WorldWideScience

Sample records for ieee solid-state circuits

  1. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  2. Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs

    Science.gov (United States)

    Liqing, TONG; Kefu, LIU; Yonggang, WANG

    2018-02-01

    For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.

  3. Wide Bandgap Semiconductor Based Solid State Smart Circuit Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced solid state power component technology is necessary for future hybrid aircraft systems with increased power demands. There is a need for adequate circuit...

  4. Electrical, Magnetic, Thermal Modeling and Analysis of a 5000A Solid-State Switch Module and Its Application as a DC Circuit Breaker

    OpenAIRE

    Zhou, Xigen

    2005-01-01

    This dissertation presents a systematic design and demonstration of a novel solid-state DC circuit breaker. The mechanical circuit breaker is widely used in power systems to protect industrial equipment during fault or abnormal conditions. Compared with the slow and high-maintenance mechanical circuit breaker, the solid-state circuit breaker is capable of high-speed interruption of high currents without generating an arc, hence it is maintenance-free. Both the switch and the tripping unit ...

  5. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  6. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  7. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  8. Solid-State Modulators for RF And Fast Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.G.; Akana, G.L.; Gower, E.J.; Hawkins, S.A.; Hickman, B.C.; /LLNL, Livermore; Brooksby, C.A.; /NONE - BECHTEL NEVADA LAS VEGAS; Cassel, R.L.; de Lamare, J.E.; Nguyen, M.N.; Pappas, G.C.; /SLAC

    2006-03-14

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  9. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    International Nuclear Information System (INIS)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-01-01

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems

  10. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-05-05

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  11. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  12. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  13. IEEE C37.82-1987: IEEE standard for the qualification of switchgear assemblies for Class 1E applications in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes the methods and requirements for qualifying switchgear assemblies for indoor areas outside of the containment in nuclear power generating stations. These assemblies include (1) metal-enclosed low-voltage power circuit breaker switchgear assemblies, as defined in ANSI/IEEE C37.20.1-1987, (2) metal-clad switchgear assemblies, as defined in ANSI/IEEE C37.20.2-1987, (3) metal-enclosed bus, as defined in ANSI/IEEE C37.23-1987, and (4) metal-enclosed interrupter switchgear assemblies, as defined in ANSI/IEEE C37.20.3-1987. The purpose of this document is to provide amplification of the general requirements of ANSI/IEEE Std 323-1983 as they apply to the specific features of Class 1E switchgear assemblies. Where differences exist between this document and ANSI/IEEE Std 323-1983, this document takes precedence insofar as switchgear assemblies are concerned

  14. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  15. Self-healing liquid/solid state battery

    Science.gov (United States)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.; Ning, Xiaohui; Sadoway, Donald R.

    2018-02-27

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrode includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.

  16. A 1-GHz charge pump PLL frequency synthesizer for IEEE 1394b PHY

    DEFF Research Database (Denmark)

    Ji, J.; Liu, H.; Li, Q.

    2012-01-01

    This paper presents an implementation of multi-rate SerDes transceiver for IEEE 1394b applications. Simple and effective pre-emphasis and equalizer circuits are used at transmitter and receiver, respectively. A phase interpolator based clock and data recovery circuit with optimized linearity is a...

  17. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  18. Analog Amplitude Modulation of a High Voltage, Solid State Inductive Adder, Pulse Generator Using MOSFETS

    International Nuclear Information System (INIS)

    Gower, E J; Sullivan, J S

    2002-01-01

    High voltage, solid state, inductive adder, pulse generators have found increasing application as fast kicker pulse modulators for charged particle beams. The solid state, inductive adder, pulse generator is similar in operation to the linear induction accelerator. The main difference is that the solid state, adder couples energy by transformer action from multiple primaries to a voltage summing stalk, instead of an electron beam. Ideally, the inductive adder produces a rectangular voltage pulse at the load. In reality, there is usually some voltage variation at the load due to droop on primary circuit storage capacitors, or, temporal variations in the load impedance. Power MOSFET circuits have been developed to provide analog modulation of the output voltage amplitude of a solid state, inductive adder, pulse generator. The modulation is achieved by including MOSFET based, variable subtraction circuits in the multiple primary stack. The subtraction circuits can be used to compensate for voltage droop, or, to tailor the output pulse amplitude to provide a desired effect in the load. Power MOSFET subtraction circuits have been developed to modulate short, temporal (60-400 ns), voltage and current pulses. MOSFET devices have been tested up to 20 amps and 800 Volts with a band pass of 50 MHz. An analog modulation cell has been tested in a five cell high, voltage adder stack

  19. IEEE Smart Grid Series of Standards IEEE 2030 (Interoperability) and IEEE 1547 (Interconnection) Status: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Basso, T.; DeBlasio, R.

    2012-04-01

    The IEEE American National Standards smart grid publications and standards development projects IEEE 2030, which addresses smart grid interoperability, and IEEE 1547TM, which addresses distributed resources interconnection with the grid, have made substantial progress since 2009. The IEEE 2030TM and 1547 standards series focus on systems-level aspects and cover many of the technical integration issues involved in a mature smart grid. The status and highlights of these two IEEE series of standards, which are sponsored by IEEE Standards Coordinating Committee 21 (SCC21), are provided in this paper.

  20. Hybrid Direct-Current Circuit Breaker

    Science.gov (United States)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  1. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  2. Solid state light source driver establishing buck or boost operation

    Science.gov (United States)

    Palmer, Fred

    2017-08-29

    A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boost converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.

  3. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  4. Method for reducing power consumption in a state retaining circuit, state reaining circuit and electronic device.

    NARCIS (Netherlands)

    2006-01-01

    A method for reducing the power consumption in a state retaining circuit during a standby mode is disclosed comprising, in an active state, providing a regular power supply (VDD) and a standby power supply (VDD STANDBY) to the state retaining circuit; for a transition from an active state to a

  5. Environmental performance evaluation of an advanced-design solid-state television camera

    Science.gov (United States)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  6. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  7. Emulating weak localization using a solid-state quantum circuit.

    Science.gov (United States)

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  8. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Kang Chunlei; Shi Jia; Zhang Xuguang; Ai Baoli; Liu Yi

    2013-01-01

    A three-stage 4.8–6 GHz monolithic power amplifier (PA) compatible with IEEE 802.11a/n designed based on an advanced 2 μm InGaP/GaAs hetero-junction bipolar transistor (HBT) process is presented. The PA integrates input matching and closed-loop power control circuits on chip. Under 3.3 V DC bias, the amplifier achieves a ∼31 dB small signal gain, excellent wide band input and output matching among overall 1.2 GHz bandwidth, and up to 24.5 dBm linear output power below EVM 3% with IEEE 802.11a 64QAM OFDM input signal. (semiconductor integrated circuits)

  9. Solid state circuit controls direction, speed, and braking of dc motor

    Science.gov (United States)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  10. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    Science.gov (United States)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  11. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn

    2010-06-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  12. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn; Emira, Ahmed; Sedky, Sherif M.; Habib, S. E. D.

    2010-01-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  13. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  14. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  15. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  16. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  17. Selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), 2016

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2018-01-01

    This special issue includes selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), held in Linköping, Sweden, October 24-25, 2016. The IEEE NorCAS conference is the main circuits and systems event of the Nordic and Baltic countries representing both academia and the e......This special issue includes selected papers from the 2nd IEEEE Nordic Circuits and Systems Conference (NorCAS), held in Linköping, Sweden, October 24-25, 2016. The IEEE NorCAS conference is the main circuits and systems event of the Nordic and Baltic countries representing both academia...

  18. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  19. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.

    Science.gov (United States)

    Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao

    2017-11-30

    Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.

  20. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  1. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    Science.gov (United States)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  2. Optimizations of large area quasi-solid-state dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Biancardo, M.; West, K.; Krebs, Frederik C

    2006-01-01

    In this paper, we address optimizations of dye sensitized solar cells (DSSCs) through the combination of important issues like semi-transparency, quasi-solid-state constructions and low-cost realization of serially connected modules. DSSCs with a transparency of 50% in the visible region, moderate...... encouraging results. A short circuit current (I-sc) of 4.45 mA cm(-2) with an open circuit voltage (V-oc) of 0.5 V were recorded in standard solar cells sensitized by cis-bis(thiocyano) ruthenium(II)-bis-2, 2'-bipyridine-4, 4'-dicarboxylate. Up-scaling tests demonstrate the easy realization of a 625 cm(2...

  3. Coarse Grain Reconfigurable ASIC through Multiplexer Based Switches

    Science.gov (United States)

    2015-09-15

    chip area (0.5 mm2), and from simulation their power consumption is negligible (0.002% from simulation, too small to measure in physical system...performing implementation that is also flexible. REFERENCES [1] I. Kuon and J. Rose, “ Measuring the gap between FPGAs and ASICs,” IEEE Trans...A 3GPP- LTE Example," Solid-State Circuits, IEEE Journal of , vol.47, no.3, pp.757,768, March 2012. [5] Agarwal, A.; Hassanieh, H.; Abari, O

  4. Access to IEEE Electronic Library

    CERN Multimedia

    2007-01-01

    From 2007, the CERN Library now offers readers online access to the complete IEEE Electronic Library (Institute of Electrical and Electronics Engineers). This new licence gives unlimited online access to all IEEE and IET (previously IEE) journals and proceedings as well as all current IEEE standards and selected archived ones. Some of the titles offer volumes back to 1913. This service currently represents more than 1,400,000 full-text articles! This leading engineering information resource replaces the previous service, a sub-product of the IEEE database called 'IEEE Enterprise', which offered online access to the complete collection of IEEE journals and proceedings, but with limited features. The service had become so popular that the CERN Working Group for Acquisitions recommended that the Library subscribe to the complete IEEE Electronic Library for 2007. Usage statistics for recent months showed there was a demand for the service from a large community of CERN users and we were aware that many users h...

  5. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    International Nuclear Information System (INIS)

    1993-08-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization. Individual papers are abstracted separately on the data base

  6. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    Science.gov (United States)

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  7. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  8. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  9. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  11. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  12. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  13. The IEEE Milestone event at CERN

    CERN Multimedia

    2005-01-01

    On the initiative of its French and Swiss Sections, the IEEE has honoured CERN with an 'IEEE Milestone in the history of electricity and electronics' for the invention of the multi-wire proportional chamber in 1968. The IEEE established the Electrical Engineering Milestones programe in 1983 to honour significant achievements in the history of electrical and electronics engineering. To be designated, an achievement must be at least 25 years old, must have involved a unique solution to an engineering problem, and must have had at least regional impact. Currently there are more than  50 IEEE Milestones around the world. http://www.ieee.org/organizations/history_center/cern.html The installation and unveiling of this IEEE Milestone will provide the opportunity to emphasize the close relationship between science, technology, industry and well-being in society.  A ceremony, organised with the support of a group of IEEE members working at CERN, will be held at the CERN Globe of Science and Inn...

  14. Thirteen years test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.; Leufkens, P.P.; Fogelberg, T.

    2009-01-01

    The ability to withstand a short circuit is recognised more and more as an essential characteristic of power transformers. IEC and IEEE Standards, as well as other national standards specify short-circuit testing and how to check the withstand capability. Unfortunately, however, there is extensive

  15. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  16. Active Channel Reservation for Coexistence Mechanism (ACROS) for IEEE 802.15.4 and IEEE 802.11

    Science.gov (United States)

    Shin, Soo Young; Woo, Dong Hyuk; Lee, Jong Wook; Park, Hong Seong; Kwon, Wook Hyun

    In this paper, a coexistence mechanism between IEEE 802.15.4 and IEEE 802.11b, Active Channel Reservation for cOexiStence (ACROS), is proposed. The key idea underlining ACROS is to reserve the channel for IEEE 802.15.4 transmission, where IEEE 802.11 transmissions are forbidden. The request-to-send (RTS)/clear-to send (CTS) mechanism within IEEE 802.11 is used to reserve a channel. The proposed ACROS mechanism is implemented into a PC based prototype. The embedded version of ACROS is also developed to mitigate the timing drift problem in the PC-based ACROS. The efficiency of ACROS is shown using the throughput and packet error rate achieved in actual experiments.

  17. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  18. The Implementation Of Solid State Switches In A Parallel Configuration To Gain Output Current Capacity In A High Current Capacitive Discharge Unit (CDU).

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Mario Paul [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-07-01

    For my project I have selected to research and design a high current pulse system, which will be externally triggered from a 5V pulse. The research will be conducted in the region of paralleling the solid state switches for a higher current output, as well as to see if there will be any other advantages in doing so. The end use of the paralleled solid state switches will be used on a Capacitive Discharge Unit (CDU). For the first part of my project, I have set my focus on the design of the circuit, selection of components, and simulation of the circuit.

  19. Design and implementation of an IEEE 802.11 baseband OFDM transceiver in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Wu Bin; Zhou Yumei; Zhu Yongxu; Zhang Zhengdong; Cai Jingjing

    2011-01-01

    An SISO IEEE 802.11 baseband OFDM transceiver ASIC is implemented. The chip can support all of the SISO IEEE 802.11 work modes by optimizing the key module and sharing the module between the transmitter and receiver. The area and power are decreased greatly compared with other designs. The baseband prototype has been verified under the WLAN baseband test equipment and through transferring the video. The 0.18 μm 1P/6M CMOS technology layout is finished and the chip is fabricated in SMIC, which occupies a 2.6 x 2.6 mm 2 area and consumes 83 mW under typical work modes. (semiconductor integrated circuits)

  20. Design and implementation of an IEEE 802.11 baseband OFDM transceiver in 0.18 {mu}m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Wu Bin; Zhou Yumei; Zhu Yongxu; Zhang Zhengdong; Cai Jingjing, E-mail: wubin@ime.ac.cn [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2011-05-15

    An SISO IEEE 802.11 baseband OFDM transceiver ASIC is implemented. The chip can support all of the SISO IEEE 802.11 work modes by optimizing the key module and sharing the module between the transmitter and receiver. The area and power are decreased greatly compared with other designs. The baseband prototype has been verified under the WLAN baseband test equipment and through transferring the video. The 0.18 {mu}m 1P/6M CMOS technology layout is finished and the chip is fabricated in SMIC, which occupies a 2.6 x 2.6 mm{sup 2} area and consumes 83 mW under typical work modes. (semiconductor integrated circuits)

  1. Development of a prototype solid state fault current limiting and interrupting device for low voltage distribution networks.

    OpenAIRE

    Ahmed, M.; Putrus, G. A.; Ran, L.; Penlington, R.

    2006-01-01

    This paper describes the development of a solid-state Fault Current Limiting and Interrupting Device (FCLID) suitable for low voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps in controlling the current and absorbing the inductive energy stored in the network during current interruption. Using a hysteresis type control algorithm, the short-circuit curren...

  2. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    International Nuclear Information System (INIS)

    Dake, Vishal; Mangalvedekar, H.A.; Tillu, Abhijit; Dixit, Kavita P.; Sarukte, Hemant

    2014-01-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluating the ESL of locally available metalized polypropylene capacitors will also be presented. (author)

  3. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Dake, Vishal; Mangalvedekar, H.A., E-mail: vishaldake90@gmail.com [Veermata Jijabai Technological Institute, Mumbai (India); Tillu, Abhijit; Dixit, Kavita P.; Sarukte, Hemant [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluating the ESL of locally available metalized polypropylene capacitors will also be presented. (author)

  4. 2012 IEEE Vehicular Networking Conference (VNC)

    NARCIS (Netherlands)

    Altintas, Onur; Chen, Wai; Heijenk, Geert; Oh, Hyun Seo; Chung, Jong-Moon; Dressler, Falko; Kargl, Frank; Pau, Giovanni; Schoch, Elmar

    2012-01-01

    On behalf of the Organizing Committee, we would like to welcome you to the fourth edition of the IEEE Vehicular Networking Conference in Seoul, Korea. IEEE VNC is a unique conference sponsored by both IEEE Communications Society and Intelligent Transportation Systems Society. It brings together

  5. State-Space Formulation for Circuit Analysis

    Science.gov (United States)

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  6. Simulasi Kinerja Jaringan Nirkabel IEEE-802.11a dan IEEE-802.11g Menggunakan NS-2

    Directory of Open Access Journals (Sweden)

    Helm Fitriawan

    2014-03-01

    Full Text Available Wireless network uses transmission media based on radio waves. This type of networks is mainly useddue to its efficiency and mobility in data exchanging. This paper reports the modeling and simulation of wirelessnetworks based on Cisco Aironet 1130ag access point devices with IEEE 802.11a and IEEE 802.11g standards. Themodeling and simulation are performed using network simulator version 2 (NS-2 that is installed on operationsystem Linux Ubuntu v.10.10. The NS-2 is commonly used and works well in numerous types of network simulation. From simulation, we obtain quality of service parameters by employing several simulation scenarios in terms ofnumber of nodes, distances, and packet data sizes. It can be concluded from simulation results that the IEEE 802.11gnetworks transfer data with better quality than those of IEEE 802.11a networks.  Furthermore, the IEEE 802.11gnetworks provide a higher throughput, with smaller amount of delay and packet loss percentage compared to thoseof IEEE 802.11a networks.

  7. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  8. Silicon integrated circuits part A : supplement 2

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters-physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This public

  9. Reverse Engineering Integrated Circuits Using Finite State Machine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oler, Kiri J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Carl H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-12

    In this paper, we present a methodology for reverse engineering integrated circuits, including a mathematical verification of a scalable algorithm used to generate minimal finite state machine representations of integrated circuits.

  10. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  11. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  12. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications

    Science.gov (United States)

    Mišić, Jelena; (Sherman) Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients. PMID:19107184

  13. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications.

    Science.gov (United States)

    Misić, Jelena; Sherman Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients.

  14. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  15. A coexistence model of IEEE 802.15.4 and IEEE 802.1 lbIg

    NARCIS (Netherlands)

    Yuan, Wei; Wang, Xiangyu; Linnartz, J.P.M.G.

    2007-01-01

    IEEE 802.15.4 was developed to meet the needs for low-rate wireless communication. However, due to its low power, IEEE 802.15.4 is potentially vulnerable to interference by other wireless technologies having much higher power and working in the same industrial, scientific, and medical (ISM) band

  16. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  17. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  18. Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Fathy

    2016-06-01

    Full Text Available Polymethylacrylate (PMA nanofibers membranes are fabricated by electrospinning technique and applied to the polymer matrix in quasi-solid-state electrolytes for dye sensitized solar cells (DSSCs. There is no previous studies reporting the production of PMA nanofibers. The electrospinning parameters such as polymer concentration, applied voltage, feed rate, tip to collector distance and solvent were optimized. Electrospun PMA fibrous membrane with average fiber diameter of 350 nm was prepared from a 10 wt% solution of PMA in a mixture of acetone/N,N-dimethylacetamide (6:4 v/v at an applied voltage of 20 kV. It was then activated by immersing it in 0.5 M LiI, 0.05 M I2, and 0.5 M 4-tert-butylpyridine in 3-methoxyproponitrile to obtain the corresponding membrane electrolyte with an ionic conductivity of 2.4 × 10−3 S cm−1 at 25 °C. Dye sensitized solar cells (DSSCs employing the quasi solid-state electrolyte have an open-circuit voltage (Voc of 0.65 V and a short circuit current (Jsc of 6.5 mA cm−2 and photoelectric energy conversion efficiency (η of 1.4% at an incident light intensity of 100 mW cm−2.

  19. PECASE: New Directions for Silicon Integrated Optics

    Science.gov (United States)

    2013-04-30

    The associated circuit is shown in Fig. 1. We note that Rl could indicate the input to a transimpedance amplifier (TIA), or simply a 50-Ω...and B. Razavi. ൒-Gb/s limiting amplifier and laser/modulator driver in 0.18-µm CMOS technology." IEEE Journal of Solid-State Circuits 38(12) 2138...A pair of differential 40Gb/s 215-1 pseudorandom binary sequence (PRBS) was generated by a Centellax TG1P4A PRBS source, amplified by a pair of

  20. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  1. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  2. Quantum Optics with Nanomechanical and Solid State Systems

    International Nuclear Information System (INIS)

    Jaehne, K.

    2009-01-01

    This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is

  3. IE Information Notice No. 85-18, Supplement 1: Failures of undervoltage output circuit boards in the Westinghouse-designed solid state protection system

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The US Nuclear Regulatory Commission (NRC) is issuing this information notice supplement to alert addressees to continuing problems associated with the undervoltage (UV) output circuit boards (driver cards) in the solid state protection system (SSPS) designed by the Westinghouse Electric Corporation (Westinghouse). On June 3, 1991, the Shearon Harris Nuclear Power Plant, Unit 1, (Harris) experienced an automatic reactor trip from 100 percent power on a spurious low reactor coolant system loop flow signal. The signal was generated as a result of a surveillance test being performed on one of three loop flow transmitters. The licensee attributed the spurious signal to both procedural inadequacies and personnel error. A control room operator verified that all control rods had fully inserted following the trip signal and that reactor power was properly decreasing. However, about 22 seconds after the automatic trip signal was generated, operators discovered that the ''A'' reactor trip breaker (RTB) had not opened. The RTB was manually opened using the reactor trip switch on the main control board. Subsequent analyses are discussed

  4. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    Science.gov (United States)

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  5. Performance comparison of IEEE 802.11g and IEEE 802.11n in the presence of interference from 802.15.4 networks

    OpenAIRE

    Masood, Syed Haani

    2013-01-01

    In this paper we compare the packet error rate (PER) and maximum throughput of IEEE 802.11n and IEEE 802.11g under interference from IEEE 802.15.4 by using MATLAB to simulate the IEEE PHY for 802.11n and 802.11g networks.

  6. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  7. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  8. Thermal rectification in nonlinear quantum circuits

    DEFF Research Database (Denmark)

    Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka

    2009-01-01

    We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finit...

  9. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  10. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    Science.gov (United States)

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  11. IEEE International Symposium on Biomedical Imaging.

    Science.gov (United States)

    2017-01-01

    The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.

  12. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  13. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  14. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  15. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  16. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  17. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  18. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  19. Development and results of a test program to demonstrate compliance with IEEE STD 384 and R.G. 1.75 electrical separation requirements

    International Nuclear Information System (INIS)

    Eckert, G.P.; Heneberry, E.F.; Walker, F.P.; Konkus, J.F.

    1987-01-01

    The IEEE Std 384-1974, entitled ''Criteria for Separation of Class 1E Equipment and Circuits,'' contains criteria to ensure the independence of redundant Class 1E equipment when designing electrical systems in nuclear plants. The NRC, in R.G. 1.75 Rev. 2, 1978, endorses, with comments, IEEE-384, as the means of achieving independence. One method given in IEEE-384, is that of maintaining a specified separation between components; another method utilizes a combination of separation and barriers. The standard also allows alternative methods to be used when justified by test-based analyses. This paper is a report of a test program undertaken to provide a basis for analysis in the development of alternative methods of achieving separation. The test parameters developed and used, and the results obtained, should prove useful in determining alternative methods of complying with R.G. 1.75 requirements

  20. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  1. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  2. A 35fJ/Step differential successive approximation capacitive sensor readout circuit with quasi-dynamic operation

    KAUST Repository

    Omran, Hesham

    2016-10-06

    We propose a successive-approximation capacitive sensor readout circuit that achieves 35fJ/Step energy efficiency FoM, which represents 4× improvement over the state-of-the-art. A fully differential architecture is employed to provide robustness against common mode noise and errors. An inverter-based amplifier with near-threshold biasing provides robust, fast, and energy-efficient operation. Quasi-dynamic operation is used to maintain the energy efficiency for a scalable sample rate. A hybrid coarse-fine capacitive DAC achieves 11.7bit effective resolution in a compact area. © 2016 IEEE.

  3. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  4. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  5. Implementation of Traveling Odd Schrödinger Cat States in Circuit-QED

    Directory of Open Access Journals (Sweden)

    Jaewoo Joo

    2016-10-01

    Full Text Available We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED. A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon subtraction from the squeezed vacuum gives an odd Schrödinger cat state with very high fidelity, we consider a specific circuit-QED setup consisting of the Josephson amplifier creating the traveling resource in a line, a beam-splitter coupling two transmission lines, and a single photon detector located at the end of the other line. When a single microwave photon is detected by measuring the excited state of a superconducting qubit in the detector, a heralded cat state is generated with high fidelity in the opposite line. For example, we show that the high fidelity of the outcome with the ideal cat state can be achieved with appropriate squeezing parameters theoretically. As its extended setup, we suggest that generalized entangled coherent states can be also built probabilistically and that they are useful for microwave quantum information processing for error-correctable qudits in circuit-QED.

  6. Qubit state tomography in a superconducting circuit via weak measurements

    Science.gov (United States)

    Qin, Lupei; Xu, Luting; Feng, Wei; Li, Xin-Qi

    2017-03-01

    In this work we present a study on a new scheme for measuring the qubit state in a circuit quantum electrodynamics (QED) system, based on weak measurement and the concept of weak value. To be applicable under generic parameter conditions, our formulation and analysis are carried out for finite-strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to present state-of-the-art circuit QED experiments.

  7. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  8. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    Science.gov (United States)

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  9. Revisión del estado del arte deIR-Ultra-Wideband y simulación de la respuesta impulsiva del canal IEEE802.15.4a Review of the state of art of IR-Ultra-Wideband and simulation of Impulse Responce of the IEEE 802.15.4a channel

    Directory of Open Access Journals (Sweden)

    Julio Suárez Páez

    2010-06-01

    Full Text Available Este artículo realiza una revisión del estado del arte de la tecnología basada en canales de Banda Ultra Ancha (UWB, Ultra–Wideband enfocándose en su regulación, estandarización, aplicaciones básicas, modelo de canal IEEE 802.15.4a y simulación de la respuesta impulsiva de este tipo de canal. También se pretende introducir al lector en las tecnologías basadas en canales IR–UWB y en los parámetros para el modelamiento y simulación del canal UWB IEEE 802.15.4a.This paper reviews the state of the art of the technology based in channels of Ultra Wide band (UWB Ultra–Wideband focusing on its regulation, standardization, basic applications, IEEE 802.15.4a channel model and simulation of the impulsive response of this type of channel. Also, it aims to introduce the reader to the technologies based on IR–UWB channels and the parameters for modeling and simulation of IEEE 802.15.4a UWB channel.

  10. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    OpenAIRE

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from lo...

  11. Coexistence of IEEE 802.11b/g WLANs and IEEE 802.15.4 WSNs : Modeling and Protocol Enhancements

    NARCIS (Netherlands)

    Yuan, W.

    2011-01-01

    As an emerging short-range wireless technology, IEEE 802.15.4/ZigBee Wireless Sensor Networks (WSNs) are increasingly used in the fields of home control, industrial control, consumer electronics, energy management, building automation, telecom services, personal healthcare, etc. IEEE

  12. Researching the roots of IEEE Region 8

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2013-01-01

    This paper describes the preliminary steps towards the foundation and the early history of IRE Region 9 / IEEE Region 8. The information has been gathered mainly from the archives of the IEEE Benelux Section.

  13. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  14. The Design of Nanosecond Fast-switch Pulsed High Voltage Power Supply Based on Solid-state

    International Nuclear Information System (INIS)

    Chen Wenguang; Chen Wei; Rao Yihua

    2009-01-01

    The high voltage pulsed power supply is applied in the experiment of the nuclear science widely. It main consist of DC high-voltage power supply (HVPS) and pulse modulator. The high-frequency series-resonant inverter technology and IGBT series technology are used to design the HVPS and the modulator, respectively. The main circuit, control circuit, high voltage transformer and solid-state switch are illuminated in the paper. The apparatus can operate at a maximum output voltage of 6 kilovolt, which can be modulated single pulse and also be modulated by series pulse. A prototype is fabricated and tested, experimental results show that the pulsed power supply is well-designed and rising edge time to meet the nsclass; it can achieve the requirement of rapid modulation. (authors)

  15. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  16. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song; Cottrill, Anton L.; Kunai, Yuichiro; Toland, Aubrey R.; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S.

    2017-01-01

    rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous

  17. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  18. Solid State Research.

    Science.gov (United States)

    1984-02-15

    Intl. J. Heterodyne Detection at H.R. Fetterman* Infrared and Millimeter .’-’. 691 GHz D. Buhl* Waves ."’"-. G. Chin * S. Petuchowski* • Author not at...Layer Resist System," 1983 IEEE - MTT-S International Microwave Symposium Digest, pp. 613-616. 19. J. Rosenberg, C. Chye , C. Huang, and G. Policky, "A

  19. Testing methods of gaseous admixtures in HLMC circuits

    International Nuclear Information System (INIS)

    Shelemet'ev, V.M.; Martynov, P.N.; Askhadullin, R.Sh.; Storozhenko, A.N.; Sadovnichij, R.P.; Ivanov, I.I.

    2014-01-01

    Control of gas phase is the effective method for state diagnostics of circuit of nuclear power facilities with heavy liquid metal coolants. Use of developing in IPPE solid electrolyte and conductometric oxygen and hydrogen sensors, which are set directly in gas system of the primary circuit, allows to maintain continuously control of oxygen and hydrogen content as well as operational efficiency and accuracy of these parameters determination under various situations related with oxygen and hydrogen insertion into circuit. Sensors ensure long-term safe operation under extreme conditions of high temperatures, pressures, humidity, etc., and are advanced devices for application in nuclear power facilities with heavy liquid metal coolants [ru

  20. A pseudo differential Gm-C complex filter with frequency tuning for IEEE802.15.4 applications

    International Nuclear Information System (INIS)

    Cheng Xin; Yang Haigang; Liu Fei; Gao Tongqiang; Zhong Lungui

    2011-01-01

    This paper presents a CMOS G m -C complex filter for a low-IF receiver of the IEEE 802.15.4 standard. A pseudo differential OTA with reconfigurable common mode feedback and common mode feed-forward is proposed as well as the frequency tuning method based on a relaxation oscillator. A detailed analysis of non-ideality of the OTA and the frequency tuning method is elaborated. The analysis and measurement results have shown that the center frequency of the complex filter could be tuned accurately. The chip was fabricated in a standard 0.35 μm CMOS process, with a single 3.3 V power supply. The filter consumes 2.1mA current, has a measured in-band group delay ripple of less than 0.16 μs and an IRR larger than 28 dB at 2 MHz apart, which could meet the requirements oftheIEEE802.15.4 standard. (semiconductor integrated circuits)

  1. A New Simple Chaotic Circuit Based on Memristor

    Science.gov (United States)

    Wu, Renping; Wang, Chunhua

    In this paper, a new memristor is proposed, and then an emulator built from off-the-shelf solid state components imitating the behavior of the proposed memristor is presented. Multisim simulation and breadboard experiment are done on the emulator, exhibiting a pinched hysteresis loop in the voltage-current plane when the emulator is driven by a periodic excitation voltage. In addition, a new simple chaotic circuit is designed by using the proposed memristor and other circuit elements. It is exciting that this circuit with only a linear negative resistor, a capacitor, an inductor and a memristor can generate a chaotic attractor. The dynamical behaviors of the proposed chaotic system are analyzed by Lyapunov exponents, phase portraits and bifurcation diagrams. Finally, an electronic circuit is designed to implement the chaotic system. For the sake of simple circuit topology, the proposed chaotic circuit can be easily manufactured at low cost.

  2. EDF operational experience of primary circuit filter usage. Analysis of results and strategy for optimizing filtration and reducing solid wastes

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Moleiro, Edgar; Bancelin, Estelle; Bretelle, Jean-Luc

    2014-01-01

    Pleated fibreglass media filter cartridges are used throughout the auxiliary systems at nuclear power plants across the 58 reactors of EDF fleet. The main role of these filters is to remove suspended solids from coolant to prevent them accumulating in circuits or in equipments. In the primary circuit, these filters therefore limit the deposition of solids that are active or could become active if allowed to recirculate throughout the primary circuit, avoiding potential consequences such as an increase in dose rates, axial offset anomalies, demineralisers fouling, higher pressure losses in primary loop, and clogging of the primary pumps. Since 2008, a steady increase in the consumption of filters has been noticed, and therefore an increase in the amount of solid waste to treat. Preliminary studies have identified the primary circuit high-flow filters of the 1300/1450 MWe reactors as the main source of this increase. Not only has this stretched of solid waste containers production to the limit, as well as strained site resources and increased risks of operational errors during periods of frequent filter changes; it has also suggested that there is an underlying problem that could pose a serious risk to the primary circuit if untreated. Further studies have been carried out to identify more precisely the impact of possible causes, including increased quality surveillance of the filters, correlation of consumption data with the concentrations of various conditioning products and typical pollutants, and an impact analysis of events such as steam generator replacements or new practices like zinc injection. Work has been done with the filter manufacturer to improve their service lifetime and a simulation tool has been developed in order to understand and optimise filtration. We are also working with sites on creating good practices and avoiding bad ones. These actions should reduce the consumption in the short term while still assuring a high quality of filtration and

  3. Extending Service Area of IEEE 802.11 Ad Hoc Networks

    Science.gov (United States)

    Choi, Woo-Yong

    2012-06-01

    According to the current IEEE 802.11 wireless LAN standards, IEEE 802.11 ad hoc networks have the limitation that all STAs (Stations) are in the one-hop transmission range of each other. In this paper, to alleviate the limitation of IEEE 802.11 ad hoc networks we propose the efficient method for selecting the most appropriate pseudo AP (Access Point) from among the set of ad hoc STAs and extending the service area of IEEE 802.11 ad hoc networks by the pseudo AP's relaying the internal traffic of IEEE 802.11 ad hoc networks. Numerical examples show that the proposed method significantly extends the service area of IEEE 802.11 ad hoc networks.

  4. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  5. Cosimulation of electromagnetics-circuit systems exploiting DGTD and MNA

    KAUST Repository

    Li, Ping

    2014-06-01

    A hybrid electromagnetics (EM)-circuit simulator exploiting the discontinuous Galerkin time domain (DGTD) method and the modified nodal analysis (MNA) algorithm is developed for analyzing hybrid distributive and nonlinear multiport lumped circuit systems. The computational domain is split into two subsystems. One is the EM subsystem that is analyzed by DGTD, while the other is the circuit subsystem that is solved by the MNA method. The coupling between the EM and circuit subsystems is enforced at the lumped port where related field and circuit unknowns are coupled via the use of numerical flux, port voltages, and current sources. Since the spatial operations of DGTD are localized, thanks to the use of numerical flux, coupling matrices between EM and circuit subsystems are small and are directly inverted. To handle nonlinear devices within the circuit subsystem, the standard Newton-Raphson method is applied to the nonlinear coupling matrix system. In addition, a local time-stepping scheme is applied to improve the efficiency of the hybrid solver. Numerical examples including single and multiport linear/nonlinear circuit networks are presented to validate the proposed solver. © 2014 IEEE.

  6. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  7. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Aich, R.; Tran-Van, F.; Goubard, F.; Beouch, L.; Michaleviciute, A.; Grazulevicius, J.V.; Ratier, B.; Chevrot, C.

    2008-01-01

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO 2 : F/nc-TiO 2 /Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm 2 , air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I sc = 0.42 mA/cm 2 , open circuit voltage V oc = 500 mV with a fill factor of 0.35

  8. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aich, R. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Ecole Electricite de Production et Methodes Industrielles, Cergy Pontoise (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)], E-mail: francois.tran-van@u-cergy.fr; Goubard, F.; Beouch, L. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Michaleviciute, A.; Grazulevicius, J.V. [Department of Organic Technology, Kaunas University of Technology, Radvilenu Plentas 19, Kaunas LT-50254 (Lithuania); Ratier, B. [X-LIM., departement MINACOM, UMR 6172, Faculte des Sciences, 123 av. Albert Thomas 87060 Limoges cedex France (France); Chevrot, C. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)

    2008-08-30

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO{sub 2}: F/nc-TiO{sub 2}/Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm{sup 2}, air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I{sub sc} = 0.42 mA/cm{sup 2}, open circuit voltage V{sub oc} = 500 mV with a fill factor of 0.35.

  9. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  10. Circuit, especially for digital nuclear gyroscope systems

    International Nuclear Information System (INIS)

    Lowdenslager, J.R.

    1974-01-01

    The circuit with at least one or two spin generator shows a digital phase synchronizing loop in solid-state construction without movable mechanical parts. It is stable, may be turned in one direction any number of times without saturation, and also remains phase-synchronized when input signals are turned off. For this purpose, crystal oscillators with certain resonance frequencies are used. The spin generators are coupled at the outled side with filtering, squaring, and differential connections generating control impulses synchronous to the spin generators. Step divider circuits are connected to the oscillators, which act upon flip-flop registers. This is controlled by the filtering, squaring, and differential connections. Furthermore, field proportional control circuits with registers, advancing and delay circuits are provided, the registers being connected at the outlet side with digital adders and subtractors. The digital adder serves inertial-related purposes. (DG) [de

  11. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  12. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  13. Explicit logic circuits discriminate neural states.

    Directory of Open Access Journals (Sweden)

    Lane Yoder

    Full Text Available The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.

  14. Detailed design of a 13 kA 13 kV dc solid-state turn-off switch

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    An experimental facility for the study of electromagnetic effects in the First Wall-Blanket-shield (FWBS) systems of fusion reactors has been constructed at Argonne National Laboratory (ANL). In a test volume of 0.76 m 3 , a vertical, pulsed 5 kG dipole field (B -1 ) is perpendicular to a 10 kG solenoid field. Power supplies of 2.75 MW at 550 V dc and 5.5 MW at 550 V dc and a solid-state switch rated at 13 kA and 13 kV (169 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.6 MJ. This paper describes the design and construction features of the solid-state switching circuit which turns off a dc of 13 kA in approximately 82 μs and holds off voltages of < 13 kV

  15. 2008 Special NSREC Issue of the IEEE Transactions on Nuclear Science Comments by the Editors

    Science.gov (United States)

    Schwank, Jim; Buchner, Steve; Marshall, Paul; Duzellier, Sophie; Brown, Dennis; Poivey, Christian; Pease, Ron

    2008-12-01

    The December 2008 special issue of the IEEE Transactions on Nuclear Science contains selected papers from the 45th annual IEEE International Nuclear and Space Radiation Effects Conference (NSREC) held in Tucson, Arizona, July 14 - 18, 2008. Over 115 papers presented at the 2008 NSREC were submitted for consideration for this year's special issue. Those papers that appear in this special issue were able to successfully complete the review process before the deadline for the December issue. A few additional papers may appear in subsequent issues of the TRANSACTIONS. This publication is the premier archival journal for research on space and nuclear radiation effects in materials, devices, circuits, and systems. This distinction is the direct result of the conscientious efforts of both the authors, who present and document their work, and the reviewers, who selflessly volunteer their time and talent to help review the manuscripts. Each paper in this journal has been reviewed by experts selected by the editors for their expertise and knowledge of the particular subject areas.

  16. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    Science.gov (United States)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  17. Passive notch circuit for pulsed-off compression fields

    International Nuclear Information System (INIS)

    Nunnally, W.C.

    1976-06-01

    The operation and simulated results of a passive notch circuit used to pulse off the field in a multiturn, fusion-power system, compression coil are presented. The notch circuit permits initial plasma preparation at field zero, adiabatic compression as the field returns to its initial value, and long field decay time for plasma confinement. The major advantages and disadvantages of the notch circuit are compared with those of a standard capacitor power supply system. The major advantages are that: (1) slow-rising fields can be used for adiabatic compression, (2) solid-state switches can be used because of the inherent current and voltage waveforms, and (3) long field decay times are easier to attain than with single-turn coils

  18. The integrated circuit IC EMP transient state disturbance effect experiment method investigates

    International Nuclear Information System (INIS)

    Li Xiaowei

    2004-01-01

    Transient state disturbance characteristic study on the integrated circuit, IC, need from its coupling path outset. Through cable (aerial) coupling, EMP converts to an pulse current voltage and results in the impact to the integrated circuit I/O orifice passing the cable. Aiming at the armament system construction feature, EMP effect to the integrated circuit, IC inside the system is analyzed. The integrated circuit, IC EMP effect experiment current injection method is investigated and a few experiments method is given. (authors)

  19. Asymmetric Multilevel Outphasing (AMO): A New Architecture for All-Silicon mm-Wave Transmitter ICs

    Science.gov (United States)

    2015-06-12

    power-amplifiers for mobile basestation infrastructure and handsets. NanoSemi Inc. designs linearization solutions for analog front-ends such as...ward flexible, multi-standard radio chips, increases the need for high-precision, high-throughput and energy-efficient backend processing. The desire...peak PAE is affected by less than 1% (46 mW/(46 mW 1.8 W/0.4)) by this 64-QAM capable AMO SCS backend . 378 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48

  20. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  1. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  2. Fiber optics backbone for IEEE 802.3 networks

    Science.gov (United States)

    Shani, Ron

    1990-01-01

    In the last few years the IEEE 802.3 committee has developed fiber optics inter-repeater link standard called FOIRL. This standard defines the "Fiber Optics Media Access Unit" (FOMAU) which is used to connect two IEEE 802.3 repeaters that are up to 1Km apart. The IEEE 802.3 lOBaseF task force is currently standardizing a full F/O system in two directions: passive and active. The active approach is a compromise between the FOIRL (Asynchronous) approach and the Synchronous approach. As a result of this activity the IEEE 802.3 standard will define three different F/O interfaces and several devices that will not inter-operate. Such a standard will lower the credibility among the IEEE 802.3 user community, as customers will be confused amidst the many chapters and devices with no clear choice. This paper describes a method that can reduce the number of standards to two (passive and active), while proposing a solution for all the requirements of 802.3 F/O LAN. (The question of passive vs active approach will be discussed in this paper).

  3. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  4. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    KAUST Repository

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  5. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  6. Studies of solid-state electrochromic devices based on Peo/siliceous hybrids doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.

    2007-01-01

    Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability

  7. The scalable coherent interface, IEEE P1596

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1990-01-01

    IEEE P1596, the scalable coherent interface (formerly known as SuperBus) is based on experience gained while developing Fastbus (ANSI/IEEE 960--1986, IEC 935), Futurebus (IEEE P896.x) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor in multiprocessor systems with thousands of processors; efficient support of a coherent distributed-cache image of distributed shared memory; support for repeaters which interface to existing or future buses; and support for inexpensive small rings as well as for general switched interconnections like Banyan, Omega, or crossbar networks. This paper presents a summary of current directions, reports the status of the work in progress, and suggests some applications in data acquisition and physics

  8. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  9. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  10. Charge collection and pore filling in solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Zakeeruddin, Shaik M; Graetzel, Michael; Cesar, Ilkay

    2008-01-01

    The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO 2 with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 μm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 μm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process

  11. Charge collection and pore filling in solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Cesar, Ilkay; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-10-22

    The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the

  12. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  13. Photoemission from solids: the transition from solid-state to atomic physics

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission

  14. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  16. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  17. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  18. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  19. Qualification test of Class 1E equipment based on IEEE323 Std 2003

    International Nuclear Information System (INIS)

    Kim, J. S.; Jung, S. C.; Kim, T. R.

    2004-01-01

    IEEE Standard for Qualifying Class 1E Equipment has been updated to 2003 edition since the issue of IEEE Std 323-1971, 1974, 1983. NRC approved the IEEE Std 323-1974 as Qualification standard of Class 1E Equipment in domestic nuclear power plant. IEEE Std 323-2003 was issued in September of 2003 and utility is waiting the approval of NRC. IEEE Std 323-2003 suggest a new qualification technique which adopts the condition monitoring. Performance of two transient during DBA test is no longer recommended in IEEE Std 323-2003. IEEE323 Std 2003 included a chapter of ''extension of Qualified life'' to make available the life extension of components during plant life extension. For the efficient control of preserving EQ in domestic nuclear power plant, IEEE323 Std 2003 is strongly recommended

  20. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  1. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  2. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  3. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  4. IEEE Prize for Lucio Rossi

    CERN Multimedia

    IEEE Council on Superconductivity

    2007-01-01

    Lucio Rossi receives his prize from John Spargo, Chairman of the IEEE Council on Superconductivity (left), and Martin Nisenoff, Chairman of the Council on Superconductivity's Awards Committee (right).

  5. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  6. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  7. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  8. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    Czech Academy of Sciences Publication Activity Database

    Gál, A.; Hansen, A. K.; Koucký, Michal; Pudlák, Pavel; Viola, E.

    2013-01-01

    Roč. 59, č. 10 (2013), s. 6611-6627 ISSN 0018-9448 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded-depth circuits * error -correcting codes * hashing Subject RIV: BA - General Mathematics Impact factor: 2.650, year: 2013 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578188

  9. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    Czech Academy of Sciences Publication Activity Database

    Gál, A.; Hansen, A. K.; Koucký, Michal; Pudlák, Pavel; Viola, E.

    2013-01-01

    Roč. 59, č. 10 (2013), s. 6611-6627 ISSN 0018-9448 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded-depth circuits * error-correcting codes * hashing Subject RIV: BA - General Mathematics Impact factor: 2.650, year: 2013 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578188

  10. IEEE 802.11ah: A Technology to Face the IoT Challenge.

    Science.gov (United States)

    Baños-Gonzalez, Victor; Afaqui, M Shahwaiz; Lopez-Aguilera, Elena; Garcia-Villegas, Eduard

    2016-11-22

    Since the conception of the Internet of things (IoT), a large number of promising applications and technologies have been developed, which will change different aspects in our daily life. This paper explores the key characteristics of the forthcoming IEEE 802.11ah specification. This future IEEE 802.11 standard aims to amend the IEEE 802.11 legacy specification to support IoT requirements. We present a thorough evaluation of the foregoing amendment in comparison to the most notable IEEE 802.11 standards. In addition, we expose the capabilities of future IEEE 802.11ah in supporting different IoT applications. Also, we provide a brief overview of the technology contenders that are competing to cover the IoT communications framework. Numerical results are presented showing how the future IEEE 802.11ah specification offers the features required by IoT communications, thus putting forward IEEE 802.11ah as a technology to cater the needs of the Internet of Things paradigm.

  11. Proceedings IEEE Visualization Conference and IEEE Information Visualization Conference (VIS'07 and INFOVIS'07, Sacramento CA, USA, October 28-November 1, 2007)

    NARCIS (Netherlands)

    Chen, M.; Hansen, C.; North, C.; Pang, A.; Wijk, van J.J.

    2007-01-01

    These are the proceedings of the IEEE Visualization Conference 2007 (Vis 2007) and the IEEE Information Visualization Conference 2007 (InfoVis 2007) held during October 28 to November 1, 2007 in Sacramento, California. The power of using computing technology to create useful, effective imagery for

  12. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.

    Science.gov (United States)

    Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh

    2015-01-01

    This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.

  13. Performance Analysis of IEEE 802.11e (EDCF) and IEEE 802.11(DCF) WLAN Incorporating Different Physical Layer Standards

    Science.gov (United States)

    Sharma, V.; Singh, H.; Malhotra, J.

    2012-12-01

    Medium access coordination function basically implements the distributed coordination function (DCF) which provides support to best effort services but limited to QoS services. Subsequently, a new standard, namely enhanced distributed channel access (EDCA) is reported. The IEEE 802.11e (EDCA) defines MAC procedures to support QoS requirements which specifies distributed contention based access scheme to access the shared wireless media. This paper evaluates the performance of EDCA based IEEE 802.11 WLAN for various access categories (ACs) using OPNET™ Modeller 14.5. Further, the computed results are compared with DCF protocols in terms of QoS parameters. Furthermore, the simulative observation is reported at data rate of 54 Mbps using different physical layer protocols such as IEEE 802.11a/b/g to stumble on the best one to be implemented with EDCF to achieve improved QoS.

  14. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  15. Detailed design of a 13 kA 13 kV dc solid-state turn-off switch. [Revision

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    An experimental facility for the study of electromagnetic effects in the First Wall-Blanket-Shield (FWBS) systems of fusion reactors has been constructed at Argonne National Laboratory (ANL). In a test volume of 0.76 m 3 , a vertical, pulsed 5 kG dipole field (B dot less than or equal to 320 kGs -1 ) is perpendicular to a 10 kG solenoid field. Power supplies of 2.75 MW at 550 V dc and 5.5 MW at 550 V dc and a solid-state switch rated at 13 kA and 13 kV (169 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.6 MJ. This paper describes the design and construction features of the solid-state switching circuit which turns off a dc current of 13 kA in approximately 82 μs and holds off voltages of less than or equal to 13 kV. 14 figs

  16. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  17. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  18. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  19. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  20. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    Science.gov (United States)

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  1. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  2. Heterostructure-based high-speed/high-frequency electronic circuit applications

    Science.gov (United States)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  3. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Trejo, Orlando; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  4. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-06-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  5. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  6. Return of IEEE Std 627 and its Value to Equipment Qualification Programs

    International Nuclear Information System (INIS)

    Horvath, D.A.

    2012-01-01

    IEEE Std 627 ''Design Qualification of Safety Systems Equipment Used in Nuclear Power Generating Stations'' was issued to more generically establish qualification requirements in the form of a high level umbrella document. Efforts on this standard began in late 1975 at the request of the IEEE Nuclear Standards Management Board. In 1977 a joint ASME/IEEE agreement established responsibility for qualification and quality assurance standards preparation. ASME accepted responsibility for Quality Assurance and IEEE for qualification. In accordance with that agreement, IEEE completed the generic qualification standard in 1980. This document provided high level approaches, criteria, guidance, and principles for qualification of both electrical and mechanical equipment that at that time appeared in no other industry standard. IEEE Std 627-1980 was later reaffirmed in 1996. In 1986, ASME's Board on Nuclear Codes and Standards directed its Committee on Qualification of Mechanical Equipment (QME) to develop a standard for qualifying mechanical equipment. This task was completed in several parts during the time frame from 1992 to 1994. Partly in response to this activity, IEEE Std 627 was withdrawn in 2002. Later although withdrawn, it was found that IEEE Std 627 was continuing to be used and referenced by many entities both in the US and other countries including in ASME's QME-1-2002 ''Qualification of Active Mechanical Equipment Used in Nuclear Power Plants'', US NRC's NUREG-0800 Standard Review Plan Section 3.11, at least one reactor vendor's Design Certification Document (DCD), several international licensing documents, and elsewhere. As a result, in 2007, the IEEE Standards Board authorized Working Group 2.10 of Subcommittee 2 (Qualification) of the Power and Energy Society's Nuclear Power Engineering Committee to resurrect and update IEEE Std 627-1980 (Reaff 1996). The result was the culmination IEEE Std 627 in 2010. This paper will report on the eight improvements made

  7. CERN receives prestigious Milestone recognition from IEEE

    CERN Multimedia

    2005-01-01

    The Nobel prize winner Georges Charpak and W. Cleon Anderson, IEEE President, unveil the Milestone bronze plaques. At a ceremony on 26 September at the Globe of Science and Innovation, Mr W. Cleon Anderson, President of the Institute of Electrical and Electronics Engineers (IEEE) formally dedicated Milestone plaques recognising the invention of electronic particle detectors at CERN. The plaque were unveiled by Mr Anderson and Georges Charpak, the Nobel-prize winning inventor of wire chamber technology at CERN in 1968. The IEEE is the world's largest professional association dedicated to the advancement of technology with 365,000 individual members in over 150 countries. Established in 1983, there are currently over 60 Milestones around the world. They honour momentous achievements in the history of electrical and electronics engineering, such as the landing of the first transatlantic cable, code breaking at Bletchley Park during World War II, and the development of the Japanese Bullet train, the Tokaido Shin...

  8. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  9. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...

  10. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  11. optimisation of solid optimisation of solid state fermentation

    African Journals Online (AJOL)

    eobe

    from banana peels via solid state fermentation using Aspergillus niger. ermentation ... [7,8], apple pomace [9], banana peels [4], date palm. [10], carob ... powder, jams, juice, bar, biscuits, wine etc results in ... Yeast extract was taken as nitrogen.

  12. IEEE Std 535-1986: IEEE standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 308-1980 can be demonstrated by using the procedures provided in this standard in accordance with ANSI/IEEE Std 323-1983. Battery sizing, maintenance, capacity testing, installation, charging equipment, and consideration of other type batteries are beyond the scope of this standard

  13. Custom VLSI circuits for high energy physics

    International Nuclear Information System (INIS)

    Parker, S.

    1998-06-01

    This article provides a brief guide to integrated circuits, including their design, fabrication, testing, radiation hardness, and packaging. It was requested by the Panel on Instrumentation, Innovation, and Development of the International Committee for Future Accelerators, as one of a series of articles on instrumentation for future experiments. Their original request emphasized a description of available custom circuits and a set of recommendations for future developments. That has been done, but while traps that stop charge in solid-state devices are well known, those that stop physicists trying to develop the devices are not. Several years spent dodging the former and developing the latter made clear the need for a beginner's guide through the maze, and that is the main purpose of this text

  14. Custom VLSI circuits for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-06-01

    This article provides a brief guide to integrated circuits, including their design, fabrication, testing, radiation hardness, and packaging. It was requested by the Panel on Instrumentation, Innovation, and Development of the International Committee for Future Accelerators, as one of a series of articles on instrumentation for future experiments. Their original request emphasized a description of available custom circuits and a set of recommendations for future developments. That has been done, but while traps that stop charge in solid-state devices are well known, those that stop physicists trying to develop the devices are not. Several years spent dodging the former and developing the latter made clear the need for a beginner`s guide through the maze, and that is the main purpose of this text.

  15. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  16. A note on bound constraints handling for the IEEE CEC'05 benchmark function suite.

    Science.gov (United States)

    Liao, Tianjun; Molina, Daniel; de Oca, Marco A Montes; Stützle, Thomas

    2014-01-01

    The benchmark functions and some of the algorithms proposed for the special session on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computation (CEC'05) have played and still play an important role in the assessment of the state of the art in continuous optimization. In this article, we show that if bound constraints are not enforced for the final reported solutions, state-of-the-art algorithms produce infeasible best candidate solutions for the majority of functions of the IEEE CEC'05 benchmark function suite. This occurs even though the optima of the CEC'05 functions are within the specified bounds. This phenomenon has important implications on algorithm comparisons, and therefore on algorithm designs. This article's goal is to draw the attention of the community to the fact that some authors might have drawn wrong conclusions from experiments using the CEC'05 problems.

  17. A universal gyroscope driving circuit with 70dB amplitude control range

    KAUST Repository

    Abdelghany, Mohamed A.

    2010-08-01

    A CMOS variable gain driving circuit with output signal amplitude control for gyroscopes with wide range of quality factors is presented. The driving circuit can be used for gyroscopes with Q values higher than 500. The circuit uses a current-commutating switching mixer to control the gyroscope driving signal level. Conventional driving circuits use automatic gain control (AGC) which suffers from limited linear range and the need for an off-chip capacitor for the peak detector and loop filter. Two stage variable gain amplifier is used in the proposed design to ensure enough gain for oscillation for such a wide range of quality factors. Analog and digital amplitude control methods are used to cover wide range of driving signal amplitude with enough accuracy to hit the maximum driving signal level without sacrificing gyroscope linearity. Due to the high DC gain of the amplifier chain, DC offset resulting from mismatches might saturate the amplifier output. DC offset correction is employed using a secondary negative feedback loop. The proposed driving circuit is being fabricated in 0.6μm CMOS technology. © 2010 IEEE.

  18. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  19. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  20. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    Science.gov (United States)

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  1. Advances in quantum control of three-level superconducting circuit architectures

    Energy Technology Data Exchange (ETDEWEB)

    Falci, G.; Paladino, E. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); CNR-IMM UOS Universita (MATIS), Consiglio Nazionale delle Ricerche, Catania (Italy); INFN, Sezione di Catania (Italy); Di Stefano, P.G. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast(United Kingdom); Ridolfo, A.; D' Arrigo, A. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Paraoanu, G.S. [Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science (Finland)

    2017-06-15

    Advanced control in Lambda (Λ) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the Λ-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. IEEE Std 535-1979: IEEE standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1971 and IEE Std 308-1978, can be demonstrated by using the procedures provided in this standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other type batteries are beyond the scope of this standard

  3. All-solid-state carbon nanotube torsional and tensile artificial muscles.

    Science.gov (United States)

    Lee, Jae Ah; Kim, Youn Tae; Spinks, Geoffrey M; Suh, Dongseok; Lepró, Xavier; Lima, Mácio D; Baughman, Ray H; Kim, Seon Jeong

    2014-05-14

    We report electrochemically powered, all-solid-state torsional and tensile artificial yarn muscles using a spinnable carbon nanotube (CNT) sheet that provides attractive performance. Large torsional muscle stroke (53°/mm) with minor hysteresis loop was obtained for a low applied voltage (5 V) without the use of a relatively complex three-electrode electromechanical setup, liquid electrolyte, or packaging. Useful tensile muscle strokes were obtained (1.3% at 2.5 V and 0.52% at 1 V) when lifting loads that are ∼25 times heavier than can be lifted by the same diameter human skeletal muscle. Also, the tensile actuator maintained its contraction following charging and subsequent disconnection from the power supply because of its own supercapacitor property at the same time. Possible eventual applications for the individual tensile and torsional muscles are in micromechanical devices, such as for controlling valves and stirring liquids in microfluidic circuits, and in medical catheters.

  4. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  5. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    Science.gov (United States)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  6. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  7. Adaptive Backoff Algorithm for Contention Window for Dense IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Ikram Syed

    2016-01-01

    Full Text Available The performance improvement in IEEE 802.11 WLANs in widely fluctuating network loads is a challenging task. To improve the performance in this saturated state, we develop an adaptive backoff algorithm that maximizes the system throughput, reduces the collision probability, and maintains a high fairness for the IEEE 802.11 DCF under dense network conditions. In this paper, we present two main advantages of the proposed ABA-CW algorithm. First, it estimates the number of active stations and then calculates an optimal contention window based on the active station number. Each station calculates the channel state probabilities by observing the channel for the total backoff period. Based on these channel states probabilities, each station can estimate the number of active stations in the network, after which it calculates the optimal CW utilizing the estimated active number of stations. To evaluate the proposed mechanism, we derive an analytical model to determine the network performance. From our results, the proposed ABA-CW mechanism achieved better system performance compared to fixed-CW (BEB, EIED, LILD, and SETL and adaptive-CW (AMOCW, Idle Sense mechanisms. The simulation results confirmed the outstanding performance of the proposed mechanism in that it led to a lower collision probability, higher throughput, and high fairness.

  8. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  9. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  10. A circuit design for multi-inputs stateful OR gate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiao; Wang, Xiaoping, E-mail: wangxiaoping@hust.edu.cn; Wan, Haibo; Yang, Ran; Zheng, Jian

    2016-09-07

    The in situ logic operation on memristor memory has attracted researchers' attention. In this brief, a new circuit structure that performs a stateful OR logic operation is proposed. When our OR logic is operated in series with other logic operations (IMP, AND), only two voltages should to be changed while three voltages are necessary in the previous one-step OR logic operation. In addition, this circuit structure can be extended to multi-inputs OR operation to perfect the family of logic operations on memristive memory in nanocrossbar based networks. The proposed OR gate can enable fast logic operation, reduce the number of required memristors and the sequential steps. Through analysis and simulation, the feasibility of OR operation is demonstrated and the appropriate parameters are obtained.

  11. A circuit design for multi-inputs stateful OR gate

    International Nuclear Information System (INIS)

    Chen, Qiao; Wang, Xiaoping; Wan, Haibo; Yang, Ran; Zheng, Jian

    2016-01-01

    The in situ logic operation on memristor memory has attracted researchers' attention. In this brief, a new circuit structure that performs a stateful OR logic operation is proposed. When our OR logic is operated in series with other logic operations (IMP, AND), only two voltages should to be changed while three voltages are necessary in the previous one-step OR logic operation. In addition, this circuit structure can be extended to multi-inputs OR operation to perfect the family of logic operations on memristive memory in nanocrossbar based networks. The proposed OR gate can enable fast logic operation, reduce the number of required memristors and the sequential steps. Through analysis and simulation, the feasibility of OR operation is demonstrated and the appropriate parameters are obtained.

  12. Developing magnonic architectures in circuit QED

    Science.gov (United States)

    Karenowska, Alexy; van Loo, Arjan; Morris, Richard; Kosen, Sandoko

    The development of low-temperature experiments aimed at exploring and exploiting magnonic systems at the quantum level is rapidly becoming a highly active and innovative area of microwave magnetics research. Magnons are easily excited over the microwave frequency range typical of established solid-state quantum circuit technology, and couple readily to electromagnetic fields. These facts, in combination with the highly tunable dispersion of the excitations, make them a particularly interesting proposition in the context of quantum device design. In this talk, we survey recent progress made in our group in the area of the hybridization of planar superconducting circuit technology (circuit-QED) with magnon systems. We discuss the technical requirements of successful experiments, including the choice of suitable materials. We go on to describe the results of investigations including the study spin-wave propagation in magnetic waveguides at the single magnon level, the investigation of magnon modes in spherical magnetic resonators, and the development of systems incorporating Josephson-junction based qubits. The authors would like to acknowledge funding by the EPSRC through Grant EP/K032690/1.

  13. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite

    Science.gov (United States)

    John, Dina A.; Banerjee, Susanta; Bohannan, Gary W.; Biswas, Karabi

    2017-04-01

    Here, we propose the fabrication of a solid state fractional capacitor for which constant phase (CP) angles were attained in different frequency zones: 110 Hz-1.1 kHz, 10 kHz-118 kHz, and 230 kHz-20 MHz. The configuration makes use of epoxy resin as the matrix in which multi-walled carbon nanotubes (MWCNTs) are dispersed. Adhesive nature of the epoxy resin is utilized for binding the electrodes, which avoids the extra step for packaging. The fractional capacitive behavior is contributed by the distribution of time constants for the electron to travel from one electrode to the other. The distributive nature of the time constant is ensured by inserting a middle plate which is coated with a porous film of polymethyl-methacrylate in between the two electrodes. The phase angle trend for the configuration is studied in detail, and it is observed that as the % of carbon nanotubes (CNTs) loading increases, the CP angle increases from - 85 ° to - 45 ° in the frequency zones above 100 Hz. The developed device is compact and it can be easily integrated with the electronic circuits.

  15. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  16. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  17. 2012 Special NSREC Issue of the IEEE Transactions on Nuclear Science Comments by the Editors

    Science.gov (United States)

    Schwank, Jim; Brown, Dennis; Girard, Sylvain; Gouker, Pascale; Gerardin, Simone; Quinn, Heather; Barnaby, Hugh

    2012-12-01

    The December 2012 special issue of the IEEE Transactions on Nuclear Science contains selected papers from the 49th annual IEEE International Nuclear and Space Radiation Effects Conference (NSREC) held July 16-20, 2012, in Miami, Florida USA. 95 papers presented at the 2012 NSREC were submitted for consideration for this year’s special issue. Those papers that appear in this special issue were able to successfully complete the review process before the deadline for the December issue. A few additional papers may appear in subsequent issues of the TRANSACTIONS. This publication is the premier archival journal for research on space and nuclear radiation effects in materials, devices, circuits, and systems. This distinction is the direct result of the conscientious efforts of both the authors, who present and document their work, and the reviewers, who selflessly volunteer their time and talent to help review the manuscripts. Each paper in this journal has been reviewed by experts selected by the editors for their expertise and knowledge of the particular subject areas. The peer review process for a typical technical journal generally takes six months to one year to complete. To publish this special issue of the IEEE Transactions on Nuclear Science (in December), the review process, from initial submission to final form, must be completed in about 10 weeks. Because of the short schedule, both the authors and reviewers are required to respond very quickly. The reviewers listed on the following pages contributed vitally to this quick-turn review process.We would like to express our sincere appreciation to each of them for accepting this difficult, but critical role in the process. To provide consistent reviews of papers throughout the year, the IEEE Transactions on Nuclear Science relies on a year-round editorial board that manages reviews for submissions throughout the year to the TRANSACTIONS in the area of radiation effects. The review process is managed by a Senior

  18. Harwell's atomic, molecular and solid state computer programs

    International Nuclear Information System (INIS)

    Harker, A.H.

    1976-02-01

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  19. IEEE Prize for Lucio Rossi

    CERN Multimedia

    2007-01-01

    Lucio Rossi receives his prize from John Spargo, Chairman of the IEEE Council on Superconductivity (left), and Martin Nisenoff, Chairman of the Council on Superconductivity’s Awards Committee (right). (Photo: IEEE Council on Superconductivity)With the magnets installed in the tunnel and work on the interconnections almost completed, Lucio Rossi has reaped the rewards of fifteen years of work. And yet, when the physicist from Milan arrived to take charge of the group responsible for the superconducting magnets in 2001, success seemed far from assured. Endowed with surprising levels of energy, Lucio Rossi, together with his team, ensured that production of these highly complex magnets got underway. Today, that achievement earns them the recognition not only of CERN but also of the international superconducting community. It is for this achievement that Lucio Rossi was awarded the prize by the IEEE’s (Institute of Electrical an...

  20. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  1. Energy-saving approaches to solid state street lighting

    Science.gov (United States)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  2. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  3. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  4. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  5. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  6. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  7. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  8. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  9. IEEE Conference Publications in Libraries.

    Science.gov (United States)

    Johnson, Karl E.

    1984-01-01

    Conclusions of surveys (63 libraries, OCLC database, University of Rhode Island users) assessing handling of Institute of Electrical and Electronics Engineers (IEEE) conference publications indicate that most libraries fully catalog these publications using LC cataloging, and library patrons frequently require series access to publications. Eight…

  10. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  11. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  12. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  13. IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE 15-20 OCTOBER 2000 PALAIS DES CONGRES, LYON, FRANCE

    CERN Multimedia

    2000-01-01

    The IEEE NSS & MIC will be held this year in Europe for the first time in its more than 40 year history. Some 280 oral and 400 poster presentations on radiation detectors, instrumentation and imaging will be given over the five days of the conferences. In addition there is a rich programme of keynote talks, topical workshops, short courses and an industrial exhibition with more than 50 exhibitors. SHORT COURSES Following a long and successful tradition, several tutorial short courses, delivered by known experts in the specific fields, are being offered to registered students. There are still places available to attend the courses on Solid State Detectors, Particle Identification and Detectors for Astrophysics. These intensive one-day tutorials will be given on Sunday October 15. Full details and registration information can be found on the conference web site or from the Short Courses Organiser, Fabio Sauli, CERN. A limited amount of financial support is available for motivated scholars who may not ot...

  14. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  15. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  16. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  17. Development of a new magnetic circuit for slim microspeakers

    Science.gov (United States)

    Lee, Chang-Min; Kwon, Joong-Hak; Hwang, Gun-Yong; Hwang, Sang-Moon

    2009-04-01

    In the minimultimedia market, functional diversity, high performance, and design are given top priority. Lightweight mobile phones of unique design especially attract customer interest and are usually considered to be highly competitive items in the marketplace. Therefore, mobile phones need wider and thinner liquid crystal displays and smaller microspeakers with high acoustic performance. There are two main directions for development of slim microspeakers. One is reducing the thickness, and the other is reducing the width. In the case of reducing the width, the total magnet volume is maintained through extending the length of the magnet circuit [S. M. Hwang et al., IEEE Trans. Magn. 39, 2003 (2003)]. In contrast, reducing the thickness results in a reduction in total magnet volume unless width is increased, which causes many difficulties in the manufacturing process. In this paper, we introduce a new magnetic circuit for slim microspeakers. This new magnetic circuit, which excludes the top plate, makes it possible to manufacture slimmer microspeakers more cost-effectively without any loss of acoustic performance.

  18. Review on solid electrolytes for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li

    2018-06-01

    All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.

  19. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  20. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  1. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  2. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  3. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  4. Solid-state resistor for pulsed power machines

    Science.gov (United States)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  5. Implicit Block ACK Scheme for IEEE 802.11 WLANs

    Science.gov (United States)

    Sthapit, Pranesh; Pyun, Jae-Young

    2016-01-01

    The throughput of IEEE 802.11 standard is significantly bounded by the associated Medium Access Control (MAC) overhead. Because of the overhead, an upper limit exists for throughput, which is bounded, including situations where data rates are extremely high. Therefore, an overhead reduction is necessary to achieve higher throughput. The IEEE 802.11e amendment introduced the block ACK mechanism, to reduce the number of control messages in MAC. Although the block ACK scheme greatly reduces overhead, further improvements are possible. In this letter, we propose an implicit block ACK method that further reduces the overhead associated with IEEE 802.11e’s block ACK scheme. The mathematical analysis results are presented for both the original protocol and the proposed scheme. A performance improvement of greater than 10% was achieved with the proposed implementation.

  6. IEEE Std 650-1990: IEEE standard for qualification of Class 1E static battery chargers and inverters for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Methods for qualifying static battery chargers and inverters for Class 1E installations in a mild environment outside containment in nuclear power generating stations are described. The qualification methods set forth employ a combination of type testing and analysis, the latter including a justification of methods, theories, and assumptions used. These procedures meet the requirements of IEEE Std 323-1983, IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations

  7. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats.

    Science.gov (United States)

    Lust, Andres; Laidmäe, Ivo; Palo, Mirja; Meos, Andres; Aaltonen, Jaakko; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-01-23

    The aim of this study was to gain understanding about the effects of different solid-state forms of a poorly water-soluble piroxicam on drug dissolution and oral bioavailability in rats. Three different solid-state forms of piroxicam were studied: anhydrate I (AH), monohydrate (MH), and amorphous form in solid dispersion (SD). In addition, the effect of a new polymeric excipient Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) on oral bioavailability of piroxicam was investigated. Significant differences in the dissolution and oral bioavailability were found between the solid-state forms of piroxicam. Amorphous piroxicam in SD showed the fastest dissolution in vitro and a solid-state transformation to MH in the dissolution medium. Despite the presence of solid-state transformation, SD exhibited the highest rate and extent of oral absorption in rats. Oral bioavailability of other two solid-state forms decreased in the order AH and MH. The use of Soluplus® was found to enhance the dissolution and oral bioavailability of piroxicam in rats. The present study shows the importance of solid-state form selection for oral bioavailability of a poorly water-soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Quantum-Circuit Refrigerator

    Science.gov (United States)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  9. IEEE prize awarded to CERN PhD student

    CERN Multimedia

    2006-01-01

    Rafael Ballabriga Suñe is the recipient of the 2006 Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nuclear and Plasma Sciences Society (NPSS)'s Student Paper Award. Ballabriga's winning paper reported on a prototype chip, which belongs to a new generation of single photon counting hybrid pixel detector readout chips - Medipix3. The award was presented by the deputy programme chair Vince Cianciolo (left) at the IEEE Nuclear Science Symposium held in San Diego on 29 October to 4 November.

  10. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  11. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  12. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  13. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  14. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  15. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  16. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  17. Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits

    Institute of Scientific and Technical Information of China (English)

    GUO Zhan-Ying; FANG Jian-Xing; ZHU Shi-Qun; QIAN Xue-Min

    2006-01-01

    Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed.After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile,quantum circuits for realization of successful teleportation are also presented.

  18. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  19. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  20. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  1. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  2. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  3. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  4. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  5. 15th IEEE International Conference on Intelligent Engineering Systems

    CERN Document Server

    Živčák, Jozef; Aspects of Computational Intelligence Theory and Applications

    2013-01-01

    This volume covers the state-of-the art of the research and development in various aspects of computational intelligence and gives some perspective directions of development. Except the traditional engineering areas that contain theoretical knowledge, applications, designs and projects, the book includes the area of use of computational intelligence in biomedical engineering. „Aspects of Computational Intelligence: Theory and Applications” is a compilation of carefully selected extended papers written on the basis of original contributions presented at the 15th IEEE International Conference on Intelligent Engineering Systems 2011, INES 2011 held at June 23.-26. 2011 in AquaCity Poprad, Slovakia.    

  6. Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells

    Science.gov (United States)

    Nikolakopoulou, Archontoula; Raptis, Dimitrios; Dracopoulos, Vasilios; Sygellou, Lamprini; Andrikopoulos, Konstantinos S.; Lianos, Panagiotis

    2015-03-01

    Solid state solar cells of inverted structure were constructed by successive deposition of nanoparticulate titania, antimony sulfide sensitizer and P3HT on FTO electrodes with PEDOT:PSS:Ag as counter electrode. Sensitized photoanode electrodes were characterized by XRD, Raman, XPS, FESEM and UV-vis. Small laboratory scale cells were first constructed and optimized. Functional cells were obtained by annealing the antimony sulfide film either in air or in inert atmosphere. High short-circuit currents were recorded in both cases with air-annealed sample producing more current but lower voltage. Small unit cells were combined to form cell modules. Connection of unit cells in parallel increased current but not proportionally to that of the unit cell. Connection in series preserved current and generated voltage multiplication. Cells were constructed and studied under ambient conditions, without encapsulation. The results encourage upscaling of antimony sulfide solar cells.

  7. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  8. Passive and active elements using fractional Lβ C α circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-10-01

    This paper introduces a qualitative revision of the traditional LC tank circuit in the fractional domain. The paper can be divided into six major parts, aiming in turn to establish the various conditions under which L βCα impedance may act as a resistor, negative resistor, or a positive or negative pure imaginary inductor or capacitor, in accordance to new frequency definitions; illustrate the process by which the phase response chooses the shortest path from initial to final phase, and use this illustration to verify the cases discussed in part one; develop the generalized parameters for the bandpass filter response of the L βCα circuit, such as the resonance frequency and quality factor versus α-β plane; discuss sensitivity analyses with respect to the fractional orders, as well as the time domain analyses for the impulse and step responses with their analytical formulas; and lastly, to propose some possible applications for this generalized circuit. Mathematical and PSpice simulation results are included to validate the discussion. © 2011 IEEE.

  9. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  10. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  11. IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, 19 - 22 May 1997 San Diego, California

    National Research Council Canada - National Science Library

    Hyman, Julius

    1997-01-01

    This 360 page softbound publication includes the following major sections. An invitation to ICOPS'97, Catamaran Resort Hotel Floor Pinas, Officers of the IEEE Nuclear and Plasma Sciences Society, Conference Information...

  12. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  13. Practical programmable circuits a guide to PLDs, state machines, and microcontrollers

    CERN Document Server

    Broesch, James D

    1991-01-01

    This is a practical guide to programmable logic devices. It covers all devices related to PLD: PALs, PGAs, state machines, and microcontrollers. Usefulness is evaluated; support needed in order to effectively use the devices is discussed. All examples are based on real-world circuits.

  14. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  15. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  16. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  17. Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control

    International Nuclear Information System (INIS)

    Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi

    2010-01-01

    In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.

  18. Solid State Research, 1977:2

    Science.gov (United States)

    1977-05-15

    Chem. Phys. 4726 Thin-Film VO2 Submillimeter- Wave Modulators and Polarizers J.C.C. Fan H. R. Fetterman F. J. Bachner P. M. Zavracky C. D. Parker... Fetterman IEEE Groups on Sonics and Ultrasonics and on Electron Devices, Technical Meeting of Boston Chapters, MITRE Corp., Bedford...Leader P. L. Kelley, Associate Leader Barch, W. E. Brueck, S. R. J. Burke, J. W. Chinn, S. R. DeFeo, W. E. Deutsch, T. F. Fetterman , H. R

  19. Solid State Research, 1975:3

    Science.gov (United States)

    1975-08-15

    Heckscher T. F. Deutsch H. Kildal D. L. Spears I. Melngailis T. C. Haiman P. L. Kelley R. S. Eng D. L. Spears H. R. Fetterman H. R... Fetterman H. R. Schlossberg* W. E. Barch 1975 International IEEE/APS Symposium and USNC/URSI Meeting, Urbana, Illinois, 4 June 1975 * Author not...ft. Chinn, S. R. Del-eo, ft. E. Deutsch, T. F. Fetterman , II. R. Hancock, R. C. II. Ileckscher, Kildal, II. Larsen, D. M. Mandel, P

  20. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  1. Solid state division progress report, period ending February 29, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  2. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  3. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  4. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  5. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  6. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  7. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  9. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  10. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit

    Science.gov (United States)

    Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei

    2017-11-01

    Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

  11. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  12. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  13. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  14. Energy Harvesting - Wireless Sensor Networks for Indoors Applications Using IEEE 802.11

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Sørensen, Thomas; Madsen, Jan

    2014-01-01

    The paper investigates the feasibility of using IEEE 802.11 in energy harvesting low-power sensing applications. The investigation is based on a prototype carbon dioxide sensor node that is powered by artificial indoors light. The wireless communication module of the sensor node is based on the RTX......4100 module. RTX4100 incorporates a wireless protocol that duty-cycles the radio while being compatible with IEEE 802.11 access points. The presented experiments demonstrate sustainable operation but indicate a trade-off between the benefits of using IEEE 802.11 in energy harvesting applications...

  15. Facilitated ion transport in all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  16. IEEE C37.98-1987: IEEE standard seismic testing of relays

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard specifies the procedures to be used in the seismic testing of relays used in power system facilities. The standard is concerned with the determination of the seismic fragility level of relays and also gives recommendations for proof testing. The purpose of this standard is to establish procedures for determining the seismic capabilities of protective and auxiliary relays. These procedures employ what has been called fragility testing in IEEE Std 344-1987. To define the conditions for fragility testing of relays, parameters in three separate areas must be specified. In general, they are (1) the electrical settings and inputs to the relay, and other information to define its conditions during the test; (2) the change in state, deviation in operating characteristics or tolerances, or other change of performance of the relay that constitutes failure; (3) the seismic vibration environment to be imposed during the test. Since it is not possible to define the conditions for every conceivable application for all relays, those parameters, which in practice encompass the majority of applications, have been specified in this standard. When the application of the relay is other than as specified under any of (1), (2), and (3), or if it is not practical to apply existing results of fragility tests to that new application, then proof testing must be performed for that new case

  17. IEEE C37.98-1978: IEEE standard seismic testing of relays

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard specifies the procedures to be used in the seismic testing of relays used in power system facilities. The standard is concerned with the determination of the seismic fragility level of relays and also gives recommendations for proof testing. The purpose of this standard is to establish procedures for determining the seismic capabilities of protective and auxiliary relays. These procedures employ what has been called fragility testing in ANSI/IEEE Std 344-1975, Recommended Practices for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations. In order to define the conditions for fragility testing of relays, parameters in three separate areas must be specified. In general they are: (1) the electrical settings and inputs to the relay, and other information to define its conditions during the test; (2) the change in state, deviation in operating characteristics or tolerances, or other change of performance of the relay which constitutes failure; (3) the seismic vibration environment to be imposed during the test. Since it is not possible to define the conditions for every conceivable application for all relays, those parameters, which in practice encompass the majority of applications, have been specified in this standard. When the application of the relay is other than as specified under any of (1), (2), and (3), or if it is not practical to apply existing results of fragility tests to that new case

  18. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel solid-state control system for the minimization of re-switching transient currents of induction motor

    International Nuclear Information System (INIS)

    Abro, M.R.; Larik, A.S.; Mahar, M.A.

    2005-01-01

    This work is an investigation into the minimizing re-closure transient currents of induction motors by activating NOVEL solid state control system switching at a matched condition. This emphasis is placed upon-circuit transition starting of cage motors, particularly star-delta switching. The initial study is carried out on single-phase induction motion. This system is capable of effective sensing re-closure of a switched off running single-phase induction motor. Further this scheme could be developed to give sequential delta closure of a switched off running three-phase induction motor during 1st cycles following the opening of the star mode. Consideration is also given to the possibility of using sensed re-closure to minimize transient whenever the supply to a running induction motor is briefly interrupted, irrespective of whether the interruption is by accident design. A brief study is made into the type of transient currents generated by opening the circuit of a running induction motor. The importance of the switching pattern for star-delta starting is explained and emphasized. (author)

  20. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  1. All-optical quantum computing with a hybrid solid-state processing unit

    International Nuclear Information System (INIS)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan

    2011-01-01

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  2. Structural and dynamic properties of solid state ionics

    International Nuclear Information System (INIS)

    Sakuma, T.

    1995-01-01

    The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs

  3. One-Step Generation of Multiqubit Greenberger-Horne-Zeilinger States in a Driven Circuit QED System

    International Nuclear Information System (INIS)

    Huang Jinsong; Nie Wei; Wei Lianfu

    2011-01-01

    We propose an efficient scheme to generate multiqubit Greenberger-Horne-Zeilinger (GHZ) states by one-step quantum operation in a driven circuit quantum electrodynamics (QED) system. Our proposal is based on a unitary evolution exp[-iλS 2 x ], with S x being the collective spin operator in x direction and λ a controllable parameter, induced by driving the resonator. The quantum operation avoids resonator-field decay and may achieve the GHZ states with ideal success probability. The feasibility with the experimentally-demonstrated circuit QED system is also discussed. (general)

  4. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  5. Theory of the l-state population of Rydberg states formed in ion-solid collisions

    International Nuclear Information System (INIS)

    Kemmler, J.; Burgdoerfer, J.; Reinhold, C.O.

    1991-01-01

    The experimentally observed high-l-state population of ions excited in ion-solid interactions differs sharply from l-state populations produced in ion-atom collisions. We have studied the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O 2+ (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to be in very good agreement with experiment. Initial phase-space conditions have been obtained from both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence that the very-high-l-state populations produced in ion-solid collisions are the result of a diffusion to high-l states under the influence of multiple scattering in the bulk of the solid

  6. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  7. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  8. Human exposure standards in the frequency range 1 Hz To 100 kHz: the case for adoption of the IEEE standard.

    Science.gov (United States)

    Patrick Reilly, J

    2014-10-01

    Differences between IEEE C95 Standards (C95.6-2002 and C95.1-2005) in the low-frequency (1 Hz-100 kHz) and the ICNIRP-2010 guidelines appear across the frequency spectrum. Factors accounting for lack of convergence include: differences between the IEEE standards and the ICNIRP guidelines with respect to biological induction models, stated objectives, data trail from experimentally derived thresholds through physical and biological principles, selection and justification of safety/reduction factors, use of probability models, compliance standards for the limbs as distinct from the whole body, defined population categories, strategies for central nervous system protection below 20 Hz, and correspondence of environmental electric field limits with contact currents. This paper discusses these factors and makes the case for adoption of the limits in the IEEE standards.

  9. CERN receives prestigious Milestone recognition from IEEE

    CERN Multimedia

    2005-01-01

    At a ceremony at CERN, Mr W. Cleon Anderson, President of the Institute of Electrical and Electronics Engineers (IEEE) formally a Milestone plaque in recognition of the invention of electronic particle detectors at CERN

  10. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    Science.gov (United States)

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  11. 0011-0030.How to make an abstract in IEEE Format for ...

    Indian Academy of Sciences (India)

    Home; public; Volumes; reso; 021; 01; 0011-0030.How to make an abstract in IEEE Format for AvishkarMulticultural Night in IEEE R10 Student Congress 2009Performances.pdf. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook ...

  12. Solid state insurrection how the science of substance made American physics matter

    CERN Document Server

    Martin, Joseph D

    2018-01-01

    Solid state physics—the study of the physical properties of solid matter—was far and away the most populous subfield of Cold War American physics. But despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered much less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was nonetheless essential to securing the vast social, political, and financial capital Cold War physics enjoyed. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Solid state research kept physics economically and technologically relevant, sustaining its lofty cultural standing and policy influence long after the sheen of the Manhattan Project had faded. By placing solid state at the center of the story of twentieth cent...

  13. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  14. IEEE 1451.2 based Smart sensor system using ADuc847

    Science.gov (United States)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  15. Solid state protein monolayers: Morphological, conformational, and functional properties

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  16. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  17. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  18. Topologically distinct classes of valence-bond solid states with their parent Hamiltonians

    International Nuclear Information System (INIS)

    Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai

    2009-01-01

    We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.

  19. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  20. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  1. Solid State Division: Progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  2. Solid State Division: Progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies

  3. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  4. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  5. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  6. The implication of frontostriatal circuits in young smokers: A resting-state study.

    Science.gov (United States)

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Li, Yangding; Guan, Yanyan; Liu, Jixin; Zhang, Yi; Qin, Wei; Lu, Xiaoqi; Tian, Jie

    2016-06-01

    The critical roles of frontostriatal circuits had been revealed in addiction. With regard to young smokers, the implication of frontostriatal circuits resting-state functional connectivity (RSFC) in smoking behaviors and cognitive control deficits remains unclear. In this study, the volume of striatum subsets, i.e., caudate, putamen, and nucleus accumbens, and corresponding RSFC differences were investigated between young smokers (n1  = 60) and nonsmokers (n2  = 60), which were then correlated with cigarette smoking measures, such as pack_years-cumulative effect of smoking, Fagerström Test for Nicotine Dependence (FTND)-severity of nicotine addiction, Questionnaire on Smoking Urges (QSU)-craving state, and Stroop task performances. Additionally, mediation analysis was carried out to test whether the frontostriatal RSFC mediates the relationship between striatum morphometry and cognitive control behaviors in young smokers when applicable. We revealed increased volume of right caudate and reduced RSFC between caudate and dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex in young smokers. Significant positive correlation between right caudate volume and QSU as well as negative correlation between anterior cingulate cortex-right caudate RSFC and FTND were detected in young smokers. More importantly, DLPFC-caudate RSFC strength mediated the relationship between caudate volume and incongruent errors during Stroop task in young smokers. Our results demonstrated that young smokers showed abnormal interactions within frontostriatal circuits, which were associated with smoking behaviors and cognitive control impairments. It is hoped that our study focusing on frontostriatal circuits could provide new insights into the neural correlates and potential novel therapeutic targets for treatment of young smokers. Hum Brain Mapp 37:2013-2026, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  8. IEEE No. 323, IEEE trial-use standard: General guide for qualifying Class I electric equipment for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes the basic requirements for the qualification of Class I electric equipment. This is equipment which is essential to the safe shutdown and isolation of the reactor or whose failure or damage could result in significant release of radioactive material. The purpose of this document is to provide guidance for demonstrating the qualifications of electrical equipment as required in the IEEE Std 279 -- Criteria for Nuclear Power Generating Station Protection Systems, and IEEE Std 308 -- Criteria for Class 1E Electric Systems for Nuclear Power Generating Stations. The qualification methods described may be used in conjunction with the Guides for qualifying specific types of equipment, (see Foreword), for updating qualification following modifications or for qualifying equipment for which no applicable Guide exists

  9. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  10. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    Ferdinand Schmidt-Kaler

    2014-01-01

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  11. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  12. K. S. Krishnan Memorial Lecture: The role of crystallography in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Guinier, A [Paris-11 Univ., 91 - Orsay (France)

    1977-06-01

    The role of crystallography in solving problems in solid state physics, is explained. A few domains in solid state physics such as detection of localized defects, structure of metallic solid solutions, mechanism of phase transitions and the intermediate states between crystalline and amorphous states, have been investigated successfully by X-ray and neutron diffraction methods. The studies have helped a deeper understanding of solid state phenomena. Structures of CuBa, AlZn, ..beta..-alumina etc. are discussed.

  13. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    Science.gov (United States)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  14. Implementation of IEEE-1588 timing and synchronization for ATCA control and data acquisition systems

    International Nuclear Information System (INIS)

    Correia, Miguel; Sousa, Jorge; Combo, Álvaro; Rodrigues, António P.; Carvalho, Bernardo B.; Batista, António J.N.; Gonçalves, Bruno; Correia, Carlos M.B.A.; Varandas, Carlos A.F.

    2012-01-01

    Highlights: ► IEEE-1588 over Ethernet protocol is implemented for the synchronization of all clock signals of an ATCA AMC carrier module. ► The ATCA hardware consists of an AMC quad-carrier main-board with PCI Express switching. ► IEEE-1588 is to be implemented on a Virtex-6 FPGA. ► Timing signals on the ATX-AMC4-PTP are managed and routed by a crosspoint-switch implemented on a Virtex-6 FPGA. ► Each clock signal source may be independently located (on each of the AMC cards, RTM or ATCA backplane). - Abstract: Control and data acquisition (C and DA) systems for Fusion experiments are required to provide accurate timing and synchronization (T and S) signals to all of its components. IPFN adopted PICMG's Advanced Telecommunications Computing Architecture (ATCA) industry standard to develop C and DA instrumentation. ATCA was chosen not only for its high throughput characteristics but also for its high availability (HA) features which become of greater importance in steady-state operation scenarios. However, the specified ATCA clock and synchronization interface may be too limited for the timing and synchronization needs in advanced Physics experiments. Upcoming specification extensions, developed by the “xTCA for Physics” workgroups, will contemplate, among others, a complementary timing specification, developed by the PICMG xTCA for Physics IO, Timing and Synchronization Technical Committee. The IEEE-1588 Precision Time Protocol (PTP) over Ethernet is one of the protocols, proposed by the Committee, aiming for precise synchronization of clocks in measurement and control systems, based on low jitter and slave-to-slave skew criteria. The paper presents an implementation of IEEE-1588 over Ethernet, in an ATCA hardware platform. The ATCA hardware consists of an Advanced Mezzanine Card (AMC) quad-carrier front board with PCI Express switching. IEEE-1588 is to be implemented on a Virtex-6 FPGA. Ethernet connectivity with the remote master clock is located on

  15. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  16. The IEEE 802.11a standards

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The IEEE 802.11a standards. Provides higher data rate and system capacities and uses OFDM in Physical Layer to mitigate the multi path effects;. Supports multiple 20Mhz channel. Each channel being an OFDM Modulated;; 52 Carriers. 48 data carrier; 4 Carry pilot ...

  17. Solid State Division Progress Report for period ending March 31, 1986

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials

  18. Solid-state cultivation of Chaetomium cellulolyticum on alkali-pretreated sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Pamment, N; Robinson, C W; Hilton, J; Moo-Young, M

    1978-11-01

    Solid-state fermentations (78% initial moisture content) of alkali-pretreated Eastern Hard Maple sawdust were conducted in tray and tumble fermentors using Chaetomium cellulolyticum. Crude protein content of the solids rose from 0.9 to 11% in the tray fermentor and 8% in the tumble fermentor in 20 days. These levels were almost equal to those achieved in corresponding slurry-state fermentations (1 to 5% (w/v)) of the same substrate. Specific growth rates were two to four times lower in the solid-state fermentors but this was offset by their greater solids-handling capacity: the rate of protein production per unit volume of fermentation mixture was comparable to that of the 5% (w/v) slurry and two to three times higher than that of the 1% (w/v) slurry.

  19. IEEE 802.11 Wireless LANs: Performance Analysis and Protocol Refinement

    Directory of Open Access Journals (Sweden)

    Chatzimisios P.

    2005-01-01

    Full Text Available The IEEE 802.11 protocol is emerging as a widely used standard and has become the most mature technology for wireless local area networks (WLANs. In this paper, we focus on the tuning of the IEEE 802.11 protocol parameters taking into consideration, in addition to throughput efficiency, performance metrics such as the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop a packet, and the packet interarrival time. We present an analysis, which has been validated by simulation that is based on a Markov chain model commonly used in the literature. We further study the improvement on these performance metrics by employing suitable protocol parameters according to the specific communication needs of the IEEE 802.11 protocol for both basic access and RTS/CTS access schemes. We show that the use of a higher initial contention window size does not considerably degrade performance in small networks and performs significantly better in any other scenario. Moreover, we conclude that the combination of a lower maximum contention window size and a higher retry limit considerably improves performance. Results indicate that the appropriate adjustment of the protocol parameters enhances performance and improves the services that the IEEE 802.11 protocol provides to various communication applications.

  20. Introduction to IEEE Std. 7-4.3.2 Annex D -- ''Qualification of existing commercial computers''

    International Nuclear Information System (INIS)

    Holmstrom, K.J.

    1995-01-01

    On September 15th of 1993 the IEEE standards board approved IEEE Std. 7-4.3.2-1993, IEEE Standard for Digital Computers in Safety Systems of Nuclear Power Generating Stations. This paper is an introduction to Annex D of this document which concerns the commercial grade dedication of existing computers or new non-1E computers

  1. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    Science.gov (United States)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  2. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    Science.gov (United States)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  3. Solid State Division Progress Report for period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  4. Photonic circuits for iterative decoding of a class of low-density parity-check codes

    International Nuclear Information System (INIS)

    Pavlichin, Dmitri S; Mabuchi, Hideo

    2014-01-01

    Photonic circuits in which stateful components are coupled via guided electromagnetic fields are natural candidates for resource-efficient implementation of iterative stochastic algorithms based on propagation of information around a graph. Conversely, such message=passing algorithms suggest novel circuit architectures for signal processing and computation that are well matched to nanophotonic device physics. Here, we construct and analyze a quantum optical model of a photonic circuit for iterative decoding of a class of low-density parity-check (LDPC) codes called expander codes. Our circuit can be understood as an open quantum system whose autonomous dynamics map straightforwardly onto the subroutines of an LDPC decoding scheme, with several attractive features: it can operate in the ultra-low power regime of photonics in which quantum fluctuations become significant, it is robust to noise and component imperfections, it achieves comparable performance to known iterative algorithms for this class of codes, and it provides an instructive example of how nanophotonic cavity quantum electrodynamic components can enable useful new information technology even if the solid-state qubits on which they are based are heavily dephased and cannot support large-scale entanglement. (paper)

  5. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  6. Assessment of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  7. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  8. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  9. Renormalization methods in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-01-01

    Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).

  10. What would Edison do with solid state lighting?

    Science.gov (United States)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  11. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  12. ''Solid-state fusion'' effects

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1990-01-01

    The ''Solid-State Fusion'' or ''Cold Fusion'' phenomenon, including excess heat generation and the production of nuclear particles, was first reported by Professors Martin Fleischmann and B. Stanley Pons in March 1989. The phenomenon described (the anomalous effects observed when deuterium oxide (heavy water) is electrolysed using a palladium cathode and a platinum anode in the presence of lithium deuteroxide) has many fascinating facets, not least of which is the fact that investigators are unable to produce the effects ''on demand''. Many of the experimental variables which seem to be significant were described and discussed at the ''First Annual Conference on Cold Fusion'' which was held in Salt Lake City, Utah, USA, from 29th to 31st March 1990. The information presented at the conference is summarised here. Some papers addressed the excess heat effects observed, some the nuclear particles, and others the theoretical aspects. These are reviewed. At the end of the conference Fleischmann summarised all the areas where apparent evidence for solid state fusion had been obtained during the past year, namely: excess enthalpy, bursts in enthalpy; tritium, bursts in tritium; neutrons, bursts in neutrons; X-rays, gamma rays and bursts in these. He recommended that emphasis should now be concentrated on confirming reaction products, such as He 4 . New theories were emerging, but one year was too short a time in which to evaluate them fully. (author)

  13. Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits

    Directory of Open Access Journals (Sweden)

    Zhu Lei(Lana

    2006-01-01

    Full Text Available This paper offers a review of simulation methods currently available for the transient and steady-state analysis of nonlinear RF and microwave circuits. The most general method continues to be the time-marching approach used in Spice, but more recent methods based on multiple time dimensions are particularly effective for RF and microwave circuits. We derive nodal formulations for the most widely used multiple time dimension methods. We put special emphasis on methods for the analysis of oscillators based in the warped multitime partial differential equations (WaMPDE approach. Case studies of a Colpitts oscillator and a voltage controlled Clapp-Gouriet oscillator are presented and discussed. The accuracy of the amplitude and phase of these methods is investigated. It is shown that the exploitation of frequency-domain latency reduces the computational effort.

  14. Interim report on the state-of-the-art of solid-state motor controllers. Part 4. Failure-rate and failure-mode data

    International Nuclear Information System (INIS)

    Jaross, R.A.

    1983-09-01

    An assessment of the reliability of solid-state motor controllers for nuclear power plants is made. Available data on failure-rate and failure-mode data for solid-state motor controllers based on industrial operating experience is meager; the data are augmented by data on other solid-state power electronic devices that are shown to have components similar to those found in solid-state motor controllers. In addition to large nonnuclear solid-state adjustable-speed motor drives, the reliability of nuclear plant inverter systems and high-voltage solid-state dc transmission-line converters is assessed. Licensee Event Report analyses from several sources, the open literature, and personal communications are used to determine the realiability of solid-state devices typical of those expected to be used in nuclear power plants in terms of failures per hour

  15. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  16. Isolan - A Fibre Optic Network Conforming To IEEE 802.3 Standards

    Science.gov (United States)

    Roworth, D. A. A.; Howe, N.

    1986-10-01

    The progress of the IEEE 802.3 standard for fibre optic LANs is indicated with reference to both mixed media networks and full fibre networks. For a fibre optic network the most suitable layout is a "snowflake" topology composed of multiport repeaters and active fibre hubs. A range of components is described which enables the realisation of such a topology in conformance with the IEEE 802.3 standard.

  17. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  18. Proceedings of 5. scientific conference on solid state physics. Vol. 2

    International Nuclear Information System (INIS)

    1999-01-01

    The 5. Kazakhstan scientific conference on solid state physics was held on 28-30 October, 1999 in Karaganda. Scientists and researchers from Russian Federation, Kazakhstan, Estonia present various reports on different problems of solid state physics

  19. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  20. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  1. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    Science.gov (United States)

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  2. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  3. 0011-0030.What is IEEE 754 StandardHow to convert real number ...

    Indian Academy of Sciences (India)

    Home; public; Volumes; reso; 021; 01; 0011-0030.What is IEEE 754 StandardHow to convert real number in binary format using IEEE 754 StandardAn.pdf. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News.

  4. 48 CFR 52.223-16 - IEEE 1680 Standard for the Environmental Assessment of Personal Computer Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false IEEE 1680 Standard for the... CONTRACT CLAUSES Text of Provisions and Clauses 52.223-16 IEEE 1680 Standard for the Environmental Assessment of Personal Computer Products. As prescribed in 23.706(b)(1), insert the following clause: IEEE...

  5. A Comprehensive Taxonomy and Analysis of IEEE 802.15.4 Attacks

    Directory of Open Access Journals (Sweden)

    Yasmin M. Amin

    2016-01-01

    Full Text Available The IEEE 802.15.4 standard has been established as the dominant enabling technology for Wireless Sensor Networks (WSNs. With the proliferation of security-sensitive applications involving WSNs, WSN security has become a topic of great significance. In comparison with traditional wired and wireless networks, WSNs possess additional vulnerabilities which present opportunities for attackers to launch novel and more complicated attacks against such networks. For this reason, a thorough investigation of attacks against WSNs is required. This paper provides a single unified survey that dissects all IEEE 802.15.4 PHY and MAC layer attacks known to date. While the majority of existing references investigate the motive and behavior of each attack separately, this survey classifies the attacks according to clear metrics within the paper and addresses the interrelationships and differences between the attacks following their classification. The authors’ opinions and comments regarding the placement of the attacks within the defined classifications are also provided. A comparative analysis between the classified attacks is then performed with respect to a set of defined evaluation criteria. The first half of this paper addresses attacks on the IEEE 802.15.4 PHY layer, whereas the second half of the paper addresses IEEE 802.15.4 MAC layer attacks.

  6. Solid-state fermentation: a continuous process for fungal tannase production.

    Science.gov (United States)

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. Copyright 2004 Wiley Periodicals, Inc.

  7. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks.

    Science.gov (United States)

    Song, Caixia

    2017-12-12

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH) interval and Service Channel (SCH) interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA) mechanism is employed to allow four Access Categories (ACs) within a station with different priorities according to their criticality for the vehicle's safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given.

  8. Improving Energy Efficiency in Idle Listening of IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan

    2016-01-01

    Full Text Available This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs by effectively dealing with idle listening (IL, which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.

  9. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  10. Defending IEEE 802.11-Based Networks Against Denial Of Service Attacks

    National Research Council Canada - National Science Library

    Tan, Boon

    2003-01-01

    ...) attacks targeting its management and media access protocols Computer simulation models have proven to be effective tools in the study of cause and effect in numerous fields This thesis involved the design and implementation of a IEEE 8O2.11-based simulation model using OMNeT++, to investigate the effects of different types of DoS attacks on a IEEE 8O2.11 network, and the effectiveness of corresponding countermeasures.

  11. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  12. Microelectronics: Atoms diffusion in solid state. Part 1

    International Nuclear Information System (INIS)

    Lopez Higuera, J.M.

    1988-01-01

    The fundamentals on which the technology for the diffusion of impurities in solid state is based, is presented. This technology is widely used to produce controlled and localized concentrations of atoms of the mentioned impurities in base solids in order to obtain those characteristics which may lead to the implementation of electronic, optoelectronic and electrooptic devices. (Author)

  13. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  14. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  15. Editorial for IEEE Transactions on Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2007-01-01

    Our IEEE transactions on power electronics has had some very positive progress these past years under the leadership of Dr. Daan van Wyk. Papers have been processed efficiently both in review time and publication time. This success has spread throughout the whole power electronics community which...

  16. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  17. IEEE Std 730 Software Quality Assurance: Supporting CMMI-DEV v1.3, Product and Process Quality Assurance

    Science.gov (United States)

    2011-05-27

    frameworks 4 CMMI-DEV IEEE / ISO / IEC 15288 / 12207 Quality Assurance ©2011 Walz IEEE Life Cycle Processes & Artifacts • Systems Life Cycle Processes...TAG to ISO TC 176 Quality Management • Quality: ASQ, work experience • Software: three books, consulting, work experience • Systems: Telecom & DoD...and IEEE 730 SQA need to align. The P730 IEEE standards working group has expanded the scope of the SQA process standard to align with IS 12207

  18. Augmenting the Energy-Saving Impact of IEEE 802.3az via the Control Plane

    OpenAIRE

    Thaenchaikun , Chakadkit; Jakllari , Gentian; Paillassa , Béatrice

    2015-01-01

    International audience; IEEE 802.3az, the recent standard for Energy Efficient Ethernet, is one of the main contributions of the ICT industry to the global quest for energy efficiency. Energy consumption reduction is accomplished by essentially replacing the continuous IDLE of legacy IEEE 802.3 cards with a Low Power Idle. While this is an important step in the right direction, studies have shown that the energy saving with IEEE 802.3az highly depends on the traffic load and stops for link ut...

  19. Radio Frequency Fingerprinting Techniques Through Preamble Modification in IEEE 802.11B

    Science.gov (United States)

    2014-06-30

    4.2.1 Wald–Wolfowitz Runs Test . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2 Wald–Wolfowitz Application to SXS System . . . . . . . . . . . . 42...Station SXS Signals eXploitation System USB Universal Serial Bus xiv Acronym Definition USRP Universal Software Radio Peripheral WLAN Wireless Local...Electronics Engineers (IEEE) defines standards applicable to the IEEE 802.11 protocol, however the standard does not reach the level of specificity to dictate

  20. Solid-state fermentation - A mini review

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M.; Rinzema, A.; Tramper, J.

    1998-01-01

    The increasing interests in biotechnology for the application of fungi on the one hand, and for cheap agricultural products on the other, can be combined in so-called solid-state fermentation (SSF). SSF resembles a close to natural habitat for filamentous microorganisms and can be applied to

  1. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach

    DEFF Research Database (Denmark)

    Chen, Xiaoshuang; Lin, Jin; Wan, Can

    2016-01-01

    State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...

  2. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  3. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  4. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  5. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  6. 40 CFR 256.02 - Scope of the State solid waste management plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements, Definitions § 256.0...

  7. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  8. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  9. Harmonization of IEEE323 and IEC60780 standards For Environmental Qualificaiton of Electric Equipment

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2009-01-01

    IEEE323 standard has been widely used for the qualification of electric equipment in Asian pacific area while IEC6070 has been mostly used in European area. Since each plant use different standard for environmental qualification, manufacturer has to perform the qualification test twice in accordance with each standard. Problem also can be happened in the plant site when they are going to purchase equipment qualified by different qualification standard which are not used in his plant. The need of harmonization of each standard has been raised several years and it is known that some studies are in progress by IEEE committee. KEPRI has a plan of comparing EQ relative standards of IEEE, IEC and RCC in 2009. In this paper, brief comparing result between IEEE323 and IEC60780 and the proper harmonization method is introduced

  10. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  11. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  12. New solid state opening switches for repetitive pulsed power technology

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, S K; Mesyats, G A; Rukin, S N; Slovikovskii, B G; Turov, A M [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics

    1997-12-31

    In 1991 the authors discovered a semiconductor opening switch (SOS) effect that occurs in p{sup +}-p-n-n{sup +} silicon structures at a current density of up to 60 kA/cm{sup 2}. This effect was used to develop high-power semiconductor opening switches in intermediate inductive storage circuits. The breaking power of the opening switches was as high as 5 GW, the interrupted current being up to 45 kA, reverse voltage up to 1 MV and the current interruption time between 10 and 60 ns. The opening switches were assembled from quantity-produced Russian-made rectifying diodes type SDL with hard recovery characteristic. On the basis of experimental and theoretical investigations of the SOS effect, new SOS diodes were designed and manufactured by the Electrophysical Institute. The paper gives basic parameters of the SOS diodes. The new diodes offer higher values of interrupted current and shorter times of current interruption together with a considerable increase in the energy switching efficiency. The new SOS diodes were used to develop repetitive all-solid-state pulsed generators with an output voltage of up to 250 kV, pulse repetition rate up to 5 kHz, and pulse duration between 10 and 30 ns. (author). 2 tabs., 3 figs., 4 refs.

  13. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  14. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  15. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  16. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  17. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2003-05-01

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  18. Excited state populations and charge-exchange of fast ions in solids

    International Nuclear Information System (INIS)

    Miller, P.D.; Sofield, C.J.; Woods, C.J.

    1984-01-01

    Excited state populations and charge state fractions of 445 MeV Cl ions have been measured for a range of thicknesses of solid C targets. Cross sections for electron capture, loss, excitation and excited state quenching have been determined and these data are found to predict a quantitative difference between equilibrium charge state distributions from gases and solids for a special case of the Bohr-Lindhard density effect model. 8 references, 1 figure, 1 table

  19. Solid State pH Sensor Based on Light Emitting Diodes (LED As Detector Platform

    Directory of Open Access Journals (Sweden)

    Dermot Diamond

    2006-08-01

    Full Text Available A low-power, high sensitivity, very low-cost light emitting diode (LED-baseddevice developed for low-cost sensor networks was modified with bromocresol greenmembrane to work as a solid-state pH sensor. In this approach, a reverse-biased LEDfunctioning as a photodiode is coupled with a second LED configured in conventionalemission mode. A simple timer circuit measures how long (in microsecond it takes for thephotocurrent generated on the detector LED to discharge its capacitance from logic 1 ( 5 Vto logic 0 ( 1.7 V. The entire instrument provides an inherently digital output of lightintensity measurements for a few cents. A light dependent resistor (LDR modified withsimilar sensor membrane was also used as a comparison method. Both the LED sensor andthe LDR sensor responded to various pH buffer solutions in a similar way to obtainsigmoidal curves expected of the dye. The pKa value obtained for the sensors was found toagree with the literature value.

  20. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    Science.gov (United States)

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  1. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  2. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  3. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  5. Spectrum Hole Identification in IEEE 802.22 WRAN using Unsupervised Learning

    OpenAIRE

    V. Balaji; S. Anand; C.R. Hota; G. Raghurama

    2016-01-01

    In this paper we present a Cooperative Spectrum Sensing (CSS) algorithm for Cognitive Radios (CR) based on IEEE 802.22Wireless Regional Area Network (WRAN) standard. The core objective is to improve cooperative sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration) to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22) within a time constraint (channel sensing time). To meet this objectiv...

  6. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  7. A formal analysis of ISO/IEEE P11073-20601 standard of medical device communication

    NARCIS (Netherlands)

    Goga, Nicolae; Costache, Stefania; Moldoveanu, Florica

    2009-01-01

    This article presents the formal work done for the ISO/IEEE P11073-20601 Draft Standard for Health informatics - Personal health device communication - Application profile Optimized exchange protocol. ISO/IEEE 11073 family defines standards for device communication between agents (e.g. blood

  8. Proceedings of the DAE solid state physics symposium. V. 51

    International Nuclear Information System (INIS)

    Bhushan, K.G.; Gupta, S.K.

    2006-01-01

    DAE Solid State Physics Symposium, sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy, is organized annually. The topics covered are phase transitions, soft condensed matter, nano-materials, experimental techniques, instrumentation and solid state devices, superconductivity, magnetism, electronic structure and phonons, semiconductor physics, transport properties, surface - interface and thin films, liquids, glasses and amorphous systems, etc. Papers relevant to INIS are indexed separately

  9. IEEE standard for qualification of class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, was developed to provide guidance for demonstrating and documenting the adequacy of electrical equipment used in all Class 1E and interface systems. This standard, IEEE Std 535-1979, was developed to provide specific methods and type test procedures for lead storage batteries in reference to IEEE Std 323-1974

  10. A versatile electrical penetration design qualified to IEEE Std. 317-1983

    International Nuclear Information System (INIS)

    Lankenau, W.; Wetherill, T.M.

    1994-01-01

    Although worldwide demand for new construction of nuclear power stations has been on a decline, the available opportunities for the design and construction of qualified electrical penetrations continues to offer challenges, requiring a highly versatile design. Versatility is necessary in order to meet unique customer requirements within the constraints of a design basis qualified to IEEE Std. 317-1983. This paper summarizes such a versatile electrical penetration designed, built and tested to IEEE Std. 317-1983. The principal features are described including major materials of construction. Some of the design constraints such as sealing requirements, and conductor density (including numerical example) are discussed. The requirements for qualification testing of the penetration assembly to IEEE Std. 317-1983 are delineated in a general sense, and some typical test ranges for preconditioning, radiation exposure, and LOCA are provided. The paper concludes by describing ways in which this versatile design has been adapted to meet unique customer requirements in a variety of nuclear power plants

  11. Spectrum Hole Identification in IEEE 802.22 WRAN using Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-01-01

    Full Text Available In this paper we present a Cooperative Spectrum Sensing (CSS algorithm for Cognitive Radios (CR based on IEEE 802.22Wireless Regional Area Network (WRAN standard. The core objective is to improve cooperative sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22 within a time constraint (channel sensing time. To meet this objective, we have developed CSS algorithm using unsupervised K-means clustering classification approach. The received energy level of each Secondary User (SU is considered as the parameter for determining channel availability. The performance of proposed algorithm is quantified in terms of detection accuracy, training and classification delay time. Further, the detection accuracy of our proposed scheme meets the requirement of IEEE 802.22 WRAN with the target probability of falsealrm as 0.1. All the simulations are carried out using Matlab tool.

  12. An Extended IEEE 118-Bus Test System With High Renewable Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne; Martinez-Anido, Carlo Brancucci; Hodge, Bri-Mathias

    2018-01-01

    This article describes a new publicly available version of the IEEE 118-bus test system, named NREL-118. The database is based on the transmission representation (buses and lines) of the IEEE 118-bus test system, with a reconfigured generation representation using three regions of the US Western Interconnection from the latest Western Electricity Coordination Council (WECC) 2024 Common Case [1]. Time-synchronous hourly load, wind, and solar time series are provided for over one year (8784 hours). The public database presented and described in this manuscript will allow researchers to model a test power system using detailed transmission, generation, load, wind, and solar data. This database includes key additional features that add to the current IEEE 118-bus test model, such as: the inclusion of 10 generation technologies with different heat rate functions, minimum stable levels and ramping rates, GHG emissions rates, regulation and contingency reserves, and hourly time series data for one full year for load, wind and solar generation.

  13. Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol.

    Science.gov (United States)

    Ullah, Sana; Chen, Min; Kwak, Kyung Sup

    2012-12-01

    The IEEE 802.15.6 is a new communication standard on Wireless Body Area Network (WBAN) that focuses on a variety of medical, Consumer Electronics (CE) and entertainment applications. In this paper, the throughput and delay performance of the IEEE 802.15.6 is presented. Numerical formulas are derived to determine the maximum throughput and minimum delay limits of the IEEE 802.15.6 for an ideal channel with no transmission errors. These limits are derived for different frequency bands and data rates. Our analysis is validated by extensive simulations using a custom C+ + simulator. Based on analytical and simulation results, useful conclusions are derived for network provisioning and packet size optimization for different applications.

  14. IEEE C37.105-1987: IEEE standard for qualifying Class 1E protective relays and auxiliaries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the basic principles, requirements, and methods for qualifying Class 1E protective relays and auxiliaries such as test and control switches, terminal blocks, and indicating lamps for applications in nuclear power generating stations. When properly employed it can be used to demonstrate the design adequacy of such equipment under normal, abnormal, design basis event and post design basis event conditions in accordance with ANSI/IEEE Std 323-1983. When protective relays and auxiliaries are located in areas not subject to harsh environments, environmental qualification is not required. Protective relays and auxiliaries located inside primary containment in a nuclear power generating station present special conditions beyond the scope of this document. The qualification procedure presented is generic in nature. Other methods may be used at the discretion of the qualifier, provided the basic precepts of ANSI/IEEE Std 32301983 are satisfied

  15. Guest editors' introduction : Highlights from IEEE Pacific Visualization

    NARCIS (Netherlands)

    Wijk, van J.J.; North, S.; Shen, H.-W.

    2010-01-01

    This article looks briefly at four articles based on papers from the 2010 IEEE Pacific Visualization Symposium. These articles, which strongly focus on visual design and applications, cover a range of applications in scientific visualization, information visualization, and graph visualization,

  16. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  17. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail: wilfried.kurz@epfl.ch; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)

    2009-02-15

    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  18. Comparison Of Several Methods Of Implementing A Fiber Optic IEEE 802.3 Ethernet

    Science.gov (United States)

    Thompson, Geoffrey O.

    1987-01-01

    Several different methods of implementing a fiber optic version of IEEE 802.3 10BASE LANs have been proposed as a candidate for standardization by IEEE. There have been extensive discussions as to the relative merits and features of the several systems. This paper will discuss the merits of each for this particular application on a comparative basis.

  19. Implementation of DoS attack and mitigation strategies in IEEE 802.11b/g WLAN

    Science.gov (United States)

    Deng, Julia; Meng, Ke; Xiao, Yang; Xu, Roger

    2010-04-01

    IEEE 802.11 wireless Local Area Network (WLAN) becomes very prevalent nowadays. Either as a simple range extender for a home wired Ethernet interface, or as a wireless deployment throughout an enterprise, WLAN provides mobility, convenience, and low cost. However, an IEEE 802.11b/g wireless network uses the frequency of unlicensed 2.4GHz, which makes the network unsafe and more vulnerable than traditional Ethernet networks. As a result, anyone who is familiar with wireless network may initiate a Denial of Service (DoS) attack to influence the common communication of the network or even make it crash. In this paper, we present our studies on the DoS attacks and mitigation strategies for IEEE 802.11b/g WLANs and describe some initial implementations using IEEE 802.11b/g wireless devices.

  20. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  1. IEEE 802154 and ZigBee as enabling technologies for low-power wireless systems with quality-of-service constraints

    CERN Document Server

    Tennina, Stefano; Daidone, Roberta; Alves, Mário; Jurčík, Petr; Severino, Ricardo; Tiloca, Marco; Hauer, Jan-Hinrich; Pereira, Nuno; Dini, Gianluca; Bouroche, Mélanie; Tovar, Eduardo

    2013-01-01

    This book outlines the most important characteristics of IEEE 802.15.4 and ZigBee and how they can be used to engineer Wireless Sensor Network (WSN) systems and applications, with a particular focus on Quality-of-Service (QoS) aspects. It starts by providing a snapshot of the most relevant features of these two protocols, identifying some gaps in the standard specifications. Then it describes several state-of-the-art open-source implementations, models and tools that have been designed by the authors and have been widely used by the international community. The book also outlines the fundamental performance limits of IEEE 802.15.4/ZigBee networks, based on well-sustained analytical, simulation and experimental models, including how to dimension such networks to optimize delay/energy trade-offs.

  2. Introduction to solid state physics

    International Nuclear Information System (INIS)

    Hofmann, Philip

    2013-01-01

    A compact introduction to solid-state physics for students of physics, material,and engineering sciences - ideal for a one- to two-semestral course. In easily understable form the author introduces to phenomena and concepts. Thereby he avoids expensive mathematical derivations and refers to outgoing literature. The successful didactical preparation makes an easy access to the theme possible. Numerous illustrations clarify the connections and make the explained well understandable. With about 170 questions and exercise problems.

  3. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    Science.gov (United States)

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  4. Gate errors in solid-state quantum-computer architectures

    International Nuclear Information System (INIS)

    Hu Xuedong; Das Sarma, S.

    2002-01-01

    We theoretically consider possible errors in solid-state quantum computation due to the interplay of the complex solid-state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper-pair-box superconducting quantum computation. We evaluate quantitatively the nonadiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the nonsudden pulse gate in a Cooper-pair-box-based quantum-computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert-space structure on the quantum-computer operations

  5. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  6. Solid-State Ultracapacitor for Improved Energy Storage

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  7. Evaluation of H.264/AVC over IEEE 802.11p vehicular networks

    Science.gov (United States)

    Rozas-Ramallal, Ismael; Fernández-Caramés, Tiago M.; Dapena, Adriana; García-Naya, José Antonio

    2013-12-01

    The capacity of vehicular networks to offer non-safety services, like infotainment applications or the exchange of multimedia information between vehicles, have attracted a great deal of attention to the field of Intelligent Transport Systems (ITS). In particular, in this article we focus our attention on IEEE 802.11p which defines enhancements to IEEE 802.11 required to support ITS applications. We present an FPGA-based testbed developed to evaluate H.264/AVC (Advanced Video Coding) video transmission over vehicular networks. The testbed covers some of the most common situations in vehicle-to-vehicle and roadside-to-vehicle communications and it is highly flexible, allowing the performance evaluation of different vehicular standard configurations. We also show several experimental results to illustrate the quality obtained when H.264/AVC encoded video is transmitted over IEEE 802.11p networks. The quality is measured considering two important parameters: the percentage of recovered group of pictures and the frame quality. In order to improve performance, we propose to substitute the convolutional channel encoder used in IEEE 802.11p for a low-density parity-check code encoder. In addition, we suggest a simple strategy to decide the optimum number of iterations needed to decode each packet received.

  8. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  9. Tritium contaminated surface monitoring with a solid - state device

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2004-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counters and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  10. Investigations in the field of solid-state polymerization Pt. 37

    International Nuclear Information System (INIS)

    Mahr, L.; Cser, F.; Kovacs, G.; Hardy, Gy.

    1978-01-01

    Chloranil (CA) and bromanil (BA) which have otherwise similar radiation-chemical properties affect the solid state polymerization of acenaphthylene (ACN) in different manner. CA decreases the rate of polymerization proportionally to its concentration and besides, it also decreases the conversion limit and the molecular weight of the product. BA does not influence the reaction up to a conversion of 20%, but soon afterwards the conversion limit of the polymerization is reached. This limit, above 8M% BA content, is independent of the BA concentration. The reason for the different behaviour is that while BA forms an ideal eutectics with ACN, CA forms a solid solution of limited miscibility at the temperature of the experiments. Both pairs of compounds give charge transfer complex in solid state. The charge transfer complex of BA exists merely at the boundary layer of the crystals, but that of CA is within the crystal lattice of ACN as in a solid solvent. In none of the studied cases could be detected the charge transfer complex with its own specific crystal structure. The effect of CA on the solid state polymerization of ACN is discussed on the basis of the results obtained by PPP and CNDO/2 calculations on ACN and CA. (author)

  11. A New All Solid State Approach to Gaseous Pollutant Detection

    Science.gov (United States)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  12. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  13. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  14. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  15. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    Science.gov (United States)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  16. Eutectic and solid-state wafer bonding of silicon with gold

    International Nuclear Information System (INIS)

    Abouie, Maryam; Liu, Qi; Ivey, Douglas G.

    2012-01-01

    Highlights: ► Eutectic and solid-state Au-Si bonding are compared for both a-Si and c-Si samples. ► Exchange of a-Si and Au layer was observed in both types of bonded samples. ► Use of c-Si for bonding resulted in formation of craters at the Au/c-Si interface. ► Solid-state Au-Si bonding produces better bonds in terms of microstructure. - Abstract: The simple Au-Si eutectic, which melts at 363 °C, can be used to bond Si wafers. However, faceted craters can form at the Au/Si interface as a result of anisotropic and non-uniform reaction between Au and crystalline silicon (c-Si). These craters may adversely affect active devices on the wafers. Two possible solutions to this problem were investigated in this study. One solution was to use an amorphous silicon layer (a-Si) that was deposited on the c-Si substrate to bond with the Au. The other solution was to use solid-state bonding instead of eutectic bonding, and the wafers were bonded at a temperature (350 °C) below the Au-Si eutectic temperature. The results showed that the a-Si layer prevented the formation of craters and solid-state bonding not only required a lower bonding temperature than eutectic bonding, but also prevented spill out of the solder resulting in strong bonds with high shear strength in comparison with eutectic bonding. Using amorphous silicon, the maximum shear strength for the solid-state Au-Si bond reached 15.2 MPa, whereas for the eutectic Au-Si bond it was 13.2 MPa.

  17. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  18. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  19. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  20. Enhancing MAC performance of DCF protocol for IEEE 802.11 wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong

    2017-01-01

    The DCF (Distributed Coordination Function) is the basic MAC (Medium Access Control) protocol of IEEE 802.11 wireless LANs and compatible with various IEEE 802.11 PHY extensions. The performance of the DCF degrades exponentially as the number of nodes participating in the DCF transmission procedure increases. To deal with this problem, we propose a simple, however efficient modification of the DCF by which the performance of the DCF is greatly enhanced.

  1. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  2. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grä tzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  3. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    Science.gov (United States)

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  4. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional

  5. Development of a steady-state calculation model for the KALIMER PDRC(Passive Decay Heat Removal Circuit)

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum

    2003-06-01

    A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models

  6. Biomedical learning experiences for middle school girls sponsored by the Kansas State University Student Chapter of the IEEE EMBS.

    Science.gov (United States)

    Gruber, Lucinda; Griffith, Connor; Young, Ethan; Sullivan, Adriann; Schuler, Jeff; Arnold-Christian, Susan; Warren, Steve

    2009-01-01

    Learning experiences for middle school girls are an effective means to steer young women toward secondary engineering curricula that they might not have otherwise considered. Sponsorship of such experiences by a collegiate student group is worthwhile, as it gives the group common purpose and places college students in a position to mentor these young women. This paper addresses learning experiences in different areas of bio-medical engineering offered to middle school girls in November 2008 via a day-long workshop entitled "Engineering The Body." The Kansas State University (KSU) Student Chapter of the IEEE Engineering in Medicine and Biology Society (EMBS) worked with the KSU Women in Engineering and Science Program (WESP) to design and sponsor these experiences, which addressed the areas of joint mechanics, electrocardiograms, membrane transport, computer mouse design, and audio filters for cochlear implants. Fifty five middle-school girls participated in this event, affirming the notion that biomedical engineering appeals to young women and that early education and recruitment efforts have the potential to expand the biomedical engineering talent pool.

  7. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  8. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  9. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  10. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  11. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  12. Solid State Pathways towards Molecular Complexity in Space

    Science.gov (United States)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  13. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  14. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  15. Experimental study on the EMP failure mode of DC solid state relay

    International Nuclear Information System (INIS)

    Sun Beiyun; Chen Xiangyue; Zhai Aibin; Mao Congguang

    2009-01-01

    DC solid state relay is a new type switch device without touch point, and is extensive used by aviation and spaceflight technique. In this paper, the EMP failure modes of solid state relays were obtained by current injection method. (authors)

  16. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  17. Solid state photosensitive devices which employ isolated photosynthetic complexes

    Science.gov (United States)

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  18. LOW-TEMPERATURE EQUATION OF STATE OF SOLID METHANE

    Directory of Open Access Journals (Sweden)

    L. N. Yakub

    2016-02-01

    Full Text Available The theoretical equation of state for solid methane, developed within the framework of perturbation theory, with the crystal consisting of spherical molecules as zero-order approximation, and octupole – octupole interaction of methane molecules as a perturbation, is proposed. Thermodynamic functions are computed on the sublimation line up to the triple point. The contribution of the octupole – octupole interaction to the thermodynamic properties of solid methane is estimated.

  19. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  20. Realization of deterministic quantum teleportation with solid state qubits

    International Nuclear Information System (INIS)

    Andreas Wallfraff

    2014-01-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the dynamics of which are governed by the laws of quantum mechanics. Making use of the strong interaction of photons with superconducting quantum two-level systems realized in these circuits we investigate both fundamental quantum effects of light and applications in quantum information processing. In this talk I will discuss the deterministic teleportation of a quantum state in a macroscopic quantum system. Teleportation may be used for distributing entanglement between distant qubits in a quantum network and for realizing universal and fault-tolerant quantum computation. Previously, we have demonstrated the implementation of a teleportation protocol, up to the single-shot measurement step, with three superconducting qubits coupled to a single microwave resonator. Using full quantum state tomography and calculating the projection of the measured density matrix onto the basis of two qubits has allowed us to reconstruct the teleported state with an average output state fidelity of 86%. Now we have realized a new device in which four qubits are coupled pair-wise to three resonators. Making use of parametric amplifiers coupled to the output of two of the resonators we are able to perform high-fidelity single-shot read-out. This has allowed us to demonstrate teleportation by individually post-selecting on any Bell-state and by deterministically distinguishing between all four Bell states measured by the sender. In addition, we have recently implemented fast feed-forward to complete the teleportation process. In all instances, we demonstrate that the fidelity of the teleported states are above the threshold imposed by classical physics. The presented experiments are expected to contribute towards realizing quantum communication with microwave photons in the foreseeable future. (author)

  1. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  2. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  3. Solid-state interactions between trimethoprim and parabens

    DEFF Research Database (Denmark)

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    by differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and solid-state C-13-NMR. Interactions between trimethoprim and 4-hydroxybenzoic acid and its ethyl,propyl and butyl esters were not observed. The nature of the trimethoprim and methyl parahydroxybenzoate...

  4. Performance Evaluations for IEEE 802.15.4-based IoT Smart Home Solution

    Directory of Open Access Journals (Sweden)

    Nga Dinh

    2016-09-01

    Full Text Available The Internet of Things (IoT is going to be a market-changing force for a variety of real-time applications such as e-healthcare, home automation, environmental monitoring, and industrial automation. Low power wireless communication protocols offering long lifetime and high reliability such as the IEEE 802.15.4 standard have been a key enabling technology for IoT deployments and are deployed for home automation recently. The issues of the IEEE 802.15.4 networks have moved from theory to real world deployments. The work presented herein intends to demonstrate the use of the IEEE 802.15.4 standard in recent IoT commercial products for smart home applications: the Smart Home Starter Kit. The contributions of the paper are twofold. First, the paper presents how the IEEE 802.15.4 standard is employed in Smart Home Starter Kit. In particular, network topology, network operations, and data transfer mode are investigated. Second, network performance metrics such as end-to-end (E2E delay and frame reception ratio (FRR are evaluated by experiments. In addition, the paper discusses several directions for future improvements of home automation commercial products.

  5. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  6. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  7. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  8. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  9. IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard

  10. Solid State Division progress report for period ending September 30, 1984

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials

  11. Solid State Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  12. IEEE 693 seismic qualification of composites for substation high-voltage equipment

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, A.J. [Precision Measurement Instruments, Los Altos Hills, CA (United States); Kempner, L.Jr. [Bonneville Power Administration, Vancouver, BC (Canada)

    2004-07-01

    Standard 693-1997 of the Institute of Electrical and Electronic Engineers (IEEE) is the recommended practice for seismic design of substations. It represents a significant improvement in the way the power industry seismically qualifies substation high-voltage equipment. This paper described the use of IEEE Standard 693 for hollow-core composite insulators that are used on high-voltage transformers and demonstrated that changes are warranted. The following four failure modes associated with the composite insulator were discussed: bond degradation, bond failure, tube degradation and tube layer delamination. The authors evaluated the IEEE 693 qualification procedure of time history shake-table and static-pull tests and were concerned about acceptance criteria. It was shown that acceptance criteria are not valid for qualifying hollow-core composites and that static-pull tests are needed after the vibration qualification tests are completed. It was suggested that more research is warranted to determine if bonding at the top part of the flange can be eliminated, thereby eliminating bond degradation. The resulting increase in system damping would improve the dynamic response of the unit. 1 ref., 10 figs.

  13. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  14. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø , Lasse Arnt; Saleem, Qasim; Hansen, Michael Ryan

    2016-01-01

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  15. The 1989 progress report: Solid-state Mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1989-01-01

    The 1989 progress report of the laboratory of Solid-state Mechanics of the Polytechnic School (France) is presented. The investigations are focused on the study of strain and failure of solids and structures. The results reported concern the fields of: stability and bifurcation of elastic or inelastic systems, damage and fatigue (resistance improvement, failure risks on pipe systems, crack propagation), the development of a computer code for soil strengthening by using linear inclusions, mechanical behavior of several rocks for the safety of underground works, expert systems. The published papers, the conferences and the Laboratory staff are listed [fr

  16. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    Science.gov (United States)

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  17. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Science.gov (United States)

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  18. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Directory of Open Access Journals (Sweden)

    Klaus Funke

    2013-01-01

    Full Text Available Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals, by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  19. 2011 IEEE Vehicular Networking Conference (VNC): Demo Summaries

    NARCIS (Netherlands)

    Altintas, O.; Chen, W.; Heijenk, Geert; Dressler, F.; Ekici, E.; Kargl, Frank; Shigeno, H.; Dietzel, Stefan

    2011-01-01

    Foreword For the first time in its history, IEEE VNC has included this year’s demonstrations in its program. Demonstrations play an important role to expose the research community to practical aspects of research and to foster cross-fertilization among researchers both in academia and in industry.

  20. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  1. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Pereira, L.C.S.; Navarro, V.C.C.; Navarro, M.V.T.; Macedo, E.M.

    2015-01-01

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  2. IEEE prize awarded to CERN PhD student

    CERN Multimedia

    2006-01-01

    Rafael Ballabriga Suñe (right) receives the Student Paper Award. Rafael Ballabriga Suñe is the recipient of the 2006 Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nuclear and Plasma Sciences Society (NPSS)'s Student Paper Award. Ballabriga's winning paper reported on a prototype chip, which belongs to a new generation of single photon counting hybrid pixel detector readout chips - Medipix3. The NPSS established this award in 2005 to encourage outstanding student contributions and greater student participation as principle or sole authors of papers. The prizes were presented at the IEEE Nuclear Science Symposium held in San Diego on 29 October to 4 November. The prototype chip was designed by Ballabriga based on ideas generated within the CERN Medipix team - part of the PH Microelectronics group. It could be used in various fields in the future, including medical imaging, neutron imaging, electron microscopy, radiation monitoring and other applications in high-energy physics. The novel aspe...

  3. Low latency asynchronous interface circuits

    Science.gov (United States)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  4. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  5. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  6. Planning of Efficient Wireless Access with IEEE 802.16 for Connecting Home Network to the Internet

    Directory of Open Access Journals (Sweden)

    Pichet Ritthisoonthorn

    2010-01-01

    Full Text Available The emergence of IEEE802.16 wireless standard technology (WiMAX has significantly increased the choice to operators for the provisioning of wireless broadband access network. WiMAX is being deployed to compliment with xDSL in underserved or lack of the broadband network area, in both developed and developing countries. Many incumbent operators in developing countries are considering the deployment of WiMAX as part of their broadband access strategy. This paper presents an efficient and simple method for planning of broadband fixed wireless access (BFWA with IEEE802.16 standard to support home connection to Internet. The study formulates the framework for planning both coverage and capacity designs. The relationship between coverage area and access rate from subscriber in each environment area is presented. The study also presents the throughput and channel capacity of IEEE802.16 in different access rates. An extensive analysis is performed and the results are applied to the real case study to demonstrate the practicality of using IEEE 802.16 for connecting home to Internet. Using empirical data and original subscriber traffic from measurement, it is shown that the BFWA with IEEE802.16 standard is a capacity limited system. The capacity of IEEE802.16 is related to different factors including frequency bandwidth, spectrum allocation, estimation of traffic per subscriber, and choice of adaptive modulation from subscriber terminal. The wireless access methods and procedures evolved in this research work and set out in this paper are shown to be well suited for planning BFWA system based on IEEE802.16 which supports broadband home to Internet connections.

  7. Comparison and Analysis of IEEE 344 and IEC 60980 standards for harmonization of seismic qualification of safety-related equipment

    International Nuclear Information System (INIS)

    Lee, Young Ok; Kim, Jong Seog; Seo, Jeong Ho; Kim, Myung Jun

    2011-01-01

    The seismic qualification of safety related equipment in nuclear power plants should demonstrate an equipment's ability to perform its safety function during/or after the time it is subjected to the forces resulting from one SSE. In addition, the equipment must withstand the effects of a number of OBEs, preceding the SSE. IEEE 344 and IEC 60980 present the criteria for establishing procedures demonstrating that the Class 1E equipment can meet its performance requirement during seismic events. Currently, IEEE 344 is used for regulation of nuclear power plant in the United State whereas IEC 60980 is mainly used in Europe. In particular, NPPs of France and China apply with RCC-E and GB that are domestic standards, respectively. Equipment supplier and Utility have difficulties because of different applicable standards. Equipment supplier to export S/R components/equipment to other standard area performs additional seismic qualification. For example, equipment are qualifies according to IEC 60980, RCC-E, GB although they have been qualified in accordance with IEEE 344. Also, utility to attempt power up-rate, life extension of NPP constructed under rules of RCC-E such as Ulchin NPP 1 and 2 has similar difficulties. RCC-E endorses IEC 60980 and GB is almost same as IEC 60980 except minor difference of earthquake environment definition. Therefore this paper surveys the similarities and differences between IEEE 344 and IEC 60980. In addition, this paper considers how the two sets of standards may be used in a complementary fashion to be possible using one or the other standard area

  8. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    International Nuclear Information System (INIS)

    Hoffmann, Elisabeth Christiane Maria

    2013-01-01

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and

  9. Analysis of High Power IGBT Short Circuit Failures

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  10. Spring meeting of the DPG Working Group 'Solid state physics'

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains abstracts of the contributions to the Spring Meeting of the Solid State Physics Section with the topics dielectric solids, thin films, dynamics and statistical physics, semiconductor physics, magnetism, metal physics, surface physics, low temperature physics, vacuum physics and engineering, chemical physics. (MM)

  11. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass.

    Science.gov (United States)

    Lizardi-Jiménez, M A; Hernández-Martínez, R

    2017-05-01

    Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.

  12. Performance Analysis of a Burst Transmission Mechanism Using Microsleep Operation for Green IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Raul Palacios-Trujillo

    2017-07-01

    Full Text Available This paper evaluates the performance of a burst transmission mechanism using microsleep operation to support high energy efficiency in IEEE 802.11 Wireless Local Area Networks (WLANs. This mechanism is an implementation of the IEEE 802.11ac Transmission Opportunity Power Save Mode (TXOP PSM. A device using the TXOP PSM-based mechanism can switch to a low-power sleep state for the time that another device transmits a burst of data frames to a third one. This operation is called microsleep and its feasibility strongly depends on the time and energy consumption that a device incurs in the transitions from and to the sleep state. This paper accounts for the impact of these transitions in the derivation of an analytical model to calculate the energy efficiency of the TXOP PSM-based mechanism under network saturation. Results obtained show that the impact of the transition requirements on the feasibility of microsleep operation can be significant depending on the selected system parameters, although it can be reduced by using burst transmissions. When microsleep operation is feasible, the TXOP PSM-based mechanism can improve the energy efficiency of other legacy mechanisms by up to 424% under high traffic loads.

  13. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    Science.gov (United States)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  14. Method and system for making integrated solid-state fire-sets and detonators

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  15. Performance of the IEEE 802.3 EPON registration scheme under high load

    Science.gov (United States)

    Bhatia, Swapnil P.; Bartos, Radim

    2004-09-01

    The proposed standard for the IEEE 802.3 Ethernet Passive Optical Network includes a random delayed transmission scheme for registration of new nodes. Although the scheme performs well on low loads, our simulation demonstrates the degraded and undesirable performance of the scheme at higher loads. We propose a simple modification to the current scheme that increases its range of operation and is compatible with the IEEE draft standard. We demonstrate the improvement in performance gained without any significant increase in registration delay.

  16. Atomic and solid state physics with the 14UD

    International Nuclear Information System (INIS)

    Newton, C.S.

    1975-02-01

    The use of energetic heavy ions in atomic and solid state physics is discussed. Topics that are discussed include: 1) Properties of excited ions, 2) radiation damage studies by channeling, 3) energy loss of ions and range measurements, 4) oscillating effects in channeling, 5) x-ray production in solids, 6) coherence effects in channeling and 7) formation of united atoms. (author)

  17. A study on the development of an automatic fault diagnosis system for testing NPP digital electronic circuits

    International Nuclear Information System (INIS)

    Kim, Dae Sik

    1993-02-01

    This paper describes a study on the development of an automatic fault diagnosis system for testing digital electronic circuits of nuclear power plants. Compared with the other conventional fault diagnosis systems, the system described in this paper uses Artificial Intelligence technique of model based reasoning and corroboration, which makes fault diagnosis much more efficient. In order to reduce the testing time, an optimal testing set which means a minimal testing set to determine whether or not the circuit is fault-free and to locate the faulty gate was derived. Compared with the testing using an exhaustive testing set, the testing using the optimal testing set makes fault diagnosis much more fast. Since the system diagnoses the circuit boards bases only on input and output signals, it can be further developed for on-line testing. The system was implemented on a microprocessor and was applied for Universal Circuit board testing of the Solid State protection System in nuclear power plants

  18. VARNOST BREZŽIČNIH OMREŽIJ PO STANDARDU IEEE 802.11

    OpenAIRE

    Štumberger, Matej

    2013-01-01

    Diplomska naloga se osredotoča na problem varovanja brezžičnih omrežij, zasnovanih po standardu IEEE 802.11. Opisano je združenje IEEE in njihova specifikacija standardov z oznako 802, prav tako pa so opisani tudi standardi, protokoli in tehnike varovanja in zaščite omrežij, ki delujejo po tej specifikaciji. Predstavljeno je tudi trenutno stanje varnosti brezžičnih omrežij na področju mesta Ptuj, opisani in prikazani pa so tudi različni pristopi za zlorabo brezžičnih omrežij, skupaj s program...

  19. International Conference on Grey Systems and intelligent Services (IEEE GSIS 2009)

    CERN Document Server

    Liu, Sifeng; Advances in Grey Systems Research

    2010-01-01

    This book contains contributions by some of the leading researchers in the area of grey systems theory and applications. All the papers included in this volume are selected from the contributions physically presented at the 2009 IEEE International Conference on Grey Systems and Intelligent Services, November 11 – 12, 2009, Nanjing, Jiangsu, People’s Republic of China. This event was jointly sponsored by IEEE Systems, Man, and Cybernetics Society, Natural Science Foundation of China, and Grey Systems Society of China. Additionally, Nanjing University of Aeronautics and Astronautics also invested heavily in this event with its direct and indirect financial and administrative supports.

  20. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation