the evaluated data and the measurement except that the ENDF/B-VI data were lower in the range from 15 to 60 eV and that the JENDL-3.2 data seemed to be lower above 100 eV. (author)

  4. A Bonner Sphere Spectrometer with extended response matrix

    CERN Document Server

    Silari, M; Dimovasili, E; Birattari, C

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators. (C) 2010 Elsevier B.V. All rights reserved.

  5. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  6. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    Elevant, T.

    1984-02-01

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10 -5 cm -5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  7. The response of a Bonner Sphere spectrometer to charged hadrons

    CERN Document Server

    Agosteo, S; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors wer...

  8. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  9. The SAGE spectrometer

    International Nuclear Information System (INIS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M.; Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D.; Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J.

    2014-01-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  10. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    International Nuclear Information System (INIS)

    Steel, A. B.; Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V.; Hoarty, D. J.

    2014-01-01

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1–2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4–2.5, 1.85–3.15, or 3.55–5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector

  11. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  12. First results from the new double velocity-double energy spectrometer VERDI

    Science.gov (United States)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  13. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  14. Exploratory study for a solid-state charged-particle spectrometer inside the celsius ring: α + 1H reactions at 1.7 and 2.2 GeV/c

    International Nuclear Information System (INIS)

    Bargholtz, C.; Fransson, K.; Holmberg, L.; Lindh, K.; Sandberg, L.; Tegner, P.E.; Thoerngren-Engblom, P.; Vojdani, D.

    1991-08-01

    Charged particles emitted in the extreme forward direction can be detected in a particle telescope mounted inside the CELSIUS ring in one of the dipole magnets following the target. Results of a test with a plastic scintillator telescope are reported for α + H reactions at 1.7 and 2.2 GeV/c. The results are consistent with ray-trace calculations. Contributions in the spectrometer from back-ground reactions and scattering in the beam tube are small. (au)

  15. Commissioning of a proton-recoil spectrometer

    International Nuclear Information System (INIS)

    Nunes, J.C.; Faught, R.T.

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated 252 Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  16. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    Science.gov (United States)

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  17. High-efficiency improvement for high energy resolution experimental mode of DIANA spectrometer at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Takahashi, Nobuaki; Shibata, Kaoru; Arai, Masatoshi; Sato, Taku J.

    2006-09-01

    DIANA is an indirect-geometry time-of-flight (TOF) spectrometer which is planed to install at Materials and Life science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC). It has three exchangeable analyzer crystals, such as PG(002), Ge(311) and Si(111) for different energy transfer, momentum transfer and energy-resolution experiments. Normal experimental mode, either PG(002) or Ge(311) analyzer is used, shows moderate energy resolutions of 15μeV or 41λeV, respectively. We are especially aiming very high energy-resolution of 2 μeV by using Si(111) analyzer crystal together with high speed counter-rotating pulse-shaping choppers with each rotation frequency of 300 Hz as an optional setting for the spectrometer. Although such a high energy-resolution is attained, it is considerably inefficient having a very narrow incident energy (E i ) band if the pulse shaping chopper has only one slit. Therefore, we have designed multiple-slit chopper and have performed Monte-Carlo simulation to study Repetition Rate Multiplication (RRM) capability. RRM has been shown to be achievable by using multiple-slit pulse-shaping choppers. By the consideration of the contamination appeared between the neighbor two pulse-shaped bands, the number of slits has been optimized to eight. By using the 8-slit choppers, 23 pulse-shaped neutron energy bands have been available simultaneously within one measurements. Minimum 10 measurements with different phases of the choppers provide the continuous S(Q, ℎω) spectrum of -1.0 meV<ℎω<+3.4 meV. (author)

  18. A PbWO4-based Neutral Particle Spectrometer in Hall C at 12 GeV JLab

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja [Catholic University of America , Washington, DC

    2015-02-01

    The Neutral Particle Spectrometer is a standalone electromagnetic calorimeter capable of detecting high energy photons from, for instance, DVCS or π0 decay with good energy and spatial resolution in a high rate environment. It can be used together with the Hall C high-momentum spectrometers for a suite of experiments with the underlying scientific objective of studying quark dynamics through exclusive and semi-inclusive reactions.

  19. DIRAC: A High Resolution Spectrometer for Pionium Detection

    CERN Document Server

    Afanasiev, L G; Benelli, A; Berka, Z; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Cima, E; Constantinescu, S; Détraz, C; Dreossi, D; Drijard, Daniel; Dudarev, A; Evangelou, I; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Giardoni, M; Goldin, D; Gómez, F; Gorin, A; Gortchakov, O E; Guaraldo, C; Hansroul, M; Iliescu, M A; Zhabitsky, V M; Karpukhin, V V; Kluson, J; Kobayashi, M; Kokkas, P; Komarov, V; Kruglov, V; Kruglova, L; Kulikov, A; Kuptsov, A; Kurochkin, V; Kuroda, K I; Lamberto, A; Lanaro, A; Lapshin, V G; Lednicky, R; Leruste, P; Levisandri, P; López-Aguera, A; Lucherini, V; Mäki, T; Manthos, N; Manuilov, I V; Montanet, Lucien; Narjoux, J L; Nemenov, Leonid L; Nikitin, M; Núñez-Pardo de Vera, M T; Okada, K; Olchevskii, V; Orecchini, D; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Rappazzo, G F; Riazantsev, A; Rodríguez, J M; Rodríguez-Fernández, A M; Romero, A; Rykalin, V I; Santamarina-Rios, C; Saborido, J; Schacher, J; Schütz, C P; Sidorov, A; Smolik, J; Steinacher, M; Takeutchi, F; Tarasov, A; Tauscher, Ludwig; Tobar, M J; Triantis, F A; Trusov, S V; Utkin, V; Vázquez-Doce, O; Vázquez, P; Vlachos, S; Yazkov, V; Yoshimura, Y; Zrelov, V P

    2003-01-01

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting $\\pi^+ \\pi^-$ atoms produced by a 24 GeV/$c$ high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6 MeV/$c$. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.

  20. DIRAC: A high resolution spectrometer for pionium detection

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B. E-mail: adevab@usc.es; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Cima, E.; Constantinescu, S.; Detraz, C.; Dreossi, D.; Drijard, D.; Dudarev, A.; Evangelou, I.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Giardoni, M.; Goldin, D.; Gomez, F.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Iliescu, M.; Zhabitsky, M.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kuptsov, A.; Kurochkin, V.; Kuroda, K.-I.; Lamberto, A.; Lanaro, A.; Lapshin, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manthos, N.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Orecchini, D.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Rappazzo, G.F.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Romero, A.; Rykalin, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Schuetz, Ch.P.; Sidorov, A.; Smolik, J.; Steinacher, M.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Triantis, F.; Trusov, S.; Utkin, V.; Vazquez Doce, O.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P

    2003-12-11

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting {pi}{sup +}{pi}{sup -} atoms produced by a 24 GeV/c high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very detector efficiency.ation of the imaging sof the latter with resolution around 0.6 MeV/c. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and set-up performances are also given.

  1. DIRAC: A high resolution spectrometer for pionium detection

    International Nuclear Information System (INIS)

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Cima, E.; Constantinescu, S.; Detraz, C.; Dreossi, D.; Drijard, D.; Dudarev, A.; Evangelou, I.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Giardoni, M.; Goldin, D.; Gomez, F.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Iliescu, M.; Zhabitsky, M.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kuptsov, A.; Kurochkin, V.; Kuroda, K.-I.; Lamberto, A.; Lanaro, A.; Lapshin, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manthos, N.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Orecchini, D.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Rappazzo, G.F.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Romero, A.; Rykalin, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Schuetz, Ch.P.; Sidorov, A.; Smolik, J.; Steinacher, M.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Triantis, F.; Trusov, S.; Utkin, V.; Vazquez Doce, O.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P.

    2003-01-01

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting π + π - atoms produced by a 24 GeV/c high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very detector efficiency.ation of the imaging sof the latter with resolution around 0.6 MeV/c. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and set-up performances are also given

  2. The muon spectrometer of the L3 detector at LEP

    International Nuclear Information System (INIS)

    Peng, Y.

    1988-01-01

    In this thesis the construction of the muon spectrometer of the L3 detector is described, one of the four detectors presently being prepared for experimentation at LEP. This accelerator is built at CERN, Geneva, and is due to start operation in July 1989. One of the unique features of the L3 experiment is the measurement of the momentum of the muons produced in the e + e - collisions iwht an independent muon spectrometer. This makes it possible to study final states involving muons, with high accuracy (δP/P = 2% at 45 GeV). The muon spectrometer consists of 80 large drift chambers, arranged in 16 modules or 'octants', that fill a cylindrical volume of 12 m in length, 5 m inner diameter and 12 m outer diameter. The design of the drift chambers, the construction, the alignment procedure and the test results for the complete octants are described. 51 refs.; 57 figs.; 16 tabs

  3. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion

    Science.gov (United States)

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-11-01

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.

  4. Evaluation of response matrix of a multisphere neutron spectrometer ...

    Indian Academy of Sciences (India)

    Abstract. Neutron energy responses of water sphere spectrometers (WSS) to 30 MeV have been calculated by means of Monte Carlo calculations, using the computer code MCNP4C with ENDF/. B-VI.0 neutron cross-section. The calculations have been performed for 3He detector (typical SP9) placed inside 2, 3, 5, 8, ...

  5. A 16-detector alpha spectrometer using 1 multichannel analyzer

    International Nuclear Information System (INIS)

    Phillips, W.G.

    1978-01-01

    An alpha spectrometer containing 16 independent detectors and utilizing one 4096-channel multichannel analyzer (MCA) was constructed from commerically available modules. The spectrometer was designed specifically for the counting of low levels of radioactivity in environmental samples. Gated analog routing allows spectral data acquisition into 256 channel regions of the MCA memory as if each region were an independent 256-channel MCA. External live-time clocks and 50-Mhz analog-to-digital converters control timing and acquisition on each unit of eight detectors. Spectral data output is to magnetic tape in units of 256 channels each with a unique tagword. These tapes are then read and processed, and final reports are generated, by a large Control Data 6000 series computer

  6. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  7. Charged Slurry Droplet Research

    Science.gov (United States)

    1989-02-20

    short i; struct mice f short deltax, deltay; char sec[3]; char sixtyths, -66- buttons, stype; Imouse; while (read(tfd,&ch,l) 1) if (ch ==E SC) ( if...read~tfd,&ch,1) ==1) && (ch IT) if ((read(tfd,&ch,l) == 1) && (ch y== ’Y for (i =0; i < sizeof(struct mice ); i++) if (read(tfd,((ohar *) &mouse) + i,1...Spectrometer. J. of Physics E. Scientific Instruments 1972, Vol 5. 40. R.F.Lever, Computation of Ion Trajectories in the Monopole Mass Spectrometer

  8. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  9. Validation of gamma spectrometer in spectroscopy laboratory of education and training center BATAN

    International Nuclear Information System (INIS)

    Sugino; Tulisna; Anda Sanusi; Sugito

    2010-01-01

    Gamma spectrometer used to determine the type and activity of gamma emitting radionuclides, such as the measurement of environmental radioactivity and neutron activation analysis (NAA). In order to obtain precise and accurate qualitative and quantitative analysis, the gamma spectrometer should be validated. Validation of the gamma spectrometer was conducted on the confirmation of identity, differential linearity, performance, efficiency calibration, precision test, and accuracy test. Confirmation of identity conducted by energy calibration testing conducted and showed the largest energy deviation of 0.3 keV. Differential linearity testing showed the highest count difference of 6.9 %. Test Results for 1 year showed the lowest resolution of 1.82 keV, in accordance with the initial resolution of 1.8 keV. Value of lowest P/C is 59.8, according to the first P/C of 60. The lowest relative efficiency of 28.6 %, according to the initial efficiency of 30 %. Calibration curve shows that for more than 200 keV energy, the relationship of Ln Energy vs Ln Efficiency is a straight line with equation Ln(ε) = 7.211-0.8173 Ln(E), while for less than 100 keV energy the the equation Ln(ε) = -13.34+6.712Ln(E)+0.06894 Ln(E)"2, in accordance with the theory and references. Precision test conducted by chi square value of 10.6, according to probability of 5 % to 95 %. Testing the accuracy is shown from the results of comparative tests of measuring I-131 activity in 2009 with good results, the difference in the results of 2.35 % with the uncertainty of 6 %. (author)

  10. A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code

    Science.gov (United States)

    Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu

    2016-07-01

    The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.

  11. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  12. Simulation of 200-400 MeV/u "1"2C + "1"2C elastic scattering on SHARAQ spectrometer

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Terashima, S.; Le Xiaoyun; Tanihata, I.

    2015-01-01

    In order to further obtain the information of three-body force (TBF) from 200-400 MeV/u "1"2C + "1"2C elastic scattering, we plan to perform this experiment on a SHARAQ spectrometer. Based on the experimental condition of the Radioactive Ion Beam Factory (RIBF)-SHARAQ facility, a simulation is given to find a compromise between the better energy and angular resolutions, and higher yield by optimizing the target thickness, beam transport mode, beam intensity and angular step. From the simulation, we found that the beam quality mainly limits the improvements of energy and angular resolutions. A beam tracking system as well as a lateral and angular dispersion-matching technique are adopted to reduce the influence of beam quality. According to the two angular settings of SHARAQ as well as the expected cross sections on the basis of the theoretical model, the energy and angular resolutions, and statistical accuracy are estimated. (authors)

  13. 6,6'-Dimethoxygossypol: molecular structure, crystal polymorphism, and solvate formation

    Science.gov (United States)

    6,6´-Dimethoxygossypol (DMG) is a naturally produced derivative of gossypol that is found in relatively high concentration in some Gossypium barbadense cotton varieties. Like gossypol, DMG forms an equimolar solvate with acetic acid, but it was not clear if, like gossypol, the compound would form c...

  14. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    Alencar, Marcus Alexandre Vallini de

    1994-04-01

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm 2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm 2 . The rectifier and the ohmic contacts were prepared at high vacuum (10 -2 to 10 -3 Pa) evaporation with 40μg/cm 2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR) 2- (RC) 4 shaping network and the unipolar output is obtained through a CR-(RC) 4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241 Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  15. AI mass spectrometers for space shuttle health monitoring

    Science.gov (United States)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  16. Neutron time-of-flight counters and spectrometers for diagnostics of burning fusion plasmas

    International Nuclear Information System (INIS)

    Elevant, T.; Olsson, M.

    1991-02-01

    Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and γ-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 (keV) through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 (MeV) neutrons produced in (d,t)-plasmas but can, after minor modifications, be used for analysis of 2.45 (MeV) neutrons produced in (d,d)-plasma. (au) (33 refs.)

  17. Gamma-Ray Imaging Spectrometer (GRIS) instrument and plans for serving SN 1987A

    International Nuclear Information System (INIS)

    Tueller, J.; Barthelmy, S.; Gehrels, N.; Teegarden, B.J.; Leventhal, M.; MacCallum, C.J.

    1988-01-01

    The Gamma-Ray Imaging Spectrometer (GRIS) is a powerful second-generation high-resolution gamma-ray spectrometer. It consists of an array of seven large (typically >200 cm 3 ) n-type Germanium detectors surrounded by a thick (15 m) NaI active shield. Its energy range is 0.02 to 10 MeV. A new detector segmentation technique will be employed to reduce the detector background. The β-decay background component, which is expected to be dominant in the 0.2--2 MeV range, will be suppressed by roughly a factor of 20. The 3σ GRIS sensitivity to a narrow Fe line at 847 keV (expected to be the most intense from a supernova) will be ∼2 x 10 -4 photons/cm 2 -s for an 8 hr observation of the LMC over Alice Springs, Australia with unsegmented detectors. The instrument in simplified form will be ready to observe SN 1987A in early 1988

  18. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Trombka, J.I.; Boynton, W.V.; Brueckner, J.; Squyres, S.; Clark, P.E.; Starr, R.; Evans, L.G.; Floyd, S.R.; McClanahan, T.P.; Goldsten, J.; Mcnutt, R.; Schweitzer, J.S.

    1999-01-01

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  19. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Steel, A. B., E-mail: steel1@llnl.gov; Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoarty, D. J. [Atomic Weapons Establishment, Aldermaston (United Kingdom)

    2014-11-15

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1–2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4–2.5, 1.85–3.15, or 3.55–5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  20. Synthesis of the Novel 4,4?- and 6,6?- Dihydroxamic - 2,2?-Bipyridines and Improved Routes to 4,4?- and 6,6?- Substituted 2,2?-Bipyridines and Mono-N-Oxide-2,2?-Bipyridine

    Directory of Open Access Journals (Sweden)

    Donnici Claudio Luis

    1998-01-01

    Full Text Available The preparation of key precursors for many 2,2?-bipyridine derivatives such as 4,4?-dicarboxy- 2,2?-bipyridine (I, 6,6?-dicarboxy-2,2?-bipyridine- acid (II, 4,4?-dinitro-2,2?-bipyridine-N,N-dioxide (III, 6,6?-dicarbothioamide-2,2?-bipyridine (IV and mono-N-oxide-2,2?-bipyridine (VII through more efficient methods is described. The syntheses of the novel ligands 4,4?-dihydroxamic-2,2?-bipyridine (V and 6,6?-dihydroxamic-2,2?-bipyridine (VI are also reported.

  1. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  2. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  3. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity ≥0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs

  4. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0-20 KeV, 0-800 KeV and 0-2 MeV, for volume between 2 and 20 ml of three commercial scintillators, Hisafe II, Ultima-gold and Instagel, and quenching degree in the interval equivalent to 50%-3% tritium efficiency. This procedure was tested with standard samples of ''3 H, and led to average discrepancies less than 10% for activity => 0,6 Bq, against conventional methods for which the discrepancies are twice on average

  5. Mechanism of ion output for the MI-1305 mass-spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kornyushkin, YW D; Stavrovich, N V [Leningradskij Inst. Tochnoj Mekhaniki i Optiki (USSR)

    1976-01-01

    An attachment to MJ-1305 mass-spectrometer for ion ejection enabling to study interaction of ions and substance is designed. The attachment is accomodated with a block of diaphragms forming a beam of primary ions. A magneto-discharge pump has been used to improve vacuum in a sample chamber up to 5x10/sup -8/ torr. An universal exit slit permits producing ion beam currents ranging from 10/sup -9/ to 10/sup -10/ A with 4 keV energy under operating conditions of the spectrometer as an ion source. To ensure a higher noise stability of the measuring circuit the ion current is measured through a variable signal with synchronous detection employed.

  6. Doubly curved imaging Bragg crystal spectrometer for X-ray astronomy

    DEFF Research Database (Denmark)

    Byrnak, B. P.; Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt

    1985-01-01

    An X-ray spectrometer which is sensitive in the 0.5-7-keV energy range and is intended for use onboard astronomical satellites has been studied. The Bragg reflected rays from a doubly bent crystal positioned downstream of the focal plane of a grazing-incidence concentrator are focused along the a...

  7. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  8. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  9. Observations of Galactic gamma-radiation with the SMM spectrometer

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  10. Ion beam alignment in the MSX-4 mass spectrometer

    International Nuclear Information System (INIS)

    Busygin, A.I.; Nevzorov, A.A.; Ul'masbaev, B.Sh.

    1977-01-01

    A method for electrically adjusting an ion beam in an MSKh-4 mass-spectrometer has been developed. The adjusting system consists of two deflecting plates fastened to the frame of the ion source. By adjusting the potential difference at the plates in the range 0-150 v, one can increase the intensity of the mass-spectrum by a factor of 3 to 5

  11. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  12. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.

    Science.gov (United States)

    Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon

    2014-08-01

    A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.

  13. Study of {lambda} hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, K.

    2007-03-15

    The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the {lambda} hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total {lambda} production cross section is contrasted with expectations from simulations and compared with measurements of the {lambda} yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)

  14. Study of Λ hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer

    International Nuclear Information System (INIS)

    Kanaki, K.

    2007-03-01

    The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the Λ hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total Λ production cross section is contrasted with expectations from simulations and compared with measurements of the Λ yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)

  15. Response matrix of a multisphere neutron spectrometer with an 3 He proportional counter

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.

    2005-01-01

    The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrometer has a 3.2 cm-diameter 3 He-filled proportional counter which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10 -9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparison the calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PTB C spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrices do agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations. (Author) 28 refs., 1 tab., 6 figs

  16. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  17. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  18. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  19. A Ring Imaging Cerenkov detector for the CERN OMEGA spectrometer

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1984-12-01

    A large acceptance Ring Imaging Cerenkov detector has been constructed for use at the CERN Omega Spectrometer. The design of the detector is discussed, with attention paid to its principal components, and preliminary results are given which show that the detector is capable of identifying pions and protons at 100 GeV/c. (author)

  20. A Bonner Sphere Spectrometer with extended response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Birattari, C. [University of Milan, Department of Physics, Via Celoria 16, 20133 Milan (Italy); Dimovasili, E.; Mitaroff, A. [CERN, 1211 Geneva 23 (Switzerland); Silari, M., E-mail: marco.silari@cern.c [CERN, 1211 Geneva 23 (Switzerland)

    2010-08-21

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  1. A Bonner Sphere Spectrometer with extended response matrix

    International Nuclear Information System (INIS)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  2. A Bonner Sphere Spectrometer with extended response matrix

    Science.gov (United States)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-08-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  3. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  4. Influence of nuclear cross section data at efficiency calculation of the 3He semiconductor neutron spectrometer

    International Nuclear Information System (INIS)

    Avdic, S.; Pesic, M.

    1992-01-01

    The ORTEC 580 Neutron Spectrometer system contains a detector unit in diode coincidence arrangement for measurement of fast neutron spectrum in the energy range from 1 MeV to 14 MeV. Numerical code HE3 for computation of semiconductor 3 He detector efficiency in a collimated neutron beam is based on analytical method in infinite diode approximation and Monte Carlo method for real spectrometer geometry. Calculations are performed in the first collision approximation in the detector active volume including evaluation of correction factors. Accuracy of relative detector efficiency calculation is improved by using neutron cross section from nuclear library ENDF/B-6. (author)

  5. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  6. Conceptual design of the time-of-flight backscattering spectrometer, MIRACLES, at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsaris, N., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk; Bordallo, H. N., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk [Niels Bohr Institute, The University of Copenhagen, Copenhagen 2100 (Denmark); European Spallation Source ERIC, Tunavägen 24, 22100 Lund (Sweden); Lechner, R. E., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk [European Spallation Source ERIC, Tunavägen 24, 22100 Lund (Sweden); Markó, M. [Neutron Spectroscopy Department, Wigner Research Centre for Physics, H-1525 Budapest (Hungary)

    2016-08-15

    In this work, we present the conceptual design of the backscattering time-of-flight spectrometer MIRACLES approved for construction at the long-pulse European Spallation Source (ESS). MIRACLES’s unparalleled combination of variable resolution, high flux, extended energy, and momentum transfer (0.2–6 Å{sup −1}) ranges will open new avenues for neutron backscattering spectroscopy. Its remarkable flexibility can be attributed to 3 key elements: the long-pulse time structure and low repetition rate of the ESS neutron source, the chopper cascade that tailors the moderator pulse in the primary part of the spectrometer, and the bent Si(111) analyzer crystals arranged in a near-backscattering geometry in the secondary part of the spectrometer. Analytical calculations combined with instrument Monte-Carlo simulations show that the instrument will provide a variable elastic energy resolution, δ(ħ ω), between 2 and 32 μeV, when using a wavelength of λ ≈ 6.267 Å (Si(111)-reflection), with an energy transfer range, ħ ω, centered at the elastic line from −600 to +600 μeV. In addition, when selecting λ ≈ 2.08 Å (i.e., the Si(333)-reflection), δ(ħ ω) can be relaxed to 300 μeV and ħ ω from about 10 meV in energy gain to ca −40 meV in energy loss. Finally, the dynamic wavelength range of MIRACLES, approximately 1.8 Å, can be shifted within the interval of 2–20 Å to allow the measurement of low-energy inelastic excitations.

  7. Conceptual design of the time-of-flight backscattering spectrometer, MIRACLES, at the European Spallation Source

    International Nuclear Information System (INIS)

    Tsapatsaris, N.; Bordallo, H. N.; Lechner, R. E.; Markó, M.

    2016-01-01

    In this work, we present the conceptual design of the backscattering time-of-flight spectrometer MIRACLES approved for construction at the long-pulse European Spallation Source (ESS). MIRACLES’s unparalleled combination of variable resolution, high flux, extended energy, and momentum transfer (0.2–6 Å"−"1) ranges will open new avenues for neutron backscattering spectroscopy. Its remarkable flexibility can be attributed to 3 key elements: the long-pulse time structure and low repetition rate of the ESS neutron source, the chopper cascade that tailors the moderator pulse in the primary part of the spectrometer, and the bent Si(111) analyzer crystals arranged in a near-backscattering geometry in the secondary part of the spectrometer. Analytical calculations combined with instrument Monte-Carlo simulations show that the instrument will provide a variable elastic energy resolution, δ(ħ ω), between 2 and 32 μeV, when using a wavelength of λ ≈ 6.267 Å (Si(111)-reflection), with an energy transfer range, ħ ω, centered at the elastic line from −600 to +600 μeV. In addition, when selecting λ ≈ 2.08 Å (i.e., the Si(333)-reflection), δ(ħ ω) can be relaxed to 300 μeV and ħ ω from about 10 meV in energy gain to ca −40 meV in energy loss. Finally, the dynamic wavelength range of MIRACLES, approximately 1.8 Å, can be shifted within the interval of 2–20 Å to allow the measurement of low-energy inelastic excitations.

  8. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Science.gov (United States)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  9. The Alignment System of the ATLAS Muon End-Cap Spectrometer

    CERN Document Server

    Schricker, Alexander

    2002-01-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10% for muons with a transverse momentum of pT =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an align...

  10. Simulations of nuclear reactions for a future HIE-ISOLDE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, Gry [University of Oslo (Norway); CERN (Switzerland); Cederkall, Joakim [Lund University (Sweden); CERN (Switzerland); Blumenfeld, Yorick [CERN (Switzerland)

    2009-07-01

    The planned High Intensity and Energy (HIE) upgrade of the radioactive beam facility ISOLDE will enable post-acceleration of radioactive beams up to an energy of about 10 MeV/u, thus opening the door to nuclear reaction studies. In the case of transfer reactions in inverse kinematics a recoil separator is often well suited or even needed to tell recoils and beam apart and to select the exit channel or to do spectroscopic studies. Two different types of spectrometer designs are being considered for HIE-ISOLDE, namely a recoil mass separator or a ray-tracing type of spectrometer. A set of nuclear transfer reactions in inverse kinematics have been simulated using realistic parameters for HIE-ISOLDE. The performance of the two types of spectrometer designs is compared and their scientific possibilities and limitations discussed based on the simulation results. To evaluate the validity of the simulations a data set from PRISMA at LNL is also compared with simulation results and a comparison between simulations and these data will be presented.

  11. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  12. Development of a single-shot-imaging thin film for an online Thomson parabola spectrometer

    International Nuclear Information System (INIS)

    Sakaki, H.; Fukuda, Y.; Nishiuchi, M.; Hori, T.; Yogo, A.; Jinno, S.; Kanasaki, M.; Niita, K.

    2013-01-01

    A single-shot-imaging thin scintillator film was developed for an online Thomson parabola (TP) spectrometer and the first analysis of laser accelerated ions, using the online TP spectrometer, was demonstrated at the JAEA-Kansai Advanced Relativistic Engineering Laser System (J-KAREN). An energy spectrum of ∼4.0 MeV protons is obtained using only this imaging film without the need of a microchannel plate that is typically utilized in online ion analyses. A general-purpose Monte Carlo particle and heavy ion-transport code system, which consists of various quantum dynamics models, was used for the prediction of the luminescent properties of the scintillator. The simulation can reasonably predict not only the ion trajectories detected by the spectrometer, but also luminescence properties.

  13. Development of a flat-field spectrometer with a wideband Ni/C multilayer grating in the 1–3.5 keV range

    Energy Technology Data Exchange (ETDEWEB)

    Imazono, Takashi [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto 619-0216 (Japan)

    2016-07-27

    To develop a flat-field spectrometer with coverage of the 1–3.5 keV range, a wideband Ni/C multilayer grating was invented. The multilayer consists of two kinds of layer structures. One is a conventional periodic multilayer of thickness D{sub 1} = 5.6 nm, Ni thickness ratio to the multilayer period γ{sub 1} = 0.5 and the number of layers N{sub 1} = 79. Both the first and last layers are Ni. The other is a C/Ni bilayer of D{sub 2} = 8.4 nm, γ{sub 2} = 0.53 and N{sub 2} = 2. The first layer is C and then Ni. The aperiodic multilayer from the topmost C/Ni bilayer was coated on a laminar-type grating having an effective grating constant of 1/2400 mm, groove depth of 2.8 nm, and duty ratio (land width/groove period) of 0.5. In a preliminary experiment, the diffraction efficiency was in excess of 0.8% in the energy range of 2.1-3.3 keV and the maximum of 5.4% at 3.1 keV at a constant angle of incidence of 88.54°, which is considerably higher than that of an Au-coated grating before deposition of the multilayer.

  14. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    International Nuclear Information System (INIS)

    Geldzahler, B.J.; Share, G.H.; Kinzer, R.L.; Magura, J.; Chupp, E.L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system. 19 refs

  15. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    Science.gov (United States)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  16. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  17. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  18. Simulation of GRIS spectrometer response to the solar gamma-ray flare of 23 July 2002

    International Nuclear Information System (INIS)

    Trofimov, Yu A; Kotov, Yu D; Yurov, V N; Lupar, E E; Faradzhaev, R M; Glyanenko, A S

    2017-01-01

    GRIS is a prospective experiment designed to measure hard X-rays and γ-rays of solar flares in the energy range from 50 keV to 200 MeV as well as solar neutrons > 30 MeV. This study considers results of GEANT 4 simulation of GRIS detectors response to cosmic background radiation and to the solar flare SOL2002-07-23 (X4.8). It is shown that the GRIS spectrometers have enough sensitivity and energy resolution to measure redshifts of some narrow γ-rays in flare spectra, that the low energy thresholds of the detectors can be lowered considerably without a risk of counting rate saturation during high magnitude flares and that at a choice between LaBr 3 (Ce) and CeBr 3 the second one is a preferable scintillator for a hard X-ray and γ-ray spectrometer of solar flares. (paper)

  19. Study of the nuclear reactions 208Pb + 58Ni and 208Pb + 64Ni with a focusing time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Sapotta, K.

    1983-01-01

    In the first part of this thesis the construction of a time-of-flight spectrometer for heavy ions with magnetic focusing is described. Then ion trajectories are calculated, and the effective spatial angle and the angular resolution are determined. In the second part the study of quasielastic transfer and deep inelastic reactions of 58 Ni and 64 Ni with 208 Pb at E=265 MeV respectively 260 MeV by means of this spectrometer is described. (HSI) [de

  20. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

  1. A Liquid-Cryogen-Free Superconducting Tunnel Junction X-ray Spectrometer for Astrobiology Research at the Synchrotron

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.B.; Hertrich, T.; Hoehne, J.

    2008-01-01

    Superconducting tunnel junctions (STJs) are being developed as energy-dispersive soft X-ray detectors, because they combine the high energy resolution of low-temperature detectors with the comparably high count rates of non-thermal devices. We have built a 36-pixel spectrometer based on 200 (micro)m x 200 (micro)m Nb-Al-AlOx-Al-Nb STJs. It offers an energy resolution of ∼10 to 20 eV FWHM in the soft X-ray band below 1 keV, a solid angle coverage (Omega)/4π ∼ 10 -3 , and can be operated at total rates up to ∼10 6 counts/s. For STJ operation by non-expert users, we have built a liquid-cryogen-free spectrometer with a mechanical pulse-tube cryocooler and a two-stage adiabatic demagnetization refrigerator. It is fully automated for cooldown to a base temperature of 3 days between demagnetization cycles for STJ operation at 0.3 K. The STJ spectrometers are used for speciation measurements on dilute samples by fluorescence-detected X-ray absorption spectroscopy, and can achieve sensitivities below 100 ppm. We discuss the spectrometer performance in representative applications on metals in meteorites in the context of geological signatures of biological activity

  2. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  3. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  4. High-ohmic low-noise resistor for spectrometers with cooled semiconductor detectors

    International Nuclear Information System (INIS)

    Baldin, S.A.; Zhargal, Ch.; Zorin, G.N.; Laskus, T.; Osipenko, B.P.; Revenko, A.V.; Ryakhovskaya, T.I.

    1985-01-01

    BackgroUnd noise and energy resolution of a new type of resistors, designed to be used as a resistance in a feedback circuit of an X-ray spectrometer preamplifier are studied. The resistors are manufactured using the method of photolithography from high-resistance films, formed on the surface of lead-silicate glasses, as a result of redox processes during heat treatment in hydrogen atmosphere. Energy resolution of the spectrometer is measured on the line 55 FeKX(Mn) with the energy 5.8 keV. The conclusion is made, that the level of background noises in the resistors studied is approximately 4 times lower the level of noises in the KVM type resistors, which are commercially produced in industry

  5. Determination of Alcohol Content in Alcoholic Beverages Using 45 MHz Benchtop NMR Spectrometer

    Directory of Open Access Journals (Sweden)

    Meden F. Isaac-Lam

    2016-01-01

    Full Text Available Alcohol or ethanol is considered the most widely used recreational drug worldwide, and its production, consumption, and sale are strictly regulated by laws. Alcohol content of alcoholic beverages (wine, beers, and spirits is about 3–50% v/v. Analytical methods to determine the alcohol content must be reliable, precise, and accurate. In this study, the amount of ethanol in several alcoholic beverages was determined using a 45 MHz low-field benchtop NMR (nuclear magnetic resonance spectrometer. Internal standard and standard addition analytical methods were utilized to quantify ethanol. For both methods, acetic acid or acetonitrile was used as internal standard to quantify alcohol content by using the peak area corresponding to the methyl peaks of ethanol, acetic acid, or acetonitrile. Results showed that internal standard method gave values of percent alcohol that are in close agreement with the indicated label as confirmed by running the samples in a 400 MHz high-field NMR spectrometer using acetic acid as internal standard. This study demonstrates the utility of a benchtop NMR spectrometer that can provide an alternative technique to analyze percent alcohol in alcoholic products.

  6. Beta-spectrometer with magnetic filter of mini orange type

    International Nuclear Information System (INIS)

    Gorozhankin, V.M.; Gromov, K.Ya.; Kalinnikov, V.G.; Sereeter, Z.; Fominykh, V.I.; Malikov, Sh.R.; Yuldashev, M.B.

    1997-01-01

    At the ISOL facility YASNAPP-2 a β-spectrometer with a magnetic filter of the miniorange type is constructed to measure γ-ray internal conversion coefficients. The magnetic filter of the mini orange type is an assemblage of permanent magnets creating a toroidal magnetic field perpendicular to the electron trajectories from the source to the Si(Li) detector. The chosen profile of the permanent magnets allowed electron registration in the defined energy energy interval with some transmission increase. There are two sets of permanent magnets of the different thickness. Varying the type and number of permanent magnets one can set the detected electron energy intervals in a 50-2500 keV range. The efficiency of the spectrometer was investigated for different assemblages of the mini orange magnet. The facility can be used for the e-γ coincidence investigation. (A.A.D.)

  7. Initial results of the mexican participation in the Alpha Magnetic Spectrometer Project

    International Nuclear Information System (INIS)

    Belmont M, E.; Menchaca R, A.; Sandoval, A.; Alfaro, R.; Martinez D, A.; Grabski, V.

    2007-01-01

    Mexico is part of the AMS (Alpha Magnetic Spectrometer) project, consisting of several radiation detectors integrated in a single telescope to be sent to the outer space in search of antimatter. One of those detectors is a RICH (Ring Imaging Cherenkov), where the cosmic particle's speed is calculated from the Cherenkov light-rings observed. The IF-UNAM group works in characterizing the silica aerogel used as luminous element in this detector. Because the spectrometer will be in orbit for several years, some particular studies are necessary. Our group works on possible ageing mechanisms, showing that the main threat to this material is contamination rather than thermal, or vacuum, shocks. (Author)

  8. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-01-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. -1 ) and high energy (unlimited) transfer -bar ω>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A -1 -1 ) and high energy transfer (-bar ω>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed

  9. A novel approach for predicting the response of the spectrometer for INTEGRAL satellite

    International Nuclear Information System (INIS)

    Kshetri, R.

    2013-01-01

    A basic phenomenological approach has been presented in three recent papers (Kshetri R., 2012. JINST 7, P04008; Kshetri R., 2012. JINST 7, P07006; Kshetri R., 2012. JINST 7, P12007) for understanding the operation of encapsulated type composite detectors including the SPI spectrometer. In the present paper, we have considered the fact that the experimental two-fold events between two detectors include the three and higher fold events between the same two detectors. The formalism has been further developed and the peak-to-total ratio of a general composite detector are predicted for energy region with no direct experimental information about them. At 8 MeV, the peak-to-total ratio for the SPI spectrometer and a very large detector (comprising of infinite number of single HPGe modules) are found to be 9% and 12%, respectively. The predictions for fold distribution of the SPI spectrometer are found to be in agreement with experimental data. Our formulation does not include ad-hoc fits, but expressions that are justifiable by probability flow arguments. Instead of using an empirical method or simulation, we present a novel approach for calculating the peak-to-total ratio of the SPI spectrometer for high gamma energies. - Highlights: ► Operation of SPI is described in terms of few probability amplitudes and a parameter. ► Predictions for peak-to-total ratio are given for inaccessible energy region. ► Predictions for fold distribution agree with experimental data up to 8 MeV. ► This paper is the sixth in the series of papers on composite germanium detectors

  10. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  11. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    Cox, D.M.; Herzberg, R.D.; Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.; Hauschild, K.

    2015-01-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  12. Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights

    Directory of Open Access Journals (Sweden)

    Lilia Muller Guerrini

    2009-06-01

    Full Text Available Polyamide 66 (PA66 nanofibers of different molecular weights were obtained by electrospinning of formic acid solutions. An ionic salt, NaCl, was also added to the solutions to increase the conductivity. PA66 concentrations between 15-17 wt.(%/v and electrical fields between 2.0 and 2.5 kV/cm were the best conditions to produce the smallest nanofibers; however, the addition of NaCl increased the fibers average diameters.The characterization of the fibers was done by scanning electron microscopy (SEM, differential scanning calorimetry (DSC, wide angle X rays diffraction (WAXD and Fourier Transformed Infrared (FTIR. As the molecular weight decreased, the nanofibers average diameters also decreased; however, critical number average and weight average molecular weights were necessary for electrospinning. As the amounts of carboxyl terminal groups (CTG increased, the nanofibers average diameters decreased; however, above CTG's critical values of 8.7 x 10-5 mol.g-1 no electrospinning was possible. The addition of ionic salt increased the electrical conductivity of the solutions and increased the nanofibers' average diameters. By DSC, residual solvent in all the electrospun mats was found; two melting endotherms, one between 248 and 258 °C and the other one between 258 and 267 °C, depending on the sample were also observed. These endotherms were attributed to the melting, re-crystallization and re-melting of the PA66 α-phase. The nanofibers had low % of crystallinity compared to a textile fiber. By WAXS and FTIR, confirmation of the presence of α-phase crystals, of small dimensions and highly imperfect and of a very small amount of β and γ-phases crystals in the nanofibers structure was obtained.

  13. An approximately 4π tracking magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    1987-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) is proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low rapidity quark-gluon plasma

  14. A gamma-ray spectrometer system for fusion applications

    CERN Document Server

    Esposito, B; Kaschuck, Y A; Martin-Solis, J R; Portnov, D V

    2002-01-01

    A NaI scintillator spectrometer system for the measurement of gamma-ray spectra in tokamak discharges has been developed and installed on the Frascati Tokamak Upgrade. Two NaI scintillators are viewing the plasma at two different angles with respect to the equatorial plane. The main features of the spectrometer system (energy range: 0.3-23 MeV) and of the unfolding technique used to restore physical spectra from the pulse-height distributions are described: a method of solution with regularisation for matrix equations of large size, allowing to process count distributions with significant statistical noise, has been developed. A dedicated software, portable to any platform, has been written both for the acquisition and the analysis of the spectra. The typical gamma-ray spectra recorded in hydrogen and deuterium discharges, also with additional heating, are presented and discussed; two components have been observed: (a) thick-target Bremsstrahlung gamma-rays produced by runaway electrons hitting the Inconel po...

  15. Construction and simulation of the KAOS spectrometer for coincidence measurements in the associated kaon production; Aufbau und Simulation des KAOS-Spektrometers fuer Koinzidenzmessungen in der assoziierten Kaonproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Lars

    2009-05-27

    With the extension of the Mainz microtron MAMI at the Institut fuer Kernphysik with a third stage it is now possible to produce particles with open strangeness. For their detection the spectrometer facility of the A1 collaboration has been expanded with the KAOS-spectrometer which has been inherited from GSI in Darmstadt. We are studying the p(e,e'K{sup +}){lambda}/Sigma{sup 0} reaction where the outgoing electron and kaon have to be detected. If we use a different target than hydrogen there is the possibility of a hypernuceus being formed. Spectroscopy of these gives the opportunity to study the hyperon potential within the atomic nucleus and the hyperon-nucleon interaction. Due to the good quality of the electron beam mass resolutions of a few hundred keV/c{sup 2} can be achieved. The detectors and the optical properties of the spectrometer have been simulated with GEANT4. Hit pattern in the detectors have been generated to aid the programming of the FPGA-based trigger. A first mapping of the detector coordinates to the target coordinates has been generated. For the experiments with hypernuclei KAOS has to be placed at 0 forward angle and the primary electron beam has to go via a magnetic chicane through the dipole. The simulation shows only a slight increase of the radiation for this case, especially around the beam-dump. Thus it is possible to operate KAOS as double sided spectrometer at MAMI. Within the scope of this thesis the readout and control electronics for all detectors had to be integrated into the existing A1 data acquisition and into the control system. During two beamtimes in autumn 2008 kaons where detected in the angular range between 20 and 40 and the momentum range between 400 MeV/c and 600 MeV/c. A time resolution of 1ns FWHM could be achieved which allows particle identification. The angular and momentum resolution was sufficient to identify {lambda} and {sigma}{sup 0} hyperons in the missing mass spectrum. (orig.)

  16. Multichannel CdZnTe Gamma Ray Spectrometer

    International Nuclear Information System (INIS)

    Doty, F.P.; Lingren, C. L.; Apotovsky, B. A.; Brunsch, J.; Butler, J. F.; Collins, T.; Conwell, R.L.; Friesenhahn, S.; Gormley, J.; Pi, B.; Zhao, S.; Augustine, F.L.; Bennet, B. A.; Cross, E.; James, R. B.

    1998-01-01

    A 3 cm 3 multichannel gamma spectrometer for DOE applications is under development by Digirad Corporation. The device is based on a position sensitive detector packaged in a compact multi-chip module (MCM) with integrated readout circuitry. The modular, multichannel design will enable identification and quantitative analysis of radionuclides in extended sources, or sources containing low levels of activity. The MCM approach has the advantages that the modules are designed for imaging applications, and the sensitivity can be arbitrarily increased by increasing the number of pixels, i.e. adding modules to the instrument. For a high sensitivity probe, the outputs for each pixel can be corrected for gain and offset variations, and summed digitally. Single pixel results obtained with discrete low noise readout indicate energy resolution of 3 keV can be approached with currently available CdZnTe. The energy resolution demonstrated to date with MCMs for 511 keV gamma rays is 10 keV

  17. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  18. V/V(max) test applied to SMM gamma-ray bursts

    Science.gov (United States)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  19. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  20. A 2-100 keV, UHV ion impact spectrometer for ion-solid interaction studies

    International Nuclear Information System (INIS)

    Berg, J.A. Van den; Armour, D.G.; Verheij, L.K.

    1978-01-01

    A 2 to 100 keV ion accelerator has been constructed as part of an ion impact spectrometer in which a number of analytical techniques have been combined to allow a comprehensive study of the interaction of low- and medium-energy ions with solids to be carried out under carefully controlled conditions. The overall requirements of the ion beam system in terms of ion species, beam purity, uniformity, energy spread and intensity were dictated by the interest in carrying out low-energy ion scattering, Rutherford back-scattering and thermal desorption experiments. The accelerator design utilises the principle of low-energy extraction and mass analysis, and post-acceleration up to the required high energy. The ions are produced in a duoplasmatron ion source and a parallel beam is obtained after mass selection, utilising a quadrupole triplet lens in conjunction with a 60 0 stigmatic focusing magnetic analyser. Proton and rare gas ion beams of 1 to 100 nA are routinely obtained on target. The 54 cm diameter, UHV target chamber is pumped by a 270 1 s -1 turbo-molecular pump in conjunction with an in-line titanium sublimator, and typical base pressures of 1 to 4 x 10 -11 Torr are achieved. The target is supported in a precision, three-axis goniometer and the detection system, at present comprising a 90 mm mean diameter hemispherical energy analyser and channel electron multiplier, is mounted on a two-axis manipulator. Preliminary measurements using the system have employed the low-energy ion scattering technique to study the oxidation of a Ni(110) surface. (author)

  1. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    Science.gov (United States)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  2. Detection limits of the NaI(Tl) shielded HPGe spectrometer

    International Nuclear Information System (INIS)

    Bikit, I.; Slivka, J.; Krmar, M.; Durcic, Z.; Zikic, N.; Conkic, Lj.; Veskovic, M.; Anicin, I.

    1999-01-01

    The results of a detailed study of the low-level performance of a NaI(Tl) shield added to an iron shielded HPGe spectrometer are presented. Both the 'slow' and the 'fast' anticoincidence gating modes were tested, the 'slow' mode being found better suited for general low-level spectroscopy applications. In long runs the stability of the system in this mode is satisfactory. The anticoincidence action of the NaI(T1) shield lowers the integral background of the iron shielded HPGe detector in the energy range from 30 keV to 2 MeV by a factor of 6.5, and suppresses the continuum above 150 keV by a factor larger than 10

  3. Geometrically weighted semiconductor Frisch grid radiation spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, D.S. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Rojeski, R.A. [Etec Systems, Inc., 26460 Corporate Ave., Hayward, CA 94545 (United States); He, Z. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Wehe, D.K. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Driver, M. [eV Products, 375 Saxonburg Blvd., Saxonburg, PA 16056 (United States); Blakely, M. [eV Products, 375 Saxonburg Blvd., Saxonburg, PA 16056 (United States)

    1999-02-11

    A new detector geometry is described with relatively high gamma ray energy resolution at room temperature. The device uses the geometric weighting effect, the small pixel effect and the Frisch grid effect to produce high gamma ray energy resolution. The design is simple and easy to construct. The device performs as a gamma ray spectrometer without the need for pulse shape rejection or correction, and it requires only one signal output to any commercially available charge sensitive preamplifier. The device operates very well with conventional NIM electronic systems. Presently, room temperature (23 deg. C) energy resolutions of 2.68% FWHM at 662 keV and 2.45% FWHM at 1.332 MeV have been measured with a 1 cm{sup 3} prism shaped CdZnTe device.

  4. Measurements of hydrogen and helium isotopes emission spectra from neutrons induced reaction at ten's of MeV

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Baba, Mamoru; Hirasawa, Yoshitaka

    1999-01-01

    We have developed a wide dynamic range spectrometer for the measurements of (n, xZ) double differential cross sections (DDXs) for ten's of MeV neutrons at TIARA. The spectrometer consists of a 40-cm diameter vacuum reaction chamber and three counter telescopes. Each telescope consists of a gas proportional counter, an SSD and a BaF 2 scintillator. By using the spectrometer, we achieved simultaneous measurements from ∼MeV α particles to 75 MeV protons with an acceptable counting rate. (author)

  5. Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)

    Science.gov (United States)

    Chandavar, Shloka K.

    The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.

  6. 42 CFR 66.113 - Publications.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Publications. 66.113 Section 66.113 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.113 Publications. Publication, distribution, and...

  7. Measurement of the production cross-section of heavy hadrons with the muon spectrometer of the ALICE detector at LHC

    International Nuclear Information System (INIS)

    Manceau, L.

    2010-10-01

    Lattice quantum chromodynamics calculations predict a transition from the phase of hadronic matter to quark and gluon plasma for a temperature T ∼ 173 MeV and a vanishing baryonic potential. Ultra-relativistic heavy ion collisions allow to highlight this phase transition. Heavy flavours can be used to probe the first instants of the collisions where the temperature is the highest. The LHC will provide proton-proton and lead-lead collisions at unprecedented large energy (√(s) = 14 TeV and √(s NN ) 5.5 TeV respectively). The ALICE detector is dedicated to heavy ion collisions but it can also measure proton-proton collisions. The detector includes a muon spectrometer. The spectrometer has been designed to measure heavy flavours. This work presents the performance of the spectrometer to measure beauty hadrons (B) and charmed hadrons (D) inclusive production cross-section in proton-proton collisions. The first step of the measurement consists in extracting heavy hadron decayed muon distributions. The next step consists in extrapolating these distributions to heavy hadrons inclusive production cross-section. This work also presents a preliminary study of the performance of the spectrometer for the measurement of the nuclear modification factor and the associated observable named R B/D in 0-10% central heavy ions collisions. Uncertainties and transverse impulsion range of extraction of the observables have been investigated. (author)

  8. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  9. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  10. Measurement of the pp → dπ+ reaction at 793, 800 and 1920 MeV/c and fixing the transport matrix of the magnetic spectrometer Big Karl

    International Nuclear Information System (INIS)

    Razen, B.

    1997-12-01

    This work presents measurements of the pp → dπ + reaction at a beam momentum of 793 MeV/c and 801 MeV/c. Differential and total cross sections at these energies were measured with the magnetic spectrometer Big Karl, which grants a nearly 4π-acceptance in the center of mass system. A major emphasis is given to the deduction of the transfer-matrix of the magnetic system, which allows full momentum reconstruction of the deuterons at the target point. Anisotropies and partial wave contributions are deduced from these measurements. They suggest not negligible P-wave contribution already close to threshold. Comparing our data to the measurements of the isospin related reaction np → dπ 0 yields some difference, which might be a hint to some isospin-breaking. Finally a measurement at 1920 MeV/c beam momentum was done to calibrate the momentum of the external beam of COSY. (orig.)

  11. Measuring the mass and width of the Z0: The status of the energy spectrometers

    International Nuclear Information System (INIS)

    Rouse, F.; Levi, M.; Kent, J.; King, M.; Von Zanthier, C.; Watson, S.; Bambade, P.; Erickson, R.; Jung, C.K.; Nash, J.; Wormser, G.

    1989-05-01

    The Stanford Linear Collider (SLC) located at the Stanford Linear Accelerator Center (SLAC) collides electrons and positrons produced in the linear accelerator pulse by pulse. The object is to produce collisions energetic enough to produce the heavy intermediate vector boson, the Z 0 . An essential component of the SLC physics program is the precise knowledge of the center-of-mass energy of each interaction. We measure the energy of each collision by using two energy spectrometers. The spectrometers are located in extraction lines of each beam. We will measure the energy of each beam to 20 MeV or 5 parts in 10 4 . We report here on the status of the energy spectrometer system. 13 refs., 7 figs., 3 tabs

  12. Programmable ion mobility spectrometer: Time resolution improvement and ion counter comparison

    International Nuclear Information System (INIS)

    Harrison, R.G.; Wilding, R.J.

    2005-01-01

    Atmospheric ion mobility spectrometers operating on the aspirated electrode principle require switching of a bias voltage to select ions of different mobility. The ion spectrum can be obtained by sweeping across a set of bias voltages. If rapid temporal changes in atmospheric ion spectra are to be measured, however, such as for a balloon-carried instrument, the sweep time across the ion spectrum must be kept short. As bias voltage steps can generate saturation in the mobility spectrometer's electrometer amplifier, the electrometer recovery time limits the ion mobility spectrum sweep rate. Here, active compensation of the charge injected at a bias voltage step is used to reduce the saturation time. Further, the optimal setting of the charge compensation circuitry provides a determination of the system capacitance, a necessary calibration parameter for absolute measurements. Using laboratory air, hourly variations in ion concentrations and air conductivity found using the voltage switching system were similar to those obtained with a traditional ion counter operating at a single mobility: ion growth, however, could only be detected using the ion spectrometer

  13. Quasielastic high-resolution time-of-flight spectrometers employing multi-disk chopper cascades for spallation sources

    International Nuclear Information System (INIS)

    Lechner, R.E.

    2001-01-01

    The design of multi-disk chopper time-of-flight (MTOF) spectrometers for high-resolution quasielastic and low-energy inelastic neutron scattering at spallation sources is discussed in some detail. A continuously variable energy resolution (1 μeV to 10 meV), and a large dynamic range (1 μeV to 100 meV), are outstanding features of this type of instrument, which are easily achieved also at a pulsed source using state-of-the-art technology. The method of intensity-resolution optimization of MTOF spectrometers at spallation sources is treated on the basis of the requirement of using (almost) 'all the neutrons of the pulse', taking into account the constant, but wavelength-dependent duration of the source pulse. It follows, that the optimization procedure (which is slightly different from that employed in the steady-state source case) should give priority to the highest resolution, whenever such a choice becomes necessary. This leads to long monochromator distances (L l2 ) of the order of 50 m, for achieving resolutions now available at reactor sources. A few examples of spectrometer layout and corresponding design parameters for large-angle and for small-angle quasielastic scattering instruments are given. In the latter case higher energy resolution than for large-angle scattering is required and achieved. The use of phase-space transformers, neutron wavelength band-pass filters and multichromatic operation for the purpose of intensity-resolution optimization are discussed. This spectrometer can be designed to make full use of the pulsed source peak flux. Therefore, and because of a number of improvements, high resolution will be available at high intensity: for any given resolution the total intensity at the detectors, when placed at one of the planned new spallation sources (SNS, JSNS, ESS, AUSTRON) will be larger by at least three orders of magnitude than the total intensity of any of the presently existing instruments of this type in routine operation at steady

  14. A multi-detector neutron spectrometer with nearly isotropic response for environmental and workplace monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M., E-mail: jm.gomezros@ciemat.e [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Bedogni, R. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy); Moraleda, M.; Delgado, A.; Romero, A. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Esposito, A. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy)

    2010-01-21

    This communication describes an improved design for a neutron spectrometer consisting of {sup 6}Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10{sup -9} to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.

  15. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  16. Measurements with the high flux lead slowing-down spectrometer at LANL

    International Nuclear Information System (INIS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R.C.; Wender, S.A.; Vieira, D.J.; Bond, E.; Wilhelmy, J.B.; O'Donnell, J.M.; Michaudon, A.; Bredeweg, T.A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J.A.

    2007-01-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 x 10 9 n/cm 2 /s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235 U, 236 U, 238 U and 239 Pu. The smallest sample measured was 10 ng of 239 Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section

  17. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    Science.gov (United States)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  18. 22 CFR 66.1 - Introduction.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Introduction. 66.1 Section 66.1 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES AVAILABILITY OF THE RECORDS OF THE NATIONAL ENDOWMENT FOR DEMOCRACY § 66.1 Introduction. These regulations amend the Code of Federal Regulations to...

  19. 7 CFR 1775.66 - Purpose.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...

  20. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  1. Preliminary results with the CLAMSUD pion spectrometer at the Moscow Meson Factory

    International Nuclear Information System (INIS)

    Badala, A.; Barbera, R.; Librizzi, F.; Longhitano, A.; Nicotra, D.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Santoro, A.; Turrisi, R.; Aseev, V.; Feschenko, A.; Gavrilov, Yu.; Guber, F.; Golubeva, M.; Karavicheva, T.; Kurepin, A.; Ostroumov, P.; Potapov, V.; Tiflov, V.; Zhuravlev, A.

    1995-01-01

    A magnetic spectrometer has been recently installed at the new proton beam facility of the Moscow Meson Factory, to study charged pion production from proton-nucleus interactions at 200-400 MeV bombarding energy. Preliminary reults obtained during the first runs are reported. The planned physics program is also discussed. (orig.)

  2. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen' s University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  3. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    Science.gov (United States)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  4. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    International Nuclear Information System (INIS)

    Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-01-01

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

  5. A Liquid-Cryogen-Free Superconducting Tunnel Junction X-ray Spectrometer for Astrobiology Research at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Drury, O B; Hertrich, T; Hoehne, J

    2008-06-15

    Superconducting tunnel junctions (STJs) are being developed as energy-dispersive soft X-ray detectors, because they combine the high energy resolution of low-temperature detectors with the comparably high count rates of non-thermal devices. We have built a 36-pixel spectrometer based on 200 {micro}m x 200 {micro}m Nb-Al-AlOx-Al-Nb STJs. It offers an energy resolution of {approx}10 to 20 eV FWHM in the soft X-ray band below 1 keV, a solid angle coverage {Omega}/4{pi} {approx} 10{sup -3}, and can be operated at total rates up to {approx}10{sup 6} counts/s. For STJ operation by non-expert users, we have built a liquid-cryogen-free spectrometer with a mechanical pulse-tube cryocooler and a two-stage adiabatic demagnetization refrigerator. It is fully automated for cooldown to a base temperature of <30 mK in 15 hours, and has a hold time of >3 days between demagnetization cycles for STJ operation at 0.3 K. The STJ spectrometers are used for speciation measurements on dilute samples by fluorescence-detected X-ray absorption spectroscopy, and can achieve sensitivities below 100 ppm. We discuss the spectrometer performance in representative applications on metals in meteorites in the context of geological signatures of biological activity.

  6. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser.

    Science.gov (United States)

    Zastrau, Ulf; Fletcher, Luke B; Förster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-09-01

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  7. Removal of stored particle background via the electric dipole method in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilk, Daniel [Institut fuer Experimentelle Kernphysik, KIT, Karlsruhe (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The goal of the KArlsruhe TRItium Neutrino (KATRIN) experiment is to determine the effective mass of the electron anti neutrino by measuring the electron energy spectrum of tritium beta decay near the endpoint. The goal is to reach a sensitivity on the neutrino mass of 200 meV for which a low background level of 10{sup -2} counts per second is mandatory. Electrons from single radioactive decays of radon and tritium in the KATRIN main spectrometer with energies in the keV range can be magnetically stored for hours. While cooling down via ionization of residual gas molecules, they produce hundreds of secondary electrons, which can reach the detector and contribute to the background signals. In order to suppress this background component, several methods are investigated to remove stored electrons, such as the application of an electric dipole field and the application of magnetic pulses. This talk introduces the mechanism of background production due to stored electrons and their removal by the electric dipole method in the main spectrometer. In context of the spectrometer- and detector-commissioning phase in summer 2015, measurement results of the application of the electric dipole method are presented.

  8. Construction and performance of two multicell Cherenkov counters used in FRAMM-NA1 spectrometer

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Budinich, M.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Liello, F.; Marrocchesi, P.S.; Mensa, A.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stanga, R.; Stefanini, A.; Tonelli, G.

    1983-01-01

    Two small dimension multicell Cherenkov counters have been built for FRAMM-NA1 multiparticle spectrometer to identify pions and kaons in the momentum range between 5 and 22 GeV/c. The performances achieved and the construction details are reported. (orig.)

  9. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  10. Development of a focal-plane drift chamber for low-energetic pions and experimental determination of an inverse transfer matrix for the short-orbit spectrometer

    International Nuclear Information System (INIS)

    Ding, M.

    2004-10-01

    The three-spectrometer facility at the Mainz microtron MAMI was supplemented by an additional spectrometer, which is characterized by its short path-length and therefore is called Short Orbit Spectrometer (SOS). At nominal distance from target to SOS (66 cm) the particles to be detected cover a mean path-length between reaction point and detector of 165 cm. Thus for pion electroproduction close to threshold in comparison to the big spectrometers the surviving probability of charged pions with momentum 100 MeV/c raises from 15% to 73%. Consequently the systematic error (''myon contamination''), as for the proposed measurement of the weak form-factors G A (Q 2 ) and G P (Q 2 ), reduces significantly. The main subject of this thesis is the drift chamber for the SOS. Its small relative thickness (0.03% X 0 ), reducing multiple scattering, is optimized with regard to detecting low-energy pions. Due to the innovative character of the driftchamber geometry a dedicated software for track-reconstruction, efficiency-determination etc. had to be developed. A comfortable feature for calibrating the drift path-drift time-relation, represented by cubic splines, was implemented. The resolution of the track detector in the dispersive plane is 76 μaem for the spatial and 0.23 for the angular coordinate (most probable error) and, correspondingly, 110 μm and 0.29 in the non-dispersive plane. For backtracing the reaction quantities from the detector coordinates the inverse transfer-matrix of the spectrometer was determined. For this purpose electrons were scattered quasi-elastically from protons inside the 12 C-nucleus, thus defining the starting angles of the electrons by holes of a sieve collimator. The resulting experimental values for the angular resolution at the target amount to σ φ =1.3 mrad and σ θ =10.6 mrad resp. The momentum calibration of the SOS only can be achieved by quasi-elastic scattering (two-arm experiment). For this reason the contribution of the proton

  11. The Polaris-H imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Christopher G., E-mail: chris@h3dgamma.com; Kaye, Willy R.; Wang, Weiyi; Zhang, Feng; Jaworski, Jason M.; King, Alexis; Boucher, Y. Andy; He, Zhong

    2015-06-01

    Recently, H3D has designed and introduced a gamma-ray imaging spectrometer system named Polaris-H. Polaris-H was designed to perform gamma spectroscopy and imaging throughout nuclear power plants. It integrates a 3D-position-sensitive pixelated CZT detector (20 mm×20 mm×15 mm), associated readout electronics, an embedded computer, a 5-h battery, and an optical camera in a portable water-proof enclosure. The total mass is about 4 kg, and the system startup time is 2 min. Additionally, it has a connection for a tablet, which displays a gamma-ray spectrum and isotope-specific images of the gamma-ray distribution in all directions in real time. List-mode data is saved to an external USB memory stick. Based on pixelated depth-sensing technology, spectroscopy is routinely better than 1.1% FWHM at 662 keV, and imaging efficiency at 662 keV varies less than a factor of two for all directions, except through the battery. Measurements have been performed in contaminated environments, in high radiation fields, and in cramped quarters.

  12. The Polaris-H imaging spectrometer

    International Nuclear Information System (INIS)

    Wahl, Christopher G.; Kaye, Willy R.; Wang, Weiyi; Zhang, Feng; Jaworski, Jason M.; King, Alexis; Boucher, Y. Andy; He, Zhong

    2015-01-01

    Recently, H3D has designed and introduced a gamma-ray imaging spectrometer system named Polaris-H. Polaris-H was designed to perform gamma spectroscopy and imaging throughout nuclear power plants. It integrates a 3D-position-sensitive pixelated CZT detector (20 mm×20 mm×15 mm), associated readout electronics, an embedded computer, a 5-h battery, and an optical camera in a portable water-proof enclosure. The total mass is about 4 kg, and the system startup time is 2 min. Additionally, it has a connection for a tablet, which displays a gamma-ray spectrum and isotope-specific images of the gamma-ray distribution in all directions in real time. List-mode data is saved to an external USB memory stick. Based on pixelated depth-sensing technology, spectroscopy is routinely better than 1.1% FWHM at 662 keV, and imaging efficiency at 662 keV varies less than a factor of two for all directions, except through the battery. Measurements have been performed in contaminated environments, in high radiation fields, and in cramped quarters

  13. On-line satellite/central computer facility of the Multiparticle Argo Spectrometer System

    International Nuclear Information System (INIS)

    Anderson, E.W.; Fisher, G.P.; Hien, N.C.; Larson, G.P.; Thorndike, A.M.; Turkot, F.; von Lindern, L.; Clifford, T.S.; Ficenec, J.R.; Trower, W.P.

    1974-09-01

    An on-line satellite/central computer facility has been developed at Brookhaven National Laboratory as part of the Multiparticle Argo Spectrometer System (MASS). This facility consisting of a PDP-9 and a CDC-6600, has been successfully used in study of proton-proton interactions at 28.5 GeV/c. (U.S.)

  14. Software for mass spectrometer control

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Anghel, Mihai; Iliescu, Mariana; Trancota, Dan; Kaucsar, Martin; Oprea, Cristiana

    2004-01-01

    The paper describes a software application for the MAT 250 mass spectrometer control, which was refurbished. The spectrometer was bring-up-to-date using a hardware structure on its support where the software application for mass spectrometer control was developed . The software application is composed of dedicated modules that perform given operations. The instructions that these modules have to perform are generated by a principal module. This module makes possible the change of information between the modules that compose the software application. The use of a modal structure is useful for adding new functions in the future. The developed application in our institute made possible the transformation of the mass spectrometer MAT 250 into a device endowed with other new generation tools. (authors)

  15. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is being or has been deposited in navigable waters or any tributary of any navigable waters in violation of...

  16. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R.; Ramirez G, J.

    2009-10-01

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  17. Calculation of background effects on the VESUVIO eV neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6 Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given

  18. Calculation of background effects on the VESUVIO eV neutron spectrometer

    Science.gov (United States)

    Mayers, J.

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given.

  19. 19 CFR 207.66 - Hearing.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Hearing. 207.66 Section 207.66 Customs Duties... EXPORTS TO THE UNITED STATES Five-Year Reviews § 207.66 Hearing. (a) In general. The Commission shall hold a hearing in each full review. The date of the hearing shall be specified in the scheduling notice...

  20. Mass spectrometers in medicine

    International Nuclear Information System (INIS)

    Bushman, J.A.

    1975-01-01

    This paper describes how the mass spectrometer enables true lung function, namely the exchange of gases between the environment and the organism, to be measured. This has greatly improved the understanding of respiratory disease and the latest generation of respiratory mass spectrometers will do much to increase the application of the technique. (author)

  1. Spectroscopic study of S = -2 hypernuclei with a new spectrometer S-2S

    International Nuclear Information System (INIS)

    Kanatsuki, Shunsuke; Amano, Nobuaki; Ekawa, Hiroyuki

    2015-01-01

    A spectroscopic study of Ξ hypernucleus is planned to carry out in the J-PARC E05 experiment at J-PARC K1.8 beam line. We aim to observe bound state peaks of Ξ hypernucleus through the "1"2C(K"-, K"+) reaction with an energy resolution of better than 2 MeV. For this experiment, we are constructing a new spectrometer to analyze the scattered K"+ momentum precisely. Construction of the magnets will be completed by the end of JFY2014, and most parts of detectors are almost ready. The plan of the experiment and the design and status of the new spectrometer are presented. (author)

  2. Calibrating the Regolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    McIntosh, Missy; Hong, Jaesub; Allen, Branden; Grindlay, Jonathan

    2014-01-01

    This paper describes the onboard calibration process of REXIS (the Regolith X-ray Imaging Spectrometer), an instrument on OSIRIS-REx. OSIRIS-REx, scheduled to be launched in 2016, is a planetary mission intending to return a regolith sample from a near Earth asteroid called Bennu. REXIS, a student-led collaboration between Harvard and MIT, is a soft X-ray (0.5-7.5 keV) coded-aperture telescope with four X-ray CCDs and a gold coated stainless steel mask. REXIS will measure the surface elementa...

  3. Extended study on oxidation behaviors of UN0.68 and UN1.66 by XPS

    Science.gov (United States)

    Luo, Lizhu; Hu, Yin; Pan, Qifa; Long, Zhong; Lu, Lei; Liu, Kezhao; Wang, Xiaolin

    2018-04-01

    The surface oxidation behaviors of UN0.68 and UN1.66 thin films are investigated by X-ray photoelectron spectroscopy (XPS), and the traditional U4f/N1s, O1s, valence band spectra as well as the unconventional U4d and U5d spectra are collected for the understanding of their oxidation behavior in-depth. Similar asymmetrical peak shape of the U4f spectra to uranium is observed for both uranium nitrides, despite of a slight shift to higher energy side for UN1.66 clean surface. However, significant difference among the corresponding spectra of UN0.68 and UN1.66 during oxidation reveals the distinctive properties of each own. The coexistence of UO2-x, UO2 and UO2-x.Ny on UN0.68 surface results in the peculiar features of U4f spectra as well as the others within the XPS energy scale, where peaks of the oxidized species firstly shift to higher energy side compared to the clean surface, and then return closely towards those of stoichiometric UO2. For UN1.66, the generation of U-N-O ternary compounds on the surface is identified with the symmetrical U4f peaks at 379.9eV and 390.8 eV, which locate intermediate between UO2 and UN1.66, and gradually expanding to higher energy side during the progressive oxidation. Furthermore, the formation of N-O species on UN1.66 surface is also detected as an oxidation product. The metallic character of UN1.66 is identified by the intense signal at Fermi level, which is greatly suppressed by the increasing oxygen exposure and implies the weakening metallic properties of the as-generated U-N-O compounds. Higher uranium oxides, such as UO3 and U4O9, are deduced to be the final oxidation products, and a multistage mechanism for UN1.66 following the exposure to oxygen is discussed.

  4. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  5. Charge conjugation symmetry in proton--antiproton interactions at 5.4 GeV energy

    International Nuclear Information System (INIS)

    Whittaker, J.D.

    1977-10-01

    The charge conjugation symmetry of the reaction anti pp- → π/sup +-/ + X was checked at radical s = 5.4 GeV. The measurement was made with a double arm spectrometer, with each arm triggered independently. Each spectrometer arm had an acceptance of 15 millisteradians and subtended an angular range of 16 to 20 0 in the lab, 77 to 91 0 in the pion center of mass system (CMS). The asymmetry (N + - N - )/(N + + N - ) was determined at 90 0 CMS over a P/sub t/ range of .5 to 2.7 GeV/c. Corrections were made for target empty, for pions in the incident beam, and for particle misidentification in the spectrometer. The resulting symmetry was .0084 +- .0090; consistent with zero. The asymmetry introduced by differential pion absorption in the spectrometer was estimated to be .0021. In the P/sub t/ regions of .48 to .67 to 1.00 and 1.00 to 2.7 GeV/c, the asymmetries were .0037 +- .0115, .0178 +- .0145, and -.0025 +- .0311, respectively. The corresponding limits on the amplitude ratio V = Re (C-nonconserving amplitude)/(C-conserving amplitude) are one half of the asymmetry limits

  6. Experiments at the time-of-flight neutron spectrometer GNEIS in Gatchina

    International Nuclear Information System (INIS)

    Shcherbakov, O.A.

    1990-01-01

    A brief description of the Gatchina neutron time-of-flight spectrometer GNEIS at the 1 GeV proton synchrocyclotron and its main characteristics are given. Some results of the nuclear fission experiments and neutron cross section measurements are presented not only to illustrate the facility performance but to outline the basic directions of the researches as well. 28 refs.; 10 figs

  7. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  8. Space shuttle charging or beam-plasma discharge: What can electron spectrometer observations contribute to solving the question?

    International Nuclear Information System (INIS)

    Watermann, J.; Wilhelm, K.; Torkar, K.M.; Riedler, W.

    1988-01-01

    Several cooperative plasma experiments were carried out on board Spacelab-1, the ninth payload of the Space Transportation System (STS-9). Among them, the electron spectrometer 1ES019A was designed to observe 01.-12.5 keV electron fluxes with high temporal and spatial resolution, while the SEPAC electron beam accelerator emitted electron beams with currents up to 280 mA and maximum energies of 5 keV. Since the question of orbiter charging to high voltages has controversially been discussed in several publications on STS-3 and STS-9 electron beam experiments, an attempt is made to relate information from the return electron flux observed during the SEPAC operations to the vehicle charging interpretation. A close examination reveals that most of our observations can be understood if the occurrence of a beam-plasma discharge is assumed at least for electron beam intensities above 100 mA. This would provide a substantial return current capability. High orbiter charging effects during electron beam accelerator electron emissions are consequently not supported by the observations

  9. VESUVIO--the double difference inverse geometry spectrometer at ISIS

    International Nuclear Information System (INIS)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W.G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E.

    2004-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers

  10. VESUVIO--the double difference inverse geometry spectrometer at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W.G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E

    2004-07-15

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers.

  11. VESUVIO-the double difference inverse geometry spectrometer at ISIS

    Science.gov (United States)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W. G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E.

    2004-07-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers.

  12. Crosschecking of alpha particle monitor reactions up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Ditrói, F.; Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan)

    2017-04-15

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the {sup 27}Al(α,x){sup 22,24}Na, {sup nat}Ti(α,x){sup 51}Cr, {sup nat}Cu(α,x){sup 66,67}Ga and {sup nat}Cu(α,x){sup 65}Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  13. Krypton K-shell X-ray spectra recorded by the HENEX spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)]. E-mail: john.seely@nrl.navy.mil; Back, C.A. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Constantin, C. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Hudson, L.T. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Szabo, C.I. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Henins, A. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Holland, G.E. [SFA Inc., 9315 Largo Drive West Suite 200, Largo MD 20774 (United States); Atkin, R. [Tiger Innovations, L.L.C., 3610 Vacation Lane, Arlington VA 22207 (United States); Marlin, L. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)

    2006-05-15

    High-resolution X-ray spectra were recorded by the High-Energy Electronic X-ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1-20keV energy range and one quartz(10-11) transmission crystal (Laue geometry) covering the 11-40keV range. The time-integrated spectral images were recorded on five CMOS X-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13-17keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x10{sup 18}cm{sup -3} and the electron temperature is in the range 2.8-3.2keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the >60keV energy range using a Ge(220) transmission crystal.

  14. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  15. Study of the 16O+64,66,68Zn reactions

    International Nuclear Information System (INIS)

    Tenreiro, Claudio; Acquadro, J.C.; Liguori Neto, R.; Freitas, P.A.B.

    1989-01-01

    Excitation functions for the fusion of 16 O with 64,66 Zn in the energy range of 0.8-1.7 times the Coulomb barrier were measured. Reduced fusion excitation functions, scaled to remove the geometrical effects shown and isotopic effect in the excitation functions for the sub-barrier energies. Furthermore, angular distributions for the elastic scattering were measured for the 16 O+ 64,68 Zn systems in the energy range from 43 MeV to 56 MeV for the 16 O. An anomalous back-angle elastic scattering was observed for the 16 O+ 64 Zn system and for energies around the Coulomb barrier. (Author) [es

  16. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    Science.gov (United States)

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  17. Investigation of Soft Photon Production in Hadronic Collisions Using the OMEGA Spectrometer

    CERN Multimedia

    2002-01-01

    The Omega Spectrometer, with a hydrogen target and two electromagnetic calorimeters, is used to investigate the anomalous production of soft $\\gamma$s in hadronic collisions. The experiment is aimed at confirming an observation made in BEBC: the yield of soft $\\gamma$s (70\\% of the $\\gamma$s have c.m. energies in the range (20~$<$~E(@g)~$<$~60~MeV)) exceeds the QED prediction of hadronic bremsstrahlung by a factor of 3. This effect may be related to the anomalous production of low mass lepton pairs (virtual $\\gamma$s) observed in several hadronic experiments. \\\\ \\\\ An interaction trigger is used to collect events of @p@+p collisions (and pp tagged by Cedars in the beam) at 280~GeV/c. The charged tracks are recorded by the @W spectrometer, the @g's in the two calorimeters. The @g's arising from hadronic radiative decay (mostly @p|0's) are reconstructed, and subtracted event by event. The remaining @g spectrum is studied, in a region of phase space where the background (e.g. bachelor @g's from uncompletel...

  18. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, Anhui (China); Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, Chunfeng [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  19. Search for gamma-ray transients using the SMM spectrometer

    Science.gov (United States)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  20. Neutron-damaged GaAs detectors for use in a Compton spectrometer

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Sale, K.E.; Wang, C.L.; Baltrusaitis, R.M.

    1992-01-01

    Detectors made of GaAs are being studies for use on the focal plane of a Compton spectrometer which measures 1-MeV to 25-MeV gamma rays with high energy resolution (1% or 100 keV, whichever is greater) and 200-ps time resolution. The detectors are GaAs chips that have been neutron-damaged to improve the time response. The detectors will be used to measure fast transient signals in the current mode. The properties of various GaAs detector configurations are being studied by bombarding sample detectors with short pulses of 4-MeV to 16-MeV electrons at the Linac Facility at EG ampersand G Energy Measurements, Inc., Santa Barbara Operations. Measurements of detector sensitivity and impulse response versus detector bias, thickness, and electron beam energy and intensity have been performed and are presented. 5 refs

  1. Development of lead slowing down spectrometer for isotopic fissile assay

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Ahn, Sang Joon; Kim, Ho Dong

    2014-01-01

    A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ∼E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

  2. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  3. GaAs Led based NIEL spectrometer for the space radiation environment

    International Nuclear Information System (INIS)

    Houdayer, A.J.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.

    1999-01-01

    A NIEL (non-ionizing-energy-loss) spectrometer for the Mir space station is described. The NIEL spectrometer package contained 20 GaAs LEDs, 10 SiC LEDs and 13 locations for TLD-700s. In order to probe different energy regions of the radiation field, the package is divided into 4 compartments covered by absorbers of varying thicknesses. This device has been submitted to proton irradiation. The effects on both the response time and the intensity of the light were measured as a function of the fluence. One of the advantages of LEDs as radiation monitors is their sensitivity and it is shown that it would be possible to detect a fluence of 4*10 7 p/cm 2 of 10 MeV protons, with sensitivity scaled as 1/E for other energies. (A.C.)

  4. Further development of a cosmic veto gamma-spectrometer

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.; McLarty, J.L.

    2013-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories that perform high-resolution gamma-spectrometry on global air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of measurements for treaty compliance. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer. This provides a mean background reduction of 75.2 % with MDA improvements of 45.6 %. The CTBT requirement for a 140 Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system does not require dedicated coincidence electronics, and remains easily configurable with dual acquisition of unsuppressed and suppressed spectra. Performance has been significantly improved by complete processing of the cosmic-ray spectrum (0-25 MeV) combined with the Canberra Lynx TM multi-channel analyser. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident. (author)

  5. Interfacing of home-made photoacoustic spectrometer to computer

    International Nuclear Information System (INIS)

    Dhobale, A.R.; Chaturvedi, T.P.; Venkiteswaran, S.; Sastry, M.D.

    1996-01-01

    This report describes the interfacing of Photo Acoustic Spectrometer (PAS) fabricated in-house to a personal computer. This work was carried out to make a state of the art computer based spectrometer with provision for automatic background correction and also which gives hard copy of the spectrum. This report includes the development of software necessary to acquire data and for further processing of the signal. The monochromator used was modified for obtaining a +5 V pulse for each wavelength position. This pulse was further used for controlling the data acquisition and automatic increment of wavelength. Software program was developed in Quick Basic ver. 4.5 environment for acquisition, storage, display and analysis of the spectrum. The program displays on-line spectrum building up on the monitor. Another program converts the acquired spectrum into a normalized spectrum comparing with carbon spectrum stored already in addition to the S/N ratio improvement. The photo acoustic cell and chopper unit were also modified for improving the performance of the PAS unit. (author). 11 refs., 13 figs., 2 tabs

  6. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  7. Validation Tools for ATLAS Muon Spectrometer Commissioning

    International Nuclear Information System (INIS)

    Benekos, N.Chr.; Dedes, G.; Laporte, J.F.; Nicolaidou, R.; Ouraou, A.

    2008-01-01

    The ATLAS Muon Spectrometer (MS), currently being installed at CERN, is designed to measure final state muons of 14 TeV proton-proton interactions at the Large Hadron Collider (LHC) with a good momentum resolution of 2-3% at 10-100 GeV/c and 10% at 1 TeV, taking into account the high level background enviroment, the inhomogeneous magnetic field, and the large size of the apparatus (24 m diameter by 44 m length). The MS layout of the ATLAS detector is made of a large toroidal magnet, arrays of high-pressure drift tubes for precise tracking and dedicated fast detectors for the first-level trigger, and is organized in eight Large and eight Small sectors. All the detectors of the barrel toroid have been installed and the commissioning has started with cosmic rays. In order to validate the MS performance using cosmic events, a Muon Commissioning Validation package has been developed and its results are presented in this paper. Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern

  8. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    Science.gov (United States)

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  9. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  10. Angle-resolving time-of-flight electron spectrometer for near-threshold precision measurements of differential cross sections of electron-impact excitation of atoms and molecules

    International Nuclear Information System (INIS)

    Lange, M.; Matsumoto, J.; Setiawan, A.; Panajotovic, R.; Harrison, J.; Lower, J. C. A.; Newman, D. S.; Mondal, S.; Buckman, S. J.

    2008-01-01

    This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer

  11. The aerogel Ring Imaging Cherenkov system at the Belle II spectrometer

    Science.gov (United States)

    Pestotnik, R.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    In the forward end-cap of the Belle II spectrometer, a proximity focusing Ring Imaging Cherenkov counter with an aerogel radiator will be installed. The detector will occupy a limited space inside solenoid magnet with longitudinal field of 1.5 T. It will consist of a double layer aerogel radiator, an expansion volume and a photon detector. 420 Hamamatsu hybrid avalanche photo sensors with 144 channels each will be used to read out single Cherenkov photons with high efficiency. More than 60,000 analog signals will be digitized and processed in the front end electronics and send to the unified experiment data acquisition system. The detector components have been successfully produced and are now being installed in the spectrometer. Tested before on the bench, they are currently being installed in the mechanical frame. Part of the detector have been commissioned and connected to the acquisition system to register the cosmic ray particles. The first preliminary results are in accordance with previous expectations. We expect an excellent performance of the device which will allow at least a 4σ separation of pions from kaons in the experiment kinematic region from 0.5 GeV/c to 4 GeV/c.

  12. UARS Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AL V009 (UARCL3AL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of temperature...

  13. A Superconducting Tunnel Junction X-ray Spectrometer without Liquid Cryogens

    International Nuclear Information System (INIS)

    Friedrich, S.; Hertrich, T.; Drury, O.B.; Cherepy, N.J.; Hohne, J.

    2008-01-01

    Superconducting tunnel junctions (STJs) are being developed as X-ray detectors because they combine the high energy resolution of cryogenic detector technologies with the high count rate capabilities of athermal devices. We have built STJ spectrometers for chemical analysis of dilute samples by high-resolution soft X-ray spectroscopy at the synchrotron. The instruments use 36 pixels of 200 (micro)m x 200 (micro)m Nb-Al-AlOx-Al-Nb STJs with 165 nm thick Nb absorber films. They have achieved an energy resolution of ∼10-20 eV FWHM for X-ray energies below 1 keV, and can be operated at a total count rate of ∼10 6 counts/s. For increased user-friendliness, we have built a liquid-cryogen-free refrigerator based on a two-stage pulse tube cryocooler in combination with a two-stage adiabatic demagnetization stage. It holds the STJ detector at the end of a 40-cm-long cold finger, and attains the required operating temperature of ∼0.3 K at the push of a button. We describe the instrument performance and present speciation measurements on Eu dopant activators in the novel scintillator material SrI 2 to illustrate the potential for STJ spectrometers at the synchrotron

  14. Lessons learned with the SAGE spectrometer

    International Nuclear Information System (INIS)

    Sorri, J; Greenlees, P T; Jones, P; Julin, R; Konki, J; Pakarinen, J; Rahkila, P; Sandzelius, M; Uusitalo, J; Papadakis, P; Cox, D M; Herzberg, R D

    2012-01-01

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper. (paper)

  15. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 MeV

  16. Evidence for solar flare directivity from the Gamma-Ray Spectrometer aboard the SMM satellite

    Science.gov (United States)

    Vestrand, W. T.; Forrest, D. J.; Chupp, E. L.; Rieger, E.; Share, G. H.

    1986-01-01

    A number of observations from the SMM Gamma-Ray Spectrometer are presented that altogether strongly indicate that the high-energy emission from flares is anisotropic. They are: (1) the fraction of events detected at energies above 300 keV near the limb is significantly higher than is expected for isotropically emitting flares; (2) there is a statistically significant center-to-limb variation in the 300-1000-keV spectra of flares; and (3) nearly all of the events detected at above 10 MeV are located near the limb.

  17. UARS Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AT V009 (UARCL3AT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Limb Array Etalon Spectrometer (CLAES) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of temperature...

  18. Search for Bound $\\overline{N}N$ States Using a Precision Gamma and Charged Pion Spectrometer at LEAR

    CERN Multimedia

    2002-01-01

    This experiment uses a magnetic spectrometer to search for monoenergetic @g and @p@+ transitions between bound N&bar.N states. The spectrometer is instrumented with drift chambers (NDC, RDC and PDC), proportional wire chambers (A-E), and various thin scintillation counters (S,M,G,AH,V,Q,D,E and PH) f purposes, as shown in the accompanying drawing.\\\\ \\\\ Gamma-rays produced in the LH^2 target are materialized by a 10\\% converter located in the B chamber with an acceptance (@D@W/4@p) of @=2-6x10|-|3 (100-400 MeV) and 6x10|-|3 ($>$400 MeV). Trajectories of bent electron-positron pairs and @p@+ are measured in the A-E~chambers. Trajectories of less frequent high energy penetrating tracks, as well as the remaining associated charged annihilation products exiting the target, are measured in the drift chamber system. \\\\ \\\\ The resultant energy resolution (@DE/E) is better than 1,5\\% R.M.S. over the full range of energies studied. To illustrate the sensitivity of this experiment, a @g line at 300 MeV produced at t...

  19. Development and testing of a double-focusing, static, axisymmetric mass spectrometer

    International Nuclear Information System (INIS)

    Ritter, G.

    1979-04-01

    The developed mass spectrometer affords very high acceptance (cm 2 sr) compared with conventional mass spectrometers owing to its large solid angle of 0.178 sr. The ion optical properties of the instrument were tested by bombarding various targets (Al, Ni, Ti, Cu, Si) with potassium or caesium ions from a thermionic ion source with energies of 1, 2 and 3 keV and recording mass spectra of positive and negative sputtered ions. The ion optical beam path was calculated analytically (magnet system) in part and numerically in part (energy analyzer, einzel lenses and detector system) and represented in graph form. The results obtained from the mass spectra showed that the magnet system with its twelve permanent magnets is too irregular to produce mass linses with good resolution. Furthermore, it was found that the maximum primary energy of the alkali ions that was possible in this mass spectrometer owing to the breakdown strength was not sufficient to record surface-specific mass spectra since the target surface was covered within a very short time with an at least monatomic layer of alkali ions from the thermionic ion source. (orig./HP) [de

  20. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  1. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  2. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  3. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, H. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tadevosyan, V., E-mail: tadevosn@jlab.org [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Arrington, J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Asaturyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Christy, M.E. [Hampton University, Hampton, VA 23668 (United States); Dutta, D. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Ent, R.; Fenker, H.C.; Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Horn, T. [Catholic University of America, Washington, DC 20064 (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Keppel, C.E. [Hampton University, Hampton, VA 23668 (United States); Mack, D.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Malace, S.P. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Mkrtchyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Niculescu, M.I. [James Madison University, Harrisonburg, VA 22807 (United States); Seely, J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Tvaskis, V. [Hampton University, Hampton, VA 23668 (United States); Wood, S.A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); and others

    2013-08-11

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than σ/E∼6%/√(E) and pion/electron (π/e) separation of about 100:1 has been achieved in the energy range of 1–5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined π{sup −} suppression factors by close to a factor of two. For the Super High Momentum Spectrometer (SHMS), presently under construction, details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter. -- Highlights: • Construction and performance of lead glass calorimeters in JLab/Hall C are presented. • ∼5%/√(E) resolution, ∼100:1π/e separation is achieved in HMS calorimeter in GeV range. • Simulated resolution of the HMS calorimeter is in good agreement with experiment. • Simulated pion suppression of the HMS calorimeter exceeds experiment, by less than 2. • Pion suppression of ∼400:1 is predicted in projected SHMS calorimeter by simulations.

  4. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  5. Determination of molecular ionization cross sections in an ICR spectrometer

    International Nuclear Information System (INIS)

    Takashima, K.; Riveros, J.M.

    1976-01-01

    Ionization cross sections have been determined for simple gases at 75eV in an ICR spectrometer. Results obtained using a calibrated ion gauge as a pressure indicator yield values which are consistently higher than accepted values by as much as 15%. These results suggest that a more convenient way to measure pressure in ICR experiments might be to record the total ion current and to use the tabulated ionization cross sections where available [pt

  6. Commissioning of the magnetic field in the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Arnaud, M.; Bardoux, J.; Bergsma, F.; Bobbink, G.; Bruni, A.; Chevalier, L.; Ennes, P.; Fleischmann, P.; Fontaine, M.; Formica, A.; Gautard, V.; Groenstege, H.; Guyot, C.; Hart, R.; Kozanecki, W.; Iengo, P.; Legendre, M.; Nikitina, T.; Perepelkin, E.; Ponsot, P.

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to ∼1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations

  7. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  8. Crystal-diffraction spectrometer of increased efficiency

    International Nuclear Information System (INIS)

    Saukov, A.I.; Gornitsyn, G.A.; Morozov, N.A.

    1985-01-01

    The geometry of the spectrometer is illustrated in this paper. An attempt is made to achieve optimal design of the spectrometer by finding the coefficient of reflection of the gamma radiation from the various Ge planes. In these experiments, the Du Mond design was used in the spectrometer. Illustrations are provided to explain dependence of the relative efficiency upon the energy of the gamma quanta

  9. A remarkable systemic error in calibration methods of γ spectrometer used for determining activity of 238U

    International Nuclear Information System (INIS)

    Su Qiong; Cheng Jianping; Diao Lijun; Li Guiqun

    2006-01-01

    A remarkable systemic error which was unknown in past long time has been indicated. The error appears in the calibration methods of determining activity of 238 U is used with γ-spectrometer with high resolution. When the γ-ray of 92.6 keV as the characteristic radiation from 238 U is used to determine the activity of 238 U in natural environment samples, the disturbing radiation produced by external excitation (or called outer sourcing X-ray radiation) is the main problem. Because the X-ray intensity is changed with many indefinite factors, it is advised that the calibration methods should be put away. As the influence of the systemic errors has been left in some past research papers, the authors suggest that the data from those papers should be cited carefully and if possible the data ought to be re-determined. (authors)

  10. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  11. MEMS based digital transform spectrometers

    Science.gov (United States)

    Geller, Yariv; Ramani, Mouli

    2005-09-01

    Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.

  12. Study of the functional characteristics of a NaI(Tl) scintillator gamma spectrometer

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1983-01-01

    Functional characteristics (resolution, stability, linearity, counting efficiency) of a NaI(Tl) scintillator gamma spectrometer were studied. Diagrams were plotted and several standard sources ( 241 Am, 109 Cd, 57 Co, 137 Cs, 54 Mn, 22 Na) with gamma energies ranging from 60 to 1275 KeV were used. (C.L.B.) [pt

  13. A novel approach for predicting the response of the spectrometer for INTEGRAL satellite.

    Science.gov (United States)

    Kshetri, R

    2013-05-01

    A basic phenomenological approach has been presented in three recent papers (Kshetri R., 2012. JINST 7, P04008; Kshetri R., 2012. JINST 7, P07006; Kshetri R., 2012. JINST 7, P12007) for understanding the operation of encapsulated type composite detectors including the SPI spectrometer. In the present paper, we have considered the fact that the experimental two-fold events between two detectors include the three and higher fold events between the same two detectors. The formalism has been further developed and the peak-to-total ratio of a general composite detector are predicted for energy region with no direct experimental information about them. At 8MeV, the peak-to-total ratio for the SPI spectrometer and a very large detector (comprising of infinite number of single HPGe modules) are found to be 9% and 12%, respectively. The predictions for fold distribution of the SPI spectrometer are found to be in agreement with experimental data. Our formulation does not include ad-hoc fits, but expressions that are justifiable by probability flow arguments. Instead of using an empirical method or simulation, we present a novel approach for calculating the peak-to-total ratio of the SPI spectrometer for high gamma energies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    Science.gov (United States)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  15. Spectra of the linear energy transfer measured with a track etch spectrometer in the beam of 1 GeV protons and the contribution of secondary charged particles to the dose

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Bamblevskij, V.P.; Timoshenko, G.N.

    1999-01-01

    A spectrometer of the linear energy transfer (LET) on the base of CR-39 detector was used to establish the spectra of LET in the beam of protons with the primary energy of 1 GeV. It was found out that the LET spectra of secondary charged particles between 100 and 7000 MeV cm 2 g -1 do not depend on the radiator. The average quality factors for the LET region mentioned were obtained about 11.6 with ICRP 26 quality factors and about 14.0 with ICRP 60 quality factors. The spectra obtained permitted to calculate the contributions of these secondary charged particles to the dosimetric quantities. It was observed that these contributions were about 7.0% for the total absorbed dose of protons and close 90% in the case of the equivalent doses. It is more than it was found out for few hundred MeV protons

  16. USSR Report, Consumer Goods and Domestic Trade, No. 66.

    Science.gov (United States)

    1983-06-10

    each production manager toward the daily concerns of the Soviet people is being tested. 7807 CSO: 1827/209 CONSUMER GOODS PRODUCTION AND...of them, po- tential buyers : it is a question of sums of millions, if not billions in savings of the working people . Their offers are not a...iü>>. *•■> JPRS 83652 10 June 19 83 USSR Report CONSUMER GOODS AND DOMESTIC TRADE No. 66 f~DisTräfünoiTsT* TEMäärTT"" Arrr-a

  17. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  18. Assessment of an on-line CI-mass spectrometer as a continuous emission monitor for sewage sludge incinerators

    International Nuclear Information System (INIS)

    Campbell, K.R.; Hallett, D.J.; Resch, R.J.; Villinger, J.; Federer, V.

    1991-01-01

    ELI Eco Technologies Inc. tested two sewage sludge incinerators using regulator methods and a V and F CIMS-500 chemical ionization mass spectrometer. Correlations between dioxins and dibenzofurans from the regulatory MM5 trains and the continuous readings form the CIMS-500 for chlorobenzenes and chlorophenols were noted. As well, correlations between chlorinated organics and other volatile organics were obvious under poor combustion conditions. ELI Eco Technologies Inc. recently completed an extensive survey of organic chemical emissions including VOCs, chlorobenzenes, chlorophenols, chlorinated dioxins and dibenzofurans from two sewage sludge incinerators. The program was funded by the Municipality of Metro Toronto, Environment Ontario, and Environment Canada. Contaminants were measured by regulatory methods (ASME Modified Method 5) and simultaneously with the continuous mass spectrometer. The purpose of the study was to provide regulatory testing and at the same time evaluate the usefulness of the CIMS-500 mass spectrometer in assessing emissions. This paper describes the evaluation of the usefulness of this mass spectrometer

  19. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  20. Calibration and modelling of the SODART-OXS Bragg spectrometer onboard the SRG satellite

    DEFF Research Database (Denmark)

    Halm, Ingolf; Wiebicke, Hans-Joachim; Christensen, Finn Erland

    1998-01-01

    The SODART X-ray telescope includes an Objective Crystal Spectrometer (OXS) providing a high energy resolving power by Bragg reflection upon crystals. To cover a wide energy range, 3 types of natural crystals (LiF, Si, RAP) and a Co/C multilayer structure upon Si are used in the ranges 5-11 keV, ...

  1. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons; Produccion de {sup 62} Cu y {sup 64} Cu con deuterones de 4,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Mario; Morales, J R; Riquelme, H O [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, {beta}{sup +}) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 {+-} 0,1 MeV energy has been obtained total yields of 1,103 {+-} 0,011 {mu}Cl/{mu}Ah medium for 62 Cu and of 0,148 {+-} 0,015 {mu}Cl/{mu}Ah for 64 Cu.

  2. Shape resonances and the excitation of helium autoionising states by electrons in the 57-66 eV region

    International Nuclear Information System (INIS)

    Burgt, P.J.M. van der; Eck, J. van; Heideman, H.G.M.

    1986-01-01

    Optical excitation functions of singly excited helium states are presented, measured by detecting the yield of emitted photons as a function of the incident electron energy from 56 to 66 eV. Many structures are observed, which are caused by negative-ion resonances and by the decay of autoionising states followed by post-collision interaction. Some of the structures are interpreted as being caused by hitherto unknown shape resonances lying very close to the thresholds of a particular class of autoionising states. As these shape resonances almost exclusively decay to their respective parent (autoionising) states, thereby considerably enhancing the threshold excitation cross sections of these states, they can only be observed via the PCI effect on the excitation functions of (higher lying) singly excited states. Using the recently introduced supermultiplet classification for doubly excited states a selection rule for the near-threshold excitation of doubly excited states by electron impact is deduced from the measurements. Only states with large probabilities in the Wannier region of configuration space (where the two electrons are at nearly equal distances and on opposite sides of the nucleus) are strongly excited. It is pointed out that these states are precisely the states that can support the above mentioned shape resonances at their thresholds. (author)

  3. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    CERN Document Server

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  4. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-01-01

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of 7 Li, 16 O, 32 S and 35 Cl to study the mass region of interest for its application to measurements fusion cross sections in the 6,7 Li+ 27 Al systems at energies around and above the Coulomb barrier (0.8V B ≤E≤2.0V B ). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  5. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  6. 22 CFR 42.66 - Medical examination.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Medical examination. 42.66 Section 42.66... NATIONALITY ACT, AS AMENDED Application for Immigrant Visas § 42.66 Medical examination. (a) Medical examination required of all applicants. Before the issuance of an immigrant visa, the consular officer shall...

  7. 10 CFR 1040.66 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Discrimination prohibited. 1040.66 Section 1040.66 Energy... Practices § 1040.66 Discrimination prohibited. (a) General. (1) No qualified handicapped person shall, on the basis of handicap, be subjected to discrimination employment under any program or activity to...

  8. 28 CFR 66.41 - Financial reporting.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Financial reporting. 66.41 Section 66.41..., Retention, and Enforcement § 66.41 Financial reporting. (a) General. (1) Except as provided in paragraphs (a..., for: (i) Submitting financial reports to Federal agencies, or (ii) Requesting advances or...

  9. Study of TGEs and Gamma-Flashes from thunderstorms in 20-3000 keV energy range with SINP MSU Gamma-Ray spectrometers

    International Nuclear Information System (INIS)

    Bogomolov, V.V.; Svertilov, S.I.; Maximov, I.A.; Panasyuk, M.I.; Garipov, G.K.

    2016-01-01

    SINP MSU provided a number of experiments with scintillator gamma-spectrometers for study of spectral, temporal and spatial characteristics of TGEs as well as for search of fast hard x-ray and gamma-ray flashes probably appearing at the moment of lightning. The measurements were done in Moscow region and in Armenia at Aragats Mountain. Each instrument used in this work was able to record data in so called “event mode”: the time of each interaction was recorded with ∼15 mcs accuracy together with detailed spectral data. Such design allowed one to look for fast sequences of gamma-quanta, coming at the moments of discharges during thunderstorms. The pulse-shape analysis made by detector electronics was used to separate real gammaray events and possible imitations of flashes by electrical disturbances when discharges occur. During the time period from spring to autumn of 2015 a number of TGEs were detected. Spectral analysis of received data showed that the energy spectrum of coming radiation in 20-3000 kev range demonstrate a set of gamma-ray lines that can be interpreted as radiation from Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm as well as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate in low energies (<2.6MeV) and must be taken into account in the experiments performed to measure low energy gamma-radiation from the electrons accelerated in thunderclouds. In order to determine the direction from which the additional gamma-quanta come the experiment with collimated gamma-spectrometer placed on rotated platform was done. The results of this experiment realized in Moscow region from august, 2015 will be presented as well as the results of comparison of different TGEs measured in Moscow region and in Armenia. (author)

  10. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  11. The monochromatic imaging mode of a RITA-type neutron spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Andersen, P.; Klausen, S.N.; Lefmann, K.

    2004-01-01

    The imaging monochromatic mode of a neutron spectrometer with a multi-bladed RITA analyser system is so far unexplored. We present analytical calculations that define the mode. It is shown that the mode can be realised for PG (0 0 2) analyser crystals, from incident energies of about 3.2 meV and up, allowing the important cases of 3.7, 5.0 and 13.7 meV. Due to beam divergence, the neutron rays from neighbouring analyser blades are found to overlap slightly. Hence, the optimal use of the monochromatic imaging mode would be found by employing an adjustable radial collimator to limit the spread of the ray from each analyser blade

  12. The monochromatic imaging mode of a RITA-type neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Andersen, P. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Klausen, S.N. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2004-12-01

    The imaging monochromatic mode of a neutron spectrometer with a multi-bladed RITA analyser system is so far unexplored. We present analytical calculations that define the mode. It is shown that the mode can be realised for PG (0 0 2) analyser crystals, from incident energies of about 3.2 meV and up, allowing the important cases of 3.7, 5.0 and 13.7 meV. Due to beam divergence, the neutron rays from neighbouring analyser blades are found to overlap slightly. Hence, the optimal use of the monochromatic imaging mode would be found by employing an adjustable radial collimator to limit the spread of the ray from each analyser blade.

  13. 7 CFR 3550.66 - Interest rate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Interest rate. 3550.66 Section 3550.66 Agriculture... DIRECT SINGLE FAMILY HOUSING LOANS AND GRANTS Section 502 Origination § 3550.66 Interest rate. Loans will be written using the applicable RHS interest rate in effect at loan approval or loan closing...

  14. The MEDUSA electron and ion spectrometer and the PIA ultraviolet photometers on Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    2001-06-01

    Full Text Available The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques – Magnetospheric physics (auroral phenomena; instruments and techniques

  15. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  16. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  17. Photon-ion spectrometer PIPE at the Variable Polarization XUV Beamline of PETRA III

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Hellhund, J; Müller, A; Klumpp, S; Martins, M; Flesch, R; Rühl, E; Lower, J; Jahnke, T; Metz, D; Schmidt, L Ph H; Dörner, R; Ullrich, J; Wolf, A

    2012-01-01

    The photon-ion spectrometer PIPE is currently being installed as a permanent end station at beamline P04 of the PETRA III synchrotron radiation source. Various state-of-the-art experimental techniques will be available for studies of gaseous matter with circularly and linearly polarized synchrotron radiation with photon energies in range the 100–3000 eV.

  18. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  19. 28 CFR 66.25 - Program income.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Program income. 66.25 Section 66.25... Administration § 66.25 Program income. (a) General. Grantees are encouraged to earn income to defray program costs. Program income includes income from fees for services performed, from the use or rental of real...

  20. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  1. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  2. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  3. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    Science.gov (United States)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  4. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  5. Associated Λ/Σ0 electroproduction with the Kaos spectrometer at MAMI

    Directory of Open Access Journals (Sweden)

    Achenbach P.

    2010-04-01

    Full Text Available An instrument of central importance for the strangeness photo- and electroproduction at the 1.5 GeV ¨ electron beam of the MAMI accelerator at the Institut fur Kernphysik in Mainz, Germany, is the newly installed magnetic spectrometer KAOS that is operated by the A1 collaboration in (e, e′ K reactions on the proton or light nuclei. Its compact design and its capability to detect negative and positive charged particles simultaneously complements the existing spectrometers. The strangeness program performed with Kaos in 2008–9 is addressing some important issues in the field of elementary kaon photo- and electroproduction reactions. Although recent measurements have been performed at Jefferson Lab, there are still a number of open problems in the interpretation of the data and the description of the elementary process using phenomenological models. With the identification of Λ and Σ0 hyperons in the missing mass spectra from kaon production off a liquid hydrogen target it is demonstrated that the extended facility at MAMI is capable to perform strangeness electroproduction spectroscopy at low momentum transfers Q2 < 0.5 (GeV/c2 . The covered kinematics and systematic uncertainties in the cross-section extraction from the data are discussed.

  6. Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

    Directory of Open Access Journals (Sweden)

    Qingbo Fu

    2012-01-01

    Full Text Available A multichannel short-wave near-infrared (SW-NIR spectrometer module based on charge-coupled device (CCD detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp. in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C. And an 2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

  7. The design of the Spectrometer Ring at the HIAF

    Science.gov (United States)

    Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.

    2018-02-01

    The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.

  8. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  9. The use of vanadium as a scattering standard for pulsed source neutron spectrometers

    International Nuclear Information System (INIS)

    Mayers, J.

    1983-06-01

    The Gaussian approximation for multiphonon cross-sections has been used in a calculation of the variation of vanadium cross-sections with incident neutron energy. The results show that vanadium behaves as an elastic scatterer to within a few percent on pulsed neutron spectrometers with incident neutron energies up to 1 eV. There is a calculated anisotropy in the scattering of 8%. It is found that the scattering properties of vanadium at 77K and 293K differ by a maximum of 1% except for neutron energies < 15 meV. (author)

  10. Insulation model of power lead for 66 kV class superconducting fault current limiter; Chodendo genryuki denryu rido yo zetsuen no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, M.; Fukuda, A.; Shimada, M.; Urata, M. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co. Ink., Tokyo (Japan)

    1999-06-07

    We advance the development of high-temperature superconductivity current limiter using the normal conduction transition. Since the rated voltage is high with 66kV, we desire that solid insulation which consists of main insulating layer and multiple layers in semiconductive layer is conducted to the current lead which connects the ordinary temperature and very low temperature division. And, it is necessary to sufficiently decrease the void, since crack proof and dielectric strength lower, when large bubble exists in the main insulating layer. We use ethylene propylene rubber for the solid insulation of superconducting cable. Though filler has entered the EP-rubber, the formability lowers, when we put filler in, and the void becomes easy to be generated. Then, we produced the current lead insulation model using the EP-rubber without filler, and we carried out crack-resistant test and withstand voltage test. (NEDO)

  11. Sputtering measurements on JET using a multichannel visible spectrometer

    International Nuclear Information System (INIS)

    Stamp, M.F.; Morgan, P.D.; Summers, H.P.

    1989-01-01

    A multichannel visible spectrometer has been used on JET to simultaneously observe the emission from D, H, C and O atoms and ions in the proximity of a belt limiter. The absolute intensity of the line emission, along with a Langmuir probe measurement of the edge electron temperature and an atomic physics model, allows us to calculate the influxes of these species. Under steady-state conditions the influxes of D and He are the same as the effluxes, so the ratio of impurity to fuel fluxes, e.g. carbon to deuterium, is the apparent sputtering yield of deuterium on carbon in the tokamak environment. The measured flux ratio Γ c /Γ D is also indicative of the central carbon impurity concentration in JET, because the limiters are the main source of impurities. For similar particle transport, Γ c /Γ D =n c (o)/n D (o), so for a 10% flux ratio, n c /n e =6.6%, Z eff =3. (author) 7 refs., 5 figs

  12. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  13. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  14. The XRF spectrometer and the selection of analysis conditions (instrumental variables)

    International Nuclear Information System (INIS)

    Willis, J.P.

    2002-01-01

    Full text: This presentation will begin with a brief discussion of EDXRF and flat- and curved-crystal WDXRF spectrometers, contrasting the major differences between the three types. The remainder of the presentation will contain a detailed overview of the choice and settings of the many instrumental variables contained in a modern WDXRF spectrometer, and will discuss critically the choices facing the analyst in setting up a WDXRF spectrometer for different elements and applications. In particular it will discuss the choice of tube target (when a choice is possible), the kV and mA settings, tube filters, collimator masks, collimators, analyzing crystals, secondary collimators, detectors, pulse height selection, X-ray path medium (air, nitrogen, vacuum or helium), counting times for peak and background positions and their effect on counting statistics and lower limit of detection (LLD). The use of Figure of Merit (FOM) calculations to objectively choose the best combination of instrumental variables also will be discussed. This presentation will be followed by a shorter session on a subsequent day entitled - A Selection of XRF Conditions - Practical Session, where participants will be given the opportunity to discuss in groups the selection of the best instrumental variables for three very diverse applications. Copyright (2002) Australian X-ray Analytical Association Inc

  15. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  16. 40 CFR 66.61 - Duty to pay.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Duty to pay. 66.61 Section 66.61... COLLECTION OF NONCOMPLIANCE PENALTIES BY EPA Payment § 66.61 Duty to pay. (a) Except where the owner or... who submits a petition pursuant to § 66.52 shall pay the penalty amount calculated by the owner or...

  17. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-01-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6 Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the (n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6 Li-glass neutron detector and γ detector configurations

  18. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.

  19. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A. E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH{sub 2} samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing {sup 6}Li-glass neutron detectors and NaI {gamma} detectors revealing the {gamma}-ray cascade from the (n,{gamma}) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both {sup 6}Li-glass neutron detector and {gamma} detector configurations.

  20. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  1. Synthesis of the Novel 4,4’- and 6,6’- Dihydroxamic - 2,2’-Bipyridines and Improved Routes to 4,4’- and 6,6’- Substituted 2,2’-Bipyridines and Mono-N-Oxide-2,2’-Bipyridine

    OpenAIRE

    Donnici,Claudio Luis; Máximo Filho,Daniel Henrique; Moreira,Leda Lúcia Cruz; Reis,Genuína Teixeira dos; Cordeiro,Estefania Santos; Oliveira,Ione Ma. Ferreira de; Carvalho,Sandra; Paniago,Eucler B.

    1998-01-01

    The preparation of key precursors for many 2,2’-bipyridine derivatives such as 4,4’-dicarboxy- 2,2’-bipyridine (I), 6,6’-dicarboxy-2,2’-bipyridine- acid (II), 4,4’-dinitro-2,2’-bipyridine-N,N-dioxide (III), 6,6’-dicarbothioamide-2,2’-bipyridine (IV) and mono-N-oxide-2,2’-bipyridine (VII) through more efficient methods is described. The syntheses of the novel ligands 4,4’-dihydroxamic-2,2’-bipyridine (V) and 6,6’-dihydroxamic-2,2’-bipyridine (VI) are also reported. Neste trabalho relatamos ...

  2. Development of a BaF2 scintillation spectrometer for evaluation of photon energy spectra in workplaces around nuclear facilities

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Yoshimoto, Taka-aki; Kobayashi, Katsuhei; Akiyoshi, Tsunekazu; Tsujimoto, Tadashi; Nakashima, Yoshiyuki; Oda, Keiji.

    1997-01-01

    A BaF 2 scintillation spectrometer has been constructed for the determination of photon energy spectra in workplaces around nuclear facilities. Energy absorption spectra by the BaF 2 detector were calculated with the EGS4 Monte Carlo code in the energy region from 0.1 to 100 MeV and a response matrix of the spectrometer was obtained from the energy absorption spectra, of which the energy resolutions were modified to fit to the experimental results. With the irradiation experiments using neutron-capture gamma rays and those from radioactive sources, it became clear that photon energy spectra can be evaluated within an error of about 10% in the energy region 0.1 MeV to a few tens of megaelectronvolts. (author)

  3. 28 CFR 66.34 - Copyrights.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Copyrights. 66.34 Section 66.34 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND COOPERATIVE... reproduce, publish or otherwise use, and to authorize others to use, for Federal Government purposes: (a...

  4. The 200 MeV cyclotron facility

    International Nuclear Information System (INIS)

    1987-01-01

    Beams of protons with several different energies have now been successfully transported between the injector cyclotron SPC1 and the SSC. Some small modifications to the placement of steering magnets and diagnostic equipment have been made in the light of our operational experience, which should improve the ease of tuning this beamline. Proton beams up to 200 MeV in energy have been transported to the experimental areas, where experiments in nuclear physics have been successful conducted. Three of the experimental beamlines are now in operation. Beams of 66 MeV protons have also been transported to targets in the isotope production vault, without difficulty. Field mapping of the remaining quadrupoles on site has been completed. Installation of and alignment of magnets up to the beam swinger is also complete, although the beam tube itself, plus vacuum and diagnostic equipment must still be tackled. The beam swinger has been designed and detailed in the drawing office, and is now being manufactured locally. The beamline elements for the sepctrometer beamline remain to be purchased. A personal computer has been purchased for controlling the field-mapping equipment for the spectrometer magnets, which are being manufactured in this country. A number of computer programs have been written for conversion of calibrated quadrupole and dipole magnet field data to absolute current values for the control system. Other programs permit diagnostic measurements of beam profiles to be used to calculated the beam emittance, or to set steering magnets so that the beam is correctly aligned

  5. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  6. Correction factors for {gamma}-ray relative intensities in the {sup 66}Ga radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G.J. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Chasteler, R.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Laymon, C.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Weller, H.R. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Drake, J.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Tilley, D.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Vavrina, G. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Wallace, P.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States)

    1996-09-16

    We present here strong evidence that recently published values for the relative intensities of {gamma}-ray lines in the {sup 66}Ga({beta}{sup +}+EC){sup 66}Zn decay are incorrect at the higher energies ({proportional_to}30% too low at 4.8 MeV). In particular, we find that our current results are consistent with a set of correction factors which were first suggested 20 years ago, but have gone largely ignored until now. Our validation of these little known correction factors will have bearing on experiments which use the {sup 66}Ga radioisotope to extrapolate absolute detector efficiencies to higher energies. In particular, we discuss the conclusions of a recent D(p, {gamma}){sup 3}He experiment which will be strongly affected by our current results. The astrophysical S-factor data derived from this D(p, {gamma}){sup 3}He experiment are now seen to be systematically too low by {proportional_to}30%. (orig.).

  7. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  8. 7 CFR 956.66 - Safeguards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 956.66 Section 956.66 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Onions shipped, pursuant to §§ 956.63 and 956.64, from entering channels of trade for other than the...

  9. Two wide-angle imaging neutral-atom spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  10. Two wide-angle imaging neutral-atom spectrometers

    International Nuclear Information System (INIS)

    McComas, D.J.

    1997-01-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , ∼ 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ''Sun-Earth Connections'' science theme of the NASA Office of Space Science

  11. A new/old type of neutron spectrometer

    International Nuclear Information System (INIS)

    Vylet, V.; Fasso, A.; Luckau, N.

    1998-01-01

    The proposed portable spectrometer is a large sphere made of a plastic scintillator loaded with boron, possibly enriched with boron 10. The sphere is divided into spherical shells coated with a reflective or opaque material. Each shell is made of two hemispherical shells or smaller segments. Each segment is connected by a light-guide to a photomultiplier or a photodiode. It might be possible to use miniature photomultipliers directly embedded in detector layers. Each shell measures the thermal fluence at a different moderator depth and the set of shell responses can be used to unfold the original neutron spectrum, covering the range of energies from thermal to 20 MeV. (M.D.)

  12. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G.A.P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M.V.; Gentile, A.

    2012-01-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  13. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Amgarou, K.; Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Russo, S.; Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali dei Sud, Via S. Sofia 62, 95125 Catania (Italy); Pelliccioni, M.; Esposito, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Pola, A.; Introini, M.V. [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Gentile, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy)

    2012-07-21

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0 Degree-Sign and 90 Degree-Sign with respect to the beam-line. The ERBSSs of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  14. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  15. Measurements of π±, K±, p and p spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    International Nuclear Information System (INIS)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Podlaski, P.; Posiadala, M.; Walewski, M.; Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.; Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Kovalenko, V.; Merzlaya, A.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L.; Anticic, T.; Kadija, K.; Susa, T.; Baatar, B.; Bunyatov, S.A.; Kireyeu, V.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V.; Baszczyk, M.; Dorosz, P.; Kucewicz, W.; Mik, L.; Bhosale, S.; Davis, N.; Kielbowicz, M.; Marcinek, A.; Ozvenchuk, V.; Rybicki, A.; Blondel, A.; Bravar, A.; Damyanova, A.; Haesler, A.; Korzenev, A.; Ravonel, M.; Bogomilov, M.; Kolev, D.; Tsenov, R.; Brandin, A.; Selyuzhenkov, I.; Strikhanov, M.; Taranenko, A.; Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A.; Cherif, H.; Deveaux, M.; Klochkov, V.; Koziel, M.; Renfordt, R.; Snoch, A.; Stroebele, H.; Toia, A.; Cirkovic, M.; Knezevic, N.; Manic, D.; Puzovic, J.; Czopowicz, T.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Slodkowski, M.; Tefelska, A.; Tefelski, D.; Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.; Dumarchez, J.; Ereditato, A.; Francois, C.; Pistillo, C.; Wilkinson, C.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Hylen, J.; Lundberg, B.; Marchionni, A.; Rameika, R.; Zwaska, R.; Johnson, S.R.; Marino, A.D.; Nagai, Y.; Rumberger, B.T.; Zimmerman, E.D.; Kaptur, E.; Kowalski, S.; Lysakowski, B.; Pulawski, S.; Schmidt, K.; Kowalik, K.; Rondio, E.; Stepaniak, J.; Laszlo, A.; Marton, K.; Vesztergombi, G.; Lewicki, M.; Naskret, M.; Turko, L.; Messerly, B.; Paolone, V.; Wickremasinghe, A.; Mills, G.B.; Morozov, S.; Petukhov, O.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Pavin, M.; Popov, B.A.; Rauch, W.; Roehrich, D.; Rustamov, A.; Zambelli, L.

    2017-01-01

    Measurements of inclusive spectra and mean multiplicities of π ± , K ± , p and p produced in inelastic p + p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (√(s) = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. (orig.)

  16. Multi-spectrometer calibration transfer based on independent component analysis.

    Science.gov (United States)

    Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong

    2018-02-26

    Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.

  17. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  18. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  19. Photoproduction in the Energy Range 70-200 GeV

    CERN Multimedia

    2002-01-01

    This experiment continues the photoproduction studies of WA4 and WA57 up to the higher energies made available by the upgrading of the West Hall. An electron beam of energy 200 GeV is used to produce tagged photons in the range 65-180 GeV; The photon beam is incident on a 60 cm liquid hydrogen target in the Omega Spectrometer. A Ring Image Cherenkov detector provides pion/kaon separation up to 150 GeV/c. The Transition Radiation Detector extends the charged pion identification to the momentum range from about 80 GeV/c upwards. The large lead/liquid scintillator calorimeter built by the WA70 collaboration and the new lead/scintillating fibre det (Plug) are used for the detection of the $\\gamma$ rays produced by the interactions of the primary photons in the hydrogen target. \\\\ \\\\ The aim is to make a survey of photoproduction reactions up to photon energies of 200 GeV. The large aperture of the Omega Spectrometer will particularly enable study of fragmentation of the photon to states of high mass, up to @C 9 G...

  20. Cosmic Ray Deuterium from 0.2 to 3.0 GeV/nucleon

    DEFF Research Database (Denmark)

    Davis, A.J.; Labrador, A.W.; Mewaldt, R.A.

    1996-01-01

    The abundances of cosmic ray protons and deuterium between 0.2 and 3.0 GeV/nucleon were measured by the IMAX balloon--borne magnet spectrometer during a flight in July, 1992. These isotope measurements extend to significantly higher energies than have previously been achieved. A high--resolution ......The abundances of cosmic ray protons and deuterium between 0.2 and 3.0 GeV/nucleon were measured by the IMAX balloon--borne magnet spectrometer during a flight in July, 1992. These isotope measurements extend to significantly higher energies than have previously been achieved. A high...