WorldWideScience

Sample records for ifov instantaneous field

  1. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.

    Science.gov (United States)

    Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott

    2009-05-25

    Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.

  2. MODIS/Terra Geolocation Fields 5-Min L1A Swath 1km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The geolocation fields are calculated for each 1 km MODIS Instantaneous Field of Views (IFOV) for all orbits daily. The locations and ancillary information...

  3. Calibration method of microgrid polarimeters with image interpolation.

    Science.gov (United States)

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  4. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 μm2 cross-section. The flow field is seeded with polystyrene microspheres of size dp = 2.1 μm. The volumetric flow rate is set equal to 20 μl/min.

  5. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters.

    Science.gov (United States)

    Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M

    2009-10-15

    Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.

  6. Field of attention for instantaneous object recognition.

    Directory of Open Access Journals (Sweden)

    Jian-Gao Yao

    Full Text Available BACKGROUND: Instantaneous object discrimination and categorization are fundamental cognitive capacities performed with the guidance of visual attention. Visual attention enables selection of a salient object within a limited area of the visual field; we referred to as "field of attention" (FA. Though there is some evidence concerning the spatial extent of object recognition, the following questions still remain unknown: (a how large is the FA for rapid object categorization, (b how accuracy of attention is distributed over the FA, and (c how fast complex objects can be categorized when presented against backgrounds formed by natural scenes. METHODOLOGY/PRINCIPAL FINDINGS: To answer these questions, we used a visual perceptual task in which subjects were asked to focus their attention on a point while being required to categorize briefly flashed (20 ms photographs of natural scenes by indicating whether or not these contained an animal. By measuring the accuracy of categorization at different eccentricities from the fixation point, we were able to determine the spatial extent and the distribution of accuracy over the FA, as well as the speed of categorizing objects using stimulus onset asynchrony (SOA. Our results revealed that subjects are able to rapidly categorize complex natural images within about 0.1 s without eye movement, and showed that the FA for instantaneous image categorization covers a visual field extending 20° × 24°, and accuracy was highest (>90% at the center of FA and declined with increasing eccentricity. CONCLUSIONS/SIGNIFICANCE: In conclusion, human beings are able to categorize complex natural images at a glance over a large extent of the visual field without eye movement.

  7. A Study on the Instantaneous Turbulent Flow Field in a 90-Degree Elbow Pipe with Circular Section

    Directory of Open Access Journals (Sweden)

    Shiming Wang

    2016-01-01

    Full Text Available Based on the special application of 90-degree elbow pipe in the HTR-PM, the large eddy simulation was selected to calculate the instantaneous flow field in the 90-degree elbow pipe combining with the experimental results. The characteristics of the instantaneous turbulent flow field under the influence of flow separation and secondary flow were studied by analyzing the instantaneous pressure information at specific monitoring points and the instantaneous velocity field on the cross section of the elbow. The pattern and the intensity of the Dean vortex and the small scale eddies change over time and induce the asymmetry of the flow field. The turbulent disturbance upstream and the flow separation near the intrados couple with the vortexes of various scales. Energy is transferred from large scale eddies to small scale eddies and dissipated by the viscous stress in the end.

  8. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  9. The effect of internal and external fields of view on visually induced motion sickness.

    Science.gov (United States)

    Bos, Jelte E; de Vries, Sjoerd C; van Emmerik, Martijn L; Groen, Eric L

    2010-07-01

    Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between iFOV and eFOV would lead to sickness. To that end we used a computer game environment with different iFOV and eFOV settings, and found the opposite effect. We speculate that the relative large differences between iFOV and eFOV used in this experiment caused the discrepancy, as may be explained by assuming an observer model controlling body motion. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  11. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  12. Sources, potentials and fields in Lorenz and Coulomb gauge: Cancellation of instantaneous interactions for moving point charges

    International Nuclear Information System (INIS)

    Wundt, B.J.; Jentschura, U.D.

    2012-01-01

    We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms. - Highlights: ► We investigate action-at-a-distance effects in electrodynamics in detail. ► We calculate the instantaneous interactions for scalar and vector potentials. ► The cancellation mechanism involves the retarded Green function. ► The mechanism is confirmed on the example of moving point charges. ► The Green function has to be treated with care for nontrivial boundary terms.

  13. Sequential least-square reconstruction of instantaneous pressure field around a body from TR-PIV

    Science.gov (United States)

    Jeon, Young Jin; Gomit, G.; Earl, T.; Chatellier, L.; David, L.

    2018-02-01

    A procedure is introduced to obtain an instantaneous pressure field around a wing from time-resolved particle image velocimetry (TR-PIV) and particle image accelerometry (PIA). The instantaneous fields of velocity and material acceleration are provided by the recently introduced multi-frame PIV method, fluid trajectory evaluation based on ensemble-averaged cross-correlation (FTEE). The integration domain is divided into several subdomains in accordance with the local reliability. The near-edge and near-body regions are determined based on the recorded image of the wing. The instantaneous wake region is assigned by a combination of a self-defined criterion and binary morphological processes. The pressure is reconstructed from a minimization process of the difference between measured and reconstructed pressure gradients in a least-square sense. This is solved sequentially according to a decreasing order of reliability of each subdomain to prevent a propagation of error from the less reliable near-body region to the free-stream. The present procedure is numerically assessed by synthetically generated 2D particle images based on a numerical simulation. Volumetric pressure fields are then evaluated from tomographic TR-PIV of a flow around a 30-degree-inclined NACA0015 airfoil. A possibility of using a different scheme to evaluate material acceleration for a specific subdomain is presented. Moreover, this 3D application allows the investigation of the effect of the third component of the pressure gradient by which the wake region seems to be affected.

  14. Automatic traveltime picking using instantaneous traveltime

    KAUST Repository

    Saragiotis, Christos; Alkhalifah, Tariq Ali; Fomel, Sergey

    2013-01-01

    Event picking is used in many steps of seismic processing. We present an automatic event picking method that is based on a new attribute of seismic signals, instantaneous traveltime. The calculation of the instantaneous traveltime consists of two separate but interrelated stages. First, a trace is mapped onto the time-frequency domain. Then the time-frequency representation is mapped back onto the time domain by an appropriate operation. The computed instantaneous traveltime equals the recording time at those instances at which there is a seismic event, a feature that is used to pick the events. We analyzed the concept of the instantaneous traveltime and demonstrated the application of our automatic picking method on dynamite and Vibroseis field data.

  15. Automatic traveltime picking using instantaneous traveltime

    KAUST Repository

    Saragiotis, Christos

    2013-02-08

    Event picking is used in many steps of seismic processing. We present an automatic event picking method that is based on a new attribute of seismic signals, instantaneous traveltime. The calculation of the instantaneous traveltime consists of two separate but interrelated stages. First, a trace is mapped onto the time-frequency domain. Then the time-frequency representation is mapped back onto the time domain by an appropriate operation. The computed instantaneous traveltime equals the recording time at those instances at which there is a seismic event, a feature that is used to pick the events. We analyzed the concept of the instantaneous traveltime and demonstrated the application of our automatic picking method on dynamite and Vibroseis field data.

  16. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  17. Instantaneous flow field above the free end of finite-height cylinders and prisms

    International Nuclear Information System (INIS)

    Rostamy, N.; Sumner, D.; Bergstrom, D.J.; Bugg, J.D.

    2013-01-01

    Highlights: • PIV measurements of the flow above the free end of finite-height bodies. • Effect of cross-sectional shape of the models on the instantaneous flow. • Small-scale structures generated by the separated shear layer were revealed. • Effect of aspect ratio on the reattachment of the separated flow on the free end. -- Abstract: The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 10 4 . The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer

  18. Traversing field of view and AR-PIV for mid-field wake vortex investigation in a towing tank

    Science.gov (United States)

    Scarano, F.; van Wijk, C.; Veldhuis, L. L. M.

    2002-08-01

    Wake vortex flow experiments are performed in a water tank where a 1:48 scaled model of a large transport aircraft A340-300 is towed at the speed of 3 and 5 ms-1 with values of the angle of attack α={2°, 4°, 8°}. Particle image velocimetry (PIV) measurements are performed in a plane perpendicular to the towing direction describing the streamwise component of the wake vorticity. The instantaneous field of view (I-FOV) is traversed vertically with an underwater moving-camera device tracking the vortex core during the downward motion. An adaptive resolution (AR) image-processing technique is introduced that enhances the PIV interrogation in terms of spatial resolution and accuracy. The main objectives of the investigation are to demonstrate the applicability of PIV diagnostics in wake vortex research with towing-tank facilities. The specific implementation of the traversing field-of-view (T-FOV) technique and the AR image processing are driven by the need to characterize the vortex wake global properties as well as the vortex decay phenomenon in the mid- and far-field. Relevant aerodynamic information is obtained in the mid-field where the time evolution of the vortex structure (core radius and tangential velocity) and of the overall vortex wake (vortex trajectory, descent velocity, circulation) are discussed.

  19. Geostationary Coastal and Air Pollution Events (GeoCAPE) Filter Radiometer (FR)

    Science.gov (United States)

    Kotecki, Carl; Chu, Martha; Wilson, Mark; Clark, Mike; Nanan, Bobby; Matson, Liz; McBirney, Dick; Smith, Jay; Earle, Paul; Choi, Mike; hide

    2014-01-01

    The GeoCAPE Filter Radiometer (FR) Study is a different instrument type than all of the previous IDL GeoCape studies. The customer primary goals are to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Minimize total mission costs by riding on a commercial GEO satellite. For this instrument type, the coverage rate, km 2 min, was significantly increased while reducing the nadir ground sample size to 250m. This was accomplished by analyzing a large 2d area for each integration period. The field of view will be imaged on a 4k x 4k detector array of 15 micrometer pixels. Each ground pixel is spread over 2 x 2 detector pixels so the instantaneous field of view (IFOV) is 2048 X 2048 ground pixels. The baseline is, for each field of view 50 sequential snapshot images are taken, each with a different filter, before indexing the scan mirror to the next IFOV. A delta would be to add additional filters.

  20. Changes in Drivers’ Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections

    Science.gov (United States)

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824

  1. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  2. ISAR imaging using the instantaneous range instantaneous Doppler method

    CSIR Research Space (South Africa)

    Wazna, TM

    2015-10-01

    Full Text Available In Inverse Synthetic Aperture Radar (ISAR) imaging, the Range Instantaneous Doppler (RID) method is used to compensate for the nonuniform rotational motion of the target that degrades the Doppler resolution of the ISAR image. The Instantaneous Range...

  3. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    Science.gov (United States)

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  4. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  5. Internal and external Field of View: computer games and cybersickness

    NARCIS (Netherlands)

    Vries, S.C. de; Bos, J.E.; Emmerik, M.L. van; Groen, E.L.

    2007-01-01

    In an experiment with a computer game environment, we studied the effect of Field-of-View (FOV) on cybersickness. In particular, we examined the effect of differences between the internal FOV (IFOV, the FOV which the graphics generator is using to render its images) and the external FOV (EFOV, the

  6. Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Ma, Ke; Wang, Huai

    2015-01-01

    , instantaneous thermal modeling approaches considering mission profiles for the DC-link capacitor in single-phase PV systems are explored in this paper. These thermal modelling approaches are based on: a) fast Fourier transform, b) look-up tables, and c) ripple current reconstruction. Moreover, the thermal...... grid-connected PV system have been adopted to demonstrate a look-up table based modelling approach, where real-field daily ambient conditions are considered....... modelling approaches for the DC-link capacitors take into account the instantaneous thermal characteristics, which are more challenging to the capacitor reliability during operation. Such instantaneous thermal modeling approaches enable a translation of instantaneous capacitor power losses to capacitor...

  7. The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan

    Science.gov (United States)

    Nagaya, Shigeo; Hirano, Naoki; Katagiri, Toshio; Tamada, Tsutomu; Shikimachi, Koji; Iwatani, Yu; Saito, Fusao; Ishii, Yusuke

    2012-12-01

    Development of apparatuses for protecting industrial facilities such as semiconductor plants or information industries from instantaneous voltage dips, which requires very large output power, has been expected. A Superconducting magnetic energy storage system (SMES), one of such apparatus, consists of superconducting magnets that must withstand high voltage during operation and require high reliability. We have already development of SMES using conventional superconducting coils and done the field test of the SMES for bridging instantaneous voltage dips. After field test, the commercial SMES for instantaneous voltage dips is working there. Since field test has started, we have confirmed nearly 40 operations, and all have succeeded. In 2011, three commercial SMES units for bridging instantaneous voltage dips are operating in Japan.

  8. Instantaneous power theory and applications to power conditioning

    CERN Document Server

    Akagi, Hirofumi; Aredes, Mauricio

    2017-01-01

    This new edition, written by a team of experts in the field, is fully updated with information on the latest electric power technology. The instantaneous power theory, or “the p-q theory,” makes clear the physical meaning of what instantaneous real and imaginary power is in a three-phase circuit. Moreover, it provides insight into how energy flows from a source to a load, or circulates between phases, in a three-phase circuit. This theory can be used in the design and understanding of FACTS (Flexible AC Transmission System) compensators. The book introduces many concepts in the field of active filtering that are unique to this edition. It provides a study tool for final year undergraduate students, graduate students and engineers dealing ith harmonic pollution problems, reactive power compensation or power quality in general.

  9. The effect of internal and external fields of view on visually induced motion sickness

    NARCIS (Netherlands)

    Bos, J.E.; Vries, S.C. de; Emmerik, M.L. van; Groen, E.L.

    2010-01-01

    Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between

  10. Instantaneous planar pressure determination from PIV in turbulent flow

    NARCIS (Netherlands)

    De Kat, R.; Van Oudheusden, B.W.

    2011-01-01

    This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical

  11. Non-instantaneous impulses in differential equations

    CERN Document Server

    Agarwal, Ravi; O'Regan, Donal

    2017-01-01

    This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliogr...

  12. Instantaneous wave emission model

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1970-12-01

    A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag

  13. Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points

    Directory of Open Access Journals (Sweden)

    T. D. Carozzi

    2004-07-01

    Full Text Available We introduce a technique to determine instantaneous local properties of waves based on discrete-time sampled, real-valued measurements from 4 or more spatial points. The technique is a generalisation to the spatial domain of the notion of instantaneous frequency used in signal processing. The quantities derived by our technique are closely related to those used in geometrical optics, namely the local wave vector and instantaneous phase velocity. Thus, this experimental technique complements ray-tracing. We provide example applications of the technique to electric field and potential data from the EFW instrument on Cluster. Cluster is the first space mission for which direct determination of the full 3-dimensional local wave vector is possible, as described here.

  14. Qualitative analysis of MTEM response using instantaneous attributes

    Science.gov (United States)

    Fayemi, Olalekan; Di, Qingyun

    2017-11-01

    This paper introduces new technique for qualitative analysis of multi-transient electromagnetic (MTEM) earth impulse response over complex geological structures. Instantaneous phase and frequency attributes were used in place of the conventional common offset section for improved qualitative interpretation of MTEM data by obtaining more detailed information from the earth impulse response. The instantaneous attributes were used to describe the lateral variation in subsurface resistivity and the visible geological structure with respect to given offsets. Instantaneous phase attribute was obtained by converting the impulse response into a complex form using the Hilbert transform. Conversely, the polynomial phase difference (PPD) estimator was favored over the center finite difference (CFD) approximation method in calculating the instantaneous frequency attribute because it is computationally efficient and has the ability to give a smooth variation of the instantaneous frequency over a common offset section. The observed results from the instantaneous attributes were in good agreement with both the subsurface model used and the apparent resistivity section obtained from the MTEM earth impulse response. Hence, this study confirms the capability of both instantaneous phase and frequency attributes as highly effective tools for MTEM qualitative analysis.

  15. On the formation of an instantaneous orbit in a synchrotron

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1985-01-01

    In the process of injection into a synchrotron amplitudes of particle betatron oscillations can be comparable with the dimensions of the synchrotron working region, which means that special attention should be paid to the formation of the optimum instantaneous orbit. Basides, a necessity to calculate the orbit frequently arises at the end of the acceleration cycle, when particle dump onto internal targets or their extraction from the synchrotron take place. In the paper the method for calculation of particle trajectories in the synchrotron is described. According to the method the program of numerical calculation of both separate particle trajectories and closed instantaneous orbit was developed. The method suggested is based on the presentation of the accelerator magnetic structure as a sequential set of discrete elements. All the elements can be divided into the following main groups: free rectilinear gaps, rectilinear gaps with stray magnetic field, magnetic sectors, rectilinear gaps with accelerating electric field. The calculations made according to the method described have shown its high efficiency. The program developed is used for the simulation of the injection into the ''Pakhra'' synchrotron

  16. The instantaneous frequency rate spectrogram

    Science.gov (United States)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  17. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  18. In Brief: Online database for instantaneous streamflow data

    Science.gov (United States)

    Showstack, Randy

    2007-11-01

    Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.

  19. IR-dust observations of Comet Tempel 2 with CRAF VIMS

    International Nuclear Information System (INIS)

    Combi, M.R.; McCord, T.B.; Bell, J.F.; Brown, R.H.; Clark, R.N.; Cruikshank, D.P.; Johnson, T.V.; Lebofsky, L.A.; Matson, D.L.

    1988-01-01

    Measurement strategies are now being planned for using the Visual and Infrared Mapping Spectrometer (VIMS) to observe the asteroid Hestia, and the nucleus, and the gas and dust in the coma of comet P/Tempel 2 as part of the Comet Rendezvous Asteroid Flyby (CRAF) mission. The spectral range of VIMS will cover wavelengths from 0.35 to 5.2 micrometers, with a spectral resolution of 11 nm from 0.35 to 2.4 micrometers and of 22 nm from 2.4 to 5.2 micrometers. The instantaneous field of view (IFOV) provided by the foreoptics is 0.5 milliradians, and the current design of the instrument provides for a scanning secondary mirror which will scan a swath of length 72 IFOVs. The CRAF high resolution scan platform motion will permit slewing VIMS in a direction perpendicular to the swath. This enables the building of a two dimensional image in any or all wavelength channels. Important measurements of the dust coma will include the onset of early coma activity, the mapping of gas and dust jets and correlations with active nucleus areas, observations of the dust coma from various scattering phase angles, coverage of the low wavelength portion of the thermal radiation, and the 3.4 micrometer hydrocarbon emission. A description of the VIMS instrument is presented

  20. Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility

    Directory of Open Access Journals (Sweden)

    Herzke Tobias

    2005-01-01

    Full Text Available The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase

  1. Instantaneous Switching Processes in Quasi-Linear Circuits

    Directory of Open Access Journals (Sweden)

    Rositsa Angelova

    2004-01-01

    Full Text Available The paper considers instantaneous processes in electrical circuits produced by the stepwise change of the capacitance of the capacitor and the inductance of the inductor and by the switching on and switching off of the circuit. In order to determine the set of electrical circuits, for which it is possible to explicitly obtain the values of the currents and the voltages at the end of the instantaneous process, a classification of the networks with nonlinear elements is introduced in the paper. The instantaneous switching process in the moment t0 is approximated when T->t0 with a sequence of processes in the interval [t0, T]. For quasi-linear inductive and capacitive circuits; we present the type of the system satisfied by the currents and the voltages, the charges, as well as the fluxes in the interval [t0, T]. From this system, after passage to the limit T->t0, we obtain the formulas for the values of the circuits at the end of the instantaneous process. The obtained results are applied for the analysis of particular processes.

  2. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    Science.gov (United States)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  3. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    Science.gov (United States)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  4. Instantaneous interactions of hadrons on the light cone

    International Nuclear Information System (INIS)

    Hyer, T.

    1994-01-01

    Hadron wave functions are most naturally defined in the framework of light-cone quantization, a Hamiltonian formulation quantized at equal light-cone ''time'' τ≡t+z. One feature of the light-cone perturbation theory is the presence of instantaneous interactions, which complicate the consideration of processes involving bound states. We show that these interactions can be written in a simple and general form, parametrized by an instantaneous contribution ψ to the hadronic wave function. We use the rotational invariance of Feynman diagrams to relate this instantaneous piece of the meson wave function to the propagating part, and to obtain constraints relating wave functions and quark fragmentation amplitudes

  5. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Leak detection for city gas pipelines based on instantaneous energy distribution characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang, Chen [Deijing University of Civil Engineering and Architecture, Beijing, (China)

    2010-07-01

    Many natural gas pipelines are used in our cities. The development of efficient leakage detection systems is fundamental for safety issues avoidance. This paper investigated a new solution to the leak detection problem in city gas pipelines based on instantaneous energy distribution. In a theoretical approach, the Hilbert-Huang transform (HHT) was used to provide the instantaneous energy distribution feature of an unstable pressure signal. The signal noise was eliminated thanks to the instantaneous energy contribution. A leakage detection model with instantaneous energy distribution (IED) was then established. The correlation coefficients of instantaneous energy distribution were through correlation analysis. It was found that in different pipeline states, the instantaneous energy distribution characteristics are different. A strong correlation of IED signal characteristics was found of the two ends of a city gas pipeline in the same operation. The test results demonstrated the reliability and validity of the method.

  7. A digital instantaneous frequency measurement technique utilising high speed analogue to digital converters and field programmable gate arrays

    CSIR Research Space (South Africa)

    Herselman, PLR

    2007-09-01

    Full Text Available In modern information and sensor systems, the timely estimation of the carrier frequency of received signals is of critical importance. This paper presents a digital instantaneous frequency measurement (DIFM) technique, which can measure the carrier...

  8. Assessment of the Real Life Exposure to 2G and 3G Base Stations Over a Day from Instantaneous Measurement

    OpenAIRE

    Mahfouz , Zaher; Gati , Azeddine; Lautru , David; Wiart , Joe; Hanna , Victor Fouad

    2011-01-01

    International audience; In this paper, the general public daily exposure to mobile telephony is investigated. The considered signals are GSM900, GSM1800, UMTS and HSDPA. The study focus on the assessment of the maximal real electric field received over the day from an instantaneous measurement performed any time during the day. An extrapolation factor is presented to extrapolate an instantaneous measurement for any signal to the maximal possible value received by this signal over the day. Thi...

  9. Emergency cricothyrotomy for trismus caused by instantaneous rigor in cardiac arrest patients.

    Science.gov (United States)

    Lee, Jae Hee; Jung, Koo Young

    2012-07-01

    Instantaneous rigor as muscle stiffening occurring in the moment of death (or cardiac arrest) can be confused with rigor mortis. If trismus is caused by instantaneous rigor, orotracheal intubation is impossible and a surgical airway should be secured. Here, we report 2 patients who had emergency cricothyrotomy for trismus caused by instantaneous rigor. This case report aims to help physicians understand instantaneous rigor and to emphasize the importance of securing a surgical airway quickly on the occurrence of trismus. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Application of L.D.A. to measure instantaneous flow velocity field in the exhaust of a combustion engine

    International Nuclear Information System (INIS)

    Boutrif, M.S.; Thelliez, M.

    1993-01-01

    We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2 mm thickness. We also show that the cylinder discharges in two phases: the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly: its velocity varies betwen -100 m/s and 200 m/s within a period shorter than 1 ms; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000 rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. (orig.)

  11. The instantaneous linear motion information measurement method based on inertial sensors for ships

    Science.gov (United States)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  12. Development of a portable instantaneous soil radon measurement instrument

    International Nuclear Information System (INIS)

    Wang Yushuang; Ge Liangquan; Jiang Haijing; Lin Yanchang

    2007-01-01

    A dual-channel instantaneous soil radon measurement instrument based on the method of electrostatic collection is designed. It has the features of small size, low cost, and high sensitivity, etc. A single chip microcomputer is adopted as the data processing and control unit. The concentration of radon can be reported in field. The result is also corrected by the pressure sensing system. A double channel discriminator is used so that the detector can eliminate the interference from the progenies of radon except RaA. LCD and MCU based encoding keyboard are used to give users a friendly interface. Operating and function setting is easy. (authors)

  13. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  14. Contribution to development of SPNDs for instantaneous and selective measurement of different radiation fields in nuclear reactors

    International Nuclear Information System (INIS)

    Blandin, Christophe

    1998-01-01

    The objective of this work was conceiving and experimentally optimizing the SPNDs (Self-Powdered Neutron Detector) able to control fast power transients in test reactors and also to cope with requirements of surveillance and protection of EDF reactors. Thus, different SPND emitters of platinum, gadolinium, hafnium and cobalt were provided according to their nature with sheathing and stainless steel plugs as well as with zirconium over-sheathing in order to render them faster, more selective and adapted for wear checking. Special experimental devices were designed for measuring inside the Siloe reactor the promptness of the signals from SPND, on one hand, and their sensitivity to thermal and epithermal neutrons as well as to gamma rays, on the other hand. The follow-up of power transients in test reactors is ensured by the instantaneous measurement of thermal and epithermal neutron flux as well as of gamma field by means of three special SPND with gadolinium, hafnium and platinum. Also, we have defined the characteristics of a new SPND with cobalt, that delivers a current of unique neutronic origin, able to ensure the surveillance and protection of a power reactor over a period of at least six years

  15. Computing Instantaneous Frequency by normalizing Hilbert Transform

    Science.gov (United States)

    Huang, Norden E.

    2005-05-31

    This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

  16. Design and breadboarding activities of the second-generation Global imager (SGLI) on GCOM-C

    Science.gov (United States)

    Okamura, Yoshihiko; Tanaka, Kazuhiro; Amano, Takahiro; Hiramatsu, Masaru; Shiratama, Koichi

    2017-11-01

    The Global Change Observation Mission (GCOM) is the next generation earth observation project of Japan Aerospace Exploration Agency (JAXA). GCOM concept will take over the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of global climate change. The GCOM observing system consists of two series of medium size satellites: GCOM-W (Water) and GCOM-C (Climate). The Second-generation Global Imager (SGLI) on GCOM-C is a multi-band imaging radiometer with 19 spectral bands in the wavelength range of near-UV to thermal infrared. SGLI will provide high-accuracy measurements of Ocean, Atmosphere, Land and Cryosphere. These data will be utilized for studies to understand the global climate change, especially human activity influence on earth environments. SGLI is a suite of two radiometers called Visible and Near Infrared Radiometer (VNR) and Infrared Scanner (IRS). VNR is a pushbroom-type radiometer with 13 spectral bands in 380nm to 865nm range. While having quite wide swath (1150km), instantaneous field of view (IFOV) of most bands is set to 250m comparing to GLI's 1km requirement. Unique observation function of the VNR is along-track +/-45deg tilting and polarization observation for 670nm and 865nm bands mainly to improve aerosol retrieval accuracy. IRS is a wiskbroom-type infrared radiometer that has 6 bands in 1μm to 12μm range. Swath and IFOV are 1400km and 250m to 1km, respectively. This paper describes design and breadboarding activities of the SGLI instrument.

  17. Instantaneous sediment transport model for asymmetric oscillatory sheet flow.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.

  18. Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    Directory of Open Access Journals (Sweden)

    Ricardo T. Paéz-Hernández

    2017-11-01

    Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.

  19. The instantaneous shear modulus in the shoving model

    DEFF Research Database (Denmark)

    Dyre, J. C.; Wang, W. H.

    2012-01-01

    We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time is the experimentally accessible highfrequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be measured....... Data for a large selection of metallic glasses are compared to three different versions of the shoving model. The original shear-modulus based version shows a slight correlation to the Poisson ratio, which is eliminated by the energy-landscape formulation of the model in which the bulk modulus plays...

  20. ''Superluminal'' phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perel'man, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities and conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A m u, whereas electric and magnetic fields remain unconnected in the near zone. (The proof or its preliminary version in: M.E.Perel'man: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 696 (2003) the pulse (389 THz) on the entrance of gas cell of L = 40 cm length is J(t, x = 0; w) = J o I(t)I(w). The measured group refraction index n g = -19 and the duration of formation tau = -27 as, therefore the free path length is of order l = 40 cm and the probability of single scattering p(w) = exp(-L/l) = 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = L;wω) Jω(w){pI(L/c-(t,x=0;wI(L/c - |tau| +(1-p)I(L/c), i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined

  1. Superluminal phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perelman, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities aitd conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A μ , whereas electric and magnetic fields remain unconnected in the near zone. (The proof of its preliminary version in: M.E.Perefman: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 695 (2003) the pulse (389 THz) on the entrance of gas cell of l = 40 cm length is J(t,x = O;ω) = ,J o I(t)I(ω). .The measured group refraction index ng = -19 and the duration of formation τ = -27 as, therefore the free path length is of order l= 40 cm and the probability of single scattering p(?) =exp(-L/l) 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = Lω) = JtI(τ){pI(L/c - |τ|) + (1- p)I(L/c)], i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined the conclusions

  2. Compilation of Instantaneous Source Functions for Varying ...

    African Journals Online (AJOL)

    Compilation of Instantaneous Source Functions for Varying Architecture of a Layered Reservoir with Mixed Boundaries and Horizontal Well Completion Part IV: Normal and Inverted Letter 'h' and 'H' Architecture.

  3. Compilation of Instantaneous Source Functions for Varying ...

    African Journals Online (AJOL)

    Compilation of Instantaneous Source Functions for Varying Architecture of a Layered Reservoir with Mixed Boundaries and Horizontal Well Completion Part III: B-Shaped Architecture with Vertical Well in the Upper Layer.

  4. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin.

    Science.gov (United States)

    Peng, Jifeng; Dabiri, John O; Madden, Peter G; Lauder, George V

    2007-02-01

    Swimming and flying animals generate unsteady locomotive forces by delivering net momentum into the fluid wake. Hence, swimming and flying forces can be quantified by measuring the momentum of animal wakes. A recently developed model provides an approach to empirically deduce swimming and flying forces based on the measurement of velocity and vortex added-mass in the animal wake. The model is contingent on the identification of the vortex boundary in the wake. This paper demonstrates the application of that method to a case study quantifying the instantaneous locomotive forces generated by the pectoral fins of the bluegill sunfish (Lepomis macrochirus Rafinesque), measured using digital particle image velocimetry (DPIV). The finite-time Lyapunov exponent (FTLE) field calculated from the DPIV data was used to determine the wake vortex boundary, according to recently developed fluid dynamics theory. Momentum of the vortex wake and its added-mass were determined and the corresponding instantaneous locomotive forces were quantified at discrete time points during the fin stroke. The instantaneous forces estimated in this study agree in magnitude with the time-averaged forces quantified for the pectoral fin of the same species swimming in similar conditions and are consistent with the observed global motion of the animals. A key result of this study is its suggestion that the dynamical effect of the vortex wake on locomotion is to replace the real animal fin with an ;effective appendage', whose geometry is dictated by the FTLE field and whose interaction with the surrounding fluid is wholly dictated by inviscid concepts from potential flow theory. Benefits and limitations of this new framework for non-invasive instantaneous force measurement are discussed, and its application to comparative biomechanics and engineering studies is suggested.

  5. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  6. Application of MySQL in instantaneous profile gauge system

    International Nuclear Information System (INIS)

    Guo Xiaojing; Miao Jichen; Wu Zhifang

    2011-01-01

    As equipment in the hot rolling plate plant for online measurement of strip steel, the instantaneous profile gauge is used to measure instant crown of hot rolling strips and feed back the crown to the rolling mill to adjust strip profile. During the measurement, a large amount of data need to be stored reasonably for query, display, computation and other processing, while a database management software can make it happen. Based on such features of MySQL as small size, fast speed, low cost and open source codes, a database function was implemented in the instantaneous profile gauge for data storage, query and maintenance, by applying MySQL database management system and integrating with the control interface. (authors)

  7. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Takeda, Motohiro; Tsubota, Ken-ichi; Yamaguchi, Takami

    2007-01-01

    A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-microm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements.

  8. Instantaneous and dynamical decoherence

    Science.gov (United States)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  9. Instantaneous response spectrum in seismic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Morrone, A.

    1977-01-01

    This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. That is, any one (or more) instantaneous required response spectrum (IRRS) is not enveloped by any instantaneous test response spectrum (ITRS). Response spectra from different time histories, including single frequency sine beat motion used in resonance testing, are compared for enveloping with maximum response and with the actual response at particular times. These comparisons are given for the enveloping of RRS and IRRS derived with a time history response calculated at a particular building elevation of a nuclear power plant. For the test motion, several of the most severe ITRS derived with a modified EL Centro motion and with a sine beat motion with ten cycles per beat were used. It is shown that although the TRS with the modified EL Centro motion enveloped the given RRS, the selected modified EL Centro ITRS did not envelop the corresponding IRRS. With the sine beat motion, even though the TRS did not fully envelop the given RRS, the resulting sine beat ITRS did not require a larger factor for full IRRS enveloping than those of the modified EL Centro motion

  10. Instantaneous Power Compensation in Three-Phase Systems by Using p-q-r Theory

    DEFF Research Database (Denmark)

    Kim, Hyosung; Blaabjerg, Frede; Bak-Jensen, Birgitte

    2002-01-01

    Three linearly independent instantaneous powers have been defined in the time domain in three-phase four-wire systems with the use of p-q-r theory. Any three-phase circuit can be transformed into three single-phase circuits by the p-q-r transformation Thus the instantaneous powers in any three...

  11. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    Science.gov (United States)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in

  12. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  13. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.

    2017-07-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.

  14. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.

    2017-01-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration

  15. Navier-Stokes-Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity

    Science.gov (United States)

    Di Plinio, Francesco; Giorgini, Andrea; Pata, Vittorino; Temam, Roger

    2018-04-01

    We consider a Navier-Stokes-Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier-Stokes-Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.

  16. Six-channel instantaneous optical pyrometer

    International Nuclear Information System (INIS)

    Wang Guichao

    2001-01-01

    An instantaneous optical pyrometer to measure the spectral radiance of the materials shocked to high pressure has been developed. Thermal radiation emitted by the source is sampled at six wavelength bands from visible to near infrared spectrum. And the signal for each channel is separately transited through the optical fiber and then detected by photomultipliers and oscilloscopes with a time resolution of 20 ns. Shock temperatures ranging from 2400 to 9000 K could been reliably measured with an error less than 3%. The results of some experiments on air and NaI crystals are also given

  17. Assessment of movement distribution in the lumbar spine using the instantaneous axis of rotation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Won [Trine University, Angola (Indonesia)

    2014-12-15

    The position of the torso and the magnitude of exertion are thought to influence the distribution pattern of intervertebral movements within the lumbar spine. Abnormal intervertebral movements have been correlated with the risk of spine injuries. Since the capability to measure movement distribution within the lumbar spine noninvasively is limited, a convenient method to diagnose joint motion function was proposed. The goal of this research was to test the efficacy of the instantaneous axis of rotation for assessment of the distribution of movement within the lumbar spine. The proposed method was evaluated in the bio mechanical model. The results showed that the location of instantaneous axis of rotation lowered with increased trunk exertion force, and slightly moved higher with increased trunk angle. Recognizing that abnormal location of the instantaneous axis of rotation correlated with spinal pain, these results suggest potential the location of the instantaneous axis of rotation relates to the risk of low back pain on distributed spinal kinematics.

  18. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  19. Thermoelastic stress due to an instantaneous finite line heat source in an infinite medium

    International Nuclear Information System (INIS)

    Claesson, J.; Hellstroem, G.

    1995-09-01

    The problem originates from studies of nuclear waste repositories in rock. The problem is by superposition reduced to the case of a single, infinite, antisymmetric, instantaneous line heat source. The dimensionless problem turns out to depend on the dimensionless radial and axial coordinates only, although the original time-dependent problem contains several parameters. An exact analytical solution is derived. The solution is surprisingly handy, considering the complexity of the original problem. The stress and strain field are readily obtained from derivatives of the displacement components. These fields are studied and presented in detail. Asymptotic behaviour, field of principal stresses, regions of compression and tension, and largest values of compression and tension of the components are given as exact formulas. The solution may be used to test numerical models for coupled thermoelastic processes. It may also be used in more detailed numerical simulations of the process near the heat sources as boundary conditions to account for the three-dimensional global process. 7 refs

  20. Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    DEFF Research Database (Denmark)

    Speelman, Florian

    2016-01-01

    -depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication......Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural...... applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient...

  1. Instantaneous Rayleigh scattering from excitons localized in monolayer islands

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis

    2000-01-01

    We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...

  2. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  3. Regularization of Instantaneous Frequency Attribute Computations

    Science.gov (United States)

    Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.

    2014-12-01

    We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.

  4. Analysis of Instantaneous Linear, Nonlinear and Complex Cardiovascular Dynamics from Videophotoplethysmography.

    Science.gov (United States)

    Valenza, Gaetano; Iozzia, Luca; Cerina, Luca; Mainardi, Luca; Barbieri, Riccardo

    2018-05-01

    There is a fast growing interest in the use of non-contact devices for health and performance assessment in humans. In particular, the use of non-contact videophotoplethysmography (vPPG) has been recently demonstrated as a feasible way to extract cardiovascular information. Nevertheless, proper validation of vPPG-derived heartbeat dynamics is still missing. We aim to an in-depth validation of time-varying, linear and nonlinear/complex dynamics of the pulse rate variability extracted from vPPG. We apply inhomogeneous pointprocess nonlinear models to assess instantaneous measures defined in the time, frequency, and bispectral domains as estimated through vPPG and standard ECG. Instantaneous complexity measures, such as the instantaneous Lyapunov exponents and the recently defined inhomogeneous point-process approximate and sample entropy, were estimated as well. Video recordings were processed using our recently proposed method based on zerophase principal component analysis. Experimental data were gathered from 60 young healthy subjects (age: 24±3 years) undergoing postural changes (rest-to-stand maneuver). Group averaged results show that there is an overall agreement between linear and nonlinear/complexity indices computed from ECG and vPPG during resting state conditions. However, important differences are found, particularly in the bispectral and complexity domains, in recordings where the subjects has been instructed to stand up. Although significant differences exist between cardiovascular estimates from vPPG and ECG, it is very promising that instantaneous sympathovagal changes, as well as time-varying complex dynamics, were correctly identified, especially during resting state. In addition to a further improvement of the video signal quality, more research is advocated towards a more precise estimation of cardiovascular dynamics by a comprehensive nonlinear/complex paradigm specifically tailored to the non-contact quantification. Schattauer GmbH.

  5. Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions.

    Directory of Open Access Journals (Sweden)

    Christine Ward-Paige

    Full Text Available BACKGROUND: Increasingly, underwater visual censuses (UVC are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals x km(-2 and biomasses (>4 tonnes x ha(-1 have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. METHODOLOGY/PRINCIPAL FINDINGS: We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. CONCLUSIONS/SIGNIFICANCE: Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the

  6. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    Science.gov (United States)

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  7. A framework for assessing frequency domain causality in physiological time series with instantaneous effects.

    Science.gov (United States)

    Faes, Luca; Erla, Silvia; Porta, Alberto; Nollo, Giandomenico

    2013-08-28

    We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the known directed coherence (DC) and partial DC measures. The new measures are illustrated in theoretical examples showing that they reduce to the known measures in the absence of instantaneous causality, and describe peculiar aspects of directional interaction among multiple series when instantaneous causality is non-negligible. Then, the issue of estimating eMVAR models from time-series data is faced, proposing two approaches for model identification and discussing problems related to the underlying model assumptions. Finally, applications of the framework on cardiovascular variability series and multichannel EEG recordings are presented, showing how it allows one to highlight patterns of frequency domain causality consistent with well-interpretable physiological interaction mechanisms.

  8. Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency

    DEFF Research Database (Denmark)

    Huang, Hai; Jacobsen, Finn

    2003-01-01

    on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness...

  9. Elasticity analysis by MR elastography using the instantaneous frequency method

    International Nuclear Information System (INIS)

    Oshiro, Osamu; Suga, Mikio; Minato, Kotaro; Okamoto, Jun; Takizawa, Osamu; Matsuda, Tetsuya; Komori, Masaru; Takahashi, Takashi

    2000-01-01

    This paper describes a calculation method for estimating the elasticity of human organs using magnetic resonance elastography (MRE) images. The method is based on the instantaneous frequency method, which is very sensitive to noise. Therefore, the proposed method also incorporates a noise-reduction function. In the instantaneous frequency method, Fourier transform is applied to the measurement signal. Then, inverse Fourier transform is performed after the negative frequency component is set to zero. In the proposed method, noise is reduced by processing in which the positive higher frequency component is also set to zero before inverse Fourier transform is performed. First, we conducted a simulation study and confirmed the applicability of this method and the noise reduction function. Next, we carried out a phantom experiment and demonstrated that elasticity images could be generated, with the gray level corresponding to the local frequency in MRE images. (author)

  10. Efficiency of application of instantaneous radiation of seeds by plasma

    International Nuclear Information System (INIS)

    Tsyganov, A.R.; Gordeev, Yu.A.; Poddubnaya, O.V.

    2009-01-01

    The efficiency of application of instantaneous (impulse) radiation of seeds of spring wheat (Triticum aestivum) and oat (Avena sativa) by plasma was analyzed. Research results showed that presowing treatment of seeds with instantaneous helium radiation in course of 0,01 seconds (the total duration of seed treatment with plasmatron ion source impulses – one second). In course of the practical experiments there was proved possibility of application impulse radiation technologies in modern agricultural production. Seed germination capacity exceeded the control variants on 14%. Results of influence of applied irradiation on length of sprouts, length of roots and their germinating ability were presented. Irradiation efficiency developed in course of plant vegetation. In accordance with research results and accumulated experimental material on presowing seed treatment with impulses of low temperature helium plasma could make it possible to obtain yields with higher capacity and quality with the minimal expenses for seed treatment

  11. Automatic tea service machine with instantaneous cooling unit; Shunkan reikyaku kiko tosai jido kyuchaki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T.; Nishiyama, A. [Fuji Denki Reiki Co. Ltd., Tokyo (Japan)

    1999-08-10

    The market of automatic tea service machines demands sanitation, reduction in time required for pouring tea, feeding the material, cleaning the inside of the machine, the maintenance and service of the machine, and excellent design. To meet these demands, Fuji Electric has changed the former configuration and components for functions and has developed a new series of instantaneous automatic tea service machines based on a new concept. This paper outlines the advantages of the instantaneous cooling tank and improvements in handling. (author)

  12. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim

    2015-01-01

    . These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  13. Influence of instantaneous controlled pressure drop extraction conditions on composition and oil yield from Maritime Pine (Pinus Pinaster)

    OpenAIRE

    Rezzoug , Sid-Ahmed; Janocka , Ingrid

    2007-01-01

    International audience; Experiments to extract the essential oil from maritime pine (pinus pinaster) were carried out using the instantaneous controlled pressure drop process: "Détente Instantanée Contrôlée" (D.I.C). This process involves subjecting the maritime pine needles for a short period of time to a steam pressure varying from 2 to 5 bar (120 to 150 °C) during a fixed processing time, followed by an instantaneous decompression towards a vacuum (about 50 mbar). In this contribution, we ...

  14. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning

    2016-03-01

    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  15. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    Science.gov (United States)

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  16. Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice

    NARCIS (Netherlands)

    Petraco, Ricardo; Al-Lamee, Rasha; Gotberg, Matthias; Sharp, Andrew; Hellig, Farrel; Nijjer, Sukhjinder S.; Echavarria-Pinto, Mauro; van de Hoef, Tim P.; Sen, Sayan; Tanaka, Nobuhiro; van Belle, Eric; Bojara, Waldemar; Sakoda, Kunihiro; Mates, Martin; Indolfi, Ciro; de Rosa, Salvatore; Vrints, Christian J.; Haine, Steven; Yokoi, Hiroyoshi; Ribichini, Flavio L.; Meuwissen, Martjin; Matsuo, Hitoshi; Janssens, Luc; Katsumi, Ueno; Di Mario, Carlo; Escaned, Javier; Piek, Jan; Davies, Justin E.

    2014-01-01

    To evaluate the first experience of real-time instantaneous wave-free ratio (iFR) measurement by clinicians. The iFR is a new vasodilator-free index of coronary stenosis severity, calculated as a trans-lesion pressure ratio during a specific period of baseline diastole, when distal resistance is

  17. Does the instantaneous wave-free ratio approximate the fractional flow reserve?

    NARCIS (Netherlands)

    Johnson, Nils P.; Kirkeeide, Richard L.; Asrress, Kaleab N.; Fearon, William F.; Lockie, Timothy; Marques, Koen M. J.; Pyxaras, Stylianos A.; Rolandi, M. Cristina; van 't Veer, Marcel; de Bruyne, Bernard; Piek, Jan J.; Pijls, Nico H. J.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; Gould, K. Lance

    2013-01-01

    This study sought to examine the clinical performance of and theoretical basis for the instantaneous wave-free ratio (iFR) approximation to the fractional flow reserve (FFR). Recent work has proposed iFR as a vasodilation-free alternative to FFR for making mechanical revascularization decisions. Its

  18. Installation and commissioning of instantaneous dose rate monitoring system

    CERN Document Server

    Iaydjiev, Plamen

    2018-01-01

    INRNE-Sofia was working on the installation and commissioning of new instantaneous dose rate monitoring system for the GIF++ facility at CERN. The final device, containing an 8-channels readout board was designed and tested at the CERN facility during November 2017, in an irradiation campaign supported by the AIDA-2020 TA program. The system is designed to be fully integrated in the GIF++ control system and the data measured are available to the users.

  19. Instantaneous and cumulative influences of competition on impulsive choices in domestic chicks.

    Directory of Open Access Journals (Sweden)

    Hidetoshi eAmita

    2011-09-01

    Full Text Available This study examined instantaneous and cumulative effects of competitive interactions on impulsiveness in the inter-temporal choices in domestic chicks. Chicks were trained to peck colored beads to gain delayed food rewards (1 or 6 grains of millet delivered after a delay ranging between 0–4.5 s, and were tested in binary choices between a small-short delay option (SS and a large-long delay alternative (LL. To examine whether competitive foraging instantaneously changes impulsiveness, we intraindividually compared choices between two consecutive tests in different contexts, one with competitors and another without. We found that (1 the number of the choice of LL was not influenced by competition in the tests, but (2 the operant peck latency was shortened by competition, suggesting a socially enhanced incentive for food. To further examine the lasting changes, two groups of chicks were consecutively trained and tested daily for 2 weeks according to a behavioral titration procedure, one with competitors and another without. Inter-group comparisons of the choices revealed that (3 choice impulsiveness gradually decreased along development, while (4 the chicks trained in competition maintained a higher level of impulsiveness. These results suggest that competitive foraging causes impulsive choices not by direct/contextual modification. Causal link between the instantaneous enhancement of incentive and the gradual effects on impulsivity remains to be examined. Some (yet unspecified factors may be indirectly involved.

  20. Automatic first-break picking using the instantaneous traveltime attribute

    KAUST Repository

    Saragiotis, Christos

    2012-01-01

    Picking the first breaks is an important step in seismic processing. The large volume of the seismic data calls for automatic and objective picking. We introduce a new automatic first-break picker, which uses specifically designed time windows and an iterative procedure based on the instantaneous traveltime attribute. The method is fast as it only uses a few FFT\\'s per trace. We demonstrate the effectiveness of this automatic method by applying it on real test data.

  1. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    Science.gov (United States)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  2. Geomagnetic Components D, H, X, Y, Z, and R 10-second Instantaneous Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are generated as part of the International Magnetospheric Study. The file consists of 10-second instantaneous measurements for the geomagnetic components...

  3. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  4. Use of capacitive sensors with the instantaneous profile method to determine hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Eurileny Lucas de Almeida

    Full Text Available ABSTRACT Due to the need to monitor soil water tension continuously, the instantaneous profile method is considered laborious, requiring a lot of time, and especially manpower, to set up and maintain. The aim of this work was to evaluate the possibility of using capacitive sensors in place of tensiometers with the instantaneous profile method in an area of the Lower Acaraú Irrigated Perimeter. The experiment was carried out in a Eutrophic Red-Yellow Argisol. The sensors were installed 15, 30, 45 and 60 cm from the surface, and powered by photovoltaic panels, using a power manager to charge the battery and to supply power at night. Records from the capacitive sensors were collected every five minutes and stored on a data acquisition board. With the simultaneous measurement of soil moisture obtained by the sensors, and the total soil water potential from the soil water retention curve, it was possible to determine the hydraulic conductivity as a function of the volumetric water content for each period using the Richards equation. At the end of the experiment, the advantage of using capacitive sensors with the instantaneous profile method was confirmed as an alternative to using a tensiometer. The main advantages of using capacitive sensors were to make the method less laborious and to allow moisture readings at higher tensions in soils of a sandy texture.

  5. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  6. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  7. Method of instantaneous approximation of the atmospheric dispersion

    International Nuclear Information System (INIS)

    Doury, A.

    1983-12-01

    A basic primary modelling, very simple and compatible with all the existing models. The problem, the simplifying hypothesis being given, amounts to calculating a concentration chi determined by a fixed quantity Q released instantaneously in a quasi nil volume and uniformly distributed after the time t after the emission in a rectangular parallelepipedic volume. An atmospheric dilution coefficient and an atmospheric transfer coefficient are defined. From these elements, such defined, it is possible to establish of ''short term'' and ''long term'' transfer coefficients and also transfer coefficients ''in the atmosphere'' and to the ''ground''. They are presented in a tabular form [fr

  8. A case of instantaneous rigor?

    Science.gov (United States)

    Pirch, J; Schulz, Y; Klintschar, M

    2013-09-01

    The question of whether instantaneous rigor mortis (IR), the hypothetic sudden occurrence of stiffening of the muscles upon death, actually exists has been controversially debated over the last 150 years. While modern German forensic literature rejects this concept, the contemporary British literature is more willing to embrace it. We present the case of a young woman who suffered from diabetes and who was found dead in an upright standing position with back and shoulders leaned against a punchbag and a cupboard. Rigor mortis was fully established, livor mortis was strong and according to the position the body was found in. After autopsy and toxicological analysis, it was stated that death most probably occurred due to a ketoacidotic coma with markedly increased values of glucose and lactate in the cerebrospinal fluid as well as acetone in blood and urine. Whereas the position of the body is most unusual, a detailed analysis revealed that it is a stable position even without rigor mortis. Therefore, this case does not further support the controversial concept of IR.

  9. Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.

    Science.gov (United States)

    Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo

    2018-05-01

    Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).

  10. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  11. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  12. Digital instantaneous frequency measurement technique utilising high-speed ADC’s and FPGA’s

    CSIR Research Space (South Africa)

    Herselman, PL

    2006-02-27

    Full Text Available This paper presents the Digital Instantaneous Frequency Measurement (DIFM) technique, which can measure the carrier frequency of a received waveform within a fraction of a microsecond. The resulting frequency range, resolution and accuracy...

  13. Technical note: Instantaneous sampling intervals validated from continuous video observation for behavioral recording of feedlot lambs.

    Science.gov (United States)

    Pullin, A N; Pairis-Garcia, M D; Campbell, B J; Campler, M R; Proudfoot, K L

    2017-11-01

    When considering methodologies for collecting behavioral data, continuous sampling provides the most complete and accurate data set whereas instantaneous sampling can provide similar results and also increase the efficiency of data collection. However, instantaneous time intervals require validation to ensure accurate estimation of the data. Therefore, the objective of this study was to validate scan sampling intervals for lambs housed in a feedlot environment. Feeding, lying, standing, drinking, locomotion, and oral manipulation were measured on 18 crossbred lambs housed in an indoor feedlot facility for 14 h (0600-2000 h). Data from continuous sampling were compared with data from instantaneous scan sampling intervals of 5, 10, 15, and 20 min using a linear regression analysis. Three criteria determined if a time interval accurately estimated behaviors: 1) ≥ 0.90, 2) slope not statistically different from 1 ( > 0.05), and 3) intercept not statistically different from 0 ( > 0.05). Estimations for lying behavior were accurate up to 20-min intervals, whereas feeding and standing behaviors were accurate only at 5-min intervals (i.e., met all 3 regression criteria). Drinking, locomotion, and oral manipulation demonstrated poor associations () for all tested intervals. The results from this study suggest that a 5-min instantaneous sampling interval will accurately estimate lying, feeding, and standing behaviors for lambs housed in a feedlot, whereas continuous sampling is recommended for the remaining behaviors. This methodology will contribute toward the efficiency, accuracy, and transparency of future behavioral data collection in lamb behavior research.

  14. Instantaneous nonvertical electronic transitions with shaped femtosecond laser pulses: Is it possible?

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2003-01-01

    In molecular electronic transitions, a vertical transition can be induced by an ultrashort laser pulse. That is, a replica of the initial nuclear state-times the transition dipole moment of the electronic transition-can be created instantaneously (on the time scale of nuclear motion) in the excited...

  15. Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Ducoin, Antoine

    2016-01-01

    Highlights: • Two-dimensional unsteady simulations on a novel Savonius-style wind turbine. • Instantaneous behavior of drag and lift coefficients, and corresponding moment arms. • Effect of tip speed ratio on the instantaneous force coefficients and moments arms. • Effect of force coefficients and moment arms on the instantaneous moment and power. • Analysis of power and moment coefficients at different tip speed ratios. - Abstract: This paper aims to present a transient analysis on the forces acting on a novel two-bladed Savonius-style wind turbine. Two-dimensional unsteady Reynolds Averaged Navier Stokes equations are solved using shear stress transport k–ω turbulence model at a Reynolds number of 1.23 × 10"5. The instantaneous longitudinal drag and lateral lift forces acting on each of the blades and their acting points are calculated. The corresponding moment arms responsible for the torque generation are obtained. Further, the effect of tip speed ratio on the force coefficients, moment arms and overall turbine performances are observed. Throughout the paper, the obtained results for the new design are discussed with reference to conventional semi-circular design of Savonius turbines. A significant performance improvement is achieved with the new design due to its increased lift and moment arm contribution as compared to the conventional design. More interestingly, the present study sets a platform for future aerodynamic research and improvements for Savonius-style wind turbines.

  16. The instantaneous light-intensity function of a fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Gluskin, Emanuel [Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel): Electrical Engineering Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: gluskin@ee.bgu.ac.il; Topalis, Frangiskos V. [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Kateri, Ifigenia [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Bisketzis, Nikolas [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece)

    2006-05-08

    Using some simple physics and 'system' considerations, the instantaneous light intensity function {psi}(t) of a fluorescent lamp fed via a regular ballast from the 50-60 Hz line is argued to be {psi}(t)={psi}{sub min}+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of {psi}(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is {psi}{sub min}. However, it should be very difficult to theoretically obtain {psi}(t), in particular {psi}{sub min}, from the very complicated physics of the low-pressure discharge in the tube. We conclude that {psi}{sub min} has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps. escent lamps.

  17. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  18. Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Le Péchon, Jean-Claude

    2015-01-01

    Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the

  19. Instantaneous response spectrum in seismic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Morrone, A.

    1977-01-01

    Seismic response spectra, as used in seismic analyses, give the maximum responses of single degree of freedom oscillators without consideration of the different time in the seismic time history at which each of the maximum responses occur. For response spectrum seismic analysis, the use of time-independent maximum responses is appropriate. The time dependece is considered in a statistical manner, for multi-degree of freedom systems, usually by combining the modal effects by the square root of the sum of the squares. For seismic testing of electrical equipment. IEEE Std. 344-1975 makes use of the response spectrum to define the input motion of the shake table. One of the basic requirements is that the test response spectrum (TRS) that is, the response spectrum produced by the shake table motion, should envelop the required response spectrum (RRS) calculated from the building analysis at the support point of the equipment being tested. This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. (Auth.)

  20. Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system

    Science.gov (United States)

    Tat, Roya; Allah Taleizadeh, Ata; Esmaeili, Maryam

    2015-05-01

    This paper develops an economic order quantity model for non-instantaneous deteriorating items with and without shortages to investigate the performance of the vendor-managed inventory (VMI) system. This model is developed for a two-level supply chain consisting of a single supplier and single retailer with a single non-instantaneous deteriorating item. A numerical example and sensitivity analysis are provided to illustrate how increasing or reducing the related parameters change the optimal values of the decision variables of the two proposed models. The results show that VMI works better and charges lower cost in all conditions.

  1. A New MPPT Control for Photovoltaic Panels by Instantaneous Maximum Power Point Tracking

    Science.gov (United States)

    Tokushima, Daiki; Uchida, Masato; Kanbei, Satoshi; Ishikawa, Hiroki; Naitoh, Haruo

    This paper presents a new maximum power point tracking control for photovoltaic (PV) panels. The control can be categorized into the Perturb and Observe (P & O) method. It utilizes instantaneous voltage ripples at PV panel output terminals caused by the switching of a chopper connected to the panel in order to identify the direction for the maximum power point (MPP). The tracking for the MPP is achieved by a feedback control of the average terminal voltage of the panel. Appropriate use of the instantaneous and the average values of the PV voltage for the separate purposes enables both the quick transient response and the good convergence with almost no ripples simultaneously. The tracking capability is verified experimentally with a 2.8 W PV panel under a controlled experimental setup. A numerical comparison with a conventional P & O confirms that the proposed control extracts much more power from the PV panel.

  2. Instantaneous Kinematics Analysis via Screw-Theory of a Novel 3-CRC Parallel Mechanism

    Directory of Open Access Journals (Sweden)

    Hussein de la Torre

    2016-06-01

    Full Text Available This paper presents the mobility and kinematics analysis of a novel parallel mechanism that is composed by one base, one platform and three identical limbs with CRC joints. The paper obtains closed-form solutions to the direct and inverse kinematics problems, and determines the mobility of the mechanism and instantaneous kinematics by applying screw theory. The obtained results show that this parallel robot is part of the family 2R1T, since the platform shows 3 DOF, i.e.: one translation perpendicular to the base and two rotations about skew axes. In order to calculate the direct instantaneous kinematics, this paper introduces the vector mh, which is part of the joint velocity vector that multiplies the overall inverse Jacobian matrix. This paper compares the results between simulations and numerical examples using Mathematica and SolidWorks in order to prove the accuracy of the analytical results.

  3. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  4. Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector

    International Nuclear Information System (INIS)

    Viera, Juan P.; Payri, Raul; Swantek, Andrew B.; Duke, Daniel J.; Sovis, Nicolas; Kastengren, Alan L.; Powell, Christopher F.

    2016-01-01

    Highlights: • A direct-acting prototype diesel injector is utilized to control needle lift. • The effects of partial needle lift on rate of injection are analyzed. • Time-resolved needle lift is measured from fast phase-contrast X-ray images. • The link between instantaneous needle lift and rate of injection is analyzed. - Abstract: Internal combustion engines have been and still are key players in today’s world. Ever increasing fuel consumption standards and the ongoing concerns about exhaust emissions have pushed the industry to research new concepts and develop new technologies that address these challenges. To this end, the diesel direct injection system has recently seen the introduction of direct-acting piezoelectric injectors, which provide engineers with direct control over the needle lift, and thus instantaneous rate of injection (ROI). Even though this type of injector has been studied previously, no direct link between the instantaneous needle lift and the resulting rate of injection has been quantified. This study presents an experimental analysis of the relationship between instantaneous partial needle lifts and the corresponding ROI. A prototype direct-acting injector was utilized to produce steady injections of different magnitude by partially lifting the needle. The ROI measurements were carried out at CMT-Motores Térmicos utilizing a standard injection rate discharge curve indicator based on the Bosch method (anechoic tube). The needle lift measurements were performed at the Advanced Photon Source at Argonne National Laboratory. The analysis seeks both to contribute to the current understanding of the influence that partial needle lifts have over the instantaneous ROI and to provide experimental data with parametric variations useful for numerical model validations. Results show a strong relationship between the steady partial needle lift and the ROI. The effect is non-linear, and also strongly dependent on the injection pressure. The

  5. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  6. Instantaneous axial velocity of a radioactive tracer determined with radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fraguio, Maria Sol; Cassanello, Miryan C., E-mail: miryan@di.fcen.uba.a [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Programa de Investigacion y Desarrollo de Fuentes Alternativas de Materias Primas y Energia (PINMATE); Cardona, Maria Angelica; Hojman, Daniel, E-mail: cardona@tandar.cnea.gov.a [CONICET, Buenos Aires (Argentina); Somacal, Hector [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Centro Atomico Constituyentes. Dept. de Fisica

    2009-07-01

    Radioactive Particle Tracking (RPT) is a technique that has been successfully used to get features of the liquid and/or the solid motion in multiphase contactors. It is one of the rare techniques able to provide experimental data in dense and strongly turbulent multiphase media. Validation of the technique has always been based on comparing the estimated mean velocity to an imposed mean velocity although the extracted features are frequently related to the instantaneous velocities. The present work pursues the analysis, through calibration experiments, of the ability of RPT to get the actual tracer instantaneous velocities. With this purpose, the motion of a radioactive tracer attached to a moving rod driven by a pneumatic system is reconstructed from the combined response of an array of 10 NaI(Tl) scintillation detectors. Simultaneously, the tracer motion is registered through an encoder able to establish the axial tracer coordinate with high precision and high time resolution. The tracer is a gold particle, activated by neutron bombardment. The rod is moved at different velocities and it travels upwards and downwards close to the column centre. A mini-pilot scale bubble column is used as the test facility. The model liquid is tap water in batch mode and the gas is air, flowing at different gas velocities, spanning the homogeneous and the heterogeneous flow regimes. Time series of the entirety response of all the detectors, while the rod is moving at different imposed velocities within the two phase emulsion, are measured with a sampling period of 0.03 s during about 2 minutes. The instantaneous tracer positions and velocities reconstructed from RPT and the one obtained from the encoder response are compared under different operating conditions and for different tracer velocities. (author)

  7. Detection of fission products in carbon dioxide by instantaneous ion collection

    International Nuclear Information System (INIS)

    Le Meur, R.; Lorin, A.

    1968-01-01

    This report describes a fission product detector with instantaneous electric collection, capable of analyzing carbon dioxide up to a pressure of 60 bars and at a temperature of 200 C. In contrast to delayed collection detectors, this apparatus makes it possible to collect rubidium and cesium ions as soon as they are formed; this avoids losses due to recombination. The detector has been tested with a fission product source made up of a uranium oxide sample subjected to a neutron flux. The activity of the ions collected as a function of an electric field has been measured for different parameters: pressure, temperature, CO 2 gas flow rate, and the volume of the ion-formation chamber. The sensitivity of this apparatus is compared to that of other fission product detectors. For a low volume-flow rate, e.g. 100 cm 3 sec -1 , its sensitivity for krypton 88 is better than that of a delayed collection detector. An apparatus of this type could be used as a can rupture detector on a reactor with a large number of channels, with a low gas sampling rate per channel. The equipment will be included in the can rupture detector installations in the Fessenheim reactor. (authors) [fr

  8. Near field studies within the SKB 91 Project

    International Nuclear Information System (INIS)

    Widen, H.; Bengtsson, A.; Grundfelt, B.

    1991-06-01

    A number of near field studies was preformed during the early part of the SKB91 project. This report summaries this work and includes: - Simulation of the steady release from the near field with different time for canister penetration. - Simulation of the release from a repository with 5300 canisters with different penetration times for different parts of the canisters due to manufacturing error, glaciations, inner over pressure and corrosion. - Calculation with a numerical model of the transient release of the instantaneously dissolvable species and the effect of different boundary conditions both at the canister/bentonite and the bentonite/rock interface. - Description of the implementation of a resistance network model for the calculation of the steady state transport resistances in the different pathways from the canisters. - Comparison of two analytical models for the calculation of the release of the instantaneously dissolvable species. (au)

  9. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  10. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  11. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    Science.gov (United States)

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  12. Behavior of pollutants from the instantaneous sources in mine airways

    Energy Technology Data Exchange (ETDEWEB)

    Abuel-Kassem, M. [Assiut Univ. (Egypt)

    1993-12-31

    The air quality management of roadway tunnels is an important task; that is the roadway tunnels either natural or mechanical ventilation is required to keep air quality within the acceptable levels for pollutants. The main objective of this paper is to study the behavior of pollutants from the blasting operation during tunneling as an instantaneous source in mines based on the diffusion modeling. Diffusion models are modified and applied to estimate the concentration of pollutants using a computer program. (Author). 9 refs., 3 figs., 2 tabs.

  13. Past, Current and Future of the Advanced Microwave Scanning Radiometer (AMSR) Series

    Science.gov (United States)

    Kachi, M.; Maeda, T.; Ono, N.; Tomii, N.; Kasahara, M.; Mokuno, M.; Sobue, S.

    2017-12-01

    Due to its penetrating capability, passive microwave remote sensing provides all-weather observation of the Earth's surface through clouds, and has bulk sensitivity to atmospheric column and some land surface layers such as snow. The first AMSR series instrument on orbit was the AMSR for EOS (AMSR-E) provided to NASA's Aqua satellite launched in May 2002. AMSR-E had 1.6-m diameter antenna and 14 channels with V and H polarizations including surface-sensitive C-band (6.9-GHz) channels those were not available in previous passive microwave imagers. Instant Field Of View (IFOV) of AMSR-E is largely improved due to antenna size. This IFOV improvement mainly contribute to C-band channel since its IFOV is larger (75x43-km) even though bigger antenna size. The latest AMSR series instrument on orbit, AMSR-2, was launched in May 2012 on board the Global Change Observation Mission - Water (GCOM-W) satellite. The GCOM-W satellite was injected to the A-train orbit to keep observation continuities to AMSR-E and seek synergies with the other A-train constellation satellites. Antenna size of AMSR-2 is 2.0-m diameter with 16 channels. Channel set is almost identical to that of AMSR-E, but new 7.3-GHz channels are added along with previous 6.9-GHz channels to mitigate influence of Radio Frequency Interferences (RFIs) in brightness temperature. IFOV of AMSR-2 is also improved from AMSR-E due to larger antenna size. AMSR-2 has completed its 5-year designed mission life in May 2017, and continues scientific observations without any serious problem. Besides the 10-month gaps between AMSR-E and AMSR2, the AMSR series provide long-term high-resolution and highly-frequent global observation of water-related parameters over 15-year. Upon the success of AMSR series, we have started discussion of possible follow-on mission with various user communities as well as expansion of application of AMSR-2 and follow-on data in new fields. Highest priority from users is gap-less, in terms of both

  14. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  15. Analysis of the pressure fields in a swirling annular jet flow

    Science.gov (United States)

    Percin, M.; Vanierschot, M.; Oudheusden, B. W. van

    2017-12-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional time-resolved pressure fields using the governing flow equations. Both time-averaged and instantaneous flow structures are discussed, including a characterization of the first- and second-order statistical moments. A Reynolds decomposition of the flow field shows that the time-averaged flow is axisymmetric with regions of high anisotropic Reynolds stresses. Two recirculation zones exist that are surrounded by regions of very intense mixing. Notwithstanding the axisymmetric nature of the time-averaged flow, a non-axisymmetric structure of the instantaneous flow is revealed, comprising a central vortex core which breaks up into a precessing vortex core. The winding sense of this helical structure is opposite to the swirl direction and it is wrapped around the vortex breakdown bubble. It precesses around the central axis of the flow at a frequency corresponding to a Strouhal number of 0.27. The precessing vortex core is associated with a low-pressure region along the central axis of the jet and the maximum pressure fluctuations occur upstream of the vortex breakdown location, where the azimuthal velocity component also reaches peak values as a result of the inward motion of the fluid and the conservation of angular momentum. The POD analysis of the pressure fields suggests that the precessing helical vortex formation is the dominant coherent structure in the instantaneous flow.

  16. Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach

    Science.gov (United States)

    Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.

    2018-05-01

    Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.

  17. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS Soil Moisture: Retrieval Ensembles

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2015-12-01

    Full Text Available Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV bias correction method for Soil Moisture and Ocean Salinity (SMOS soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration. In contrast, the existing method of Cumulative Distribution Function (CDF matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area and Niger (dry and sandy bare soils, it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

  18. A new design of SMES coil for bridging instantaneous voltage dips

    International Nuclear Information System (INIS)

    Kurusu, T; Ono, M; Ogata, H; Tosaka, T; Senda, I; Nomura, S

    2006-01-01

    This paper describes a new design concept of SMES coil for bridging instantaneous dips and some experimental results. The technical key point of this work is the design of a NbTi coil composed of a monolith NbTi/Cu wire for DC application. In order to cover the disadvantages of the monolith wire, some solutions have been proposed and tested using a fullscale test coil. Experimental results show the validity of the design concept of the SMES coil

  19. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  20. Radiative properties of a plasma moving across a magnetic field. I: Theoretical analysis

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.; Miller, R.H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a two-dimensional model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. The magnitude of the radiation field and the amount of plasma momentum and energy carried away by and stored instantaneously in the fields are discussed only qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws for the magnitude of the fields and the slowing down of the plasma cloud are presented in a companion manuscript

  1. THRESHOLD DETERMINATION FOR LOCAL INSTANTANEOUS SEA SURFACE HEIGHT DERIVATION WITH ICEBRIDGE DATA IN BEAUFORT SEA

    Directory of Open Access Journals (Sweden)

    C. Zhu

    2018-05-01

    Full Text Available The NASA Operation IceBridge (OIB mission is the largest program in the Earth’s polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA’s ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and −0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.

  2. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  3. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  4. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  5. Gradient for the acoustic VTI full waveform inversion based on the instantaneous traveltime sensitivity kernels

    KAUST Repository

    Djebbi, Ramzi

    2015-08-19

    The instantaneous traveltime is able to reduce the non-linearity of full waveform inversion (FWI) that originates from the wrapping of the phase. However, the adjoint state method in this case requires a total of 5 modeling calculations to compute the gradient. Also, considering the larger modeling cost for anisotropic wavefield extrapolation and the necessity to use a line-search algorithm to estimate a step length that depends on the parameters scale, we propose to calculate the gradient based on the instantaneous traveltime sensitivity kernels. We, specifically, use the sensitivity kernels computed using dynamic ray-tracing to build the gradient. The resulting update is computed using a matrix decomposition and accordingly the computational cost is reduced. We consider a simple example where an anomaly is embedded into a constant background medium and we compute the update for the VTI wave equation parameterized using vh, η and ε.

  6. Gradient for the acoustic VTI full waveform inversion based on the instantaneous traveltime sensitivity kernels

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2015-01-01

    The instantaneous traveltime is able to reduce the non-linearity of full waveform inversion (FWI) that originates from the wrapping of the phase. However, the adjoint state method in this case requires a total of 5 modeling calculations to compute the gradient. Also, considering the larger modeling cost for anisotropic wavefield extrapolation and the necessity to use a line-search algorithm to estimate a step length that depends on the parameters scale, we propose to calculate the gradient based on the instantaneous traveltime sensitivity kernels. We, specifically, use the sensitivity kernels computed using dynamic ray-tracing to build the gradient. The resulting update is computed using a matrix decomposition and accordingly the computational cost is reduced. We consider a simple example where an anomaly is embedded into a constant background medium and we compute the update for the VTI wave equation parameterized using vh, η and ε.

  7. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  8. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    Science.gov (United States)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  9. Discrimination of Inrush from Fault Currents in Power Transformers Based on Equivalent Instantaneous Inductance Technique Coupled with Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Jamali

    2011-09-01

    Full Text Available The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equivalent instantaneous inductance (EII technique is used to discriminate inrush current from fault currents. For this purpose, a three-phase power transformer has been simulated in Maxwell software that is based on finite elements. This three-phase power transformer has been used to simulate different conditions. Then, the results have been used as inputs in MATLAB program to implement the equivalent instantaneous inductance technique. The results show that in the case of inrush current, the equivalent instantaneous inductance has a drastic variation, while it is almost constant in the cases of fault conditions.

  10. Clock-distribution with instantaneous synchronisation for 160 Gbit/s optical time-domain multiplexed packet transmission

    NARCIS (Netherlands)

    Gomez-Agis, F.; Calabretta, N.; Albores Mejia, A.; Dorren, H.J.S.

    2010-01-01

    We demonstrate for the first time, to our knowledge, a clock-distribution method for ultra-high-speed optical time-domain multiplexed systems data packets that provides instantaneous synchronization, fast locking/unlocking times, and a highly stable bursty clock, enabling error-free operation of 160

  11. The measurement of localised fields in different iron compounds by means of the Moessbauer effect

    International Nuclear Information System (INIS)

    Solomon, I.

    1961-01-01

    We have observed the Moessbauer effect in substances: a) which have a zero local field; b) which have an instantaneous local field value which is not zero but which, as a result of rapid fluctuations, has a field which averages zero, c) such as garnets for which the values of the local field have been measured for the two sites. (author) [fr

  12. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-04-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  13. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou; Zhu, Quanyan; Başar, Tamer

    2014-01-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  14. Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass

    Directory of Open Access Journals (Sweden)

    E. Delogu

    2012-08-01

    Full Text Available Evapotranspiration estimates can be derived from remote sensing data and ancillary, mostly meterorological, information. For this purpose, two types of methods are classically used: the first type estimates a potential evapotranspiration rate from vegetation indices, and adjusts this rate according to water availability derived from either a surface temperature index or a first guess obtained from a rough estimate of the water budget, while the second family of methods relies on the link between the surface temperature and the latent heat flux through the surface energy budget. The latter provides an instantaneous estimate at the time of satellite overpass. In order to compute daily evapotranspiration, one needs an extrapolation algorithm. Since no image is acquired during cloudy conditions, these methods can only be applied during clear sky days. In order to derive seasonal evapotranspiration, one needs an interpolation method. Two combined interpolation/extrapolation methods based on the self preservation of evaporative fraction and the stress factor are compared to reconstruct seasonal evapotranspiration from instantaneous measurements acquired in clear sky conditions. Those measurements are taken from instantaneous latent heat flux from 11 datasets in Southern France and Morocco. Results show that both methods have comparable performances with a clear advantage for the evaporative fraction for datasets with several water stress events. Both interpolation algorithms tend to underestimate evapotranspiration due to the energy limiting conditions that prevail during cloudy days. Taking into account the diurnal variations of the evaporative fraction according to an empirical relationship derived from a previous study improved the performance of the extrapolation algorithm and therefore the retrieval of the seasonal evapotranspiration for all but one datasets.

  15. Instantaneous exposure to nuclear medicine staff involved in PET-CT imaging in developing countries. Experience from a tertiary care centre in India

    International Nuclear Information System (INIS)

    Kumar, S.; Sharma, P.; Shamim, S.A.; Malhotra, A.; Kumar, R.; Pandey, A.K.

    2012-01-01

    The purpose of this study was to assess the radiation exposure to nuclear medicine staff at a positron emission tomography-computed tomography (PET-CT) centre with high patient throughput. This prospective study included 70 adult patients who underwent 18F-fluorodeoxyglucose (FDG) PET-CT for their clinical indications. The patients' actual injected FDG activity was calculated by subtracting the syringe activity (post-injection) from the loaded syringe activity (pre-injection). The instantaneous exposure to nuclear medicine staff involved in PET-CT imaging was measured. The instantaneous dose rate of the physicians was recorded during FDG injection and that of the technologist was recorded during the patient's positioning, respectively, at 1.0-m distance from the anterior chest using a calibrated portable gamma-ray survey meter. The average FDG activity injected in adult patients was 308.5 MBq (range 173.1-438.8 MBq). The instantaneous exposure to the nuclear medicine (NM) physician during the injection time was 31 μSv/h (14-60 μSv/h). The instantaneous exposure to the NM technologist during positioning was 18 (10-34) μSv/h. With an average of 10 patients per day, the quarterly dose to physicians was 628 μSv and to technologists 182 μSv for 300 patients. The extrapolated annual dose was 2.5 mSv for physicians and 0.7 mSv for technologists, respectively. Instantaneous exposure of nuclear medicine staff involved in PET-CT imaging at a busy tertiary care centre is within permissible limits of the International Commission on Radiological Protection (ICRP-103) (total 50 mSv in a single year) and atomic energy regulatory board (total 30 mSv in a single year). (author)

  16. A data processing method for determining instantaneous angular speed and acceleration of crankshaft in an aircraft engine-propeller system using a magnetic encoder

    Science.gov (United States)

    Yu, S. D.; Zhang, X.

    2010-05-01

    This paper presents a method for determining the instantaneous angular speed and instantaneous angular acceleration of the crankshaft in a reciprocating engine and propeller dynamical system from electrical pulse signals generated by a magnetic encoder. The method is based on accurate determination of the measured global mean angular speed and precise values of times when leading edges of individual magnetic teeth pass through the magnetic sensor. Under a steady-state operating condition, a discrete deviation time vs. shaft rotational angle series of uniform interval is obtained and used for accurate determination of the crankshaft speed and acceleration. The proposed method for identifying sub- and super-harmonic oscillations in the instantaneous angular speeds and accelerations is new and efficient. Experiments were carried out on a three-cylinder four-stroke Saito 450R model aircraft engine and a Solo propeller in connection with a 64-teeth Admotec KL2202 magnetic encoder and an HS-4 data acquisition system. Comparisons with an independent data processing scheme indicate that the proposed method yields noise-free instantaneous angular speeds and is superior to the finite difference based methods commonly used in the literature.

  17. Spatially selective 2D RF inner field of view (iFOV diffusion kurtosis imaging (DKI of the pediatric spinal cord

    Directory of Open Access Journals (Sweden)

    Chris J. Conklin

    2016-01-01

    Full Text Available Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS; namely in the form of Diffusion Weighted Imaging (DWI and Diffusion Tensor Imaging (DTI. While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI:5. Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01 and radial kurtosis (p < 0.01 between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation

  18. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  19. Experimental investigation of flow field in a laboratory-scale compressor

    Directory of Open Access Journals (Sweden)

    Hongwei Ma

    2017-02-01

    Full Text Available The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation (LES. Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry (SPIV. The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV, and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phases according to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the

  20. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  1. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    Science.gov (United States)

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  2. The transient response of a quantum wave to an instantaneous potential step switching

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, F [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain); Cruz, H [Departamento de Fisica Basica, Universidad de La Laguna (Spain); Muga, J G [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain)

    2002-12-06

    The transient response of a stationary state of a quantum particle in a step potential to an instantaneous change in the step height (a simplified model for a sudden bias switch in an electronic semiconductor device) is solved exactly by means of a semianalytical expression. The characteristic times for the transient process up to the new stationary state are identified. A comparison is made between the exact results and an approximate method.

  3. Enhancing time resolution by stabilized inverse filter and Q estimated on instantaneous spectra

    OpenAIRE

    Corrales, Álvaro; Cabrera, Francisco; Montes, Luis

    2014-01-01

    Physical phenomena, such as attenuation of high frequency components and velocity dispersion, deteriorate seismic images. To enhance seismic resolution, Q filtering is usually applied, where the accurate estimation of Q is the core of this approach. The Matching Pursuit (MP) approach is an instantaneous spectral analysis method that overcomes windowing problems caused by decomposing a seismic trace, providing a frequency spectrum for each time sample of the trace. By changing variables, the s...

  4. Model-driven requirements engineering (MDRE) for real-time ultra-wide instantaneous bandwidth signal simulation

    Science.gov (United States)

    Chang, Daniel Y.; Rowe, Neil C.

    2013-05-01

    While conducting a cutting-edge research in a specific domain, we realize that (1) requirements clarity and correctness are crucial to our success [1], (2) hardware is hard to change, most work is in software requirements development, coding and testing [2], (3) requirements are constantly changing, so that configurability, reusability, scalability, adaptability, modularity and testability are important non-functional attributes [3], (4) cross-domain knowledge is necessary for complex systems [4], and (5) if our research is successful, the results could be applied to other domains with similar problems. In this paper, we propose to use model-driven requirements engineering (MDRE) to model and guide our requirements/development, since models are easy to understand, execute, and modify. The domain for our research is Electronic Warfare (EW) real-time ultra-wide instantaneous bandwidth (IBW1) signal simulation. The proposed four MDRE models are (1) Switch-and-Filter architecture, (2) multiple parallel data bit streams alignment, (3) post-ADC and pre-DAC bits re-mapping, and (4) Discrete Fourier Transform (DFT) filter bank. This research is unique since the instantaneous bandwidth we are dealing with is in gigahertz range instead of conventional megahertz.

  5. Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate

    Directory of Open Access Journals (Sweden)

    D. T. Do

    2017-09-01

    Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.

  6. Instantaneous chemical profiles of banknotes by ambient mass spectrometry.

    Science.gov (United States)

    Eberlin, Livia S; Haddad, Renato; Sarabia Neto, Ramon C; Cosso, Ricardo G; Maia, Denison R J; Maldaner, Adriano O; Zacca, Jorge Jardim; Sanvido, Gustavo B; Romão, Wanderson; Vaz, Boniek G; Ifa, Demian R; Dill, Allison; Cooks, R Graham; Eberlin, Marcos N

    2010-10-01

    Using two desorption/ionization techniques (DESI and EASI) and Brazilian real, US$ dollar, and euro bills as proof-of-principle techniques and samples, direct analysis by ambient mass spectrometry is shown to function as an instantaneous, reproducible, and non-destructive method for chemical analysis of banknotes. Characteristic chemical profiles were observed for the authentic bills and for the counterfeit bills made using different printing processes (inkjet, laserjet, phaser and off-set printers). Detection of real-world counterfeit bills and identification of the counterfeiting method has also been demonstrated. Chemically selective 2D imaging of banknotes has also been used to confirm counterfeiting. The nature of some key diagnostic ions has also been investigated via high accuracy FTMS measurements. The general applicability of ambient MS analysis for anti-counterfeiting strategies particularly via the use of "invisible ink" markers is discussed.

  7. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  8. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  9. Order Tracking Based on Robust Peak Search Instantaneous Frequency Estimation

    International Nuclear Information System (INIS)

    Gao, Y; Guo, Y; Chi, Y L; Qin, S R

    2006-01-01

    Order tracking plays an important role in non-stationary vibration analysis of rotating machinery, especially to run-up or coast down. An instantaneous frequency estimation (IFE) based order tracking of rotating machinery is introduced. In which, a peak search algorithms of spectrogram of time-frequency analysis is employed to obtain IFE of vibrations. An improvement to peak search is proposed, which can avoid strong non-order components or noises disturbing to the peak search work. Compared with traditional methods of order tracking, IFE based order tracking is simplified in application and only software depended. Testing testify the validity of the method. This method is an effective supplement to traditional methods, and the application in condition monitoring and diagnosis of rotating machinery is imaginable

  10. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan

    2015-06-01

    Receive antenna selection is a low complexity scheme to reap diversity benefits.We analyze the performance of a receive antenna selection scheme in spectrum sharing systems where the antenna that results in highest signal-to-interference plus noise ratio at the secondary receiver is selected to improve the performance of secondary transmission. Exact and asymptotic behaviours of the received SINR are derived for both general and interference limited scenarios over general fading environment. These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  11. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  12. Instantaneous emission modeling with GPS-based vehicle activity data: results of diesel trucks for one-day trips

    NARCIS (Netherlands)

    Feng, T.; Arentze, T.A.; Timmermans, H.J.P.

    2011-01-01

    This paper presents an instantaneous analysis for traffic emissions using GPS-based vehicle activity data. The different driving conditions, including real-time and average speed, short-time stops and long-time stops, acceleration and deceleration, etc., are extracted from GPS data. The hot

  13. Efect of Pressure-Drop Rate on the Isolation of Cananga Oil using Instantaneous Controlled Pressure-Drop Process.

    Czech Academy of Sciences Publication Activity Database

    Kristiawan, M.; Sobolík, Václav; Al-Haddad, M.; Allaf, K.

    2008-01-01

    Roč. 47, 1 (2008) , s. 66-75 ISSN 0255-2701 Institutional research plan: CEZ:AV0Z40720504 Keywords : cananga oil * essential oil isolation * instantaneous controlled pressure drop (DIC) Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2008

  14. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet

    OpenAIRE

    上田, 政人; 三宅, 崇太郎; 長谷川, 寛幸; 平野, 義鎭; Ueda, Masahito; Miyake, Sotaro; Hasegawa, Hiroyuki; Hirano, Yoshiyasu

    2012-01-01

    A modified self-piercing rivet (SPR) has been proposed to mechanically fasten CFRP laminates. The modified SPR consists of a rivet body and two flat washers. The two flat washers were used to suppress delamination in the CFRP laminates at the point of piercing. The advantages of the modified SPR for fastening CFRP laminates are instantaneous process time and low cost. Any pretreatments such as surface treatments or hole drilling are not required. In this study, the viability of the modified S...

  15. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.

    Science.gov (United States)

    Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G

    2017-02-17

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  16. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  17. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    Directory of Open Access Journals (Sweden)

    Sekhar S Chandra

    2004-01-01

    Full Text Available We address the problem of estimating instantaneous frequency (IF of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE. The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD-based IF estimators for different signal-to-noise ratio (SNR.

  18. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  19. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  20. Study of instantaneous unsteady heat transfer in a rapid compression-expansion machine using zero dimensional k- ε turbulence model

    International Nuclear Information System (INIS)

    Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.

    2003-01-01

    In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios

  1. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    Science.gov (United States)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  2. Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments

    Science.gov (United States)

    Tsao, Yu-Chung

    2016-02-01

    This study models a joint location, inventory and preservation decision-making problem for non-instantaneous deteriorating items under delay in payments. An outside supplier provides a credit period to the wholesaler which has a distribution system with distribution centres (DCs). The non-instantaneous deteriorating means no deterioration occurs in the earlier stage, which is very useful for items such as fresh food and fruits. This paper also considers that the deteriorating rate will decrease and the reservation cost will increase as the preservation effort increases. Therefore, how much preservation effort should be made is a crucial decision. The objective of this paper is to determine the optimal locations and number of DCs, the optimal replenishment cycle time at DCs, and the optimal preservation effort simultaneously such that the total network profit is maximised. The problem is formulated as piecewise nonlinear functions and has three different cases. Algorithms based on piecewise nonlinear optimisation are provided to solve the joint location and inventory problem for all cases. Computational analysis illustrates the solution procedures and the impacts of the related parameters on decisions and profits. The results of this study can serve as references for business managers or administrators.

  3. Quantifying Uncertainty in Instantaneous Orbital Data Products of TRMM over Indian Subcontinent

    Science.gov (United States)

    Jayaluxmi, I.; Nagesh, D.

    2013-12-01

    In the last 20 years, microwave radiometers have taken satellite images of earth's weather proving to be a valuable tool for quantitative estimation of precipitation from space. However, along with the widespread acceptance of microwave based precipitation products, it has also been recognized that they contain large uncertainties. While most of the uncertainty evaluation studies focus on the accuracy of rainfall accumulated over time (e.g., season/year), evaluation of instantaneous rainfall intensities from satellite orbital data products are relatively rare. These instantaneous products are known to potentially cause large uncertainties during real time flood forecasting studies at the watershed scale. Especially over land regions, where the highly varying land surface emissivity offer a myriad of complications hindering accurate rainfall estimation. The error components of orbital data products also tend to interact nonlinearly with hydrologic modeling uncertainty. Keeping these in mind, the present study fosters the development of uncertainty analysis using instantaneous satellite orbital data products (version 7 of 1B11, 2A25, 2A23) derived from the passive and active sensors onboard Tropical Rainfall Measuring Mission (TRMM) satellite, namely TRMM microwave imager (TMI) and Precipitation Radar (PR). The study utilizes 11 years of orbital data from 2002 to 2012 over the Indian subcontinent and examines the influence of various error sources on the convective and stratiform precipitation types. Analysis conducted over the land regions of India investigates three sources of uncertainty in detail. These include 1) Errors due to improper delineation of rainfall signature within microwave footprint (rain/no rain classification), 2) Uncertainty offered by the transfer function linking rainfall with TMI low frequency channels and 3) Sampling errors owing to the narrow swath and infrequent visits of TRMM sensors. Case study results obtained during the Indian summer

  4. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    Science.gov (United States)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  5. Use of instantaneous streamflow measurements to improve regression estimates of index flow for the summer month of lowest streamflow in Michigan

    Science.gov (United States)

    Holtschlag, David J.

    2011-01-01

    In Michigan, index flow Q50 is a streamflow characteristic defined as the minimum of median flows for July, August, and September. The state of Michigan uses index flow estimates to help regulate large (greater than 100,000 gallons per day) water withdrawals to prevent adverse effects on characteristic fish populations. At sites where long-term streamgages are located, index flows are computed directly from continuous streamflow records as GageQ50. In an earlier study, a multiple-regression equation was developed to estimate index flows IndxQ50 at ungaged sites. The index equation explains about 94 percent of the variability of index flows at 147 (index) streamgages by use of six explanatory variables describing soil type, aquifer transmissivity, land cover, and precipitation characteristics. This report extends the results of the previous study, by use of Monte Carlo simulations, to evaluate alternative flow estimators, DiscQ50, IntgQ50, SiteQ50, and AugmQ50. The Monte Carlo simulations treated each of the available index streamgages, in turn, as a miscellaneous site where streamflow conditions are described by one or more instantaneous measurements of flow. In the simulations, instantaneous flows were approximated by daily mean flows at the corresponding site. All estimators use information that can be obtained from instantaneous flow measurements and contemporaneous daily mean flow data from nearby long-term streamgages. The efficacy of these estimators was evaluated over a set of measurement intensities in which the number of simulated instantaneous flow measurements ranged from 1 to 100 at a site. The discrete measurement estimator DiscQ50 is based on a simple linear regression developed between information on daily mean flows at five or more streamgages near the miscellaneous site and their corresponding GageQ50 index flows. The regression relation then was used to compute a DiscQ50 estimate at the miscellaneous site by use of the simulated instantaneous flow

  6. Instantaneous global nitrous oxide photochemical rates

    International Nuclear Information System (INIS)

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  7. Isolation of Indonesian Cananga Oil by Instantaneous Controled Pressure Drop: Influence of Processing Parameters on Compound Yields.

    Czech Academy of Sciences Publication Activity Database

    Kristiawan, M.; Sobolík, Václav; Al Haddad, M.; Allaf, K.

    2007-01-01

    Roč. 40, 11 (2007) , s. 1021-1029 ISSN 0021-9592. [IWPI2006. Kobe, 15.10.2006-18.10.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : cananga oil * instantaneous controlled pressure Drop * steam distillation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.594, year: 2007

  8. Fladis field experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Ott, S.

    1996-06-01

    The objective of the Fladis field experiments was to investigate dispersion of liquefied ammonia with equal attention to the near-source aerosol jet, the intermediate heavy gas dispersion phase, and the downstream transition to passive dispersion. The present report presents the sensor layout and gives an overview of the available experimental data. This is done for observations in a fixed frame of reference and relative to the instantaneous plume centre line. The moving frame statistics are expected to compare better with wind tunnel simulations and numerical models which do not include plume meandering. The plume mass flux is estimated from the observed plume profiles and compared to the release rate. Average surface concentrations are found with a special interpolation method, and this is used to study how the averaging period affects the plume footprint. The instantaneous plume is non-Gaussian, and this is demonstrated by Lidar measurements in the far field and thermocouple measurements in the near-source jet. Probability functions and a spatial correlation for the concentration are found. The heat budget of the plume shows signs of heat flux from the ground. The composition of the liquid aerosols was observed to change from almost pure ammonia to almost pure water. A new two-dimensional `shallow layer` type model SLAM is developed, and an existing `box` type model for heavy-gas dispersion on a uniform terrain is generalized. (au) 3 tabs., 19 ills., 29 refs.

  9. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  10. 3D instantaneous dynamics modeling of present-day Aegean subduction

    Science.gov (United States)

    Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper

    2017-04-01

    To study the sensitivity of surface observables to subduction and mantle flow, i.e. the coupling of crustal tectonics and the underlying mantle dynamics, we have developed 3D numerical models of the instantaneous crust-mantle dynamics of the eastern Mediterranean. These models comprise both a realistic crust-lithosphere system and the underlying mantle. The focus for this presentation lies on the regional crustal flow response to the present-day Aegean subduction system. Our curved model domain measures 40°x40°x2900km with the Aegean subduction system taken as the geographic center. Model set-ups are based on geological and geophysical data of the eastern Mediterranean. We first create a 3D synthetic geometry of the crust-lithosphere system in a stand-alone program, including the present-day configuration of the plates in the region and crust and lithosphere thickness variations abstracted from Moho and LAB maps (Faccenna et al., 2014, Carafa et al., 2015). In addition we construct the geometry of the Aegean slab from a seismic tomography model (UU-P07; Amaru, 2007) and earthquake hypocenters (NCEDC, 2014). Geometries are then imported into the finite element code ASPECT (Kronbichler et al., 2012) using specially designed plugins. The mantle initial temperature conditions can include deviations from an adiabatic profile obtained from conversion of the UU-P07 seismic velocity anomalies to temperature anomalies using a depth-dependent scaling (Karato, 2008). We model compressible mantle flow for which material properties are obtained from thermodynamics P-T lookup-tables (Perple_X, Connolly, 2009) in combination with nonlinear viscoplastic rheology laws. Sublithospheric flow through the lateral model boundaries is left free via open boundary conditions (Chertova et al., 2012), while plate motion is prescribed at the model sides in terms of relative as well as absolute plate motion velocities (e.g. Doubrovine et al., 2012). So far, we used a free-slip surface, but

  11. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  12. Characterization of depressive States in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Gentili, Claudio; Lanata, Antonio; Scilingo, Enzo Pasquale; Barbieri, Riccardo

    2015-01-01

    The analysis of cognitive and autonomic responses to emotionally relevant stimuli could provide a viable solution for the automatic recognition of different mood states, both in normal and pathological conditions. In this study, we present a methodological application describing a novel system based on wearable textile technology and instantaneous nonlinear heart rate variability assessment, able to characterize the autonomic status of bipolar patients by considering only electrocardiogram recordings. As a proof of this concept, our study presents results obtained from eight bipolar patients during their normal daily activities and being elicited according to a specific emotional protocol through the presentation of emotionally relevant pictures. Linear and nonlinear features were computed using a novel point-process-based nonlinear autoregressive integrative model and compared with traditional algorithmic methods. The estimated indices were used as the input of a multilayer perceptron to discriminate the depressive from the euthymic status. Results show that our system achieves much higher accuracy than the traditional techniques. Moreover, the inclusion of instantaneous higher order spectra features significantly improves the accuracy in successfully recognizing depression from euthymia.

  13. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  14. Quasi-instantaneous and Long-term Deformations of High-Performance Concrete with Some Related Properties

    OpenAIRE

    Persson, Bertil

    1998-01-01

    This report outlines an experimental and numerical study on quasi-instantaneous and long-term deformations of High-Performance Concrete, HPC, with some related properties. For this purpose about two hundred small cylinders and about one thousand cubes of eight types of HPC were cast. The age at loading varied between 18h and 28 days. Other principal properties of HPC were studied up to 4 years' age. Creep deformations of the HPC were studied from 0.01 s of loading time until 5 years' ...

  15. The evolution of whole field optical diagnostics for external transonic testing

    Science.gov (United States)

    Fry, K. A.; Bryanston-Cross, P.

    1992-09-01

    The diagnostic use of quantitative laser flow visualization techniques has increased rapidly over recent years. The limitations imposed by conventional single point techniques such as laser Doppler anemometry are addressed and how they have been overcome by the development of a new family of whole field measurement techniques is demonstrated. In particular near instantaneous whole field velocity data was obtained in a relatively hostile, industrial 2.74 m x 2.44 m transonic wind tunnel (TWT) at the Aircraft Research Association (ARA). The techniques were evaluated for their suitability for making quantitative measurements in the wing/pylon region of a model wing and engine combination. Three optical diagnostic techniques were successfully developed within the context of the ARA facility. The first technique, laser light sheet (LLS), combines the operation of a pulse laser and video capture system to provide a 'real time' visualization of the flow, whereas a second pulse laser technique, Particle Image Velocimetry (PIV) can be used to make specific quantitative whole field instantaneous velocity measurements. The third method, holography, was used to produce a stored three dimensional visualization of the unsteady and shock wave features of the transonic flow in the gully region. A description is made of their installation and operation, and examples are presented of current test results.

  16. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  17. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  18. Transmit Antenna Selection for Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad

    2016-03-28

    Cognitive radio (CR) technology addresses the problem of spectrum under-utilization. In underlay CR mode, the secondary users are allowed to communicate provided that their transmission is not detrimental to primary user communication. Transmit antenna selection is one of the low-complexity methods to increase the capacity of wireless communication systems. In this article, we propose and analyze the performance benefit of a transmit antenna selection scheme for underlay secondary system that ensures the instantaneous interference caused by the secondary transmitter to the primary receiver is below a predetermined level. Closed-form expressions of the secondary link outage probability, higher order amount of fading, and ergodic capacity are derived for the proposed scheme. Monte-carlo simulations are also carried out to confirm various mathematical results presented in this article.

  19. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-01-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  20. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  1. Constraining the instantaneous aerosol influence on cloud albedo

    Energy Technology Data Exchange (ETDEWEB)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.

  2. Constraining the instantaneous aerosol influence on cloud albedo.

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d ), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  3. Contribution to development of SPNDs for instantaneous and selective measurement of different radiation fields in nuclear reactors; Contribution au developpement de collectrons pour la mesure instantanee et selective des differents champs de rayonnements en reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Blandin, Christophe [Institut National Polytechnique, 38 - Grenoble (France)

    1998-02-20

    The objective of this work was conceiving and experimentally optimizing the SPNDs (Self-Powdered Neutron Detector) able to control fast power transients in test reactors and also to cope with requirements of surveillanceand protection of EDF reactors. Thus, different SPND emitters of platinum, gadolinium, hafnium and cobalt were provided according to their nature with sheathing and stainless steel plugs as well as with zirconium over-sheathing in order to render them faster, more selective and adapted for wear checking. Special experimental devices were designed for measuring inside the Siloe reactor the promptness of the signals from SPND, on one hand, and their sensitivity to thermal and epithermal neutrons as well as to gamma rays, on the other hand. The follow-up of power transients in test reactors is ensured by the instantaneous measurement of thermal and epithermal neutron flux as well as of gamma field by means of three special SPND with gadolinium, hafnium and platinum. Also, we have defined the characteristics of a new SPND with cobalt, that delivers a current of unique neutronic origin, able to ensure the surveillance and protection of a power reactor over a period of at least six years.

  4. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  5. Time-Frequency Based Instantaneous Frequency Estimation of Sparse Signals from an Incomplete Set of Samples

    Science.gov (United States)

    2014-06-17

    100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with

  6. Hybrid Instantaneous Wave-Free Ratio–Fractional Flow Reserve versus Fractional Flow Reserve in the Real World

    Directory of Open Access Journals (Sweden)

    Kara Shuttleworth

    2017-05-01

    Full Text Available BackgroundThe instantaneous wave-free ratio (iFR is a novel method to assess the ischemic potential of coronary artery stenoses. Clinical trial data have shown that iFR has acceptable diagnostic agreement with fractional flow reserve (FFR, the reference standard for the functional assessment of coronary stenoses. This study compares iFR measurements with FFR measurements in a real world, single-center setting.Methods and resultsInstantaneous wave-free ratio and FFR were measured in 50 coronary artery lesions in 42 patients, with FFR ≤ 0.8 classified as functionally significant. An iFR-only technique, using a treatment cut-off value, iFR ≤ 0.89, provided a classification agreement of 84% with FFR ≤ 0.80. Use of a hybrid iFR–FFR technique, incorporating FFR measurement for lesions within the iFR gray zone of 0.86–0.93, would improve classification agreement with FFR to 94%, with diagnosis achieved without the need for hyperemia in 57% patients.ConclusionThis study in a real-world setting demonstrated good classification agreement between iFR and FFR. Use of a hybrid iFR–FFR technique would achieve high diagnostic accuracy while minimizing adenosine use, compared with routine FFR.

  7. MERRA 3D Analyzed State, Meteorology Instantaneous Diurnal (p-coord, 2/3x1/2L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIUNPANA or instU_3d_ana_Np data product is the MERRA Data Assimilation System 3-Dimensional instantaneous, on pressure levels, at native resolution. MERRA, or...

  8. Field assisted photoemission by silicon photocathodes

    International Nuclear Information System (INIS)

    Aboubacar, A.; Dupont, M.; El Manouni, A.; Querrou, M.; Says, L.P.

    1991-01-01

    Silicon photocathodes with arrays of tips have been prepared using microlithographic techniques. Current emission due to field effect has been measured in the case of heavy and weakly doped boron Silicon. An Argon continuous laser has been used to produce photocurrent. An instantaneous current (600 μA) with a moderate laser power (83 mW), has been produced on weakly doped photocathodes. This current corresponds to an average quantum yield (purely photoelectric) of about 1.7%, and a local current density in the range of a few 10 6 A m -2

  9. Real-time 3-dimensional fetal echocardiography with an instantaneous volume-rendered display: early description and pictorial essay.

    Science.gov (United States)

    Sklansky, Mark S; DeVore, Greggory R; Wong, Pierre C

    2004-02-01

    Random fetal motion, rapid fetal heart rates, and cumbersome processing algorithms have limited reconstructive approaches to 3-dimensional fetal cardiac imaging. Given the recent development of real-time, instantaneous volume-rendered sonographic displays of volume data, we sought to apply this technology to fetal cardiac imaging. We obtained 1 to 6 volume data sets on each of 30 fetal hearts referred for formal fetal echocardiography. Each volume data set was acquired over 2 to 8 seconds and stored on the system's hard drive. Rendered images were subsequently processed to optimize translucency, smoothing, and orientation and cropped to reveal "surgeon's eye views" of clinically relevant anatomic structures. Qualitative comparison was made with conventional fetal echocardiography for each subject. Volume-rendered displays identified all major abnormalities but failed to identify small ventricular septal defects in 2 patients. Important planes and views not visualized during the actual scans were generated with minimal processing of rendered image displays. Volume-rendered displays tended to have slightly inferior image quality compared with conventional 2-dimensional images. Real-time 3-dimensional echocardiography with instantaneous volume-rendered displays of the fetal heart represents a new approach to fetal cardiac imaging with tremendous clinical potential.

  10. Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    The instantaneous transpiration efficiency (ITE, the ratio of photosynthesis rate to transpiration) is an important variable for crops, because it ultimately affects dry mass production per unit of plant water lost to the atmosphere. The theory that stomata optimize carbon uptake per unit water used...

  11. Instantaneous and controllable integer ambiguity resolution: review and an alternative approach

    Science.gov (United States)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-11-01

    In the high-precision application of Global Navigation Satellite System (GNSS), integer ambiguity resolution is the key step to realize precise positioning and attitude determination. As the necessary part of quality control, integer aperture (IA) ambiguity resolution provides the theoretical and practical foundation for ambiguity validation. It is mainly realized by acceptance testing. Due to the constraint of correlation between ambiguities, it is impossible to realize the controlling of failure rate according to analytical formula. Hence, the fixed failure rate approach is implemented by Monte Carlo sampling. However, due to the characteristics of Monte Carlo sampling and look-up table, we have to face the problem of a large amount of time consumption if sufficient GNSS scenarios are included in the creation of look-up table. This restricts the fixed failure rate approach to be a post process approach if a look-up table is not available. Furthermore, if not enough GNSS scenarios are considered, the table may only be valid for a specific scenario or application. Besides this, the method of creating look-up table or look-up function still needs to be designed for each specific acceptance test. To overcome these problems in determination of critical values, this contribution will propose an instantaneous and CONtrollable (iCON) IA ambiguity resolution approach for the first time. The iCON approach has the following advantages: (a) critical value of acceptance test is independently determined based on the required failure rate and GNSS model without resorting to external information such as look-up table; (b) it can be realized instantaneously for most of IA estimators which have analytical probability formulas. The stronger GNSS model, the less time consumption; (c) it provides a new viewpoint to improve the research about IA estimation. To verify these conclusions, multi-frequency and multi-GNSS simulation experiments are implemented. Those results show that IA

  12. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    Science.gov (United States)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  13. Depth-averaged instantaneous currents in a tidally dominated shelf sea from glider observations

    Science.gov (United States)

    Merckelbach, Lucas

    2016-12-01

    Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a shallow tidally energetic shelf sea. For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3-5 h. The glider's dead-reckoning algorithm yields depth-averaged currents, averaged in time over each subsurface interval. Under operational conditions these averaged currents are a poor approximation of the instantaneous tidal current. In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations only. The algorithm uses a first-order Butterworth low pass filter to estimate the residual current component, and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider experiment with current data from an acoustic Doppler current profilers deployed nearby shows that the standard deviations for the east and north current components are better than 7 cm s-1 in near-real-time mode and improve to better than 6 cm s-1 in delayed mode, where the filters can be run forward and backward. In the near-real-time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm produces useful estimates of the depth-averaged currents, which can be used in (process-based) analyses in case no other source of measured current information is available.

  14. Interpretation of the instantaneous frequency of phonocardiogram signals

    Science.gov (United States)

    Rey, Alexis B.

    2005-06-01

    Short-Time Fourier transforms, Wigner-Ville distribution, and Wavelet Transforms have been commonly used when dealing with non-stationary signals, and they have been known as time-frequency distributions. Also, it is commonly intended to investigate the behaviour of phonocardiogram signals as a means of prediction some oh the pathologies of the human hart. For this, this paper aims to analyze the relationship between the instantaneous frequency of a PCG signal and the so-mentioned time-frequency distributions; three algorithms using Matlab functions have been developed: the first one, the estimation of the IF using the normalized linear moment, the second one, the estimation of the IF using the periodic first moment, and the third one, the computing of the WVD. Meanwhile, the computing of the STFT spectrogram is carried out with a Matlab function. Several simulations of the spectrogram for a set of PCG signals and the estimation of the IF are shown, and its relationship is validated through correlation. Finally, the second algorithm is a better choice because the estimation is not biased, whereas the WVD is very computing-demanding and offers no benefit since the estimation of the IF by using this TFD has an equivalent result when using the derivative of the phase of the analytic signal, which is also less computing-demanding.

  15. Immediate and 1-year chest compression quality: effect of instantaneous feedback in simulated cardiac arrest.

    Science.gov (United States)

    Griffin, Peter; Cooper, Clayton; Glick, Joshua; Terndrup, Thomas E

    2014-08-01

    Several studies have demonstrated subpar chest compression (CC) performance by trained health care professionals. The objective of this study was to determine the immediate and sustained effect of instantaneous audiovisual feedback on CC quality. A prospective, randomized, crossover study measuring the effect of audiovisual feedback training on the performance of CCs by health care providers and medical students in a simulated cardiopulmonary arrest scenario was performed. Compression rate, hand placement, depth, and recoil were collected using 60-second epochs of CC on a simulation mannequin. Data from 200 initial enrollments and 100 tested 1 year later were analyzed by evaluators using standard criterion. At initial testing, feedback trainees demonstrated significantly improved depth compliance, recoil compliance, and accuracy of hand placement. One year later, the previous year's control group now receiving feedback demonstrated immediate improvement in depth, hand placement, and rate. In the feedback group, the only statistically significant improvement from initial baseline to the baseline 1 year later was an 18% improvement in depth compliance. However, the same improvement rate was seen in the control group. Improved depth compliance performance was correlated to the number of cardiopulmonary resuscitation training sessions received external to the study. Instantaneous audiovisual feedback training on CC quality produces immediate improvements in compression rate, hand placement, as well as depth and recoil compliance. These improvements, however, are not retained 1 year later. Improved depth performance may be correlated to an increased training frequency.

  16. Intelli-Restore as an Instantaneous Approach for Reduced Data Recovery Time

    Directory of Open Access Journals (Sweden)

    Ismail Lukandu Ateya

    2012-07-01

    Full Text Available Due to the competitive and regulatory pressures and the high demands and dependence placed on data, there is need for higher data availability and a faster means of recovering the data in case it becomes corrupted or lost. Based on results provided on the reasons behind the long / high data recovery times by Kenyan SMEs this paper provides a solution that reduces the data recovery time. In order to solve the problem of high data recovery times, an instantaneous data recovery strategy based on an existing Continuous Data Protection (CDP architecture is introduced as an important component of a well-rounded backup and recovery strategy. CDP is a disk based backup solution which ensures that data is retrieved at a much faster rate during recovery. The solution presented in this paper could help organizations adopt or complement existing data recovery strategies.

  17. Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera

    Science.gov (United States)

    Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi

    2015-08-01

    A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.

  18. Instantaneous band gap collapse in VO{sub 2} caused by photocarrier doping

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Marc; Wegkamp, Daniel; Wolf, Martin; Staehler, Julia [Fritz-Haber-Institut der MPG, Berlin (Germany); Xian, Lede; Cudazzo, Pierluigi [Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); Gatti, Matteo [European Theoretical Spectroscopy Facility (ETSF) (France); Ecole Polytechnique, Palaiseau (France); McGahan, Christina L.; Marvel, Robert E.; Haglund, Richard F. [Vanderbilt Univ., Nashville, Tennessee (United States); Rubio, Angel [Fritz-Haber-Institut der MPG, Berlin (Germany); Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); MPI for the Structure and Dynamics of Matter, Hamburg (Germany)

    2015-07-01

    We have investigated the controversially discussed mechanism of the insulator-to-metal transition (IMT) in VO{sub 2} by means of femtosecond time-resolved photoelectron spectroscopy (trPES). Our data show that photoexcitation transforms insulating monoclinic VO{sub 2} quasi-instantaneously into a metal without an 80 fs structural bottleneck for the photoinduced electronic phase transition. First-principles many-body perturbation theory calculations reveal an ultrahigh sensitivity of the VO{sub 2} band gap to variations of the dynamically screened Coulomb interaction thus supporting the fully electronically driven isostructural IMT indicated by our trPES results. We conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

  19. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  20. Spectral Analysis of Instantaneous Power in Single-phase and Three-phase Systems with Use of p-q-r Theory

    DEFF Research Database (Denmark)

    Kim, Hyosung; Blaabjerg, Frede; Bak-Jensen, Birgitte

    2002-01-01

    This paper proposes a novel power compensation algorithm in three-phase four-wire systems by using p-q-r theory. The p-q-r theory is compared with two previous instantaneous power theories, p-q theory and cross-vector theory. The p-q-r theory provides two-degrees of freedom to control the system...

  1. Sound field reconstruction using acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2012-01-01

    When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction...... the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized...

  2. Instantaneous 3D EEG Signal Analysis Based on Empirical Mode Decomposition and the Hilbert–Huang Transform Applied to Depth of Anaesthesia

    Directory of Open Access Journals (Sweden)

    Mu-Tzu Shih

    2015-02-01

    Full Text Available Depth of anaesthesia (DoA is an important measure for assessing the degree to which the central nervous system of a patient is depressed by a general anaesthetic agent, depending on the potency and concentration with which anaesthesia is administered during surgery. We can monitor the DoA by observing the patient’s electroencephalography (EEG signals during the surgical procedure. Typically high frequency EEG signals indicates the patient is conscious, while low frequency signals mean the patient is in a general anaesthetic state. If the anaesthetist is able to observe the instantaneous frequency changes of the patient’s EEG signals during surgery this can help to better regulate and monitor DoA, reducing surgical and post-operative risks. This paper describes an approach towards the development of a 3D real-time visualization application which can show the instantaneous frequency and instantaneous amplitude of EEG simultaneously by using empirical mode decomposition (EMD and the Hilbert–Huang transform (HHT. HHT uses the EMD method to decompose a signal into so-called intrinsic mode functions (IMFs. The Hilbert spectral analysis method is then used to obtain instantaneous frequency data. The HHT provides a new method of analyzing non-stationary and nonlinear time series data. We investigate this approach by analyzing EEG data collected from patients undergoing surgical procedures. The results show that the EEG differences between three distinct surgical stages computed by using sample entropy (SampEn are consistent with the expected differences between these stages based on the bispectral index (BIS, which has been shown to be quantifiable measure of the effect of anaesthetics on the central nervous system. Also, the proposed filtering approach is more effective compared to the standard filtering method in filtering out signal noise resulting in more consistent results than those provided by the BIS. The proposed approach is therefore

  3. Simultaneous Characterization of Instantaneous Young’s Modulus and Specific Membrane Capacitance of Single Cells Using a Microfluidic System

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-01-01

    Full Text Available This paper presents a microfluidics-based approach capable of continuously characterizing instantaneous Young’s modulus (Einstantaneous and specific membrane capacitance (Cspecific membrane of suspended single cells. In this method, cells were aspirated through a constriction channel while the cellular entry process into the constriction channel was recorded using a high speed camera and the impedance profiles at two frequencies (1 kHz and 100 kHz were simultaneously measured by a lock-in amplifier. Numerical simulations were conducted to model cellular entry process into the constriction channel, focusing on two key parameters: instantaneous aspiration length (Linstantaneous and transitional aspiration length (Ltransitional, which was further translated to Einstantaneous. An equivalent distribution circuit model for a cell travelling in the constriction channel was used to determine Cspecific membrane. A non-small-cell lung cancer cell line 95C (n = 354 was used to evaluate this technique, producing Einstantaneous of 2.96 ± 0.40 kPa and Cspecific membrane of 1.59 ± 0.28 μF/cm2. As a platform for continuous and simultaneous characterization of cellular Einstantaneous and Cspecific membrane, this approach can facilitate a more comprehensive understanding of cellular biophysical properties.

  4. MERRA 3D Analyzed State, Meteorology Instantaneous 6-hourly (p-coord, 2/3x1/2L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI6NPANA or inst6_3d_ana_Np data product is the MERRA Data Assimilation System 3-Dimensional instantaneous, on pressure levels, at native resolution. MERRA, or...

  5. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; Bruyne, de B. (Bernard); Davies, Justin E.; Escaned, Javier; Fearon, W.F. (William); Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, K.G. (Keith); Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, M.; Spaan, J.A.E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    Objectives This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study.

  6. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  7. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    International Nuclear Information System (INIS)

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-01-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture

  8. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  9. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; de Bruyne, Bernard; Davies, Justin E.; Escaned, Javier; Fearon, William F.; Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon-Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, Keith G.; Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study. FFR is an index of

  10. Extending the radial diffusion model of Falthammar to non-dipole background field

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  11. Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands

    Science.gov (United States)

    Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.

  12. WFIRST: Science from Deep Field Surveys

    Science.gov (United States)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  13. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  14. Exact covariant results related to the redshift, aberration and luminosity distance for arbitrary spacetime and instantaneous observers

    Energy Technology Data Exchange (ETDEWEB)

    Calvao, Maurcio O.; Lago, Bruno L.; Reis, Ribamar R.R. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: We start by emphasizing the importance of formalizing the the concepts of a (classical) relativistic instantaneous observer, observer, frame of reference (as distinct from a coordinate system or tetrad) and a local Lorentz boost. Then, as a first result, we apply their concrete definitions to obtain exact covariant expressions for the redshift and aberration, as well as for the redshift transformation under local Lorentz boosts. Afterwards we revisit the notion of luminosity distance, providing some clarifications which render its definition manifestly valid in a completely general setting (not only for comoving observers in the Robertson-Walker spacetime); therefrom we see clearly that (not unexpectedly) the luminosity distance is dependent on the instantaneous observers and we derive its corresponding exact, covariant transformation law. By Etherington's reciprocity theorem, analogous transformation laws can be obtained for other relativistic distances, e.g. the angular size one. The exact covariant transformation law for the luminosity distance has a particularly relevant application for the determination of the impact of peculiar motions on type Ia supernovae observations and data analysis, which is supposed to be one of the main systematic effects plaguing that probe. The redshift and aberration results, on the other hand, might be of interest for precise redshift drift and astrometric (e.g. Gaia) measurements, respectively. We conclude by listing some open avenues for generalizations. (author)

  15. An Instantaneous Low-Cost Point-of-Care Anemia Detection Device

    Directory of Open Access Journals (Sweden)

    Jaime Punter-Villagrasa

    2015-02-01

    Full Text Available We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 µL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%.

  16. Development of gamma-ray densitometer and measurement of void fraction in instantaneous pipe rupture under BWR LOCA condition

    International Nuclear Information System (INIS)

    Yano, Toshikazu

    1983-11-01

    In order to clarify the transient mass flow rate under the instantaneous pipe rupture condition, it is necessary to use a highly sensitive void meter. Therefore, a high-response gamma-ray densitometer was developed for the measurement of void fraction variation caused by flashing vaporization of the high-pressure and -temperature water under the instantaneous pipe rupture accident. The measurement of void fraction was performed in the pipe rupture test under the BWR LOCA condition with a 6-inch diameter pipe. Initial conditions of the water were 6.86 MPa in pressure and the saturation temperature. To prove the reliability and accuracy, a calibration test by falling acrylic void simulators and an air injection test into cold water filled in the pipe were also conducted. The following results are obtained in the pipe rupture test. (1) The cone slit method is very useful to increase the measuring accuracy. (2) It is clearly observed that the apparent increase of void fraction occurs after the rarefaction wave passes. (3) The first maximum of void fraction occurs with some delay time after break. The following minimum void fraction concurs with the maximum pressure in the pressure recovering phenomena and with the maximum blowdown thrust force. (author)

  17. Nonlinear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics.

    Science.gov (United States)

    Valenza, Gaetano; Garcia, Ronald G; Citi, Luca; Scilingo, Enzo P; Tomaz, Carlos A; Barbieri, Riccardo

    2015-01-01

    Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entropy, namely the inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous point-process sample entropy (ipSampEn), to describe a novel characterization of MD patients undergoing affective elicitation. Because these measures are built within a nonlinear point-process model, they allow for the assessment of complexity in cardiovascular dynamics at each moment in time. Heartbeat dynamics were characterized from 48 healthy controls and 48 patients with MD while emotionally elicited through either neutral or arousing audiovisual stimuli. Experimental results coming from the arousing tasks show that ipApEn measures are able to instantaneously track heartbeat complexity as well as discern between healthy subjects and MD patients. Conversely, standard heart rate variability (HRV) analysis performed in both time and frequency domains did not show any statistical significance. We conclude that measures of entropy based on nonlinear point-process models might contribute to devising useful computational tools for care in mental health.

  18. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    Science.gov (United States)

    Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal

    2017-12-01

    Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  19. Experimental Study of Instantaneous Evolution of A Scalar Gradient With Small-scale Anisotropic Injection In A 2d, Periodic Flow

    Science.gov (United States)

    Godard, G.; Paranthoen, P.; Gonzalez, M.

    Anisotropic small-scale injection of a scalar (e.g. heat) in a turbulent medium can be performed by means of a small-diameter line source as already done in a turbulent plane jet and a turbulent boundary layer (Rosset et al., Phys. Fluids 13, 3729, 2001). In such conditions, however, experiment is revealed delicate especially, as regard to temperature gradient measurements in the near-field of the source. In the present study, we get rid of previous difficulties by setting up the heated line source in a simpler flow namely, a Bénard-von Kármán street. Under this situation, owing to a phase reference, the history of the instantaneous temperature gradient can be scrutinized from the vicinity of the source. Gradient statistics (second-order mo- ments, skewness, kurtosis ...) is derived which allows us to follow the evolution of anisotropy downstream of the line source. Alignment of temperature gradient with respect to strain principal axes is also analyzed. This experiment provides a precise knowledge of the way in which a scalar gradient evolves under the combined actions of strain, vorticity and molecular diffusion.

  20. Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields

    Science.gov (United States)

    Kohlfürst, Christian

    2018-05-01

    Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.

  1. Variable field-to-normal angles in the shock foreshock boundary observed by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Greenstadt, E.W.; Mellot, M.M.

    1985-01-01

    Saturated ULF waves in the foreshock, with amplitudes comparable to the magnitude of the average field, are convected by the solar wind to the quasi-parallel shock where the average field-normal angle is less than, or about, 45 0 . Several examples from ISEE 1 and 2 magnetometer data show waves that defined local, instantaneous field-normal angles very different periodically from the average. Local geometric conditions at the nominally quasi-parallel shock varied from nearly parallel to nearly perpendicular, at the periods of typical upstream waves. Clear magnetic shock transitions occurred under temporarily quasi-perpendicular geometry

  2. Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids.

    Science.gov (United States)

    Chowdhary, J; Keyes, T

    2002-02-01

    Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.

  3. MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Instantaneous 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI1NXINT or inst1_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is Instantaneous single-level at the native...

  4. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    Science.gov (United States)

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  5. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  6. Instantaneous Absolute Values of the Geomagnetic Components D, H, and Z or X,Y, and Z at 1-minute Intervals for 50 Observatories Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The file is comprised of instantaneous absolute values of the geomagnetic components D, H, and Z or X, Y, and Z at 1-minute intervals. These values were derived...

  7. Interaction of CO2 concentrations and water stress in semiarid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition

    Science.gov (United States)

    Zhao, Na; Meng, Ping; He, Yabing; Yu, Xinxiao

    2017-07-01

    In the context of global warming attributable to the increasing levels of CO2, severe drought may be more frequent in areas that already experience chronic water shortages (semiarid areas). This necessitates research on the interactions between increased levels of CO2 and drought and their effect on plant photosynthesis. It is commonly reported that 13C fractionation occurs as CO2 gas diffuses from the atmosphere to the substomatal cavity. Few researchers have investigated 13C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO2 concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semiarid areas of northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentration ([CO2]) × five soil volumetric water content (SWC)). The δ13C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurements (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-level translocation of primary assimilates. The WUEge values in P. orientalis and Q. variabilis both decreased with increased soil moisture at 35-80 % of field capacity (FC) and increased with elevated [CO2] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEcp between the two species. Total 13C fractionation at the site of carboxylation to cytoplasm before sugar

  8. Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Casey J. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Hartmann, Dennis L. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2017-12-01

    Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.

  9. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  10. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    International Nuclear Information System (INIS)

    Inukai, S.; Sugiyama, K.; Nishimura, S.; Kinoshita, I.

    2001-01-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  11. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    Energy Technology Data Exchange (ETDEWEB)

    Inukai, S.; Sugiyama, K. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo (Japan); Nishimura, S.; Kinoshita, I. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  12. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  13. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    Directory of Open Access Journals (Sweden)

    D. Faranda

    2017-12-01

    Full Text Available Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect – or are linked to phenomena which affect – human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes – namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948–2013. The results show that (i despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii the precipitation field has a higher dimensionality; and (iii the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  14. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation.

    Science.gov (United States)

    Mi, Yan; Rui, Shaoqin; Li, Chengxiang; Yao, Chenguo; Xu, Jin; Bian, Changhao; Tang, Xuefeng

    2017-07-01

    High-frequency nanosecond-pulsed electric fields were recently introduced for tumor or abnormal tissue ablation to solve some problems of conventional electroporation. However, it is necessary to study the thermal effects of high-field-intensity nanosecond pulses inside tissues. The multi-parametric analysis performed here is based on a finite element model of liver tissue with a tumor that has been punctured by a pair of needle electrodes. The pulse voltage used in this study ranges from 1 to 4 kV, the pulse width ranges from 50 to 500 ns, and the repetition frequency is between 100 kHz and 1 MHz. The total pulse length is 100 μs, and the pulse burst repetition frequency is 1 Hz. Blood flow and metabolic heat generation have also been considered. Results indicate that the maximum instantaneous temperature at 100 µs can reach 49 °C, with a maximum instantaneous temperature at 1 s of 40 °C, and will not cause thermal damage during single pulse bursts. By parameter fitting, we can obtain maximum instantaneous temperature at 100 µs and 1 s for any parameter values. However, higher temperatures will be achieved and may cause thermal damage when multiple pulse bursts are applied. These results provide theoretical basis of pulse parameter selection for future experimental researches.

  15. Worldwide Instantaneous Values of Geomagnetic Components D, H, and Z or X, Y, and Z at 2.5-minute Intervals from 1964 to 1974

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data file is comprised of instantaneous values of the geomagnetic components D, H, and Z or X, Y, and Z at 2.5-minute intervals. These values were derived from...

  16. Effect of instantaneous rotational speed on the analysis of measured diesel engine cylinder pressure data

    International Nuclear Information System (INIS)

    Antonopoulos, Antonis K.; Hountalas, Dimitrios T.

    2012-01-01

    Highlights: ► The effect of in-cycle speed fluctuation on cylinder pressure measurement is investigated. ► A phasing error is introduced when sampling cylinder pressure at constant time intervals. ► The phasing error increases with the increase of engine load and decrease of engine speed. ► Measurement using constant sampling rate affects estimation of HRR, ignition angle etc. - Abstract: Diesel engine cylinder pressure measurements are widely used in field and lab applications to support among other control, monitoring and diagnostic applications. There are two methods to measure cylinder pressure, the use of a crank angle encoder, which guarantees pressure samples at fixed crank angles, and the use of constant time sampling rate. The last is frequently used due to its simplicity or because of practical restrictions. However, in order to perform thermodynamic calculations it is necessary to attribute a crank angle value to each measured pressure value. But if the in-cycle rotational speed fluctuates and this is neglected, an error will result in the values derived from the processing of the measured cylinder pressure. For this reason in the present work an experimental investigation is conducted on a single cylinder diesel test engine to identify the aforementioned problem. During the tests cylinder pressure and instantaneous speed were recorded using an accurate crank angle reference. These where then used to simulate the measurement of cylinder pressure digitized using a fixed time step. The comparison of the two cylinder pressure traces and the thermodynamic parameters derived from them, reveals the introduction of an error which depends on engine load and speed.

  17. Instantaneous, parameter-free methods to define a solute’s hydration shell

    International Nuclear Information System (INIS)

    Chatterjee, Anupam; Higham, Jonathan; Henchman, Richard H.

    2015-01-01

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, the nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell

  18. Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes

    International Nuclear Information System (INIS)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2012-01-01

    Traditional district heating (DH) systems are becoming uneconomic as the number of new and renovated buildings with reduced heating requirements increases. To keep DH competitive in the future, heat losses in DH networks need to be reduced. One option is to reduce the supply temperature of DH as much as possible. This requires a review and improvement of a DH network, in-house substations, and the whole domestic hot water (DHW) supply system, with the focus on user comfort, hygiene, overall cost and energy efficiency. This paper describes some practical approaches to the implementation of low-temperature district heating (LTDH) with an entry-to-substation temperature around 50 °C. To this end we developed a numerical model for an instantaneous LTDH substation that takes into consideration the effect of service pipes. The model has been verified and can be used for the further optimization of the whole concept as well for individual components. The results show that the way that the service pipe is operated has a significant effect on waiting time for DHW, heat loss, and overall cost. Furthermore, the service pipe should be kept warm by using a bypass in order to fulfil the comfort requirements for DHW instantaneously prepared. -- Highlights: ► Describes and justifies concept of low-temperature district heating with supply temperature of 50 °C. ► Focuses on DHW preparation in low-temperature district heating in-house substations, considering comfort and Legionella. ► Verified numerical model reports on dynamic performance of an in-house substation, considering operation of service pipes. ► Bypass is needed for instantaneous type of district heating substations to fulfil comfort requirements of users. ► The model developed can be used for future optimization of low-temperature substations and whole district heating networks.

  19. Noise-tolerant instantaneous heart rate and R-peak detection using short-term autocorrelation for wearable healthcare systems.

    Science.gov (United States)

    Fujii, Takahide; Nakano, Masanao; Yamashita, Ken; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2013-01-01

    This paper describes a robust method of Instantaneous Heart Rate (IHR) and R-peak detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the R-wave interval. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable bio-signal monitoring systems, noise increases the incidence of misdetection and false detection of R-peaks. To prevent incorrect detection, we introduce a short-term autocorrelation (STAC) technique and a small-window autocorrelation (SWAC) technique, which leverages the similarity of QRS complex waveforms. Simulation results show that the proposed method improves the noise tolerance of R-peak detection.

  20. An inventory model of instantaneous deteriorating items with controllable deterioration rate for time dependent demand and holding cost

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Mishra

    2013-06-01

    Full Text Available Purpose: The purpose of this paper to develop an inventory model for instantaneous deteriorating items with the consideration of the facts that the deterioration rate can be controlled by using the preservation technology (PT and the holding cost & demand rate both are linear function of time which was treated as constant in most of the deteriorating inventory model. Design/methodology/approach: Developed the mathematical equation of deterministic deteriorating inventory model in which demand rate and holding cost both is linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged and obtain an analytical solution which optimizes the total cost of the proposed inventory model. Findings: The model can be applied for optimizing the total inventory cost of deteriorating items inventory for such business enterprises where they use the preservation technology to control the deterioration rate under other assumptions of the model. Originality/value: The inventory system for deteriorating items has been an object of study for a long time, but little is known about the effect of investing in reducing the rate of product deterioration and their significant impact in the business. The proposed model is effective as well as efficient for the business organization that uses the preservation technology to reduce the deterioration rate of the instantaneous deteriorating items of the inventory.

  1. Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Martinez-Martinez, Sinuhe; Messai, Nadhir; Jeannot, Jean-Philippe; Nuzillard, Danielle

    2015-01-01

    The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. - Highlights: • We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor. • The TIB symptom is simulated as an abrupt rise on temperature (0.1–1 °C/s). • The goal is to improve the early detection of the incident. • Two strategies laying on neural networks are proposed. • TIB is detected in 3 s for 1 °C/s and 18–21 s for 0.1 °C/s

  2. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Fu-Tai Wang

    2015-07-01

    Full Text Available Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD can decompose a signal into several intrinsic mode functions (IMFs that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  3. Instantaneous Purified Orbit: A New Tool for Analysis of Nonstationary Vibration of Rotor System

    Directory of Open Access Journals (Sweden)

    Shi Dongfeng

    2001-01-01

    Full Text Available In some circumstances, vibration signals of large rotating machinery possess time-varying characteristics to some extent. Traditional diagnosis methods, such as FFT spectrum and orbit diagram, are confronted with a huge challenge to deal with this problem. This work aims at studying the four intrinsic drawbacks of conventional vibration signal processing method and instantaneous purified orbit (IPO on the basis of improved Fourier spectrum (IFS to analyze nonstationary vibration. On account of integration, the benefits of short period Fourier transform (SPFT and regular holospectrum, this method can intuitively reflect vibration characteristics of’a rotor system by means of parameter analysis for corresponding frequency ellipses. Practical examples, such as transient vibration in run-up stages and bistable condition of rotor show that IPO is a powerful tool for diagnosis and analysis of the vibration behavior of rotor systems.

  4. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  5. Polarimetry of random fields

    Science.gov (United States)

    Ellis, Jeremy

    On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the

  6. Flow field studies on a micro-air-vehicle-scale cycloidal rotor in forward flight

    Science.gov (United States)

    Lind, Andrew H.; Jarugumilli, Tejaswi; Benedict, Moble; Lakshminarayan, Vinod K.; Jones, Anya R.; Chopra, Inderjit

    2014-12-01

    This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.

  7. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  8. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qin Guoting; Li Zheng; Xia Rongmin; Li Feng; O' Neill, Brian E; Li, King C [Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Goodwin, Jessica T; Khant, Htet A; Chiu, Wah, E-mail: zli@tmhs.org, E-mail: kli@tmhs.org [National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-04-15

    A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 deg. C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.

  9. Measurement of (n,xn) reaction cross-sections using prompt {gamma} spectroscopy at neutron beams with high instantaneous flux; Mesure de sections efficaces de reaction (n,xn) par spectroscopie {gamma} prompte aupres d'un faisceau a tres haut flux instantane

    Energy Technology Data Exchange (ETDEWEB)

    Lukic, S

    2004-10-15

    The work presented in this thesis is situated in the context of the GEDEON program of neutron cross-section measurements. This program is motivated by the perspectives recently opened by projects of nuclear waste treatment and energy production. There is an obvious lack of experimental data on (n,xn) reactions in the databases, especially in the case of very radioactive isotopes. An important technique to measure cross-sections of these reactions is the prompt {gamma}-ray spectroscopy at white pulsed neutron beams with very high instantaneous flux. In this work, inelastic scattering and (n,xn) reactions cross-section measurements were performed on a lead sample from threshold to 20 MeV by prompt {gamma}-ray spectroscopy at the white neutron beam generated by GELINA facility in Geel, Belgium. Digital methods were developed to treat HPGe CLOVER detector signals and separate {gamma}-rays induced by the fastest neutrons from those belonging to the flash. Partial cross-sections for the production of several transitions in natural lead were measured and analyzed using theoretical calculations in order to separate the contributions of different reactions leading to the same residual isotope. Total cross-sections of the reactions in question were estimated. The results were compared to the TALYSS code theoretical calculations, as well as to other experimental results. This experiment has served to validate the method and it opens the way to measure (n,xn) reactions cross-sections with high instantaneous neutron flux on actinides, particularly the U{sup 233}(n,2n) reaction which is important for the thorium cycle. (author)

  10. A hand-held sensor for analyses of local distributions of magnetic fields and losses

    CERN Document Server

    Krismanic, G; Baumgartinger, N

    2000-01-01

    The paper describes a novel sensor for non-destructive analyses of local field and loss distributions in laminated soft magnetic cores, such as transformer cores. It was designed for rapid information on comparative local degrees of inhomogeneity, e.g., for the estimation of local building factors. Similar to a magnifying glass with handle, the compact hand-held sensor contains extremely sharp needle electrodes for the detection of the induction vector B as well as double-field coils for the vector H. Losses P are derived from the Poynting law. Applied to inner -- or also outer -- core regions, the sensor yields instantaneous computer displays of local H, B, and P.

  11. Time-delay effects and simplified control fields in quantum Lyapunov control

    International Nuclear Information System (INIS)

    Yi, X X; Wu, S L; Wu, Chunfeng; Feng, X L; Oh, C H

    2011-01-01

    Lyapunov-based quantum control has the advantage that it is free from the measurement-induced decoherence and it includes the instantaneous information of the system in the control. The Lyapunov control is often confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time delay on the Lyapunov control and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the system. These results suggest that the Lyapunov control is robust against time delay, easy to realize and effective for high-dimensional quantum systems.

  12. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve

    International Nuclear Information System (INIS)

    Kwon, Kye-Si

    2010-01-01

    In situ techniques to measure the drop-on-demand (DOD) drop formation curve and the instantaneous jetting speed curve are developed such that ligament behavior and satellite behavior of inkjet droplets can be analyzed effectively. It is known that the droplet jetting behavior differs by ink properties and the driving waveform voltage. In this study, to reduce possible droplet placement errors due to satellite drops or long ligaments during printing, waveform effects on drop formation are investigated based on the measured DOD drop formation curve and the instantaneous jetting speed curve. Experimental results show that a dwell time greater than the so-called efficient dwell time was effective in reducing placement errors due to satellite drops during the printing process

  13. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Kamiar Aminian

    2012-09-01

    Full Text Available Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer’s natural technique.

  14. Structure of Temperature Field on a Wall in Turbulent Flow (Statistics of Thermal Streaks, Heat Transfer)

    International Nuclear Information System (INIS)

    Hetsroni, G.; Mosyak, A.; Rozenblit, R.; Yarin, L.P.

    1998-01-01

    The present work deals with an experimental study of a temperature field on the wall in turbulent flow. The measurements of the local, instantaneous and average temperature of the wall were carried out by the hot-foil infrared technique. The detailed data on the average and fluctuation temperature distributions are presented. It is shown that temperature fluctuations, as normalized by the difference between the temperatures of the undisturbed fluid and the wall, do not change

  15. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  16. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  17. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  18. A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument

    Science.gov (United States)

    Deering, D. W.; Leone, P.

    1984-11-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  19. REGULATION OF INSTANTANEOUS POWER OUTPUT VALUE IN MAGNETRON WITH CONTINUOUS GENERATION MODE (M-105-, M-112-TYPES BEING PART OF PLASMA TECHNOLOGICAL UNIT

    Directory of Open Access Journals (Sweden)

    S. V. Bordusov

    2010-01-01

    Full Text Available The paper presents results of investigations pertaining to the possibility of regulating instantaneous power output  in a magnetron of M-105 (M-112-type by changing the capacity value of a capacitor in structure diagram for doubling voltage of high-voltage power supply on the basis of a step-up transformer operating in the saturation regime.

  20. Characterization of radiofrequency field emissions from smart meters.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert; Mezei, Gabor

    2013-01-01

    This study presents measurement data that describe radiofrequency emission levels and patterns from smart meters (rated nominally at 1 W) currently deployed in Pacific Gas and Electric Company's service territory in northern California. The smart meters in our investigation could not be set to operate continuously and required a Field Service Unit to induce short periods of emitted fields. To obtain peak field data under both laboratory and ambient conditions, a spectrum analyzer scanned across the 83 transmitting channels between 902 and 928 MHz used by the smart meter on a random frequency-hopping basis. To obtain data describing temporal emission patterns, the analyzer operated in scope mode. Duty cycle was estimated using transmit data acquired by the system operator from over 88,000 m. Instantaneous peak fields at 0.3 m in front of the meters were no more than 15% of the US Federal Communications Commission (FCC) exposure limit for the general public, and 99.9% of the meters operated with a duty cycle of 1.12% or less during the sampling period. In a sample of measurements in six single-detached residences equipped with individual smart meters, no interior measurement of peak field exceeded 1% of the FCC's general public exposure limit.

  1. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    Science.gov (United States)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  2. Processing of Instantaneous Angular Speed Signal for Detection of a Diesel Engine Failure

    Directory of Open Access Journals (Sweden)

    Adam Charchalis

    2013-01-01

    Full Text Available Continuous monitoring of diesel engine performance under its operating is critical for the prediction of malfunction development and subsequently functional failure detection. Analysis of instantaneous angular speed (IAS of the crankshaft is considered as one of the nonintrusive and effective methods of the detection of combustion quality deterioration. In this paper results of experimental verification of fuel system's malfunction detecting, using optical encoder for IAS recording are presented. The implemented method relies on the comparison of measurement results, recorded under healthy and faulty conditions of the engine. Elaborated dynamic model of angular speed variations enables us to build templates of engine behavior. Recorded during experiment, values of cylinder pressure were taken for the approximation of pressure basic waveform. The main task of data processing is smoothing the raw angular speed signal. The noise is due to sensor mount vibrations, signal emitter machining, engine body vibrations, and crankshaft torsional vibrations. Smoothing of the measurement data was carried out by the implementation of the Savitzky-Golay filter. Measured signal after smoothing was compared with the model of IAS run.

  3. Transmit Antenna Selection for Power Adaptive Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad

    2017-03-31

    The high hardware cost associated with multiple antennas at the secondary transmitter of an underlay cognitive radio (CR) can be reduced by antenna selection. This paper analyzes different power adaptive transmit antenna selection (TAS) schemes for an underlay CR, which ensure that the instantaneous interference caused by the secondary transmitter to the primary receiver is below a predetermined level. We consider the optimal continuous power adaptive TAS and present a low-complexity antenna and power level selection scheme, named sequential antenna and power level selection scheme (SAPS), for discrete power adaptation. Exact statistical characterizations of the signal-to-interference plus noise ratio at the secondary receiver are derived for the considered schemes. Based on the newly derived statistics, we prove that the considered schemes achieve the highest diversity order equaling the number of antennas at the secondary transmitter. Further, we also derive a closed-form expression of the ergodic capacity for the underlay CR with SAPS scheme. Finally, we show that the proposed scheme outperforms existing schemes in terms of ergodic capacity.

  4. Study on the influence of stochastic properties of correction terms on the reliability of instantaneous network RTK

    Science.gov (United States)

    Próchniewicz, Dominik

    2014-03-01

    The reliability of precision GNSS positioning primarily depends on correct carrier-phase ambiguity resolution. An optimal estimation and correct validation of ambiguities necessitates a proper definition of mathematical positioning model. Of particular importance in the model definition is the taking into account of the atmospheric errors (ionospheric and tropospheric refraction) as well as orbital errors. The use of the network of reference stations in kinematic positioning, known as Network-based Real-Time Kinematic (Network RTK) solution, facilitates the modeling of such errors and their incorporation, in the form of correction terms, into the functional description of positioning model. Lowered accuracy of corrections, especially during atmospheric disturbances, results in the occurrence of unaccounted biases, the so-called residual errors. The taking into account of such errors in Network RTK positioning model is possible by incorporating the accuracy characteristics of the correction terms into the stochastic model of observations. In this paper we investigate the impact of the expansion of the stochastic model to include correction term variances on the reliability of the model solution. In particular the results of instantaneous solution that only utilizes a single epoch of GPS observations, is analyzed. Such a solution mode due to the low number of degrees of freedom is very sensitive to an inappropriate mathematical model definition. Thus the high level of the solution reliability is very difficult to achieve. Numerical tests performed for a test network located in mountain area during ionospheric disturbances allows to verify the described method for the poor measurement conditions. The results of the ambiguity resolution as well as the rover positioning accuracy shows that the proposed method of stochastic modeling can increase the reliability of instantaneous Network RTK performance.

  5. Front Propagation in Stochastic Neural Fields

    KAUST Repository

    Bressloff, Paul C.

    2012-01-01

    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.

  6. Real-time multi-peak tractography for instantaneous connectivity display

    Directory of Open Access Journals (Sweden)

    Maxime eChamberland

    2014-05-01

    Full Text Available The computerized process of reconstructing white matter tracts from diffusion MRI (dMRI data is often referred to as tractography. Tractography is nowadays central in structural connectivity since it is the only non-invasive technique to obtain information about brain wiring. Most publicly available tractography techniques and most studies are based on a fixed set of tractography parameters. However, the scale and curvature of fiber bundles can vary from region to region in the brain. Therefore, depending on the area of interest or subject (e.g. healthy control vs. tumor patient, optimal tracking parameters can be dramatically different. As a result, a slight change in tracking parameters may return different connectivity profiles and complicate the interpretation of the results. Having access to tractography parameters can thus be advantageous, as it will help in better isolating those which are sensitive to certain streamline features and potentially converge on optimal settings which are area-specific. In this work, we propose a real-time fiber tracking (RTT tool which can instantaneously compute and display streamlines. To achieve such real-time performance, we propose a novel evolution equation based on the upsampled principal directions, also called peaks, extracted at each voxel of the dMRI dataset. The technique runs on a single Computer Processing Unit (CPU without the need for Graphical Unit Processing (GPU programming. We qualitatively illustrate and quantitatively evaluate our novel multi-peak RTT technique on phantom and human datasets in comparison with the state of the art offline tractography from MRtrix, which is robust to fiber crossings. Finally, we show how our RTT tool facilitates neurosurgical planning and allows one to find fibers that infiltrate tumor areas, otherwise missing when using the standard default tracking parameters.

  7. On gravity's role in the genesis of rest masses of classical fields

    Science.gov (United States)

    Szabados, László B.

    2018-03-01

    It is shown that in the Einstein-conformally coupled Higgs-Maxwell system with Friedman-Robertson-Walker symmetries the energy density of the Higgs field has stable local minimum only if the mean curvature of the t=const hypersurfaces is less than a finite critical value χ _c, while for greater mean curvature the energy density is not bounded from below. Therefore, there are extreme gravitational situations in which even quasi-locally defined instantaneous vacuum states of the Higgs sector cannot exist, and hence one cannot at all define the rest mass of all the classical fields. On hypersurfaces with mean curvature less than χ _c the energy density has the `wine bottle' (rather than the familiar `Mexican hat') shape, and the gauge field can get rest mass via the Brout-Englert-Higgs mechanism. The spacelike hypersurface with the critical mean curvature represents the moment of `genesis' of rest masses.

  8. Perfume fingerprinting by easy ambient sonic-spray ionization mass spectrometry: nearly instantaneous typification and counterfeit detection.

    Science.gov (United States)

    Haddad, Renato; Catharino, Rodrigo Ramos; Marques, Lygia Azevedo; Eberlin, Marcos Nogueira

    2008-11-01

    Perfume counterfeiting is an illegal worldwide practice that involves huge economic losses and potential consumer risk. EASI is a simple, easily performed and rapidly implemented desorption/ionization technique for ambient mass spectrometry (MS). Herein we demonstrate that EASI-MS allows nearly instantaneous perfume typification and counterfeit detection. Samples are simply sprayed onto a glass rod or paper surface and, after a few seconds of ambient drying, a profile of the most polar components of the perfume is acquired. These components provide unique and reproducible chemical signatures for authentic perfume samples. Counterfeiting is readily recognized since the exact set and relative proportions of the more polar chemicals, sometimes at low concentrations, are unknown or hard to reproduce by the counterfeiters and hence very distinct and variable EASI-MS profiles are observed for the counterfeit samples.

  9. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  10. Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain

    Energy Technology Data Exchange (ETDEWEB)

    Prestridge, K.; Rightley, P.M.; Vorobieff, P. [Los Alamos Nat. Lab., NM (United States). Dynamic Exp. Div.; Benjamin, R.F.; Kurnit, N.A.

    2000-10-01

    We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF{sub 6}) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF{sub 6} with a small ({proportional_to}10{sup -5}) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The ''dynamic imaging camera'' images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, ''PIV camera,'' has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using particle image velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 x 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. (orig.)

  11. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  12. How accurately can the instantaneous aerosol effect on cloud albedo be constrained?

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S. J.; Lohmann, U.; Neubauer, D.; Morrison, H.; Partridge, D.; Stier, P.; Takemura, T.; Wang, H.; Wang, M.; Zhang, K.

    2017-12-01

    Aerosol-cloud interactions are the most uncertain component of the anthropogenic radiative forcing, with a significant fraction of this uncertainty coming from uncertainty in the radiative forcing due to instantaneous changes in cloud albedo (the RFaci). Aerosols can have a strong influence on the cloud droplet number concentration (CDNC), so previous studies have used the sensitivity of CDNC to aerosol properties as a method of estimating the RFaci. However, recent studies have suggested that this sensitivity is unsuitable as a constraint on the RFaci, as it differs in the present day and pre-industrial atmosphere. This would place significant limits on our ability to constrain the RFaci from satellite observations. In this study, a selection of global aerosol-climate models are used to investigate the suitability of various aerosol proxies and methods for calculating the RFaci from present day data. A linear-regression based sensitivity of CDNC to aerosol perturbations can lead to large errors in the diagnosed RFaci, as can the use of the aerosol optical depth (AOD) as an aerosol proxy. However, we show that if suitable choices of aerosol proxy are made and the anthropogenic aerosol contribution is known, it is possible to diagnose the anthropogenic change in CDNC, and so the RFaci, using present day aerosol-cloud relationships.

  13. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available In this paper we report on the laboratory investigations of breaking water waves. Measurements of the water levels and instantaneous fluid velocities were conducted in water waves breaking on a sloping beach within a glass flume. Instantaneous water...

  14. The design of the wide field monitor for LOFT

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2014-01-01

    is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM...... will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM...

  15. High-quality and interactive animations of 3D time-varying vector fields.

    Science.gov (United States)

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  16. Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina

    Science.gov (United States)

    Zapata, TomáS. R.; Allmendinger, Richard W.

    1996-10-01

    Analysis of synorogenic deposits preserved near the thrust front zone of the Precordillera fold and thrust belt and in the Bermejo foreland basin in central Argentina documents the evolution of deformation during the last 5 Myr as well as the thrust system kinematics. Seismic lines across the area display examples of progressive and instantaneous limb rotations. The easternmost thrust plate of the Central Precordillera, the Niquivil thrust, experienced episodic motion in two main stages: a first thrust movement as a fault-propagation fold and a second movement as a high-angle anticlinal breakthrough fault after a period of quiescence. Growth strata deposited in the La Pareja intermontane basin and the Las Salinas and Bermejo anticline recorded continuous growth of Eastern Precordilleran structures beginning at ˜2.7 Ma, with uplift rates of ˜0.3 mm/yr for the Niquivil anticline, 1.08 mm/yr for the Las Salinas anticline, and between ˜0.6 and 0.38 mm/yr during the last ˜2 Myr for the Bermejo anticline. Once the Eastern Precordillera began to grow, the propagation of the Niquivil thrust stopped, restricting the deformation to the young Vallecito out-of sequence thrust. The complex geometry of growth strata deposited on the back limb of the Las Salinas anticline can be explained by using a model of a two-step fault propagation fold with constant layer thickness. The Bermejo anticline of the Eastern Precordillera is formed by the simultaneous propagation of a shallow fault, responsible for the fold shape, and a deep fault that produced vertical uplift. A growth triangle that documents instantaneous forelimb rotation for a fault-propagation fold is recorded for the first time in a published seismic line.

  17. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    Science.gov (United States)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  18. Geometric derivation of string field theory from first principles: Closed strings and modular invariance

    International Nuclear Information System (INIS)

    Kaku, M.

    1988-01-01

    We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane

  19. On the role of the smallest scales of a passive scalar field in a near-wall turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Bergant; Iztok, Tiselj [Jozef Stefan Institute, Ljubljana (Slovenia)

    2006-03-01

    Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re{sub {tau}}=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer. (orig.)

  20. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  1. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  2. Heat release determination in a constant volume combustion chamber from the instantaneous cylinder pressure

    International Nuclear Information System (INIS)

    Lapuerta, Magín; Sanz-Argent, Josep; Raine, Robert

    2014-01-01

    A diagnostic method has been developed to interpret the results of basic combustion studies with diesel-like fuels performed in a constant volume reactor originally conceived for cetane number measurements. The main target of the method is to calculate the instantaneous heat release over time from the chamber pressure experimental signal. The method incorporates filtering of the raw data to eliminate the oscillations recorded as a consequence of the location of the pressure sensor. It considers homogeneity of the gaseous mixture (single zone model) and change in its composition due to the combustion process. A semi-empirical heat transfer model was also proposed and its coefficients were fitted from experimental results obtained in the constant volume chamber using diesel fuel. -- Highlights: • A diagnostic model for constant volume reactors has been developed and tested. • Updating the gas composition after combustion improves accuracy of the method. • Heat transfer coefficients are used for the fulfillment of boundary conditions. • The model provides a deeper insight than the apparent heat release analysis

  3. Electric field determination in streamer discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Bonaventura, Z; Bourdon, A; Celestin, S; Pasko, V P

    2011-01-01

    The electric field in streamer discharges in air can be easily determined by the ratio of luminous intensities emitted by N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) if the steady-state assumption of the emitting states is fully justified. At ground pressure, the steady-state condition is not fulfilled and it is demonstrated that its direct use to determine the local and instantaneous peak electric field in the streamer head may overestimate this field by a factor of 2. However, when spatial and time-integrated optical emissions (OEs) are considered, the reported results show that it is possible to formulate a correction factor in the framework of the steady-state approximation and to accurately determine the peak electric field in an air discharge at atmospheric pressure. A correction factor is defined as Γ = E s /E e , where E e is the estimated electric field and E s is the true peak electric field in the streamer head. It is shown that this correction stems from (i) the shift between the location of the peak electric field and the maximum excitation rate for N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) as proposed by Naidis (2009 Phys. Rev. E 79 057401) and (ii) from the cylindrical geometry of the streamers as stated by Celestin and Pasko (2010 Geophys. Res. Lett. 37 L07804). For instantaneous OEs integrated over the whole radiating plasma volume, a correction factor of Γ ∼ 1.4 has to be used. For time-integrated OEs, the reported results show that the ratio of intensities can be used to derive the electric field in discharges if the time of integration is sufficiently long (i.e. at least longer than the longest characteristic lifetime of excited species) to have the time to collect all the light from the emitting zones of the streamer. For OEs recorded using slits (i.e. a window with a small width but a sufficiently large radial extension to contain the total radial extension of the discharge) the calculated correction factor is Γ ∼ 1.4. As for OEs observed

  4. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Directory of Open Access Journals (Sweden)

    Jaco H. Visser

    2012-03-01

    Full Text Available The accumulating-type (or integrating-type NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s, the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.

  5. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  6. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  7. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  8. Lagged and instantaneous dynamical influences related to brain structural connectivity

    Directory of Open Access Journals (Sweden)

    Carmen eAlonso Montes

    2015-07-01

    Full Text Available Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Indeed, different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI provides a structural connectivity (SC coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC. Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience.To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas to be compared with FC connectivity matrices obtained by three different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM, linear correlations (C and partial correlations (PC. We also considered the possibility of using lagged correlations in time series; in particular, we compared a lagged version of eSEM and Granger causality (GC. Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C, nor PC provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.

  9. Effects of collisions on conservation laws in gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  10. Relativistic quantum channel of communication through field quanta

    International Nuclear Information System (INIS)

    Cliche, M.; Kempf, A.

    2010-01-01

    Setups in which a system Alice emits field quanta that a system Bob receives are prototypical for wireless communication and have been extensively studied. In the most basic setup, Alice and Bob are modeled as Unruh-DeWitt detectors for scalar quanta, and the only noise in their communication is due to quantum fluctuations. For this basic setup, we construct the corresponding information-theoretic quantum channel. We calculate the classical channel capacity as a function of the spacetime separation, and we confirm that the classical as well as the quantum channel capacity are strictly zero for spacelike separations. We show that this channel can be used to entangle Alice and Bob instantaneously. Alice and Bob are shown to extract this entanglement from the vacuum through a Casimir-Polder effect.

  11. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  12. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  13. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  14. Improved Analytical Model of a Permanent-Magnet Brushless DC Motor

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    In this paper, we develop a comprehensive model of a permanent-magnet brushless DC (BLDC) motor. An analytical model for determining instantaneous air-gap field density is developed. This instantaneous field distribution can be further used to determine the cogging torque, induced back electromotive

  15. An Informational Algorithm as the Basis for Perception-Action Control of the Instantaneous Axes of the Knee.

    Science.gov (United States)

    Kim, Wangdo; Espanha, Margarida M; Veloso, António P; Araújo, Duarte; João, Filipa; Carrão, Luis; Kohles, Sean S

    2013-03-27

    Traditional locomotion studies emphasize an optimization of the desired movement trajectories while ignoring sensory feedback. We propose an information based theory that locomotion is neither triggered nor commanded but controlled. The basis for this control is the information derived from perceiving oneself in the world. Control therefore lies in the human-environment system. In order to test this hypothesis, we derived a mathematical foundation characterizing the energy that is required to perform a rotational twist, with small amplitude, of the instantaneous axes of the knee (IAK). We have found that the joint's perception of the ground reaction force may be replaced by the co-perception of muscle activation with appropriate intensities. This approach generated an accurate comparison with known joint forces and appears appropriate in so far as predicting the effect on the knee when it is free to twist about the IAK.

  16. The effect of instantaneous input dynamic range setting on the speech perception of children with the nucleus 24 implant.

    Science.gov (United States)

    Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan

    2009-06-01

    The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.

  17. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    Science.gov (United States)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  18. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  19. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement

    International Nuclear Information System (INIS)

    Fobel, Ryan; Fobel, Christian; Wheeler, Aaron R.

    2013-01-01

    We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

  20. Analysis of instantaneous profile test data from soils near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-02-01

    This paper presents the results of an instantaneous profile test conducted near the Mixed Waste Landfill at Sandia National Laboratories/New Mexico. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill, including the relations between hydraulic conductivity, moisture content, and soil water tension. A 4.7 meter by 4.7 meter plot was saturated with water to a depth of 2 meters, and the wetting and drying responses of the vertical profile were observed. These data were analyzed to obtain in situ measurements of the unsaturated hydraulic properties

  1. Optimal pricing and replenishment policies for instantaneous deteriorating items with backlogging and trade credit under inflation

    Science.gov (United States)

    Sundara Rajan, R.; Uthayakumar, R.

    2017-12-01

    In this paper we develop an economic order quantity model to investigate the optimal replenishment policies for instantaneous deteriorating items under inflation and trade credit. Demand rate is a linear function of selling price and decreases negative exponentially with time over a finite planning horizon. Shortages are allowed and partially backlogged. Under these conditions, we model the retailer's inventory system as a profit maximization problem to determine the optimal selling price, optimal order quantity and optimal replenishment time. An easy-to-use algorithm is developed to determine the optimal replenishment policies for the retailer. We also provide optimal present value of profit when shortages are completely backlogged as a special case. Numerical examples are presented to illustrate the algorithm provided to obtain optimal profit. And we also obtain managerial implications from numerical examples to substantiate our model. The results show that there is an improvement in total profit from complete backlogging rather than the items being partially backlogged.

  2. The Prompt Gamma-Ray, Prompt Electron and Prompt X-Ray Spectra Associated with Fission Fragments of Specific Mass; Spectres de Rayons Gamma Instantanes, d'Electrons Instantanes et de Rayons X Instantanes Associes a des Fragments de Fission de Masse Donnee; 041c 0413 041d 041e 0414 ; Espectros de Rayos Gamma. Electrones y Rayos X Inmediatos, Vinculados a Fragmentos de Fision de Masa Determinada

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, H. R.; Thompson, S. G.; Watson, R. L.; Kapoor, S. S.; Rasmussen, J. O. [Lawrence Radiation Laboratory, University of California, Berkeley, CA (United States)

    1965-07-15

    Well-defined prompt gamma-rays, prompt-conversion elections and prompt K-X-rays have been observed in coincidence with moving fission fragments of Cf{sup 252}. In a few cases, the masses and charges of the nuclei emitting the gamma-rays and conversion electrons have been identified. The gamma-ray, prompt-electron and prompt X-ray energies as well as the two fission fragments energies were measured with high-resolution solid-state detectors. The masses of the fragments were deduced from their energies, and the nuclear charges were determined by measuring the K-X - ray energies associated with different masses. The magnitude and sign of the Doppler shift in gamma-ray energy allowed assignment of the gamma-ray lines to single members of fragment pairs. The Doppler shift also provides an independent measure of the fragment velocity and hence the fragment mass after neutron emission. The results of the X-ray measurements are consistent with the view that the majority of the prompt X-rays emitted during the spontaneous fission of Cf{sup 252} are the result of internal conversion during the de-excitation of low-energy collective states of the primary fission fragments. Apart from the specific results discussed above, the most important consequence of these experiments has been the demonstration that it is possible to study the properties of individual fission fragments, as identified by their characteristic radiations, rather than studying the properties of an average fission fragment with an average mass and charge. The consequences of this advance in the technique of studying fission fragments ate being explored. (author) [French] Des rayons gamma instantanes, des electrons de conversions instantanes et des rayons X K instantanes bien definis ont ete observes en coincidences avec des fragments de fission de {sup 252}Cf en mouvement. Dans un petit nombre de cas' Les masses, et charges des noyaux emettant les rayons gamma et les electrons de conversion ont ete identifiees

  3. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  4. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    Science.gov (United States)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  5. Mean-field dynamos: The old concept and some recent developments. Karl Schwarzschild Award Lecture 2013

    Science.gov (United States)

    Rädler, K.-H.

    This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.

  6. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par

  7. Near instantaneous production of digital terrain models in the field using smartphone and Structure-from-Motion photogrammetry

    Science.gov (United States)

    Micheletti, Natan; Chandler, Jim; Lane, Stuart

    2013-04-01

    Whilst high-resolution topographic and terrain data is essential in many geoscience applications, its acquisition has traditionally required either specific expertise (e.g. applications of photogrammetry) or expensive equipment (e.g. ground-based laser altimetric systems). Recent work in geomorphology (e.g. James and Robson, 2012; Carbonneau et al., 2012) has demonstrated the potential of Structure-from-Motion photogrammetry as a low cost, low expertise alternative for Digital Elevation Model (DEM) generation. These methods have geomorphological appeal because the more sophisticated image matching approaches remove many of the geometrical constraints associated with image acquisition: traditionally, vertical and "normal" image pairs acquired with a metric camera. This increases both the number of potential applications and the efficacy of image acquisition in the field. It also allows for genuine 3D (where the same (x,y) can have multiple z values) rather than 2.5D (where each (x,y) must have a unique z value) representation of the terrain surface. In this paper, we progress this technology further, by testing what can be acquired using hand-held smartphone technology, where the acquired images can be uploaded in the field to Open Source technology freely available to the research community. This is achieved by evaluating the quality of DEMs generated with a fully automated, open-source, Structure-from-Motion package and a smartphone (Apple Iphone 4) integrated camera (5 megapixels) using terrestrial laser scanning (TLS) data as benchmark. To allow a more objective assessment, it is necessary to compare both device and package with traditional approaches. Accordingly, we compare the error in the smartphone DEMs with the errors associated with data derived using a 16.2 megapixel digital camera and processed using the more traditional, commercial, close-range and semi-automated software PhotoModeler. Results demonstrate that centimeter precision DTMs can be achieved

  8. Use of Ukrainian semiconductor dosimeters in a CERN particle accelerator field

    Science.gov (United States)

    Rosenfeld, A.; Khivrich, V.; Kuts, V.; Tavlet, M.; Malfante, L.; Munoz-Ferrada, C.

    1994-08-01

    The results of the application of p-i-n and MOS dosimeters in the PS-ACOL Irradiation Facility (PSAIF) at CERN for separate measurements of gamma dose and fast neutron fluences are presented. The mixed gamma-neutron field was due to 26 GeV protons hitting an irridium target, yielding an instantaneous dose rate of approximately 3.10(sup 5) Gy/s. Good agreement with calibration curves is found for MOS in a (sup 60)Co gamma source as well as for p-i-n sensors in a neutron reactor spectrum with mean energy of 1 MeV. Experimental results from PSAIF are presented and pulse current injection annealing of p-i-n diodes is considered. Such sensors are very convenient for on-line separated total dose measurements in mixed gamma-neutron radiation fields, as well as for radiation hardness testing of electronic components on irradiation facilities, and could be installed near the detector area of LHC.

  9. Realisation of a ultra-high vacuum system and technique development of microscopical emitters preparation in silicium. First measurements of field emission current and field photoemission

    International Nuclear Information System (INIS)

    El Manouni, A.

    1990-12-01

    The development of research in the domain of photocathode (electron sources) illuminated by laser light to produce intense multiple bunches of electrons in short time is needed by many applications as linear collider e + e - , free electron laser, lasertron, etc... In this way, after a study of field emission, of photoemission and of photofield emission, we prepared microscopical emitters in silicium heavy and weakly doped a boron using a technique of microlithography. Then, we realized a system of ultra-high vacuum of studying property of emission from photocathodes realized. The experiment results obtained in field emission and photofield emission have shown that a behaviour unexpected for P-silicium tips array compared to P + -silicon tips array. With P-type silicon, a quantum yield of 21 percent has been measured for laser power of 140 mW and for applied field of 1.125 x 10 7 V/m and an instantaneous response to laser light beam has been observed. It has been noted that presence of oxyde at the surface of photocathode limits extensively the emission current. The fluctuations of emission current are due to quality of vacuum [fr

  10. Reality, measurement and locality in Quantum Field Theory

    International Nuclear Information System (INIS)

    Tommasini, Daniele

    2002-01-01

    It is currently believed that the local causality of Quantum Field Theory (QFT) is destroyed by the measurement process. This belief is also based on the Einstein-Podolsky-Rosen (EPR) paradox and on the so-called Bell's theorem, that are thought to prove the existence of a mysterious, instantaneous action between distant measurements. However, I have shown recently that the EPR argument is removed, in an interpretation-independent way, by taking into account the fact that the Standard Model of Particle Physics prevents the production of entangled states with a definite number of particles. This result is used here to argue in favor of a statistical interpretation of QFT and to show that it allows for a full reconciliation with locality and causality. Within such an interpretation, as Ballentine and Jarret pointed out long ago, Bell's theorem does not demonstrate any nonlocality. (author)

  11. Evaluation of the flow-accelerated corrosion downstream of an orifice. 1. Measurements and numerical analysis of flow field

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), an orifice flow was measured and calculated. The diameter of pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity in a water loop was set at 2.41 m/s. Flow field was measured by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and compared with a calculation for the same flow conditions. Measurements of wall shear stress downstream of the orifice was also planed. The calculated velocity distribution of standard k-□ agreed qualitatively with PIV data and quantitatively with LDV data. Instantaneous flow field measured by PIV showed vortices around the jet from the orifice and some of them reached near the pipe wall. (author)

  12. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    Science.gov (United States)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  13. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  14. Orthogonality-breaking sensing model based on the instantaneous Stokes vector and the Mueller calculus

    Science.gov (United States)

    Ortega-Quijano, Noé; Fade, Julien; Roche, Muriel; Parnet, François; Alouini, Mehdi

    2016-04-01

    Polarimetric sensing by orthogonality breaking has been recently proposed as an alternative technique for performing direct and fast polarimetric measurements using a specific dual-frequency dual-polarization (DFDP) source. Based on the instantaneous Stokes-Mueller formalism to describe the high-frequency evolution of the DFDP beam intensity, we thoroughly analyze the interaction of such a beam with birefringent, dichroic and depolarizing samples. This allows us to confirm that orthogonality breaking is produced by the sample diattenuation, whereas this technique is immune to both birefringence and diagonal depolarization. We further analyze the robustness of this technique when polarimetric sensing is performed through a birefringent waveguide, and the optimal DFDP source configuration for fiber-based endoscopic measurements is subsequently identified. Finally, we consider a stochastic depolarization model based on an ensemble of random linear diattenuators, which makes it possible to understand the progressive vanishing of the detected orthogonality breaking signal as the spatial heterogeneity of the sample increases, thus confirming the insensitivity of this method to diagonal depolarization. The fact that the orthogonality breaking signal is exclusively due to the sample dichroism is an advantageous feature for the precise decoupled characterization of such an anisotropic parameter in samples showing several simultaneous effects.

  15. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Science.gov (United States)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  16. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  17. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    Science.gov (United States)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  18. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    International Nuclear Information System (INIS)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M.; Sundberg, T.

    2016-01-01

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10 4 km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  19. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick (United Kingdom); Sundberg, T., E-mail: B.Hnat@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)

    2016-08-20

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10{sup 4} km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  20. Responses of the Brans-Dicke field due to gravitational collapses

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2010-01-01

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω ∼ -1.5. If the Brans-Dicke coupling is greater than -1.5, the T uu component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T vv component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  1. Responses of the Brans-Dicke field due to gravitational collapses

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-10-21

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  2. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  3. Measurement and modeling of magnetic hysteresis under field and stress application in iron–gallium alloys

    International Nuclear Information System (INIS)

    Evans, Phillip G.; Dapino, Marcelo J.

    2013-01-01

    Measurements are performed to characterize the hysteresis in magnetomechanical coupling of iron–gallium (Galfenol) alloys. Magnetization and strain of production and research grade Galfenol are measured under applied stress at constant field, applied field at constant stress, and alternately applied field and stress. A high degree of reversibility in the magnetomechanical coupling is demonstrated by comparing a series of applied field at constant stress measurements with a single applied stress at constant field measurement. Accommodation is not evident and magnetic hysteresis for applied field and stress is shown to be coupled. A thermodynamic model is formulated for 3-D magnetization and strain. It employs a stress, field, and direction dependent hysteron that has an instantaneous loss mechanism, similar to Coulomb-friction or Preisach-type models. Stochastic homogenization is utilized to account for the smoothing effect that material inhomogeneities have on bulk processes. - Highlights: ► We conduct coupled experiments and develop nonlinear thermodynamic models for magnetostrictive iron–gallium (Galfenol) alloys. ► The measurements show unexpected kinematic reversibility in the magnetomechanical coupling. ► This is in contrast with the magnetomechanical coupling in steel which is both thermodynamically and kinematically irreversible. ► The model accurately describes the measurements and provides a framework for understanding hysteresis in ferromagnetic materials which exhibit kinematically reversible magnetomechanical coupling.

  4. Investigation of the velocity field in a full-scale model of a cerebral aneurysm

    International Nuclear Information System (INIS)

    Roloff, Christoph; Bordás, Róbert; Nickl, Rosa; Mátrai, Zsolt; Szaszák, Norbert; Szilárd, Szabó; Thévenin, Dominique

    2013-01-01

    Highlights: • We investigate flow fields inside a phantom model of a full-scale cerebral aneurysm. • An artificial blood fluid is used matching viscosity and density of real blood. • We present Particle Tracking results of fluorescent tracer particles. • Instantaneous model inlet velocity profiles and volume flow rates are derived. • Trajectory fields at three of six measurement planes are presented. -- Abstract: Due to improved and now widely used imaging methods in clinical surgery practise, detection of unruptured cerebral aneurysms becomes more and more frequent. For the selection and development of a low-risk and highly effective treatment option, the understanding of the involved hemodynamic mechanisms is of great importance. Computational Fluid Dynamics (CFD), in vivo angiographic imaging and in situ experimental investigations of flow behaviour are powerful tools which could deliver the needed information. Hence, the aim of this contribution is to experimentally characterise the flow in a full-scale phantom model of a realistic cerebral aneurysm. The acquired experimental data will then be used for a quantitative validation of companion numerical simulations. The experimental methodology relies on the large-field velocimetry technique PTV (Particle Tracking Velocimetry), processing high speed images of fluorescent tracer particles added to the flow of a blood-mimicking fluid. First, time-resolved planar PTV images were recorded at 4500 fps and processed by a complex, in-house algorithm. The resulting trajectories are used to identify Lagrangian flow structures, vortices and recirculation zones in two-dimensional measurement slices within the aneurysm sac. The instantaneous inlet velocity distribution, needed as boundary condition for the numerical simulations, has been measured with the same technique but using a higher frame rate of 20,000 fps in order to avoid ambiguous particle assignment. From this velocity distribution, the time

  5. Inventory Model for Non – Instantaneous Deteriorating Items, Stock Dependent Demand, Partial Backlogging, and Inflation over a Finite Time Horizon

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2016-05-01

    Full Text Available In the present study, the Economic Order Quantity (EOQ model of two-warehouse deals with non-instantaneous deteriorating items, the demand rate considered as stock dependent and model affected by inflation under the pattern of time value of money over a finite planning horizon. Shortages are allowed and partially backordered depending on the waiting time for the next replenishment. The main objective of this work is to minimize the total inventory cost and finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented.

  6. Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation

    Science.gov (United States)

    Palanivel, M.; Uthayakumar, R.

    2015-07-01

    This paper deals with an economic order quantity (EOQ) model for non-instantaneous deteriorating items with price and advertisement dependent demand pattern under the effect of inflation and time value of money over a finite planning horizon. In this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This paper aids the retailer in minimising the total inventory cost by finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented and the implications are discussed in detail.

  7. Geostationary Coastal and Air Pollution Events (GeoCAPE) Wide Angle Spectrometer (WAS)

    Science.gov (United States)

    Kotecki, Carl; Chu, Martha; Mannino, Antonio; Marx, Catherine Trout; Bowers, Gregory A.; Bolognese, Jeffrey A.; Matson, Elizabeth A.; McBirney, Thomas R.; Earle, Cleland P.; Choi, Michael K.; hide

    2014-01-01

    The GeoCAPE Wide Angle Spectrometer (WAS) Study was a revisit of the COEDI Study from 2012. The customer primary goals were to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Riding on a commercial GEO satellite minimizes total mission costs. For this study, it is desired to increase the coverage rate,km2min, while maintaining ground sample size, 375m, and spectral resolution, 0.4-0.5nm native resolution. To be able to do this, the IFOV was significantly increased, hence the wide angle moniker. The field of view for COEDI was +0.6 degrees or (2048) 375m ground pixels. The WAS Threshold (the IDL study baseline design) is +2.4 degrees IDL study baseline design) is +2.4 degrees.

  8. Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime

    Science.gov (United States)

    Zuikafly, Siti Nur Fatin; Khalifa, Ali; Ahmad, Fauzan; Shafie, Suhaidi; Harun, SulaimanWadi

    2018-06-01

    The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conductive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at 1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from threshold power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94 kHz to 67.8 kHz while the pulse width is reduced from 9.58 μs to 6.02 μs. The generated stable pulse produced maximum peak power and pulse energy of 32 mW and 206 nJ, respectively. The first beat node of the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.

  9. Two-warehouse system for non-instantaneous deterioration products with promotional effort and inflation over a finite time horizon

    Science.gov (United States)

    Palanivel, M.; Priyan, S.; Mala, P.

    2017-11-01

    In the current global market, organizations use many promotional tools to increase their sales. One such tool is sales teams' initiatives or promotional policies, i.e., free gifts, discounts, packaging, etc. This phenomenon motivates the retailer/or buyer to order a large inventory lot so as to take full benefit of promotional policies. In view of this the present paper considers a two-warehouse (owned and rented) inventory problem for a non-instantaneous deteriorating item with inflation and time value of money over a finite planning horizon. Here, demand depends on the sales team's initiatives and shortages are partially backlogged at a rate dependent on the duration of waiting time up to the arrival of next lot. We design an algorithm to obtain the optimal replenishment strategies. Numerical analysis is also given to show the applicability of the proposed model in real-world two-warehouse inventory problems.

  10. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  11. Using a field radiometer to estimate instantaneous sky clearness Radiômetro de campo para cálculo da clareza instantânea do céu

    Directory of Open Access Journals (Sweden)

    Eduardo G. Souza

    2006-06-01

    Full Text Available Reflectance measurements of crop plants and canopies show promise for guiding within-season, variable-rate nitrogen (N application. Most research results have been obtained around solar noon with clear skies. However, for practical application, the system must work under cloudy skies or away from solar noon. The objective of this work was to assess the effect of cloud conditions on reflectance measurements of a corn canopy. The approach was to estimate an instantaneous sky clearness index (ICI which could be used to correct field radiometer data for variations in cloud cover, such that the same reflectance reading would be obtained (and the same N recommendation made for the same plants regardless of cloud conditions. Readings were taken from morning until night over 11 days with a range of sky conditions (sunny, overcast, partly cloudy. Data from clear days were used to estimate the theoretical expected spectral global radiation incident on a horizontal surface. The ICI was calculated as the ratio between the actual spectral global radiation and the corresponding theoretical global radiation. Analysis of the ICI for each band showed that the influence of cloudiness was different for each band. Thus, the cloud effect could not be compensated by the use of a band ratio or vegetation index.Medidas da reflectância das folhas das plantas mostram-se promissoras para a aplicação de nitrogênio a taxa variável; entretanto, a maioria dos resultados de pesquisa foi obtida ao redor do meio-dia solar e com céu aberto, porém para aplicações práticas um sistema tem que trabalhar debaixo de céu nublado e fora do meio-dia solar. O objetivo deste trabalho foi avaliar o efeito de condições de nuvem em medidas de reflectância de milho. A abordagem foi calcular um índice instantâneo de clareza do céu (ICI que pode ser usado para corrigir dados de radiômetros de campo para variações em cobertura de nuvem, tal que essas reflectâncias seriam

  12. Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field

    International Nuclear Information System (INIS)

    Liu, Jian; Qin, Hong

    2011-01-01

    We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The rst part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena.

  13. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  14. Relationship between instantaneous wave-free ratio and fractional flow reserve in patients receiving hemodialysis.

    Science.gov (United States)

    Morioka, Yuta; Arashi, Hiroyuki; Otsuki, Hisao; Yamaguchi, Junichi; Hagiwara, Nobuhisa

    2017-06-22

    Instantaneous wave-free ratio (iFR) is a vasodilator-free index and is reported to have a good correlation with fractional flow reserve (FFR). Hemodialysis patients exhibit left ventricular hypertrophy, reduced arterial compliance, and impaired microcirculation. Such a coronary flow condition in these patients may influence the relationship between iFR and FFR. This study assessed the impact of hemodialysis on the relationship between iFR and FFR. The study enrolled 196 patients with 265 stenoses who underwent assessment via iFR, FFR assessment, and right heart catheterization. A good correlation between iFR and FFR was observed in hemodialysis patients. iFR in the hemodialysis group was significantly lower than in the non-hemodialysis group (0.81 ± 0.13 vs. 0.86 ± 0.13, p = 0.005), although no significant difference was found in FFR and percentage diameter stenosis. An iFR value of 0.84 was found to be equivalent to an FFR value of 0.8 in hemodialysis patients, which was lower than the standard predictive iFR range for ischemia. Vasodilator-free assessment by iFR could be beneficial in evaluating intermediate coronary stenosis in patients receiving hemodialysis. However, the threshold for iFR abnormality needs adjustment in hemodialysis patients, and larger clinical trials are required to confirm the results in this specific subset.

  15. Reflection and refraction of a transient temperature field at a plane interface using Cagniard-de Hoop approach.

    Science.gov (United States)

    Shendeleva, M L

    2001-09-01

    An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal properties is considered. Green's functions for the temperature field are derived using the Laplace and Fourier transforms in time and space and their inverting by the Cagniard-de Hoop technique known in elastodynamics. The characteristic feature of the proposed approach consists in the application of the Cagniard-de Hoop method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as diagrams of rays and streamlines of the temperature field are presented.

  16. Tunneling Time and Weak Measurement in Strong Field Ionization.

    Science.gov (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  17. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    Directory of Open Access Journals (Sweden)

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  18. Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints

    Science.gov (United States)

    Clesse, Sébastien

    2011-09-01

    The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.

  19. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    -linear propagation. The speed of sound is calculated from the instantaneous pressure of the pulse and the nonlinearity B/A parameter of the medium. The harmonic field is found by introducing a number of virtual planes in front of the aperture and then propagating the pulse using Burgers' solution between the planes....... Simulations on the acoustical axis of an array transducer were performed and compared to measurements made in a water tank. A 3 MHz convex array transducer with a pitch of 0.53 mm and a height of 13 mm was used. The electronic focus was at 45 mm and 16 elements were used for emission. The emitted pressure...... was 1.4 MPa measured 6 mm from the aperture by a Force Institute MH25-5 needle hydrophone in a water bath. The build-up of higher harmonics can here be predicted accurately up to the 5th harmonic. The second harmonic is simulated with an accuracy of ±2.6 dB and the third harmonic with ±2 dB compared...

  20. Replenishment policy for non-instantaneous deteriorating items in a two storage facilities under inflationary conditions

    Directory of Open Access Journals (Sweden)

    Chandra K. Jaggi

    2016-06-01

    Full Text Available The present study investigates an inventory model for non-instantaneous deteriorating items under inflationary conditions with partially backlogged shortages. In today’s market structure consumers are looking for goods for which there is a delay in deterioration. At the same time, the consumers’ willingness to wait has been decreased over time, which leads to lost sales. Moreover in financial decision-making, the effects of inflation and time value of money cannot be oblivious to an inventory system. In this scenario, managing inventory of goods remains a challenging task for the decision makers, who may also have to rent warehouse under different prevailing factors such as, bulk discount, limited space in the retail outlet, or increasing inflation rates. With a focus on reduction of costs and increasing customer service, warehouse decision models are crucial for an organization’s profitability. Hence a mathematical model has been developed in the view of above scenario, in order to determine the optimal policy for the decision maker, by minimizing the present worth of total cost. The optimization procedure has been illustrated by a numerical example and detailed sensitivity analysis of the optimal solution has been performed to showcase the effect of various parameters. Managerial implications has also been presented to aid the decision making process.

  1. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization

    Science.gov (United States)

    Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei

    2017-09-01

    In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.

  2. Correlated electron-ion collisions in a strong laser field; Korrelierte Elektron-Ion-Stoesse in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ristow, T.

    2007-12-17

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  3. An assessment of potential applications with pulsed electric field in wines

    Directory of Open Access Journals (Sweden)

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  4. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  5. Achieving swift equilibration of a Brownian particle using flow-fields

    Science.gov (United States)

    Patra, Ayoti; Jarzynski, Christopher

    Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.

  6. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  7. Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective.

    Science.gov (United States)

    Goldberg, Arnon; Yogev, Ayala; Confino-Cohen, Ronit

    2011-01-01

    Rush venom immunotherapy (VIT) is highly effective in vespid venom allergy, but comparable data regarding bee venom (BV) allergy are sparse. We evaluated its safety, efficacy and cost in BV-allergic patients. Conventional or rush VIT were offered to all patients with systemic reaction to insect sting. Rush VIT was also given to hyperreactive patients who failed to reach the maintenance dose with conventional VIT due to multiple systemic reactions. In BV-allergic patients, honeybee sting challenge was performed within 1 week after reaching the maintenance dose. 179 patients, some of them allergic to more than one venom, received 246 rush VIT courses. Bee VIT was administered to 132 patients (73.7%); 173 patients (96.6%) reached the maintenance dose. The incidence of systemic reactions was 29.6%. They were more common in VIT with BV than with vespid venoms (31.1 and 16.3%, respectively, p = 0.01). After excluding the hyperreactive subgroup (n = 20), this difference was not significant (23.7 and 16%, respectively, p = 0.19). Despite the high incidence of systemic reactions (15 of 20, 75%) among hyperreactive patients, 17 patients (85%) achieved the maintenance dose. Sting challenges resulted in systemic reaction in 4 of 8 (50%) hyperreactive patients and in 2 of 47 (4.3%) ordinary patients. The cost of rush VIT was 41% of that of conventional VIT. Rush VIT with BV is safe, instantaneously effective, less expensive and enables most patients with previous failures of conventional VIT to reach the maintenance dose. Copyright © 2011 S. Karger AG, Basel.

  8. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  9. Instantaneous transport of salt, nutrients, suspended matter and chlorophyll-a in the tropical estuarine system of Santos

    Directory of Open Access Journals (Sweden)

    Gleyci A. O. Moser

    2005-12-01

    Full Text Available The contribution of the polluted São Vicente and Santos estuarine channels to the eutrophication of Santos bay was assessed through the quantification of instantaneous transport of salt, dissolved inorganic nitrogen (DIN and phosphate, organic and inorganic matter (OSM and ISM and chlorophyll-a (Chl-a, during dry (austral winter- August/ 1999 and rainy (austral summer- January/2000 seasons. Samplings were carried out during spring and neap tides, in flood and ebb phases, in two transversal sections at the mouths of the São Vicente and Santos channels. Instantaneous transport values generally indicated importation of salt to the estuarine channels, exportation of DIN to the bay, mainly as N-NH4, at a maximum rate of 1155.1 g s-1 during the rainy season; importation of phosphate during the dry season (maximum of 385 g s-1 and exportation of ISM, OSM and Chl-a during periods of greater freshwater discharge. These results demonstrate the great contribution made by the Santos and São Vicente estuaries to the eutrophication of Santos bay, especially in the rainy season.A contribuição dos canais estuarinos de Santos e São Vicente para a eutrofização da baía de Santos foi avaliada quantificando-se o transporte instantâneo de sal, fosfato e nitrogênio inorgânico dissolvido (NID, material em suspensão orgânico (MSO e inorgânico (MSI e clorofila-a, durante a estação seca (inverno austral- Agosto/1999 e chuvosa (verão austral- Janeiro/ 2000. As amostragens foram realizadas em períodos de sizígia e quadratura, durante as marés enchentes e vazantes, nas secções transversais das bocas dos canais de São Vicente e Santos. Os valores de transporte instantâneo obtidos durante o período de amostragem indicaram exportação de NID, principalmente sobre a forma de N-NH4 (valor máximo de 1155,1 g s-1 na estação chuvosa; importação de fosfato durante a estação seca (máximo de 385,6 g s-1 e exportação de MSI, MSO e clorofila-a em per

  10. Instantaneous planar pressure determination from particle image velocimetry

    NARCIS (Netherlands)

    De Kat, R.

    2012-01-01

    Forces on flapping or rotating wings, like flapping wings of micro air vehicles or blades of wind turbines are of great interest to engineers. To investigate the ways birds and insects fly, forces created by flapping wings are of importance to biologists. The pressure field, combined with the

  11. Instantaneous heat flux flowing into piston top-land surface of D.I. diesel engine; DI diesel kikan no piston top land bu eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Taguma, M [Zexel Corp., Tokyo (Japan); Inui, M; Enomoto, Y; Hagihara, Y [Musashi Institute of Technology, Tokyo (Japan); Koyama, T [Mitsubishi Motors Co., Tokyo (Japan)

    1997-10-01

    The thermal loads of the piston top-land surface in D.I. diesel engine during actual operation is not cleared. The authors fixed thin film thermocouples in the top-land center of a standard piston, and measured the instantaneous heat fluxes in that place. As a result, the authors made clear the thermal loads of the piston top-land surface in a cycle, and confirmed presence of the flame inflow to the piston top-land center. In addition, the authors made clear the thermal loads of the piston top-land surface in EGR operation. 4 refs., 8 figs.

  12. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    Science.gov (United States)

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling. Copyright © 2015 the American Physiological Society.

  13. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  14. Fast penetration of megagauss fields into metallic conductors

    International Nuclear Information System (INIS)

    Schnitzer, Ory

    2014-01-01

    Megagauss magnetic-field penetration into a conducting material is studied via a simplified but representative model, wherein the magnetic-diffusion equation is coupled with a thermal-energy balance. The specific scenario considered is that of a prescribed magnetic field rising (in proportion to an arbitrary power r of time) at the surface of a conducting half-space whose electric conductivity is assumed proportional to an arbitrary inverse power γ of temperature. We employ a systematic asymptotic scheme in which the case of a strong surface field corresponds to a singular asymptotic limit. In this limit, the highly magnetized and hot “skin” terminates at a distinct propagating wave-front. Employing the method of matched asymptotic expansions, we find self-similar solutions of the magnetized region which match a narrow boundary-layer region about the advancing wave front. The rapidly decaying magnetic-field profile in the latter region is also self similar; when scaled by the instantaneous propagation speed, its shape is time-invariant, depending only on the parameter γ. The analysis furnishes a simple asymptotic formula for the skin-depth (i.e., the wave-front position), which substantially generalizes existing approximations. It scales with the power γr + 1∕2 of time and the power γ of field strength, and is much larger than the field-independent skin depth predicted by an athermal model. The formula further involves a dimensionless O(1) pre-factor which depends on r and γ. It is determined by solving a nonlinear eigenvalue problem governing the magnetized region. Another main result of the analysis, apparently unprecedented, is an asymptotic formula for the magnitude of the current-density peak characterizing the wave-front region. Complementary to these systematic results, we provide a closed-form but ad hoc generalization of the theory approximately applicable to arbitrary monotonically rising surface fields. Our results are in excellent agreement

  15. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  16. Application of CFD Modeling to Room Fire Growth on Walls

    Science.gov (United States)

    2003-04-01

    to each particle. For fires of other geometries, expressions must be available for representing the characteristic velocity and flame length , in the...burning time, z , is the flame length , ri,, is the selected particle rate. The velocity of the particles generally depends on their launch site. But if...over the characteristic flame length , We used R* = 0.05 or 20 cells over the characteristic flame length . In FDS 2.0 the stoichiometric mixture

  17. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  18. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  19. Instantaneous active and reactive power theory and applications; Teoria de potencia ativa e reativa instantanea e aplicacoes - filtros ativos e FACTS

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Edson H.; Aredes, Mauricio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Eletronica de Potencia]. E-mail: watanabe@coe.ufrj.br, aredes@cce.ufrj.br

    1998-07-01

    A tutorial about the instantaneous active and reactive power theory, which is valid for balanced and unbalanced three-phase systems, with and without harmonics is presented. Based on this theory the basic concepts involving the operation and design of shunt and series active and passive filters are also discussed. The advantage of the association of active and passive filters are also discussed. The association of shunt and series active filters to form the UPQC (Universal Power Quality Conditions), which guarantees the total compensation of voltage and current harmonics is also presented. As a result of the generalization of the UPFC (Unified Power Flow Controller) associated with the UPQC, the UPLC (Universal Active Power Line Conditioner) is proposed to compensate voltage and current harmonics as well as to control the power flow in a transmission line and regulate the ac bus voltage. (author)

  20. Use of a Hands Free, Instantaneous, Closed-Loop Communication Device Improves Perception of Communication and Workflow Integration in an Academic Teaching Hospital: A Pilot Study.

    Science.gov (United States)

    Fang, Daniel Z; Patil, Teja; Belitskaya-Levy, Ilana; Yeung, Marianne; Posley, Keith; Allaudeen, Nazima

    2017-11-17

    Efficient and effective communication between providers is critical to quality patient care within a hospital system. Hands free communication devices (HFCD) allow instantaneous, closed-loop communication between physicians and other members of a multidisciplinary team, providing a communication advantage over traditional pager systems. HFCD have been shown to decrease emergency room interruptions, improve nursing communication, improve speed of information flow, and eliminate health care waste. We evaluated the integration of an HFCD with an existing alphanumeric paging system on an acute inpatient medicine service. We conducted a prospective, observational, survey-based study over twenty-four weeks in an academic tertiary care center with attending physicians and residents. Our intervention involved the implementation of an HFCD alongside the existing paging system. Fifty-six pre and post surveys evaluated the perception of improvement in communication and the integration of the HFCD into existing workflow. We saw significant improvements in the ability of an HFCD to help physicians communicate thoughts clearly, communicate thoughts effectively, reach team members, reach ancillary staff, and stay informed about patients. Physicians also reported better workflow integration during admissions, rounds, discharge, and teaching sessions. Qualitative data from post surveys demonstrated that the greatest strengths of the HFCD included the ability to reach colleagues and staff quickly, provide instant access to individuals of the care team, and improve overall communication. Integration of an instantaneous, hands free, closed loop communication system alongside the existing pager system can provide improvements in the perceptions of communication and workflow integration in an academic medicine service. Future studies are needed to correlate these subjective findings with objective measures of quality and safety.

  1. Flow diagnostics downstream of a tribladed rotor model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery

    2012-01-01

    This paper presents results of a study of vortex wake structures and measurements of instantaneous 3D velocity fields downstream of a triblade turbine model. Two operation modes of flow around the rotor with different tip speed ratios were tested. Initially the wake structures were visualized...... and subsequently quantitative data were recorded through velocity field restoration from particle tracks using a stereo PIV system.The study supplied flow diagnostics and recovered the instantaneous 3D velocity fields in the longitudinal cross section behind a tribladed rotor at different values of tip speed ratio...

  2. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  3. Active power compensator of the current harmonics based on the instantaneous power theory

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2005-12-01

    Full Text Available The quality of the electrical current becomes a major concern. The proliferation of the power electronic converters, which are used extensively to control electrical apparatus in industrial and commercial applications (dc and ac variable speed motor drives, induction furnaces, power line conditioners, and industrial power supplies, is at the origin of the AC current distribution network pollution and the reactive power demand. These power electronic converters typically draw non-sinusoidal currents from the utility, causing interference with adjacent sensitive loads and limit the utilization of the available electrical supply. The quality of the electrical current thus becomes a significant concern for the distributors of energy and their customers. Recent progress as regards technology of the power electronics brings a capacity of compensation and correction of the harmonic distortion generated by the nonlinear loads. In this paper a parallel active filter prototype capable of reducing the total harmonic distortion in the supply for most current source or adjustable speed drive type loads is presented. A 33 kVA active power filter was developed for harmonic and reactive power compensation based on the instantaneous power theory. The active filter configuration requires the measurement of both the load and filter currents. Experimental results from a prototype active power filter confirm the suitability of the proposed approach. The actual 33kVA prototype converter has been built and tested in the SIEI S.p.A. (Italy laboratory under the Marie Curie Post Doctoral research. The active power compensator is controlled by a high performance DSP platform, resulting in the following active filter features: source current reduction up to the 25th harmonic, 10% THD achievable for current source type loads, efficiency above 97%, does not cause resonance with other loads, operation in the presence of unbalanced loads, reactive power and harmonics

  4. Effects of magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-25.0Ni-4.0Cr alloy

    International Nuclear Information System (INIS)

    Kakeshita, T.; Saburi, T.; Shimizu, K.

    1995-01-01

    Effects of magnetic fields and hydrostatic pressures on the isothermal martensitic transformation, whose nose temperature is about 140K, in an Fe-25.0Ni-4.0Cr alloy (mass%) has been examined by applying magnetic fields up to 30MA/m and hydrostatic pressures up to 1.5GPa. The obtained results are the following: The martensitic transformation is induced instantaneously (less than 20μsec.) under pulsed magnetic fields higher than a critical field over a wide temperature range between 4.2 and 200K. The critical magnetic field increases with increasing temperature, and the relation between critical magnetic field and temperature is in good agreement with the one calculated by the equation previously derived by the authors. The T T T diagram under static magnetic field shows a lower nose temperature and a shorter incubation time than that under no external magnetic field, while the T T T diagram under hydrostatic pressure shows a higher nose temperature and a longer incubation time than that under no external hydrostatic pressure. These results are well explained by the new phenomenological theory, which gives a unified explanation on the isothermal and athermal kinetics of martensitic transformations previously constructed by the authors. (orig.)

  5. M.V.A. amplifier for plasma position control by vertical magnetic field

    International Nuclear Information System (INIS)

    Schenk, G.

    1978-01-01

    The radial plasma position in the WEGA torus is controlled by a power amplifier, acting on the vertical magnetic field. Up to now the feedback loop contains, as amplifying elements, two 90 kW DC-transistor amplifiers, acting in push-pull operation. As increased plasma stability and lifetime is desirable, we have to increase the power amplifier to about 1 Megawatt. Industry offered a thyristor rectifier, operating at 50 or 300 Hz, and alternatively a thyristor chopper amplifier at a few kHz frequency response. Theses offers did not correspond to our demand, as far as response time, price and primary power requirements are concerned. We have implemented a bipolar switching-type amplifier (also called H-bridge converter) with the characteristics: time response < 0,05 ms., pulsed power = 1 MW (400 V, 2500 A), primary power = 2,5 kW. As power switch, a network of parallel high voltage transistors, driven by three transistor stages, has been chosen, to control a vertical magnetic field or +/- 180 G, with a precision of about one per cent. Precautions for transistor switches concerning mainly critical voltage, current, instantaneous power and selfoscillating behaviour have been taken. This systems corresponds to our demands

  6. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    International Nuclear Information System (INIS)

    Claudio Filippone

    1999-01-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency

  7. The NIKA2 Large Field-of-View Millimeter Continuum Camera for the 30-M IRAM Telescope

    Science.gov (United States)

    Monfardini, Alessandro

    2018-01-01

    We have constructed and deployed a multi-thousands pixels dual-band (150 and 260 GHz, respectively 2mm and 1.15mm wavelengths) camera to image an instantaneous field-of-view of 6.5arc-min and configurable to map the linear polarization at 260GHz. We are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focusing on the cryogenics, the optics, the focal plane arrays based on Kinetic Inductance Detectors (KID) and the readout electronics. We are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institute of Millimetric Radio Astronomy) telescope at Pico Veleta, and preliminary science-grade results.

  8. THE FUZZY LOGIC BASED POWER INJECTION INTO ROTOR CIRCUIT FOR INSTANTANEOUS HIGH TORQUE AND SPEED CONTROL IN INDUCTION MACHINES

    Directory of Open Access Journals (Sweden)

    Selami KESLER

    2009-01-01

    Full Text Available The power flow of the rotor circuit is controlled by different methods in induction machines used for producing high torque in applications involved great power and constant output power with constant frequency in wind turbines. The voltage with slip frequency can be applied on rotor windings to produce controlled high torque and obtain optimal power factor and speed control. In this study, firstly, the dynamic effects of the voltage applying on rotor windings through the rings in slip-ring induction machines are researched and undesirable aspects of the method are exposed with simulations supported by experiments. Afterwards, a fuzzy logic based inverter model on rotor side is proposed with a view to improving the dynamic effects, controlling high torque producing and adjusting machine speed in instantaneous forced conditions. For the simulation model of the system in which the stator side is directly connected to the grid in steady state operation, a C/C++ algorithm is developed and the results obtained for different load conditions are discussed.

  9. Gear Tooth Failure Detection by the Resonance Demodulation Technique and the Instantaneous Power Spectrum Method – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemloonia

    2011-01-01

    Full Text Available The role of gears in industry for speed and torque variation purposes is obvious. The gearbox diagnostic methods have been improved quickly in recent years. In this paper, two of the newest methods, the resonance demodulation technique (R.D, and the instantaneous power spectrum technique (IPS are applied to gearbox vibration signals and their capabilities in fault detection are compared. Yet, the important role of time averaging should not be dispensed with, as it is the primary step for both techniques. In the present study, the mathematical method of these techniques, according to the mathematical vibration model of gears, is introduced, these techniques are applied to the test rig data, and finally the results of both methods are compared. The results indicate that in each method, the location of fault can be estimated and it is located in the same angular position in both methods. The IPS method is applicable to severe faults, whereas the resonance demodulation technique is a simple tool to recognize the fault at each severity and at the early stages of fault generation.

  10. Venus's winds and temperatures during the MESSENGER's flyby: towards a three-dimensional instantaneous state of the atmosphere

    Science.gov (United States)

    Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.

    2017-09-01

    The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.

  11. Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors

    International Nuclear Information System (INIS)

    Chu, Y.Y.

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design

  12. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  13. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J.; Gaver, Donald P.

    2012-01-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method. PMID:23049158

  14. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    Science.gov (United States)

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2018-03-01

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.

  15. Optical system design with wide field of view and high resolution based on monocentric multi-scale construction

    Science.gov (United States)

    Wang, Fang; Wang, Hu; Xiao, Nan; Shen, Yang; Xue, Yaoke

    2018-03-01

    With the development of related technology gradually mature in the field of optoelectronic information, it is a great demand to design an optical system with high resolution and wide field of view(FOV). However, as it is illustrated in conventional Applied Optics, there is a contradiction between these two characteristics. Namely, the FOV and imaging resolution are limited by each other. Here, based on the study of typical wide-FOV optical system design, we propose the monocentric multi-scale system design method to solve this problem. Consisting of a concentric spherical lens and a series of micro-lens array, this system has effective improvement on its imaging quality. As an example, we designed a typical imaging system, which has a focal length of 35mm and a instantaneous field angle of 14.7", as well as the FOV set to be 120°. By analyzing the imaging quality, we demonstrate that in different FOV, all the values of MTF at 200lp/mm are higher than 0.4 when the sampling frequency of the Nyquist is 200lp/mm, which shows a good accordance with our design.

  16. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions

    KAUST Repository

    Elbaz, Ayman M.

    2015-12-19

    Detailed measurements are presented of the turbulent flow field, gas species concentrations and temperature field in a non-premixed methane swirl flame. Attention is given to the effect of the quarl geometry on the flame structure and emission characteristics due to its importance in gas turbine and industrial burner applications. Two different quarls were fitted to the burner exit, one a straight quarl and the other a diverging quarl of 15° half cone angle. Stereoscopic Particle Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity on a vertical plane immediately downstream of the quarl exit. Temperature and gaseous species measurements were made both inside and downstream of the quarls, using a fine wire thermocouple and sampling probe, respectively. This work provides experimental verification by complementary techniques. The results showed that although the main flame structures were governed by the swirl motion imparted to the air stream, the quarl geometry, fuel loading and air loading also had a significant effect on the flow pattern, turbulence intensity, mixture formation, temperature distribution, emissions and flame stabilization. Particularly, in the case of the straight quarl flame, the flow pattern leads to strong, rapid mixing and reduces the residence time for NO formation within the internal recirculation zone (IRZ). However, for the diverging quarl flames, the recirculation zone is shifted radially outward, and the turbulent interaction between the central fuel jet and the internal recirculation zone IRZ induces another small vortex between these two flow features. Less mixing near the diverging quarl exit is observed, with a higher concentration of NO and CO in the post-combustion zone. The instantaneous flow field for both flames showed the existence of small scale vortical structure near the shear layers which were not apparent in the time averaged flow field. These structures, along with high levels

  17. Electric fields and currents observed by S3-2 in the vicinity of discrete arcs

    International Nuclear Information System (INIS)

    Burke, W.J.

    1984-01-01

    The high time resolution of the electric and magnetic field detectors on the polar orbiting satellite S3-2 made it possible to examine the details of auroral events down to discrete-arc scales. Depending on the instantaneous look direction of an electron detector, information about field-aligned accelerations above the satellite could also be obtained. Case studies of four arc events, three in the auroral oval and one in the polar cap, have been completed. Field-aligned currents associated with arcs in the auroral oval appeared as matched pairs of oppositely directed current sheets. Magnetic deflections, almost exclusively in the east-west direction departed from and returned to baselines established by the large-scale Region 1/Region 2 currents. The upward currents had intensities of up to 145 microamperes/sq m and were carried by electrons that were accelerated through field aligned potential drops. The relationship between the field-aligned current density and potential drop is not inconsistent with predictions of a laminar flow model. The most intense return (downward) currents were in the 10 to 15 microamperes/sq m range. At satellite altitudes near 1000 km, these currents approximate the critical limit for current driven, ion cyclotron instabilities. The arc in the polar cap was sun-aligned and was found in a region of intense convective shear, with the electric field pointing toward the center of the arc. The field-aligned currents consisted of three sheets two with currents flowing into and one out of the ionosphere. The upward current was carried by polar-rain electrons that had undergone a field-aligned acceleration of approximately 1 kV. 19 references

  18. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    Science.gov (United States)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  19. Estimating time-based instantaneous total mortality rate based on the age-structured abundance index

    Science.gov (United States)

    Wang, Yingbin; Jiao, Yan

    2015-05-01

    The instantaneous total mortality rate ( Z) of a fish population is one of the important parameters in fisheries stock assessment. The estimation of Z is crucial to fish population dynamics analysis, abundance and catch forecast, and fisheries management. A catch curve-based method for estimating time-based Z and its change trend from catch per unit effort (CPUE) data of multiple cohorts is developed. Unlike the traditional catch-curve method, the method developed here does not need the assumption of constant Z throughout the time, but the Z values in n continuous years are assumed constant, and then the Z values in different n continuous years are estimated using the age-based CPUE data within these years. The results of the simulation analyses show that the trends of the estimated time-based Z are consistent with the trends of the true Z, and the estimated rates of change from this approach are close to the true change rates (the relative differences between the change rates of the estimated Z and the true Z are smaller than 10%). Variations of both Z and recruitment can affect the estimates of Z value and the trend of Z. The most appropriate value of n can be different given the effects of different factors. Therefore, the appropriate value of n for different fisheries should be determined through a simulation analysis as we demonstrated in this study. Further analyses suggested that selectivity and age estimation are also two factors that can affect the estimated Z values if there is error in either of them, but the estimated change rates of Z are still close to the true change rates. We also applied this approach to the Atlantic cod ( Gadus morhua) fishery of eastern Newfoundland and Labrador from 1983 to 1997, and obtained reasonable estimates of time-based Z.

  20. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view.

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  1. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  2. The effects of noise on binocular rivalry waves: a stochastic neural field model

    International Nuclear Information System (INIS)

    Webber, Matthew A; Bressloff, Paul C

    2013-01-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction–diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. (paper)

  3. Enhanced UV exposure on a ski-field compared with exposures at sea level.

    Science.gov (United States)

    Allen, Martin; McKenzie, Richard

    2005-05-01

    Personal erythemal UV monitoring badges, which were developed to monitor the UV exposure of school children, were used to measure UV exposures received by one of the authors (MA) at the Mt Hutt ski-field, in New Zealand. These were then compared with measurements taken at the same times from a nearby sea level site in Christchurch city. The badges were designed to give instantaneous readings of erythemally-weighted (i.e., "sun burning") UV radiation and were cross-calibrated against meteorological grade UV instruments maintained by the National Institute of Water & Atmospheric Research (NIWA). All skiing and calibration days were clear and almost exclusively cloud free. It was found that the UV maxima for horizontal surfaces at the ski-field (altitude approximately 2 km) were 20-30% greater than at the low altitude site. Larger differences between the sites were observed when the sensor was oriented perpendicular to the sun. The personal doses of UV received by a sensor on the skier's lapel during two days of skiing activity were less than those received by a stationary detector on a horizontal surface near sea level. The exposures depended strongly on the time of year, and in mid-October the maximum UV intensity on the ski-field was 60% greater than in mid-September. The UV exposure levels experienced during skiing were smaller than the summer maxima at low altitudes.

  4. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  5. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  6. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  7. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    Directory of Open Access Journals (Sweden)

    Kelly N. Salb

    2016-01-01

    Full Text Available Ankle instantaneous axis of rotation (IAR measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs were controlled as a function of a vertical ground reaction force (vGRF set at half body weight (356 N and a 50% vGRF (178 N Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions.

  8. The instantaneous local transition of a stable equilibrium to a chaotic attractor in piecewise-smooth systems of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz

    2016-09-07

    An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.

  9. Strong ion accelerating by collisionless magnetosonic shock wave propagating perpendicular to a magnetic field

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu.

    1984-12-01

    A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)

  10. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  11. Reconfigurable digital receiver design and application for instantaneous polarimetric measurement

    NARCIS (Netherlands)

    Wang, Z.; Krasnov, O.A.; Babur, G.P.; Ligthart, L.P.; Van der Zwan, F.

    2011-01-01

    This paper presents the development of a reconfigurable receiver to undertake challenging signal processing tasks for a novel polarimetric radar system. The field-programmable gate arrays (FPGAs)-based digital receiver samples incoming signals at intermediate frequency (IF) and processes signals

  12. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition.

    Science.gov (United States)

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x  = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.

  13. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  14. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Shabeer Ahmed Abbasi

    2016-03-01

    Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.

  15. Simulation of containment atmosphere stratification experiment using local instantaneous description

    International Nuclear Information System (INIS)

    Babic, M.; Kljenak, I.

    2004-01-01

    An experiment on mixing and stratification in the atmosphere of a nuclear power plant containment at accident conditions was simulated with the CFD code CFX4.4. The original experiment was performed in the TOSQAN experimental facility. Simulated nonhomogeneous temperature, species concentration and velocity fields are compared to experimental results. (author)

  16. Stocking and price-reduction decisions for non-instantaneous deteriorating items under time value of money

    Directory of Open Access Journals (Sweden)

    Freddy Andrés Pérez

    2019-01-01

    Full Text Available Deteriorating inventory models are used as decision support tools for managers primarily, although not exclusively, in the retail trade. The mathematical modeling of deteriorating items allows managers to analyze their inventory management systems to identify areas that can be improved and to measure the corresponding potential benefits. This study develops an enhanced deteriorating inventory model for optimizing the inventory control strategy of companies operating in sectors with deteriorating products. In contrast with previous studies, our model holistically accounts for the overall financial effect of a company’s policies on product price discounting and on inventory shortages while considering the time value of money (TVM. We aim to find the optimal replenishment strategy and the optimal price reductions that maximize the discounted profit function of this analytical model over a fixed planning horizon. To this end, we use an economic order quantity model to study the effects of the TVM and inflation. The model accounts for pre- and post-deterioration discounts on the selling price for non-instantaneous deteriorating products with the demand rate being a function of time, price-discounts and stock-keeping units. Shortages are allowed and partially backordered, depending on the waiting time until the next replenishment. Additionally, we consider the effect of discounts on the selling price when items have either an instant deterioration or a fixed lifetime. We propose five implementable solutions for obtaining the optimal values, and examine their performance. We present some numerical examples to illustrate the applicability of the models, and carry out a sensitivity analysis. The study reveals that accounting for TVM and inventory shortages is complex and time-consuming; nevertheless, we find that accounting for TVM and shortages can be valuable in terms of increasing the yields of companies. Finally, we provide some important

  17. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  18. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

    Directory of Open Access Journals (Sweden)

    Ana Calabrese

    2011-01-01

    Full Text Available In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF, a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM. In this model, each cell's input is described by: 1 a stimulus filter (STRF; and 2 a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs and modulation limited (ml noise. We compare this model to normalized reverse correlation (NRC, the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.

  19. The effects of noise on binocular rivalry waves: a stochastic neural field model

    KAUST Repository

    Webber, Matthew A

    2013-03-12

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.

  20. The impact of tissue Doppler index E/e' ratio on instantaneous wave-free ratio.

    Science.gov (United States)

    Arashi, Hiroyuki; Yamaguchi, Junichi; Ri, Tonre; Otsuki, Hisao; Nakao, Masashi; Kamishima, Kazuho; Jujo, Kentaro; Minami, Yuichiro; Ogawa, Hiroshi; Hagiwara, Nobuhisa

    2018-03-01

    The instantaneous wave-free ratio (iFR) is a vasodilator-free, invasive pressure wire index of the functional severity of coronary stenosis and is calculated under resting conditions. In a recent study, iFR was found to be more closely linked to coronary flow reserve (CFR) than fractional flow reserve (FFR). E/e' is a surrogate marker of left ventricular (LV) filling pressure and LV diastolic dysfunction. Coronary resting flow was found to be increased in patients with elevated E/e', and higher coronary resting flow was associated with lower CFR. Higher baseline coronary flow induces a greater loss of translesional pressure and may affect iFR. However, no reports have examined the impact of E/e' on iFR. The purpose of this study was to assess the relationship between iFR and E/e' compared with FFR. We retrospectively examined 103 consecutive patients (142 with stenosis) whose iFR, FFR, and E/e' were measured simultaneously. The mean age, LV mass index, and systolic blood pressure of patients with elevated E/e' were higher than those of patients with normal E/e'. Although no significant differences were observed in mean FFR values and % diameter stenosis, the mean iFR value in patients with elevated E/e' was significantly lower than that in patients with normal E/e'. The iFR was negatively correlated with E/e', while there was no correlation between FFR and E/e'. Multivariate analysis showed that E/e' and % diameter stenosis were independent determinants of iFR. E/e' ratio affects iFR values. Our results suggest that FFR mainly reflects the functional severity of the epicardial stenosis whereas iFR could potentially be influenced by not only epicardial stenosis but also other factors related to LV filling pressure or LV diastolic dysfunction. Further research is needed to understand the underlying mechanisms that influence the evaluation of iFR in patients with elevated E/e'. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights

  1. Holographic elements and curved slit used to enlarge field of view in rocket detection system

    Science.gov (United States)

    Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc

    2006-09-01

    Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.

  2. Instantaneous wave-free ratio as an alternative to fractional flow reserve in assessment of moderate coronary stenoses: A meta-analysis of diagnostic accuracy studies.

    Science.gov (United States)

    Maini, Rohit; Moscona, John; Katigbak, Paul; Fernandez, Camilo; Sidhu, Gursukhmandeep; Saleh, Qusai; Irimpen, Anand; Samson, Rohan; LeJemtel, Thierry

    2017-12-27

    Fractional flow reserve (FFR) remains underutilized due to practical concerns related to the need for hyperemic agents. These concerns have prompted the study of instantaneous wave-free ratio (iFR), a vasodilator-free index of coronary stenosis. Non-inferior cardiovascular outcomes have been demonstrated in two recent randomized clinic trials. We performed this meta-analysis to provide a necessary update of the diagnostic accuracy of iFR referenced to FFR based on the addition of eight more recent studies and 3727 more lesions. We searched the PubMed, EMBASE, Central, ProQuest, and Web of Science databases for full text articles published through May 31, 2017 to identify studies addressing the diagnostic accuracy of iFR referenced to FFR≤0.80. The following keywords were used: "instantaneous wave-free ratio" OR "iFR" AND "fractional flow reserve" OR "FFR." In total, 16 studies comprising 5756 lesions were identified. Pooled diagnostic accuracy estimates of iFR versus FFR≤0.80 were: sensitivity, 0.78 (95% CI, 0.76-0.79); specificity, 0.83 (0.81-0.84); positive likelihood ratio, 4.54 (3.85-5.35); negative likelihood ratio, 0.28 (0.24-0.32); diagnostic odds ratio, 17.38 (14.16-21.34); area under the summary receiver-operating characteristic curve, 0.87; and an overall diagnostic accuracy of 0.81 (0.78-0.84). In conclusion, iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. When considering along with its clinical outcome data and ease of application, the diagnostic accuracy of iFR supports its use as a suitable alternative to FFR for physiology-guided revascularization of moderate coronary stenoses. We performed a meta-analysis of the diagnostic accuracy of iFR referenced to FFR. iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. This supports its use as a suitable

  3. Fast wake measurements with LiDAR at Risø test field

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Trujillo, J.J.; Mann, Jakob

    2008-01-01

    . Downstream wind speed can be quantified spatially in one and two dimensions. Data analysis allows us to identify the wake transversal position, thus enabling us to quantify the wake meandering as well as the instantaneous wake expansion expressed in a meandering frame of reference. The experimental results...

  4. Heat Tolerance and the Peripheral Effects of Anticholinergics. 1. A Non-Invasive Method for Estimating the Cholinergic Sensitivity of the Eccrine Glands in Humans.

    Science.gov (United States)

    1985-01-30

    administered epinepherine and norepinepherine in atopic dermatitis . J Invest Dermatol 37: 201-205, 1961. XV ’I1 Jq ’i 28 DISTRIBUTION 4 copies: Commander...designated by other authorized documents. Accession For hNTTS GRA&I PTIC TAB |Ju., If " Cat ioilnSPCEI FY--- Di stri bI-t i on/ Av i’ b1tty Codos ’ i ad...aten reundt ie hlontophoresis(mn proceeded on contralateral arm. 21 a. b 0 C. L 00 calculated dam. IFOV2q Cal calculted dean I.Wsq cat I CM118 Act~ Cotb

  5. Tomographic PIV behind a prosthetic heart valve

    Science.gov (United States)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  6. HVRM: a second generation ACE-FTS instrument concept

    Science.gov (United States)

    Lavigne, Jean-François; Larouche, Martin; Dupont, Fabien; Girard, Guillaume; Veilleux, James; Buijs, Henry; Desbiens, Raphaël.; Perron, Gaétan; Grandmont, Frédéric; Paradis, Simon; Moreau, Louis; Bourque, Hugo

    2017-11-01

    The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is the main instrument on-board the SCISAT-1 satellite, a mission mainly supported by the Canadian Space Agency [1]. It is in Low- Earth Orbit at an altitude of 650 km with an inclination of 74E. Its data has been used to track the vertical profile of more than 30 atmospheric species in the high troposphere and in the stratosphere with the main goal of providing crucial information for the comprehension of chemical and physical processes controlling the ozone life cycle. These atmospheric species are detected using high-resolution (0.02 cm-1) spectra in the 750-4400 cm-1 spectral region. This leads to more than 170 000 spectral channels being acquired in the IR every two seconds. It also measures aerosols and clouds to reduce the uncertainty in their effects on the global energy balance. It is currently the only instrument providing such in-orbit high resolution measurements of the atmospheric chemistry and is often used by international scientists as a unique data set for climate understanding. The satellite is in operation since 2003, exceeding its initially planned lifetime of 2 years by more than a factor of 5. Given its success, its usefulness and the uniqueness of the data it provides, the Canadian Space Agency has founded the development of technologies enabling the second generation of ACE-FTS instruments through the High Vertical Resolution Measurement (HVRM) project but is still waiting for the funding for a mission. This project addresses three major improvements over the ACE-FTS. The first one aims at improving the vertical instantaneous field-of-view (iFoV) from 4.0 km to 1.5 km without affecting the SNR and temporal precision. The second aims at providing precise knowledge on the tangent height of the limb observation from an external method instead of that used in SCISAT-1 where the altitude is typically inferred from the monotonic CO2 concentration seen in the spectra. The

  7. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  8. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  9. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  10. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    Science.gov (United States)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  11. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  12. Dynamics of asymmetric kinetic Ising systems revisited

    International Nuclear Information System (INIS)

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-01-01

    The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)

  13. Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer

    Science.gov (United States)

    Snyder, L. E.; Herstand, M. R.; Bowden, W. B.

    2011-12-01

    Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.

  14. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    Recently, KAERI (Korea Atomic Energy Research Institute) has examined and developed a dual cooled annular fuel. Dual cooled annular fuel allows the coolant to flow through the inner channel as well as the outer channel. Due to inner channel, the outer diameter of dual cooled annular fuel (15.9 mm) is larger than that of conventional cylindrical solid fuel (9.5 mm). Hence, dual cooled annular fuel assembly becomes a tight lattice fuel bundle configuration to maintain the same array size and guide tube locations as cylindrical solid fuel assembly. P/Ds (pitch between rods to rod diameter ratio) of dual cooled annular and cylindrical solid fuel assemblies are 1.08 and 1.35, respectively. This difference of P/D could change the behavior of turbulent flow in rod bundle. Our research group has investigated a turbulent flow parallel to the fuel rods using two kinds of simulated 3x3 rod bundles. To measure the turbulent rod bundle flow, PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques were used. In a simulated dual cooled annular fuel bundle (i.e., P/D=1.08), the quasi periodic oscillating flow motion in the lateral direction, called the flow pulsation, was observed, which significantly increased the lateral turbulence intensity at the rod gap center. The flow pulsation was visualized and measured clearly and successfully by PIV and MIR techniques. Such a flow motion may have influence on the fluid induced vibration, heat transfer, CHF (Critical Heat Flux), and flow mixing between subchannels in rod bundle flow. On the other hand, in a simulated cylindrical solid fuel bundle (i.e., P/D=1.35), the peak of turbulence intensity at the gap center was not measured due to an irregular motion of the lateral flow. This study implies that the behavior of lateral velocity in rod bundle flow is greatly influenced by the P/D (i.e., gap distance). In this work, the influence of gap distance on behavior of instantaneous lateral velocity and flow

  15. The effects of noise on binocular rivalry waves: a stochastic neural field model

    KAUST Repository

    Webber, Matthew A; Bressloff, Paul C

    2013-01-01

    in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally

  16. Studying the instantaneous velocity field in gas-sheared liquid films in a horizontal duct

    Science.gov (United States)

    Vasques, Joao; Tokarev, Mikhail; Cherdantsev, Andrey; Hann, David; Hewakandamby, Buddhika; Azzopardi, Barry

    2016-11-01

    In annular flow, the experimental validation of the basic assumptions on the liquid velocity profile is vital for developing theoretical models of the flow. However, the study of local velocity of liquid in gas-sheared films has proven to be a challenging task due to the highly curved and disturbed moving interface of the phases, small scale of the area of interrogation, high velocity gradients and irregular character of the flow. This study reports on different optical configurations and interface-tracking methods employed in a horizontal duct in order to obtain high-resolution particle image velocimetry (PIV) data in such types of complex flows. The experimental envelope includes successful measurements in 2D and 3D waves regimes, up to the disturbance wave regime. Preliminary data show the presence of complex structures in the liquid phase, which includes re-circulation areas below the liquid interface due to the gas-shearing action, together with non-uniform transverse movements of the liquid phase close to the wall due to the presence of 3D waves at the interface. With the aid of the moving interface-tracking, PIV, time-resolved particle-tracking velocimetry and vorticity measurements were performed.

  17. THE DEVELOPMENT OF THE THEORY OF INSTANTANEOUS POWER OF THREE-PHASE NETWORK IN TERMS OF NETWORK CENTRISM

    Directory of Open Access Journals (Sweden)

    Ye. I. Sokol

    2017-08-01

    Full Text Available Purpose. Information technologies allow multidimensional analysis of information about the state of the power system in a single information space in terms of providing network-centric approach to control and use of unmanned aerial vehicles as tools for condition monitoring of three-phase network. Methodology. The idea of energy processes in three independent (rather than four dependent curves vector-functions with values in the arithmetic three-dimensional space adequately for both 4-wire and 3–wire circuits. The presence of zero sequence current structural (and mathematically features a 4-wire scheme of energy from a 3-wire circuit. The zero sequence voltage caused by the displacement of the zero voltage phases. Offset zero in the calculations can be taken into account by appropriate selection of the reference voltages. Both of these energetic phenomena with common methodical positions are described in the framework of the general mathematical model, in which a significant role is played by the ort zero sequence. Results. Vector approach with a unified voice allows us to obtain and analyze new energy characteristics for 4–wire and 3–wire circuits in sinusoidal and non-sinusoidal mode, both in temporal and frequency domain. Originality. Symmetric sinusoidal mode is balanced, even with non-zero reactive power. The converse is not true. The mode can be balanced and unbalanced load. The mode can be balanced and unbalanced voltage. Practical value. Assessing balance in network mode and the impact of instantaneous power on the magnitude of the losses, will allow to avoid the appearance of zero sequence and, thus, to improve the quality of electricity.

  18. Use of field experimental studies to evaluate emergency response models

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Lange, R.; Rodriguez, D.J.; Nasstrom, J.S.

    1985-01-01

    The three-dimensional diagnostic wind field model (MATHEW) and the particle-in-cell atmospheric transport and diffusion model (ADPIC) are used by the Atmospheric Release Advisory Capability to estimate the environmental consequences of accidental releases of radioactivity into the atmosphere. These models have undergone extensive evaluations against field experiments conducted in a variety of environmental settings ranging from relatively flat to very complex terrain areas. Simulations of tracer experiments conducted in a complex mountain valley setting revealed that 35 to 50% of the comparisons between calculated and measured tracer concentrations were within a factor of 5. This may be compared with a factor of 2 for 50% of the comparisons for relatively flat terrain. This degradation of results in complex terrain is due to a variety of factors such as the limited representativeness of measurements in complex terrain, the limited spatial resolution afforded by the models, and the turbulence parameterization based on sigma/sub theta/ measurements to evaluate the eddy diffusivities. Measurements of sigma/sub theta/ in complex terrain exceed those measured over flat terrain by a factor of 2 to 3 leading to eddy diffusivities that are unrealistically high. The results of model evaluations are very sensitive to the quality and the representativeness of the meteorological data. This is particularly true for measurements near the source. The capability of the models to simulate the dispersion of an instantaneously produced cloud of particulates was illustrated to be generally within a factor of 2 over flat terrain. 19 refs., 16 figs

  19. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    Science.gov (United States)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  20. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  1. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  2. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    Science.gov (United States)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  3. Flume and field-based calibration of surrogate sensors for monitoring bedload transport

    Science.gov (United States)

    Mao, L.; Carrillo, R.; Escauriaza, C.; Iroume, A.

    2016-01-01

    Bedload transport assessment is important for geomorphological, engineering, and ecological studies of gravel-bed rivers. Bedload can be monitored at experimental stations that require expensive maintenance or by using portable traps, which allows measuring instantaneous transport rates but at a single point and at high costs and operational risks. The need for continuously measuring bedload intensity and dynamics has therefore increased the use and enhancement of surrogate methods. This paper reports on a set of flume experiments in which a Japanese acoustic pipe and an impact plate have been tested using four well-sorted and three poorly sorted sediment mixtures. Additional data were collected in a glacierized high-gradient Andean stream (Estero Morales) using a portable Bunte-type bedload sampler. Results show that the data provided by the acoustic pipe (which is amplified on 6 channels having different gains) can be calibrated for the grain size and for the intensity of transported sediments coarser than 9 mm (R2 = 0.93 and 0.88, respectively). Even if the flume-based calibration is very robust, upscaling the calibration to field applications is more challenging, and the bedload intensity could be predicted better than the grain size of transported sediments (R2 = 0.61 and 0.43, respectively). The inexpensive impact plate equipped with accelerometer could be calibrated for bedload intensity quite well in the flume but only poorly in the field (R2 = 0.16) and could not provide information on the size of transported sediments.

  4. Statistical mechanics for solitons in liquid Helium. I

    International Nuclear Information System (INIS)

    Evangelista, L.R.; Ventura, I.

    1988-06-01

    This paper presents a 4 He liquid microscopic theory, based on the existence of planar solitons, which move in equilibrium on fluid's condensate. Inside every soliton, there is a cloud of bound states thermal excitations. The normal fluid is made of unbound states excitations, and the action of solitons and thermal clouds over them, is approximated by a mean field, which depends on the system's number of solitons. The bound stat quasi-particles, that make up the thermal cloud, are in turn described through a self-consistent calculation. In thermal cloud dynamics, and owing to the motion of solitons, the lower energy state is an instantaneous wave packet, at rest in the laboratory frame. There is an energy gap between the instantaneous packet and the normal modes bound to the soliton. However, since the instantaneous packet is the ground state, then it condensates a second classical field, proportional to its wave function, that interacts with the condensate field, and is also a coherent envelope, which modulates the thermal cloud states, stabilizing it. In this paper, the thermal cloud is introduced through a self-consistent classical density ρ n.t. (x-vector,t). In the next paper we show the perfected approach of treating the thermal cloud by means of the second classifical field, which condensates in the lowest energy state. This field is the coherent envelope of the cloud bound states. (author) [pt

  5. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  6. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_TRMM-PFM_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  7. Deployment and Field Evaluation of In-Vehicle Traffic Signal Advisory System (ITSAS

    Directory of Open Access Journals (Sweden)

    Joyoung Lee

    2017-06-01

    Full Text Available This research evaluates the impact of In-vehicle Signal Advisory System (ITSAS on signalized arterial. ITSAS provides individual drivers equipped with a mobile communication device with advisory speed information enabling to minimize the time delay and fuel consumption when crossing intersection. Given the instantaneous vehicular driving information, such as position, speed, and acceleration rate, ITSAS produces advisory speed information by taking into consideration the traffic signal changes at a downstream intersection. The advisory speed information includes not only an optimal speed range updated every 300-ft for individual drivers but also a descriptive message to warn drivers stop to ensure safety at the downstream intersection. Unlike other similar Connected Vehicles applications for intersection management, ITSAS does not require Roadside Equipment (RSE to disseminate the advisory speed information as it is designed to exploit commercial cellular network service (i.e., 3G and 4G-LTE. Thus, ITSAS can be easily plugged into existing traffic control management system to rapidly conduct its implementation without significant additional cost. This research presents the field evaluations of ITSAS on a signalized corridor in New Jersey, which discovered significant travel time savings for the equipped vehicle.

  8. Instantaneous Power Spectrum

    Science.gov (United States)

    1989-03-01

    Jon s (n)e-"’ z(121) SA+ -jO where N-1 Ck = s(n)s (n - k) k > 0 (122) n=z+k and + =ck = -c~k) (123) Now, to get the digital equivalents of (2),(4) we...Paulo NI. D. M6nica de Oliveira 2 Direcpto do Servi(;o de Instru~ao e Treino Edificjo da Adniinistraqdo Central de Marinha Praoa do Comercio I I...Lisboa Portugal 89 12. Lt. Paulo M. D. NM6nica de Oliveira2 Direc Ao do Servi~o de 1nstruqao e Treino Edificio da Adnistraqo Central de Marinha Praoa do Comercio 1 100 Lisboa Portuoal 89

  9. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands

    Science.gov (United States)

    Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2016-01-01

    The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer. However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size

  10. Design and testing of indigenous cost effective three dimensional radiation field analyser (3D RFA).

    Science.gov (United States)

    Ganesh, K M; Pichandi, A; Nehru, R M; Ravikumar, M

    2014-06-01

    The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 x 750 x 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20 and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epo and X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.

  11. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo

    1999-07-01

    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  12. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2006-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can disrupt at a distance numerous electrical systems and high technology microcircuits that are especially sensitive to power surges...

  13. Wind power development field test project at Maruyama-machi. Close survey on wind conditions; Maruyamamachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Maruyama-machi, Awa-gun, Chiba prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The average annual wind velocity was 3.5 m/s, the maximum wind velocity during the period was 27 m/s, and the wind axis was WSW-ENE, with the total occurrence rate of the wind direction 44.1%. The intensity of turbulence was 0.23 at a wind velocity of 2.0 m/s or above and was 0.22 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 40-60% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  14. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  15. Genomic instantiation of consciousness in neurons through a biophoton field theory.

    Science.gov (United States)

    Cacha, Lleuvelyn A; Poznanski, Roman R

    2014-06-01

    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is

  16. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Directory of Open Access Journals (Sweden)

    Gary A. Fleming

    2000-01-01

    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  17. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    field (PEMF) showed significant influence on state-of-the-art pulse magnetic bioelectrochemical systems (PEMF-MBES) in terms of current generation and microbial ecology. EET was instantaneously and reversibly enhanced in MBESs inoculated with either mixed-culture or Geobacter . PEMF notably decreased bacterial and archaeal diversities of the anode biofilms in MMFCs via changing species evenness rather than species richness, and facilitated specific enrichment of exoelectrogenic bacteria ( Geobacter ) on the anode surface. This study demonstrates a new magnetic approach for understanding and facilitating microbial electrochemical activities.

  18. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2008-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can overload or disrupt at a distance numerous electrical systems and high technology microcircuits, which are especially sensitive to power surges...

  19. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    Science.gov (United States)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  20. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM1_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  1. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM2_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  2. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM3_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  3. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....

  4. Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV)

    International Nuclear Information System (INIS)

    Soria, J; Atkinson, C

    2008-01-01

    Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV

  5. Strong field interaction of laser radiation

    International Nuclear Information System (INIS)

    Pukhov, Alexander

    2003-01-01

    The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI

  6. Wind power development field test project at Okkobe-cho. Close survey on wind conditions; Okkobecho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on regional wind conditions on the assumption that a wind power generator was installed around Okkobe Rakuno-no-oka, Okkobe-cho, Monbetsu-gun, Hokkaido. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The average wind velocity was 4.8 m/s, the maximum wind velocity during the period was 29.9 m/s, the prevailing wind direction was WSW (17.1%), the wind axis was WSW-ENE, and the total occurrence rate of wind direction was 51.1%. The intensity of turbulence was 0.19 at a wind velocity of 2.0 m/s or above and was 0.16 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 59-77% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  7. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  8. Statistical study of the non-linear propagation of a partially coherent laser beam

    International Nuclear Information System (INIS)

    Ayanides, J.P.

    2001-01-01

    This research thesis is related to the LMJ project (Laser MegaJoule) and thus to the study and development of thermonuclear fusion. It reports the study of the propagation of a partially-coherent laser beam by using a statistical modelling in order to obtain mean values for the field, and thus bypassing a complex and costly calculation of deterministic quantities. Random fluctuations of the propagated field are supposed to comply with a Gaussian statistics; the laser central wavelength is supposed to be small with respect with fluctuation magnitude; a scale factor is introduced to clearly distinguish the scale of the random and fast variations of the field fluctuations, and the scale of the slow deterministic variations of the field envelopes. The author reports the study of propagation through a purely linear media and through a non-dispersive media, and then through slow non-dispersive and non-linear media (in which the reaction time is large with respect to grain correlation duration, but small with respect to the variation scale of the field macroscopic envelope), and thirdly through an instantaneous dispersive and non linear media (which instantaneously reacts to the field) [fr

  9. Turbulent subcooled boiling flow visualization experiments through a rectangular channel

    International Nuclear Information System (INIS)

    Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.

    2008-01-01

    Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)

  10. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  11. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    Science.gov (United States)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  12. THz Electro-absorption Effect in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.

    2011-01-01

    In a THz pump - optical probe experiment we demonstrate an instantaneous electro-absorption effect in InGaAs/GaAs quantum dots, induced by the electric field of a single-cycle THz pulse with 3 THz bandwidth and with free-space peak electric field reaching 220 kV/cm. The transient modulation of QD...

  13. Wind power development field test project at Hirashima, Sakito-cho. Detailed wind characteristics survey; Sakitocho Hirashima ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Hirashima, Sakito-cho, Nishisonogi-gun, Nagasaki Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 7.1m/s and the maximum wind speed in the period was 37m/s. Winds came prevalently from N (13.9%), and then from NNE (13.3%), NW (12.2%), and NE (10.7%). The total wind direction occurrence rate involving the 4 directions was 50.1%. Turbulence intensity was 0.14 at wind speed 2.0m/s or more and 0.12 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 77-87% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  14. Wind power development field test project at Ashibe-cho. Detailed wind characteristics survey; Ashibecho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Ashibe-cho, Iki-gun, Nagasaki Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 5.8m/s and the maximum wind speed in the period was 35m/s. Winds came from the prevailing direction of NE (21.3%), and then from NNE (14.7%) and ENE (7.9%). The wind axis was in the NE-SW direction, and the total wind direction occurrence rate from the 6 directions was 60.2%. Turbulence intensity was 0.19 at wind speed 2.0m/s or more and 0.17 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 66-84% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  15. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM4_Edition1-CV)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  16. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM1_Edition1-CV)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-09-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  17. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  18. Instantaneous center of motion and velocity vector in stifle of dogs undergoing intercondylar notchplasty and articular repair following transection of the cranial cruciate ligament

    International Nuclear Information System (INIS)

    Selmi, A.L.; Padilha Filho, J.G.; Lins, B.T.; Mendes, G.M.; Eimantas, G.C.

    2007-01-01

    The instantaneous center of motion (ICM) and velocity vector (Vv), after transection of the cranial cruciate ligament (CCL) followed by a fascial strip reconstruction in association with intercondylar notchplasty (IN), were studied in nine adult dogs. The right stifle was submitted to IN followed by fascial strip reconstruction of the CCL (GI) while in the left stifle IN was not performed (GC). Dogs were evaluated the day prior to surgery, immediately after surgery and at 30, 90 and 180 days postoperatively (po), time at which a subgroup of three dogs were euthanatized. The ICM and resulting Vv were determined by radiographic examination of the stifle. All the stifles presented normally positioned ICM and Vv before surgery. No changes were observed in ICM or Vv in all stifles following intra-articular repair, in association or not with IN, throughout the evaluation period, despite the fact that three dogs in GC and two in GI presented a positive cranial drawer sign immediately following surgery, two dogs in GC and GI at 30 days po, and one single dog in each group thereafter until 180 days po. It is concluded that articular repair, in association with IN or not, did not alter stifle biomechanics, in respect to ICM and Vv [pt

  19. joaa

    Indian Academy of Sciences (India)

    2017-03-31

    Mar 31, 2017 ... The ORT is currently undergoing a major upgrade to its receiver chain, which will result in a new system called the Ooty Wide Field Array (OWFA). The OWFA is designed to function as a 264-element interferometric array, and to provide a significantly larger instantaneous bandwidth as well as field-of-view ...

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 2 cross-section. The flow field is seeded with polystyrene microspheres of size d p = 2.1 m. The volumetric flow rate is set equal to 20 l/min.

  1. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis

    Science.gov (United States)

    Wang, Shibin; Chen, Xuefeng; Selesnick, Ivan W.; Guo, Yanjie; Tong, Chaowei; Zhang, Xingwu

    2018-02-01

    Synchrosqueezing transform (SST) can effectively improve the readability of the time-frequency (TF) representation (TFR) of nonstationary signals composed of multiple components with slow varying instantaneous frequency (IF). However, for signals composed of multiple components with fast varying IF, SST still suffers from TF blurs. In this paper, we introduce a time-frequency analysis (TFA) method called matching synchrosqueezing transform (MSST) that achieves a highly concentrated TF representation comparable to the standard TF reassignment methods (STFRM), even for signals with fast varying IF, and furthermore, MSST retains the reconstruction benefit of SST. MSST captures the philosophy of STFRM to simultaneously consider time and frequency variables, and incorporates three estimators (i.e., the IF estimator, the group delay estimator, and a chirp-rate estimator) into a comprehensive and accurate IF estimator. In this paper, we first introduce the motivation of MSST with three heuristic examples. Then we introduce a precise mathematical definition of a class of chirp-like intrinsic-mode-type functions that locally can be viewed as a sum of a reasonably small number of approximate chirp signals, and we prove that MSST does indeed succeed in estimating chirp-rate and IF of arbitrary functions in this class and succeed in decomposing these functions. Furthermore, we describe an efficient numerical algorithm for the practical implementation of the MSST, and we provide an adaptive IF extraction method for MSST reconstruction. Finally, we verify the effectiveness of the MSST in practical applications for machine fault diagnosis, including gearbox fault diagnosis for a wind turbine in variable speed conditions and rotor rub-impact fault diagnosis for a dual-rotor turbofan engine.

  2. Wind power development field test project at Kodomari-mura 'Marinetopia'. Close survey on wind conditions; Kodomarimura Marinetopia ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Imabetsu-machi, Higashi Tsugaru-gun, Aomori prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The annual average wind velocity was 4.8 m/s, the maximum wind velocity during the period was 35 m/s, the prevailing wind direction was NW-WNW and ESE-SEW, and the occurrence rate of wind direction at the wind axis of NW-SE was 88.1%. The intensity of turbulence was 0.24 at a wind velocity of 2.0 m/s or above and was 0.20 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 46-64% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  3. Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.; Chateauneuf, F.; Manoli, S.; Atabek, O.; Keller, A.

    1997-01-01

    The dynamics of multielectron dissociative ionization (MEDI) of H 2 in an intense IR laser pulse are investigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the successive ionizations of H 2 are expressed in terms of field-free Born-Oppenheimer (BO) potential energy surfaces (PES) by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transformation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still described by field-free BO electronic states while the ionized ones are described by Airy functions. In the adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instantaneous electric field of the laser and such an ionized electron can have a negative total energy. As a consequence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be brought into resonance with states of the parent species. This construction gives a picture in which wave packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet propagation scheme to an effective five-channel problem has been obtained for the description of the first dissociative ionization process in H 2 by using Fano's formalism [U. Fano, Phys. Rev. 124, 1866 (1961)] to analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of Fano's solutions. With this algorithm, the effect that continuous ionization of H 2 has on the dissociation dynamics of the H 2 + ion has been investigated. In comparison with results that would be obtained if the first ionization of H 2 was impulsive, the wave-packet dynamics of the H 2 + ion prepared continuously by tunnel ionization are markedly nonadiabatic. (Abstract Truncated)

  4. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    Science.gov (United States)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  5. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  6. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  7. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  8. Wind power development field test project at Rokkasho-mura, Aomori prefecture. Close survey on wind conditions; Aomoriken Rokkashomura ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Rokkasho-mura, Kamikita-gun, Aomori prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The annual average wind velocity was 4.6 m/s, the maximum wind velocity during the period was 26.0 m/s, the prevailing wind direction was NW (20.8%), WNW (18.0%), and SE (13.5%), and the total occurrence rate of wind direction at the wind axis of NW-SE was 75.7%. The intensity of turbulence was 0.25 at a wind velocity of 2.0 m/s or above and was 0.21 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 59-72% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  9. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050 Tomsk (Russian Federation); Gavrilov, S P; Gitman, D M; Filho, D P Meira, E-mail: bagrov@phys.tsu.ru, E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br, E-mail: dmeira@dfn.if.usp.br [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)

    2011-02-04

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  10. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Filho, D P Meira

    2011-01-01

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  11. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  12. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  13. Simultaneous measurement of instantaneous heart rate and chest wall plethysmography in short-term, metronome guided heart rate variability studies: suitability for assessment of autonomic dysfunction.

    Science.gov (United States)

    Perring, S; Jones, E

    2003-08-01

    Instantaneous heart rate and chest wall motion were measured using a 3-lead ECG and an air pressure chest wall plethysmography system. Chest wall plethysmography traces were found to accurately represent the breathing pattern as measured by spirometry (average correlation coefficient 0.944); though no attempt was made to calibrate plethysmography voltage output to tidal volume. Simultaneous measurements of heart rate and chest wall motion were made for short periods under metronome guided breathing at 6 breaths per minute. The average peak to trough heart rate change per breath cycle (AVEMAX) and maximum correlation between heart rate and breathing cycle (HRBRCORR) were measured. Studies of 44 normal volunteers indicated clear inverse correlation of heart rate variability parameters with age (AVEMAX R = -0.502, P < 0.001) but no significant change in HRBRCORR with age (R = -0.115). Comparison of normal volunteers with diabetics with no history of symptoms associated with autonomic failure indicated significant lower heart rate variability in diabetics (P = 0.005 for AVEMAX) and significantly worse correlation between heart rate and breathing (P < 0.001 for HRBRCORR). Simultaneous measurement of heart rate and breathing offers the possibility of more sensitive diagnosis of autonomic failure in a simple bedside test and gives further insight into the nature of cardio-ventilatory coupling.

  14. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  15. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  16. Statistical mechanics of the liquid helium solitons II

    International Nuclear Information System (INIS)

    Evangelista, L.R.; Ventura, I.

    1988-01-01

    The description of the thermal cloud is perfected through the introduction of the second condensate field ψ c , that condensates in the instantaneous packet wave function, and provides a coherent envelope to modulate the bound states. (A.C.A.S.) [pt

  17. Pulsed TV holography measurement and digital reconstruction of compression acoustic wave fields: application to nondestructive testing of thick metallic samples

    International Nuclear Information System (INIS)

    Trillo, C; Doval, A F; Deán-Ben, X L; López-Vázquez, J C; Fernández, J L; Hernández-Montes, S

    2011-01-01

    This paper describes a technique that numerically reconstructs the complex acoustic amplitude (i.e. the acoustic amplitude and phase) of a compression acoustic wave in the interior volume of a specimen from a set of full-field optical measurements of the instantaneous displacement of the surface. The volume of a thick specimen is probed in transmission mode by short bursts of narrowband compression acoustic waves generated at one of its faces. The temporal evolution of the displacement field induced by the bursts emerging at the opposite surface is measured by pulsed digital holographic interferometry (pulsed TV holography). A spatio-temporal 3D Fourier transform processing of the measured data yields the complex acoustic amplitude at the plane of the surface as a sequence of 2D complex-valued maps. Finally, a numerical implementation of the Rayleigh–Sommerfeld diffraction formula is employed to reconstruct the complex acoustic amplitude at other planes in the interior volume of the specimen. The whole procedure can be regarded as a combination of optical digital holography and acoustical holography methods. The technique was successfully tested on aluminium specimens with and without an internal artificial defect and sample results are presented. In particular, information about the shape and position of the defect was retrieved in the experiment performed on the flawed specimen, which indicates the potential applicability of the technique for the nondestructive testing of materials

  18. A novel noncontact electromagnetic field-based sensor for the monitoring of resonant fatigue tests

    International Nuclear Information System (INIS)

    Nam, Si-Byung; Yun, Gun Jin; Binienda, Wieslaw; Carletta, Joan; Kim, Dong-Han

    2011-01-01

    In this paper, a prototype of an electromagnetic field-based (EFB) vibration sensor that uses a novel sensing technique to monitor the resonant fatigue testing of a conductive and/or ferromagnetic target specimen is presented. The distance from the target to a coil within the sensor affects the impedance of the coil. The electronic circuitry for the sensor consists of a relaxation oscillator, an embedded microprocessor module and a high-speed digital-to-analog converter. The impedance of the coil determines the frequency of oscillation of the relaxation oscillator's output, so that vibration of the target causes changes in the oscillation frequency. A timer in the embedded microprocessor module is used to count the oscillations, producing a digital signal that indicates the coil-to-target distance. The digital signal is instantaneously converted to an analog signal to produce the sensor's output. The key technologies proposed include: (1) a novel timer counting method using the input capture functionality and timer of the embedded microprocessor module and (2) significant simplification of the analog electronic circuitry. The performance of the proposed sensor has been verified using AISI 1095 carbon steel and Al6061–T6 aluminum alloy specimens during resonant fatigue tests. The sensor shows a good linearity between displacement amplitudes and output voltages

  19. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  20. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    Science.gov (United States)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.