WorldWideScience

Sample records for iea-r1 reactor caracterizacao

  1. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  2. Irradiation experience of IPEN fuel at IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose A.; Neto, Adolfo; Durazzo, Michelangelo; Souza, Jose A.B. de; Frajndlich, Roberto

    1998-01-01

    IPEN/CNEN-SP produces, for its IEA-R1 Research Reactor, MTR fuel assemblies based on U 3 O 8 -Al dispersion fuel type. Since 1985 a qualification program on these fuel assemblies has been performed. Average 235 U burnup of 30% and peak burnup of 50% was already achieved by these fuel assemblies. This paper presents some results acquire, by these fuel assemblies, under irradiation at IEA-R1 Research Reactor. (author)

  3. Measurement of β/Λ ratio in IEA-R1 reactor using noise technique

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Kassar, E.

    1986-01-01

    The ratio β/Λ for the IEA-R1 reactor is obtained experimentally through the noise analysis technique. This technique is based on the determination of the power spectral density of the reactor neutron population, with the reactor in a subcritical state driven by a 'white' neutron source. A ratio β/Λ of 43,5 s -1 is estimated from the break frequency of the measured transfer function of the IEA-R1 reactor. (Author) [pt

  4. Electrical system regulations of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2013-01-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  5. IEA-R1 reactor core simulation with RELAP5 code

    International Nuclear Information System (INIS)

    Rocha, Ricardo Takeshi Vieira da; Belchior Junior, Antonio; Andrade, Delvonei Alves de; Sabundjian, Gaiane; Umbehaum, Pedro Ernesto; Torres, Walmir Maximo

    2005-01-01

    This paper presents a preliminary RELAP5 model for the IEA-R1 core. The power distribution is supplied by the neutronic code, CITATION. The main objective is to model the IEA-R1 core and validate the model through the comparison of the results to the ones from COBRA and PARET, which were used in the Final Safety Analysis Report (FSAR) for this plant. Preliminary calculations regarding some simulations are presented. Boundary conditions are simulated through time dependent components. Results obtained are compared to those available for the IEA-R1. This study will be continued considering a model for the whole plant. Important transient and accidents will be analysed in order to verify the Emergency Core Cooling System - ECCS efficiency to hold its function as projected to preserve the integrity of the reactor core and guarantee its cooling. (author)

  6. Measurement of the thermal flux distribution in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Tangari, C.M.; Moreira, J.M.L.; Jerez, R.

    1986-01-01

    The knowledge of the neutron flux distribution in research reactors is important because it gives the power distribution over the core, and it provides better conditions to perform experiments and sample irradiations. The measured neutron flux distribution can also be of interest as a means of comparison for the calculational methods of reactor analysis currently in use at this institute. The thermal neutron flux distribution of the IEA-R1 reactor has been measured with the miniature chamber WL-23292. For carrying out the measurements, it was buit a guide system that permit the insertion of the mini-chamber i between the fuel of the fuel elements. It can be introduced in two diferent positions a fuel element and in each it spans 26 axial positions. With this guide system the thermal neutron flux distribution of the IEA-R1 nuclear reactor can be obtained in a fast and efficient manner. The element measured flux distribution shows clearly the effects of control rods and reflectors in the IEA-R1 reactor. The difficulties encountered during the measurements are mentioned with detail as well as the procedures adopteed to overcome them. (Author) [pt

  7. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  8. NBR ISO 9001 Certification for activities carried out in IEA-R1 reactor

    International Nuclear Information System (INIS)

    Paiva, Rosemeire P.; Salvetti, Tereza C.

    2005-01-01

    Since its inauguration in 1957, the IEA-R1 research reactor has been used mainly for research, development and teaching by scientific community. In the last years, with the increase of the commercial radiopharmaceutical production by Radiopharmacy Center of IPEN, the IEA-R1 reactor was recognized as a service supplier for that center and has received a treatment more commercial from IPEN Management. In 1999 the radiopharmaceutical production obtained the NBR ISO 9002 Certification, since that the IPEN Management considered convenient to invest in the certification of its internal suppliers. In this context, in 2001 the Research Reactor Center (CRPq) began the implantation of a Quality Management System (QMS) based on NBR 9001: 2000 standard, for activities related to the operation and maintenance of the IEA-R1 research reactor and irradiation services. This QMS was structured to incorporate tools already implemented in order to complain the requirements related to nuclear and radiological safe for a nuclear installation established by the regulatory organism. The QMS is supported by a documentation system composed of approximately 150 documents including quality manual, business and action plans, operational procedures and work instruction. Carlos Alberto Vanzolini Foundation (FCAV), an INMETRO certified organism, certified the 'Operation and Maintenance of the IEA-R1 Research Reactor and Irradiation Services' in December 2002. In 2003 and 2004, the QMS was audited by FCAV that determined the maintenance of the certification. This work presents the main steps of the QMS implementation, including the difficulties found and results obtained in the process. (author)

  9. Borated stainless steel storage project to the spent fuel of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Ricci Filho, Walter

    2013-01-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks to the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating circumstances, the storage will have capacity for approximately six years. Whereas the estimated useful life of the IEA-R1 is around twenty years, it will be necessary to increase the storage capacity for the spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. This work objective is the project of high capacity storage for spent fuel elements, using borated stainless steel, to answer the Reactor IEA-R1 demand and the security requirements of the International Atomic Energy Agency. (author)

  10. Borated stainless steel storage project to the spent fuel of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Ricci Filho, Walter, E-mail: acirodri@ipen.br, E-mail: tmfilho@ipen.br, E-mail: wricci@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks to the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating circumstances, the storage will have capacity for approximately six years. Whereas the estimated useful life of the IEA-R1 is around twenty years, it will be necessary to increase the storage capacity for the spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. This work objective is the project of high capacity storage for spent fuel elements, using borated stainless steel, to answer the Reactor IEA-R1 demand and the security requirements of the International Atomic Energy Agency. (author)

  11. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lightwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. The research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology, are presented. (Author) [pt

  12. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W. de.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lighwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. It is also presented the research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology. (Author) [pt

  13. Reliability database of IEA-R1 Brazilian research reactor: Applications to the improvement of installation safety

    International Nuclear Information System (INIS)

    Oliveira, P.S.P.; Tondin, J.B.M.; Martins, M.O.; Yovanovich, M.; Ricci Filho, W.

    2010-01-01

    In this paper the main features of the reliability database being developed at Ipen-Cnen/SP for IEA-R1 reactor are briefly described. Besides that, the process for collection and updating of data regarding operation, failure and maintenance of IEA-R1 reactor components is presented. These activities have been conducted by the reactor personnel under the supervision of specialists in Probabilistic Safety Analysis (PSA). The compilation of data and subsequent calculation are based on the procedures defined during an IAEA Coordinated Research Project which Brazil took part in the period from 2001 to 2004. In addition to component reliability data, the database stores data on accident initiating events and human errors. Furthermore, this work discusses the experience acquired through the development of the reliability database covering aspects like improvements in the reactor records as well as the application of the results to the optimization of operation and maintenance procedures and to the PSA carried out for IEA-R1 reactor. (author)

  14. Commissioning of the new heat exchanger for the research nuclear reactor IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alfredo Jose Alvim de; Cassiano, Douglas Alves; Umbehaun, Pedro Ernesto; Carvalho, Marcos Rodrigues de; Frajndlich, Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: ajcastro@ipen.br; docass@gmail.com.br; umbehaun@ipen.br; carvalho@ipen.br; frajndli@ipen.br

    2008-07-01

    The Research Reactor IEA-R1 placed at IPEN/CNEN-SP is of the swimming pool type, light water moderated and with graphite reflectors, and was build and designed by Babcock and Wilcox Co. Start up operation was in September the 16{sup th}, 1957, being the first criticality for South Hemisphere. Although designed to operate at 5 MW, the IEA-R1 was operated until 2001 with 2 MW and was suitable for use in basic and applied research as well as the production of medical radioisotopes, industry and natural sciences applications. Due to a recent demand increase on radioisotopes in Brazil for medical diagnoses and therapies applications, IPEN /CNEN updated the IEA-R1 power to 5 MW and to work at continuous operation regime. Studies on the Ageing Management for the Research Reactor IEA-R1 were conducted according to IAEA procedures. As result of these studies critical components within the Ageing Management Program were identified. Also were made recommendations on the implementation of test scheduling and standardization procedures to organize data and documents. One of the main results was the need of monitoring the two heat exchangers, the two primary circuit pumps and the data acquisition system. During monitoring procedures, issues were observed on the IEA-R1 operation at 5 MW mainly due to the ageing of the Babcox and Wilcox TCA heat exchanger, and excessive vibrations at high flow rates on CBC's TCB heat exchanger. So, from 2005 on, it was decided to work with 3,5 MW and provide a new IESA heat exchanger with 5 MW capacity, to substitute the TCA heat exchanger. This work presents results on the commissioning of the new heat exchanger and compares against the values calculated in the IESA project. The results show that the IEA-R1 Reactor can be operated more safety and continuously at 5 MW with the new IESA heat exchanger. (author)

  15. Design of a new wet storage rack for spent fuels from IEA-R1 reactor

    International Nuclear Information System (INIS)

    Rodrigues, Antonio C.I.; Madi Filho, Tufic; Siqueira, Paulo T.D.; Ricci Filho, Walter

    2015-01-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks of the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating conditions, the storage will have capacity for about six years. Since the estimated useful life of the IEA-R1 is about another 20 years, it will be necessary to increase the storage capacity of spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. After an extensive literature review of material options given for this type of application we got to Boral® manufactured by 3M due to numerous advantages. This paper presents studies on the analysis of criticality using the computer code MCNP 5, demonstrating the possibility of doubling the storage capacity of current racks to attend the demand of the IEA-R1 reactor while attending the safety requirements the International Atomic Energy Agency. (author)

  16. Design of a new wet storage rack for spent fuels from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Antonio C.I.; Madi Filho, Tufic; Siqueira, Paulo T.D.; Ricci Filho, Walter, E-mail: acirodri@ipen.br, E-mail: tmfilho@ipen.br, E-mail: ptsiquei@ipen.br, E-mail: wricci@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks of the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating conditions, the storage will have capacity for about six years. Since the estimated useful life of the IEA-R1 is about another 20 years, it will be necessary to increase the storage capacity of spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. After an extensive literature review of material options given for this type of application we got to Boral® manufactured by 3M due to numerous advantages. This paper presents studies on the analysis of criticality using the computer code MCNP 5, demonstrating the possibility of doubling the storage capacity of current racks to attend the demand of the IEA-R1 reactor while attending the safety requirements the International Atomic Energy Agency. (author)

  17. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    International Nuclear Information System (INIS)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira

    2015-01-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  18. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira, E-mail: ecfoliveira@hotmail.com, E-mail: lazara.castrillo@upe.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco

    2015-07-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  19. Measurements and calculations of reactivity for the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.; Maiorino, J.R.; Yamaguchi, M.

    1988-01-01

    This work shows a measurement of reactivity parameters, such as integral and diferential control rod worth, local void coefficient, and moderator temperature coefficient for the research reactor IEA-R1. The measured values were compared with those calculated through HAMMER-CITATION codes, having shown good agreement. (author) [pt

  20. Calculation of the main neutron parameters of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Ojima, Mario Katsuhiko

    1977-01-01

    The main neutron parameters of the research reactor IEA-R1 were calculated using computer programs to generate cross sections and criticality calculations. A calculation procedure based on the programs available in the Processing Center Data of IEA was established and centered in the HAMMER and CITATION system. A study was done in order to verify the validity and accuracy of the calculation method comparing the results with experimental data. Some operating parameters of the reactor, namely the distribution of neutron flux, the critical mass, the variation of the reactivity with the burning of fuel, and the dead time of the reactor were determined

  1. IEA-R1 research reactor: operational life extension and considerations regarding future decommissioning

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2009-01-01

    The IEA-R1 reactor is a pool type research reactor moderated and cooled by light water and uses graphite and beryllium reflectors. The reactor is located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), in the city of Sao Paulo, Brazil. It is the oldest research reactor in the southern hemisphere and one of the oldest of this kind in the world. The first criticality of the reactor was obtained on September 16, 1957. Given the fact that Brazil does not have yet a definitive radioactive waste repository and a national policy establishing rules for the spent fuel storage, the institutions which operate the research reactors for more than 50 years in the country have searched internal solutions for continued operation. This paper describes the spent fuel assemblies and radioactive waste management process for the IEA-R1 reactor and the refurbishment and modernization program adopted to extend its lifetime. Some considerations about the future decommissioning of the reactor are also discussed which, in my opinion, might help the operating organization to make decisions about financial, legal and technical aspects of the decommissioning procedures in a time frame of 10-15 years(author)

  2. Aspects of the Iea-R1 research reactor seismic evaluation

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    1996-01-01

    Codes and standards for the seismic evaluation of the research reactor IEA-R1 are presented. An approach to define the design basis earthquake based on the local seismic map and on simplified analysis methods is proposed. The site seismic evaluation indicates that the design earthquake intensity is IV MM. Therefore, according to the used codes and standards, no buildings, systems, and components seismic analysis are required. (author)

  3. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  4. Calculation of neutronic parameters of IEA-R1 reactor and purpose of a new configuration

    International Nuclear Information System (INIS)

    Kosaka, N.; Fanaro, L.C.C.B.; Yamaguchi, M.

    1989-01-01

    The program for reducing the fuel enrichment of the IEA-R1 reactor considers fuel plates containing U308-AL with 19,9% of U-235. The geometry of the new 18 fuel plate fuel elements has been kept the same. This work describes the calculation methods utilized at IPEN-CNEN/SP and some neutronic parameters of the present configuration of IEA-R1 as well as for a new configuration porposed with a new LEU fuel element are shown. (author) [pt

  5. Development of a training simulator to operators of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carvalho, Ricardo Pinto de

    2006-01-01

    This work reports the development of a Simulator for the IEA-R1 Research Reactor. The Simulator was developed with Visual C++ in two stages: construction of the mathematics models and development and configuration of graphics interfaces in a Windows XP executable. A simplified modeling was used for main physics phenomena, using a point kinetics model for the nuclear process and the energy and mass conservation laws in the average channel of the reactor for the thermal hydraulic process. The dynamics differential equations were solved by using finite differences through the 4th order Runge- Kutta method. The reactivity control, reactor cooling, and reactor protection systems were also modeled. The process variables are stored in ASCII files. The Simulator allows navigating by screens of the systems and monitoring tendencies of the operational transients, being an interactive tool for teaching and training of IEA-R1 operators. It also can be used by students, professors, and researchers in teaching activities in reactor and thermal hydraulics theory. The Simulator allows simulations of operations of start up, power maneuver, and shut down. (author)

  6. Core calculations for the upgrading of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Perrotta, Jose A.; Bastos, Jose Luis F.; Yamaguchi, Mitsuo; Umbehaun, Pedro E.

    1998-01-01

    The IEA-R1 Research Reactor is a multipurpose reactor. It has been used for basic and applied research in the nuclear area, training and radioisotopes production since 1957. In 1995, the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) took the decision to modernize and upgrade the power from 2 to 5 MW and increase the operational cycle. This work presents the design requirements and the calculations effectuated to reach this goal. (author)

  7. Upgrading the electrical system of the IEA-R1 reactor to avoid triggering event of accidents

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2015-01-01

    The IEA-R1 research reactor at the Institute of Energy and Nuclear Research (IPEN) is a research reactor open pool type, built and designed by the American firm 'Babcox and Wilcox', having as coolant and moderator demineralized light water and Beryllium and graphite, as reflectors. The power supply system is designed to meet the electricity demand required by the loads of the reactor (Security systems and systems not related to security) in different situations the plant can meet, such as during startup, normal operation at power, shutdown, maintenance, exchange of fuel elements and accident situations. Studies have been done on possible accident initiating events and deterministic techniques were applied to assess the consequences of such incidents. Thus, the methods used to identify and select the accident initiating events, the methods of analysis of accidents, including sequence of events, transient analysis and radiological consequences, have been described. Finally, acceptance criteria of radiological doses are described. Only a brief summary of the item concerning loss of electrical power will be presented. The loss of normal electrical power at the IEA-R1 reactor is very common. In the case of Electric External Power Loss, at the IEA-R1 reactor building, there may be different sequences of events, as described below. When the supply of external energy in the IEA-R1 facility fails, the Electrical Distribution Vital System, consisting of 4 (four) generators type 'UPS', starts operation, immediately and it will continue supplying power to the reactor control table, core cooling system and other security systems. To contribute to security, in the electric power failure, starts to operate the Emergency Cooling System (SRE). SRE has the function of removing residual heat from the core to prevent the melting of fuel elements in the event of loss of refrigerant to the core. Adding to the generators with batteries group system, new auxiliary

  8. Measurements and calculation of reactivity in the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1988-01-01

    Techniques and experimentals procedures utilized in the measurement of some nuclear parameters related to reactivity are presented. Measurements of reactivity coefficients, such as void, temperature and power, and control rod worth were made in the IEA-R1 Research Reactor. The techniques used to perform the measurements were: i) stable period (control rod calibration), ii) inverse kinetics (digital reactivity meter), iii) aluminium slab insertion in the fuel element coolant channels (void reactivity), iv) nuclear reactor core temperature changes by means of the changes in the coolant systems of reactor core (isothermal reactivity coefficient) and v) by making perturbation in the core through the control rod motions (power reactivity coefficient and control rod calibration). By using the computer codes HAMMER, HAMMER-TECHNION and CITATION, the experiments realized in the IEA-R1 reactor were simulated. From this simulation, the theoretical reactivity parameters were estimated and compared with the respective experimental results. Furthermore, in the second fuel load of Angra-1 Nuclear Power Station, the IPEN-CNEN/SP digital reactivity - meter were used in the lower power test with the aim to assess the equipment performance. Among several tests, the reacticity-meter were used in parallel with a Westinghouse analogic reativimeter-meter) to measure the heat additiona point, critical boron concentration, control rod calibration, isothermal and moderator reactivity coefficient. These tests, and the results obtained by the digital reactivity-meter are described. The results were compared with those obtained by Westinghouse analogic reactivity meter, showing excellent agreement. (author) [pt

  9. Experiment on continuous operation of the Brazilian IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Freitas Pintaud, M. de

    1994-01-01

    In order to increase the radioisotope production in the IEA-R1 research reactor at IPEN/CNEN-SP, it has been proposed a change in its operation regime from 8 hours per day and 5 days per week to continuous 48 hours per week. The necessary reactor parameters for this new operation regime were obtained through an experiment in which the reactor was for the first time operated in the new regime. This work presents the principal results from this experiment: xenon reactivity, new shutdown margins, and reactivity loss due to fuel burnup in the new operation regime. (author)

  10. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  11. Digital Systems Implemented at the IPEN Nuclear Research Reactor (IEA-R1): Results and Necessities

    International Nuclear Information System (INIS)

    Nahuel-Cardenas, Jose-Patricio; Madi-Filho, Tufic; Ricci-Filho, Walter; Rodrigues-de-Carvalho, Marcos; Lima-Benevenuti, Erion-de; Gomes-Neto, Jose

    2013-06-01

    (Nuclear and Energy Research Institute) was founded in 1956 with the main purpose of doing research and development in the field of nuclear energy and its applications. It is located at the campus of University of Sao Paulo (USP), in the city of Sao Paulo, in an area of nearly 500, 000 m2. It has over 1.000 employees and 40% of them have qualification at master or doctor level The institute is recognized as a national leader institution in research and development (R and D) in the areas of radiopharmaceuticals, industrial applications of radiation, basic nuclear research, nuclear reactor operation and nuclear applications, materials science and technology, laser technology and applications. Along with the R and D, it has a strong educational activity, having a graduate program in Nuclear Technology, in association with the University of Sao Paulo, ranked as the best university in the country. The Federal Government Evaluation institution CAPES, granted to this course grade 6, considering it a program of Excellence. This program started at 1976 and has awarded 458 Ph.D. degrees and 937 master degrees since them. The actual graduate enrollment is around 400 students. One of major nuclear installation at IPEN is the IEA-R1 research reactor; it is the only Brazilian research reactor with substantial power level suitable for its utilization in researches concerning physics, chemistry, biology and engineering as well as for producing some useful radioisotopes for medical and other applications. IEA-R1 reactor is a swimming pool type reactor moderated and cooled by light water and uses graphite and beryllium as reflectors. The first criticality was achieved on September 16, 1957. The reactor is currently operating at 4.5 MW power level with an operational schedule of continuous 64 hours a week. In 1996 a Modernization Program was started to establish recommendations in order to mitigate equipment and structures ageing effects in the reactor components, detect and evaluate

  12. Low enriched uranium UAl{sub X}-Al targets for the production of Molybdenum-99 in the IEA-R1 and RMB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2011-07-01

    The IEA-R1 reactor of IPEN/CNEN-SP in Brazil is a pool type research reactor cooled and moderated by demineralized water and having Beryllium and Graphite as reflectors. In 1997 the reactor received the operating licensing for 5 MW. A new research reactor is being planned in Brazil to replace the IEA-R1 reactor. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Low enriched uranium (LEU) (<20% {sup 235}U) UAl{sub x} dispersed in Al targets are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed, respectively, to compare the production of {sup 99}Mo for these targets in IEA-R1 reactor and RMB and to determine the temperatures achieved in the UAl{sub x}-Al targets during irradiation. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations was utilized the computer code MTRCR-IEAR1. (author)

  13. Neutron radiography in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Pugliesi, R.; Moraes, A.P.V. de; Yamazaki, I.M.; Freitas Acosta, C. de.

    1988-08-01

    Neutronradiography of several materials have been obtained at the IEA-R1 Nuclear Research Reactor (IPEN-CNEN/SP), by means of two conversion techniques: a) (n, α) at the beam-hole n 0 3 where a collimated thermal neutron beam, exposure area 4 cm x 8cm and flux at the sample 10 5 n/s cm 2 is obtained. The film used was the CN-85 cellulose nitrate coated with lithium tetraborate (conversor). The time irradiation of the film was 15 minutes and in following was eteched during 30 minutes in a NaOH(10%) aqueous solution at a constant temperature of 60 0 C.; b) (n,γ) by using an experimental arrangement installed in the botton of the pool of the reactor. The flux of the collimated neutron beam is 10 5 n/s/cm 2 at the sample and the conversion is made by means of a dysprozium sheet. The film used was Kodak T-5. The irradiation and the transfering time was 2 hours and 20 hours respectively. (author) [pt

  14. Modifications in the operational conditions of the IEA-R1 reactor under continuous 48 hours operation

    International Nuclear Information System (INIS)

    Moreira, Joao Manoel Losada; Frajndlich, Roberto

    1995-01-01

    This work shows the required changes in the IEA-R1 reactor for operation at 2 Mw, 48 hours continuously. The principal technical change regards the operating conditions of the reactor, namely, the required excess reactivity which now will amount to 4800 pcm in order to compensate the Xe poisoning at equilibrium at 2 Mw. (author). 6 refs, 1 fig, 1 tab

  15. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  16. Use of self powered neutron detectors in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Galo Rocha, F. del.

    1989-01-01

    A survey of self-powered neutron detectors, SPND, which are used as part of the in-core instrumentation of nuclear reactors is presented. Measurements with Co and Er SPND's were made in the IEA-R1 reactor for determining the neutron flux distribution and the integral reactor power. Due to the size of the available detectors, the neutron flux distribution could not be obtained with accuracy. The results obtained in the reactor power measurements demonstrate that the SPND have the linearity and the quick response necessary for a reactor power channel. This work also presents a proposed design of a SPND using Pt as wire emissor. This proposed design is based in the experience gained in building two prototypes. The greatest difficulties encountered include materials and technology to perform the delicate weldings. (author)

  17. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo

    2011-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  18. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  19. Application of nondestructive methods for qualification of high density fuels in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Silva, Jose E.R.; Silva, Antonio T.; Domingos, Douglas B.; Terremoto, Luis A.A.

    2011-01-01

    IPEN/CNEN-SP manufactures fuels to be used in its research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil still does not have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds (U 3 O 8 and U 3 Si 2 dispersed in Al matrix) internationally tested and qualified to be used in research reactors, and has attained experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans at IPEN/CNEN-SP to increase the uranium density of the fuels. Ten fuel miniplates (five containing U 3 O 8 -Al and five containing U 3 Si 2 -Al), with densities of 3.2 gU/cm 3 and 4.8 gU/cm 3 respectively, are being irradiated inside an irradiation device placed in a peripheral position of the IEA-R1 core. Non-destructive methods will be used to evaluate irradiation performance of the fuel miniplates after successive cycles of irradiation, by means: monitoring the reactor parameters during operation; periodic underwater visual inspection of fuel miniplates, eventual sipping test for fuel miniplates suspected of leakage and underwater measuring of the miniplate thickness for assessment of the fuel miniplate swelling. (author)

  20. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  1. Summary of IEA-R1 research a reactor licensing related to its power increase from 2 to 10 MW

    International Nuclear Information System (INIS)

    1989-04-01

    This work is a summary of IEA-R1 research reactor licensing related to its power increase from 2 to 10 MW. It reports also safety requirements, fuel elements, and reactor control modifications inherent to power increase. (A.C.A.S.)

  2. Application of nondestructive methods for qualification of high density fuels in the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose E.R.; Silva, Antonio T.; Domingos, Douglas B.; Terremoto, Luis A.A., E-mail: jersilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN/CNEN-SP manufactures fuels to be used in its research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil still does not have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds (U{sub 3}O{sub 8} and U{sub 3}Si{sub 2} dispersed in Al matrix) internationally tested and qualified to be used in research reactors, and has attained experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans at IPEN/CNEN-SP to increase the uranium density of the fuels. Ten fuel miniplates (five containing U{sub 3}O{sub 8}-Al and five containing U{sub 3}Si{sub 2}-Al), with densities of 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3} respectively, are being irradiated inside an irradiation device placed in a peripheral position of the IEA-R1 core. Non-destructive methods will be used to evaluate irradiation performance of the fuel miniplates after successive cycles of irradiation, by means: monitoring the reactor parameters during operation; periodic underwater visual inspection of fuel miniplates, eventual sipping test for fuel miniplates suspected of leakage and underwater measuring of the miniplate thickness for assessment of the fuel miniplate swelling. (author)

  3. Evaluation of the physical protection system of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Vaz, Antonio C.A.; Conti, Thadeu das N.

    2013-01-01

    The '09/11' in New York and the accident at the Fukushima power plant are two events that served as worldwide reference to review some aspects of the Physical Protection System (PPS) in nuclear areas. The nuclear research reactor IEA-R1 has followed this new world order and improved the protection systems that are directly related to detection (CCTV, sensors, alarms, etc), delay (turnstile, gates, barriers, etc) and response (communication systems, response force, etc), for operation against malicious act, seeking always to avoid or minimize any possibility of threat, theft and sabotage. These actions were performed to prevent and to mitigate the consequence on the environment, economy and society from damages caused by natural hazard, as well. This study evaluates the PPS of the IEA-R1 regarding the weaknesses, strengths,and impacts of the changes resulting from the system implanted. The analyses were based on methodology developed by security experts from SANDIA National Laboratories in Texas - U.S.A, allowing the evaluation of the system through probabilistic and hypothetical analysis. (author)

  4. Evaluation of the physical protection system of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Antonio C.A.; Conti, Thadeu das N., E-mail: acavaz@ipen.br, E-mail: tnconti@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The '09/11' in New York and the accident at the Fukushima power plant are two events that served as worldwide reference to review some aspects of the Physical Protection System (PPS) in nuclear areas. The nuclear research reactor IEA-R1 has followed this new world order and improved the protection systems that are directly related to detection (CCTV, sensors, alarms, etc), delay (turnstile, gates, barriers, etc) and response (communication systems, response force, etc), for operation against malicious act, seeking always to avoid or minimize any possibility of threat, theft and sabotage. These actions were performed to prevent and to mitigate the consequence on the environment, economy and society from damages caused by natural hazard, as well. This study evaluates the PPS of the IEA-R1 regarding the weaknesses, strengths,and impacts of the changes resulting from the system implanted. The analyses were based on methodology developed by security experts from SANDIA National Laboratories in Texas - U.S.A, allowing the evaluation of the system through probabilistic and hypothetical analysis. (author)

  5. Device for neutron flux monitoring in IEA-R1 reactor using rhodium self powered neutron detector; Dispositivo de mapeamento de fluxo de neutron atraves do SPN/Rodio no IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Ricci Filho, Walter; Fernando, Alberto de Jesus; Jerez, Rogerio; Tondin, Julio B.M.; Pasqualetto, Hertz [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    The IEA-R1 reactor has undergone a modernization tio increase its operating power to 5 MW, in order to allow a more efficient production of radioisotopes. The objective of this work is to provide the reactor with flux monitoring device using a rhodium self powered neutron detector. Self powered detectors are rugged miniature devices with are increasingly being used for fixed in core reactor monitoring both for safety purposes and flux mapping. The work presents the results obtained with Rhodium-SPND in several irradiation position inside the reactor core. (author)

  6. Application of safety checklist to the analysis of the IEA-R1 reactor water retreatment system

    International Nuclear Information System (INIS)

    Sauer, Maria Eugenia Lago Jacques; Sara Neto, Antonio Jorge; Lima, Toni Carlos Caboclo de; Ribeiro, Maria Alice Morato

    2005-01-01

    In 1999, the management of the IEA-R1 Research Reactor (pool type - 5 MWth), located at IPEN/CNEN-SP, started the evaluation of the Reactor Pool Water Retreatment System to identify operational aspects, which could compromise the operators safety. The purpose was to identify and propose enhancements to the system which would be installed to substitute for the existing one. This process was conducted through a qualitative study of the system in operation. This study was carried out by a team composed of specialists in reactor operation, systems maintenance and radiological protection, and one safety analyst. The study consisted, basically, in local inspections to verify the physical and operational conditions of each equipment / component as well as aspects related to maintenance activities of the system. The process control and the operator procedures associated with the retreatment of the reactor pool water were also reviewed. The methodology adopted to develop the study was based in process hazard analysis technique named Safety Checklist. This paper presents a summary of this study and the main results obtained. Some operational and safety problems identified, the prevention and/or correction means to avoid them, and the recommendations and suggestions that have been implemented to the new design of the IEA-R1 Reactor Water Retreatment System, whose installation was concluded in 2003, are also presented. (author)

  7. Modernization of Safety and Control Instrumentation of the IEA-R1 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, P.V., E-mail: paulov@ien.gov.br [Institute of Nuclear Engineering (IEN), National Nuclear Energy Commission (CNEN), Rio de Janeiro (Brazil)

    2014-08-15

    The research reactor IEA-R1 located in the Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil, obtained its first criticality on 16 September 1957 and since then has served the scientific and medical community in the performance of experiments in applied nuclear physics, as well as the provision of radioisotopes for production of radiopharmaceuticals. The reactor produces radioisotopes {sup 82}Br and {sup 41}Ar for special processes in industrial inspection and {sup 192}Ir and {sup 198}Au as sources of radiation used in brachytherapy, {sup 153}Sm for pain relief in patients with bone metastasis, and calibrated sources of {sup 133}Ba, {sup 137}Cs, {sup 57}Co, {sup 60}Co, {sup 241}Am and {sup 152}Eu used in medical clinics and hospitals practicing nuclear medicine and research laboratories. Services are offered in regular non-destructive testing by neutron radiography, neutron irradiation of silicon for phosphorous doping and other various irradiations with neutrons. The reactor is responsible for producing approximately 70% of radiopharmaceutical {sup 131}I used in Brazil, which saves about US$ 800 000 annually for the country. After more than 50 years of use, most of its equipment and systems have been modernized, and recently the reactor power was increased to 5 MW in order to enhance radioisotope production capability. However, the control room and nuclear instrumentation system used for reactor safety have operated more than 30 years and require constant maintenance. Many equipment and electronic components are obsolete, and replacements are not available in the market. The modernization of the nuclear safety and control instrumentation systems of IEA-R1 is being carried out with consideration for the internationally recognized criteria for safety and reliable reactor operations and the latest developments in nuclear electronic technology. The project for the new reactor instrumentation system specifies three wide range neutron monitoring

  8. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  9. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  10. Feasibility studies of producing 99 Mo by capture in the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Concilio, Roberta; Mendonca, Arlindo Gilson; Maiorino, Jose Rubens

    1998-01-01

    Everyday the production of 99 Mo for 99m Tc generators, becomes more necessary, whose properties are ideal for medical diagnosis. This works presents a description and an analysis of the production of 99 Mo by radioactive capture at 98 Mo using the research reactor IEA-R1 in 5 MW and operating 5 days a week, referring to the use of targets, separation methods, total and specific activity attained and its limitations. (author)

  11. Structural evaluation of IEA-R1 primary system pump nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel, E-mail: gfainer@ipen.br, E-mail: afaloppa@ipen.br, E-mail: calberto@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The IEA-R1 pumps of the primary coolant system may be required to withstand design and operational conditions. IEA-R1 nuclear research reactor is an open pool type reactor operated by IPEN since 1957. The reactor can be operated up to 5MW heating power since it was upgraded in a modernization program conducted by IPEN. The primary coolant system is composed by the piping system, decay tank, two heat pumps and two heat exchangers. In the latest arrangement upgrade of the primary system, conducted in 2014 as part of an aging management program, a partial replacement of the coolant piping and total replacement of piping and pump supports were done. As consequence, reviewed loads in the pump nozzles were obtained demanding a new evaluation of them. The aim of this report is to present the structural evaluation of the pump nozzles, considering the new loads coming from the new piping layout, according to: API 610 code verification, Supplier loads and structural analysis applying finite element method, by using the ANSYS computer program, regarding ASME VIII Div 1 & 2 recommendations. (author)

  12. Structural evaluation of IEA-R1 primary system pump nozzles

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2017-01-01

    The IEA-R1 pumps of the primary coolant system may be required to withstand design and operational conditions. IEA-R1 nuclear research reactor is an open pool type reactor operated by IPEN since 1957. The reactor can be operated up to 5MW heating power since it was upgraded in a modernization program conducted by IPEN. The primary coolant system is composed by the piping system, decay tank, two heat pumps and two heat exchangers. In the latest arrangement upgrade of the primary system, conducted in 2014 as part of an aging management program, a partial replacement of the coolant piping and total replacement of piping and pump supports were done. As consequence, reviewed loads in the pump nozzles were obtained demanding a new evaluation of them. The aim of this report is to present the structural evaluation of the pump nozzles, considering the new loads coming from the new piping layout, according to: API 610 code verification, Supplier loads and structural analysis applying finite element method, by using the ANSYS computer program, regarding ASME VIII Div 1 & 2 recommendations. (author)

  13. Experiment of IEA-R1 reactor core cooling by air convection after pool water loss accident

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias

    2000-01-01

    This paper presents a study of a Emergency Core Cooling to be applied to the IEA-R1 reactor. This system must have the characteristics of passive action, with water spraying over the core, and feeding by gravity from elevated reservoirs. In the evaluation, this system must demonstrate that when the reservoirs are emptied, the core cooling must assure to be fulfilled by air natural convection. This work presents the results of temperature distribution in a test section with plates electrically heated simulation the heat generation conditions on the most heated reactor element

  14. Characterization of the water filters cartridges from the iea-r1 reactor using the Monte Carlo method

    International Nuclear Information System (INIS)

    Costa, Priscila; Potiens Junior, Ademar J.

    2015-01-01

    Filter cartridges are part of the primary water treatment system of the IEA-R1 Research Reactor and, when saturated, they are replaced and become radioactive waste. The IEA-R1 is located at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, Brazil. The primary characterization is the main step of the radioactive waste management in which the physical, chemical and radiological properties are determined. It is a very important step because the information obtained in this moment enables the choice of the appropriate management process and the definition of final disposal options. In this paper, it is presented a non-destructive method for primary characterization, using the Monte Carlo method associated with the gamma spectrometry. Gamma spectrometry allows the identification of radionuclides and their activity values. The detection efficiency is an important parameter, which is related to the photon energy, detector geometry and the matrix of the sample to be analyzed. Due to the difficult to obtain a standard source with the same geometry of the filter cartridge, another technique is necessary to calibrate the detector. The technique described in this paper uses the Monte Carlo method for primary characterization of the IEA-R1 filter cartridges. (author)

  15. Analysis of the IEA-R1 reactor start-up procedures - an application of the HazOp method

    International Nuclear Information System (INIS)

    Sauer, Maria Eugenia Lago Jacques

    2000-01-01

    An analysis of technological catastrophic events that took place in this century shows that human failure and vulnerability of risk management programs are the main causes for the occurrence of accidents. As an example, plants and complex systems where the interface man-machine is close, the frequency of failures tends to be higher. Thus, a comprehensive knowledge of how a specific process can be potentially hazardous is a sine qua non condition to the operators training, as well as to define and implement more efficient plans for loss prevention and risk management. A study of the IEA-R1 research reactor start-up procedures was carried out, based upon the methodology Hazard and Operability Study (HazOp). The analytical and qualitative multidisciplinary HazOp approach provided means to a comprehensive review of the reactor start-up procedures, contributing to improve the understanding of the potential hazards associated to deviations on performing this routine. The present work includes a historical summary and a detailed description of the HazOp technique, as well as case studies in the process industries and the use of expert systems in the application of the method. An analysis of 53 activities of the IEA-R1 reactor start-up procedures was made, resulting in 25 recommendations of changes covering aspects of the project, operation and safety of the reactor. Eleven recommendations have been implemented. (author)

  16. Characterization of cartridge filters from the IEA-R1 Nuclear Reactor

    International Nuclear Information System (INIS)

    2015-01-01

    The management of radioactive waste ensures safety to human health and the environment nowadays and for the future, without overwhelming the upcoming generations. The primary characterization of radioactive waste is one of the main steps in the management of radioactive waste. This step permits to choose the best treatment for the radioactive waste before forwarding it to its final disposal. The aim of the present work is the primary characterization of cartridge filters from the IEA-R1 nuclear reactor utilizing gamma-ray spectrometry, and the method of Monte Carlo for calibration. The IEA-R1 is located in the Nuclear and Energy Research Institute (IPEN - CNEN) in the city of Sao Paulo, Brazil. Cartridge filters are used for purification of the cooling water that is pumped through the core of the pool type nuclear research reactors. Once worn out, these filters are replaced and then become radioactive waste. Determination of the radioactive inventory is of paramount importance in the management of such radioactive waste, and one of the main methods for doing so is the gamma-ray spectrometry, which can identify and quantify high energy photon emitters. The technique chosen for the characterization of radioactive waste in the present work is the gamma-ray spectrometry with High purity Germanium (HPGe) detectors. From the energy identified in the experimental spectrum, three radioisotopes were identified in the cartridge filter: 108m Ag, 110m Ag, 60 Co. For the estimated activity of the filter, the calibration in efficiency was made utilizing the MCNP4C code of the Monte Carlo method. Such method was chosen because there is no standard source available in the same geometry of the cartridge filter, therefore a simulation had to be developed in order to reach a calibration equation, necessary to estimate the activity of the radioactive waste. The results presented an activity value in the order of MBq for all radioisotopes. (authors)

  17. Characterization of cartridge filters from the IEA-R1 Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The management of radioactive waste ensures safety to human health and the environment nowadays and for the future, without overwhelming the upcoming generations. The primary characterization of radioactive waste is one of the main steps in the management of radioactive waste. This step permits to choose the best treatment for the radioactive waste before forwarding it to its final disposal. The aim of the present work is the primary characterization of cartridge filters from the IEA-R1 nuclear reactor utilizing gamma-ray spectrometry, and the method of Monte Carlo for calibration. The IEA-R1 is located in the Nuclear and Energy Research Institute (IPEN - CNEN) in the city of Sao Paulo, Brazil. Cartridge filters are used for purification of the cooling water that is pumped through the core of the pool type nuclear research reactors. Once worn out, these filters are replaced and then become radioactive waste. Determination of the radioactive inventory is of paramount importance in the management of such radioactive waste, and one of the main methods for doing so is the gamma-ray spectrometry, which can identify and quantify high energy photon emitters. The technique chosen for the characterization of radioactive waste in the present work is the gamma-ray spectrometry with High purity Germanium (HPGe) detectors. From the energy identified in the experimental spectrum, three radioisotopes were identified in the cartridge filter: {sup 108m}Ag, {sup 110m}Ag, {sup 60}Co. For the estimated activity of the filter, the calibration in efficiency was made utilizing the MCNP4C code of the Monte Carlo method. Such method was chosen because there is no standard source available in the same geometry of the cartridge filter, therefore a simulation had to be developed in order to reach a calibration equation, necessary to estimate the activity of the radioactive waste. The results presented an activity value in the order of MBq for all radioisotopes. (authors)

  18. Application of safety checklist to the analysis of the IEA-R1 reactor water retreatment system; Utilizacao do checklist de seguranca na analise do sistema de retratamento de agua do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Maria Eugenia Lago Jacques; Sara Neto, Antonio Jorge; Lima, Toni Carlos Caboclo de; Ribeiro, Maria Alice Morato [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: melsauer@ipen.br

    2005-07-01

    In 1999, the management of the IEA-R1 Research Reactor (pool type - 5 MWth), located at IPEN/CNEN-SP, started the evaluation of the Reactor Pool Water Retreatment System to identify operational aspects, which could compromise the operators safety. The purpose was to identify and propose enhancements to the system which would be installed to substitute for the existing one. This process was conducted through a qualitative study of the system in operation. This study was carried out by a team composed of specialists in reactor operation, systems maintenance and radiological protection, and one safety analyst. The study consisted, basically, in local inspections to verify the physical and operational conditions of each equipment / component as well as aspects related to maintenance activities of the system. The process control and the operator procedures associated with the retreatment of the reactor pool water were also reviewed. The methodology adopted to develop the study was based in process hazard analysis technique named Safety Checklist. This paper presents a summary of this study and the main results obtained. Some operational and safety problems identified, the prevention and/or correction means to avoid them, and the recommendations and suggestions that have been implemented to the new design of the IEA-R1 Reactor Water Retreatment System, whose installation was concluded in 2003, are also presented. (author)

  19. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  20. Non destructive burn up determination of IEA-R1 reactor fuel elements by gamma-ray spectrometry using a Ge(Li) detector

    International Nuclear Information System (INIS)

    Madi Filho, T.

    1982-01-01

    A non destructive determination of burn up of low (IEA-14) and high (IEA-80) activity fuel elements used in the IEA-R1 pool reactor was made from the measured distribution of the Cs-137 gamma-ray activity in these elements. For both series of measurements a 73,7 c.c. Ge(Li) detector was used in 'well collimated' geometry. Where as IEA-14, removed from the reactor some 20 years, showed a gamma-ray spectrum essentially due to Cs-137, IEA-80, with a cooling time of 5 years, showed a more complex spectrum due to the greater number of fission products remaining. The S.I out-of-pool assembly was calibrated using Cs-137 and Co-60 point and Ag-110m plane sources. These measurements provided the necessary constants used to calculate fuel burn-up from measured relative activity distributions of fuel elements. Detailed fuel plate transmission measurements made with the Cs-137 source showed the plates to be highly homogeneous. High activity fuel elements were measured in the S.II in-pool assembly in which the detector was locate on the moveable pool bridge and the test element was positioned immediately below the detector 2.17m below the pool surface. Measurements made in the S.II assembly were normalised with respect to the measured activity of the IEA-14 element. The measured burn up of the IEA-14 and IEA-80 elements obtained in this work is 3.22.10 - 3 gms and 24.44gms. These values may be compared with respective values of 2.63.10 - 3 gms and 61.11gms given by 'total reactor energy/flux distribution' calculations. Calculated errors for the U-235 burn up are 7.4% (IEA-14) and 10.1% (IEA-80). A detailed evaluation of the errors associated with both sets of measurements is given. (Author) [pt

  1. Study and project of the new rack with boron for storage of fuel elements burned in the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Silva, Davilson Gomes da

    2017-01-01

    The IEA-R1 research reactor works 40h weekly with 4.5 Mw power. The storage rack for spent fuel elements has less than half of its initial capacity. Under these conditions (current conditions of reactor operation 32h weekly will have 3 spend fuel by year, then, approximately 3 utilization rate Positions/year). Thus, we will have only about six years of capacity for storage. Whereas the desired service life of the IEA-R1 is at least another 20 years, it will be necessary to increase the storage capacity of spent fuel. Hence, it is necessary to double the wet storage capacity (storage in the IEA-R1 reactor's pool). After reviewing the literature about materials available for use in the construction of the new storage rack with absorber of neutrons, the BoralcanTM (manufactured by 3TMhis) was chosen due to its properties. This work presents studies: (a) for the construction of new storages racks with double of the current capacity using the same place of current storages racks and (b) criticality analysis using the MCNP-5 code. Two American Nuclear Data Library were used: ENDF / B-VI and ENDF / B-VII, and the results obtained for each data bases were compared. These analyzes confirm the possibility of doubling the storage capacity of fuel elements burned in the same place occupied by the current storage rack attending to the IEA-R1 reactor needs and attending the safety requirements according to the National Nuclear Energy Commission - CNEN and the International Atomic Energy Agency (IAEA). To calculate the k eff were considered new fuel elements (maximum possible reactivity) used in full charge of the storage rack. With the results obtained in the simulation we can conclude that doubling the amount of racks for spent fuel elements are complied with safety limits established in the IAEA standards and CNEN of criticality (keff < 0.95). (author)

  2. Study and project of the new rack with boron for storage of fuel elements burned in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Silva, Davilson Gomes da, E-mail: acirodri@ipen.br, E-mail: tmfilho@usp.br, E-mail: dgsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The IEA-R1 research reactor works 40h weekly with 4.5 Mw power. The storage rack for spent fuel elements has less than half of its initial capacity. Under these conditions (current conditions of reactor operation 32h weekly will have 3 spend fuel by year, then, approximately 3 utilization rate Positions/year). Thus, we will have only about six years of capacity for storage. Whereas the desired service life of the IEA-R1 is at least another 20 years, it will be necessary to increase the storage capacity of spent fuel. Hence, it is necessary to double the wet storage capacity (storage in the IEA-R1 reactor's pool). After reviewing the literature about materials available for use in the construction of the new storage rack with absorber of neutrons, the BoralcanTM (manufactured by 3TMhis) was chosen due to its properties. This work presents studies: (a) for the construction of new storages racks with double of the current capacity using the same place of current storages racks and (b) criticality analysis using the MCNP-5 code. Two American Nuclear Data Library were used: ENDF / B-VI and ENDF / B-VII, and the results obtained for each data bases were compared. These analyzes confirm the possibility of doubling the storage capacity of fuel elements burned in the same place occupied by the current storage rack attending to the IEA-R1 reactor needs and attending the safety requirements according to the National Nuclear Energy Commission - CNEN and the International Atomic Energy Agency (IAEA). To calculate the k{sub eff} were considered new fuel elements (maximum possible reactivity) used in full charge of the storage rack. With the results obtained in the simulation we can conclude that doubling the amount of racks for spent fuel elements are complied with safety limits established in the IAEA standards and CNEN of criticality (keff < 0.95). (author)

  3. Ageing Management Programme for the IEA-R1 Reactor in São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, L. V. [Institute of Energy and Nuclear Research (IPEN), National Nuclear Energy Commission (CNEN), São Paulo (Brazil)

    2014-08-15

    IEA-R1 is a swimming pool type reactor. It is moderated and cooled by light water and uses graphite and beryllium as reflector elements. First criticality was achieved on 16 September 1957, and the reactor is currently operating at 4.0 MW on a 64 h per week cycle. In 1996, a reactor ageing study was established to determine general deterioration of systems and components such as cooling towers, secondary cooling system, piping, pumps, specimen irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation, and safety system. The basic structure of the reactor from the original design has been maintained, but several improvements and modifications have been made over the years to various components, systems and structures. During the period 1996–2005 the reactor power was increased from 2 MW to 5 MW and the operational cycle from 8 h per day for 5 days a week to 120 h continuous per week, mainly to increase production of {sup 99}Mo. Prior to increasing reactor power, several modifications were made to the reactor system and its components. Simultaneously, a vigorous ageing management, inspection and modernization programme was put in place.

  4. Measurement of thermal, epithermal and fast neutrons fluxes by the activation foil method at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.

    1990-01-01

    The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)

  5. Application of TEMPPC code to the IEA-R1 nuclear reactor core hydrothermal calculations operating at 2 MW for determining the minimal coolant flow

    International Nuclear Information System (INIS)

    Frajndlich, R.; Sousa, J.A. de.

    1985-01-01

    A thermohydraulic study of the IEA-R1 nuclear reactor core on steady-state operating condition and forced convection, is presented. The objective of this calculation is to obtain the minimal flow rate of coolant necessary at the reactor core, limited by the temperature associated to the beginning of nucleate boiling over the fuel plates at a normal operating power (2MW) for a certain inlet coolant temperature. The coolant system safety level is also calculated in this paper, which is divided in three steps: thermohydraulic calculation, without using the uncertainty factors and, after that, considering these factor by two methods: the statistical and the conventional ones. Whichever the method accepted, the results obtained by the program TEMPPC show a great safety margin with respect to the termohydraulic parameters from the IEA-R1 nuclear reactor. (Author) [pt

  6. Application of non-destructive methods for qualification of the U3O8-Al and U3Si2-Al dispersion fuels in the IEA-R1 Reactor

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo Rosa da

    2011-01-01

    IPEN/CNEN-SP manufactures fuels to be used in its nuclear research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil doesn't have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds, internationally tested and qualified to be used in research reactors, and has gotten experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans to increase the uranium density of these fuels. The objective of this thesis work was to study and to propose a set of non-destructive methods to qualify the dispersions fuels U 3 O 8 -Al e U 3 Si 2 -Al with high uranium density produced at IPEN/CNEN-SP. For that, the irradiation resources in the IEA-R1, and the application of non-destructive methods in the reactor pool available in the Institution were considered. The proposal is to specify, manufacture and irradiate fuel mini plates in IEA-R1 at the maximum densities, qualified internationally, and to monitor their general conditions during the period of irradiation, using non-destructive methods in the reactor pool. In addition to the non-destructive visual inspection and sipping methods, already used at the Institution, the infrastructure for dimensional sub-aquatic testing to evaluate the swelling of irradiated fuel mini plates was completed. The analyses of the results will provide means to assess and decide whether or not to continue with the irradiation of mini plates, until the desired burnup for the irradiation tests at IEA-R1 are reached. (author)

  7. Justify of implementation of a hot water layer system in swimming pool research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Gordon, Ana Maria Pinho Leite; Sordi, Gian-Maria A.A.

    2001-01-01

    The IPEN/CNEN-SP has a swimming pool research reactor (IEA-R1m) in operation since 1957 at 2 MW. In 1998, after some modifications, its nominal power increased to 5 MW. Among these modifications some adaptations had to be accomplished in the radiological protection and operational procedure. The present work aim to study the need of implementation of a hot water layer in order to reduce the dose in the workers in the vicinity of the reactor swimming pool. Applying the principles of radioprotection optimization, it was concluded that the decision of the construction of one hot water layer system in the reactor swimming pool, is not necessary. (author)

  8. IEA-R1 primary and secondary coolant piping systems coupled stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A.; Mattar Neto, Miguel

    2013-01-01

    The aim of this work is to perform the stress analysis of a coupled primary and secondary piping system of the IEA-R1 based on tridimensional model, taking into account the as built conditions. The nuclear research reactor IEA-R1 is a pool type reactor projected by Babcox-Willcox, which is operated by IPEN since 1957. The operation to 5 MW power limit was only possible after the conduction of life management and modernization programs in the last two decades. In these programs the components of the coolant systems, which are responsible for the water circulation into the reactor core to remove the heat generated inside it, were almost totally refurbished. The changes in the primary and secondary systems, mainly the replacement of pump and heat-exchanger, implied in piping layout modifications, and, therefore, the stress condition of the piping systems had to be reanalyzed. In this paper the structural stress assessment of the coupled primary and secondary piping systems is presented and the final results are discussed. (author)

  9. How the nuclear safety team conducts emergency exercises at the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Vaz, Antonio C.A.; Silva, Davilson G.; Toyoda, Eduardo Y.; Santia, Paulo S.; Conti, Thadeu N.; Semmler, Renato; Carvalho, Ricardo N.

    2015-01-01

    This work introduces the Diagram of Emergency Exercise Coordination designed by the Nuclear Safety Team for better Emergency Exercise coordination. The Nuclear Safety Team was created with the mission of avoiding, preventing and mitigating the causes and effects of accidents at the IEA-R1. The facility where we conduct our work is located in an area of a huge population, what increases the responsibility of our mission: conducting exercises and training are part of our daily activities. During the Emergency Exercise, accidents ranked 0-4 on INES (International Nuclear Events Scale) are simulated and involve: Police Department, Fire Department, workers, people from the community, and others. In the last exercise held in June 2014, the scenario contemplated a terrorist organization action that infiltrated in a group of students who were visiting the IEA-R1, tried to steal fresh fuel element to fabricate a dirty bomb. Emergency procedures and plans, timeline and metrics of the actions were applied to the Emergency Exercise evaluation. The next exercise will be held in November, with the simulation of the piping of the primary cooling circuit rupture, causing the emptying of the pool and the lack of cooling of the fuel elements in the reactor core: this will be the scenario. The skills acquired and the systems improvement have been very important tools for the reactor operation safety and the Nuclear Safety Team is making technical efforts so that these Emergency Exercises may be applied to other nuclear and radiological facilities. Equally important for the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human factor in the nuclear safety area, a crucial element that is often not considered by those outside the nuclear sector. Surely, the Diagram of Emergency Exercise Coordination application will improve and facilitate the organization, coordination and evaluation tasks. (author)

  10. How the nuclear safety team conducts emergency exercises at the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Antonio C.A.; Silva, Davilson G.; Toyoda, Eduardo Y.; Santia, Paulo S.; Conti, Thadeu N.; Semmler, Renato; Carvalho, Ricardo N., E-mail: acavaz@ipen.br, E-mail: dgsilva@ipen.br, E-mail: eytoyoda@ipen.br, E-mail: psantia@ipen.br, E-mail: tnconti@ipen.br, E-mail: rsemmler@ipen.b, E-mail: rncarval@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work introduces the Diagram of Emergency Exercise Coordination designed by the Nuclear Safety Team for better Emergency Exercise coordination. The Nuclear Safety Team was created with the mission of avoiding, preventing and mitigating the causes and effects of accidents at the IEA-R1. The facility where we conduct our work is located in an area of a huge population, what increases the responsibility of our mission: conducting exercises and training are part of our daily activities. During the Emergency Exercise, accidents ranked 0-4 on INES (International Nuclear Events Scale) are simulated and involve: Police Department, Fire Department, workers, people from the community, and others. In the last exercise held in June 2014, the scenario contemplated a terrorist organization action that infiltrated in a group of students who were visiting the IEA-R1, tried to steal fresh fuel element to fabricate a dirty bomb. Emergency procedures and plans, timeline and metrics of the actions were applied to the Emergency Exercise evaluation. The next exercise will be held in November, with the simulation of the piping of the primary cooling circuit rupture, causing the emptying of the pool and the lack of cooling of the fuel elements in the reactor core: this will be the scenario. The skills acquired and the systems improvement have been very important tools for the reactor operation safety and the Nuclear Safety Team is making technical efforts so that these Emergency Exercises may be applied to other nuclear and radiological facilities. Equally important for the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human factor in the nuclear safety area, a crucial element that is often not considered by those outside the nuclear sector. Surely, the Diagram of Emergency Exercise Coordination application will improve and facilitate the organization, coordination and evaluation tasks. (author)

  11. Hazard and operability study (Haz Op) of the 2 MW IEA-R1 reactor startup procedures

    International Nuclear Information System (INIS)

    Sauer, Maria E.L.J.; Correa, Francisco; Sara Neto, Antonio J.; Costa, Carlos A.R. da; Santos, Cilas C. dos; Cardenas, Jose P.N.; Berretta, Jose R.; Neves Conti, Thadeu das

    1997-01-01

    This work presents the Hazard and Operability Study (Haz Op) applied to startup procedures of the 2 MW IEA-R1 research reactor, at IPEN/CNEN-S P. The Haz Op was developed by reviewing the procedures of the installation startup, in order to identify hazards and/or operational problems caused by deviations in the execution of these routines. This paper summarizes this study. describing some potential problems of relevant importance to safety as well as preventives and/or correctives measures to avoid their occurrence. Besides, an benefits evaluation and the technique limitations is made. (author). 5 refs., 1 tab

  12. Fission track dating method: I. Study of neutron flux uniformity in some irradiation positions of IEA-R1 reactor

    International Nuclear Information System (INIS)

    Osorio, A.M.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R. de

    1993-06-01

    In order to use the fission track dating method the flux gradient was verified within the sample holder, in some irradiation positions of the IEA-R1 reactor at IPEN/CNEN, Sao Paulo. The fission track dating method considers only the thermal neutron fission tracks, to subtract the other contributions sample irradiations with a cadmium cover was performed. The neutron flux cadmium influence was studied. (author)

  13. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Puget, M.A.C.

    1990-11-01

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  14. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  15. Radiation levels in the poll surface of IEA-R1 reactor

    International Nuclear Information System (INIS)

    Pasqualetto, H.

    1978-01-01

    A theoretical model for the calculation of the radioactivity level in the pool surface of the research reactor IEA-RI (INSTITUTO DE ENERGIA ATOMICA, BRAZIL) is developed. The radioactivity is caused by radionuclides (Mainly 24 Na and 27 Mg) produced by nuclear reactions of neutrons with: a) oxygen of the water b); gaseous elements dissolved in water (Ar,N); c) structural materials of the fuel can. Considerations about expected radiation level after eventual increase of reactor power from 2 MW to 10 MW are also presented [pt

  16. Characterization of filters cartridges from the water polishing system of IEA-R1 reactor: radiometric methods

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula G.; Vicente, Roberto

    2015-01-01

    The acceptance of radioactive waste in a repository depends primarily on knowledge of the radioisotopic inventory of the material, according to regulations established by regulatory agencies. The primary characterization is also a fundamental action to determine further steps in the management of the radioactive wastes. The aim of this work is to report the development of non-destructive methods for primary characterization of filters cartridges discarded as radioactive waste. The filters cartridges are used in the water polishing system of the IEA-R1 reactor retaining the particles in suspension in the reactor cooling water. The IEA-R1 is a pool type reactor with a thermal power of 5 MW, moderated and cooled with light water. It is located in the Energy and Nuclear Research Institute (IPEN-CNEN), in São Paulo, Brazil. The cartridge filters become radioactive waste when they are saturated and do not meet the required flow for the proper operation of the water polishing system. The activities of gamma emitters present in the filters are determined using gamma spectrometry, dose rate measurements and the Point Kernel Method to correlate results from both measurements. For the primary characterization, one alternative method is the radiochemical analysis of slices taken from each filter, what presents the disadvantage of higher exposures personnel and contamination risks. Another alternative method is the calibration of the measurement geometry of a gamma spectrometer, which requires the production of a standard filter. Both methods are necessary but can not be used in operational routine of radioactive waste management owing to cost and complexity. The method described can be used to determine routinely the radioactive inventory of these filters and other radioactive wastes, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  17. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  18. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  19. Development of methodology for characterization of cartridge filters from the IEA-R1 using the Monte Carlo method; Desenvolvimento de uma metodologia para caracterizacao do filtro cuno do reator IEA-R1 utilizando o Metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila

    2014-07-01

    The Cuno filter is part of the water processing circuit of the IEA-R1 reactor and, when saturated, it is replaced and becomes a radioactive waste, which must be managed. In this work, the primary characterization of the Cuno filter of the IEA-R1 nuclear reactor at IPEN was carried out using gamma spectrometry associated with the Monte Carlo method. The gamma spectrometry was performed using a hyperpure germanium detector (HPGe). The germanium crystal represents the detection active volume of the HPGe detector, which has a region called dead layer or inactive layer. It has been reported in the literature a difference between the theoretical and experimental values when obtaining the efficiency curve of these detectors. In this study we used the MCNP-4C code to obtain the detector calibration efficiency for the geometry of the Cuno filter, and the influence of the dead layer and the effect of sum in cascade at the HPGe detector were studied. The correction of the dead layer values were made by varying the thickness and the radius of the germanium crystal. The detector has 75.83 cm{sup 3} of active volume of detection, according to information provided by the manufacturer. Nevertheless, the results showed that the actual value of active volume is less than the one specified, where the dead layer represents 16% of the total volume of the crystal. A Cuno filter analysis by gamma spectrometry has enabled identifying energy peaks. Using these peaks, three radionuclides were identified in the filter: {sup 108m}Ag, {sup 110m}Ag and {sup 60}Co. From the calibration efficiency obtained by the Monte Carlo method, the value of activity estimated for these radionuclides is in the order of MBq. (author)

  20. Automation of the computational programs and codes used in the methodology of neutronic and thermohydraulic calculation for the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo de

    2009-01-01

    This work proceeds the elaboration of a computational program for execution of various neutron and thermalhydraulic calculation methodology programs of the IEA-R1-Sao Paulo, Brazil, making the process more practical and safe, besides transforming de output data of each program an automatic process. This reactor is largely used for production of radioisotopes for medical use, material irradiation, personnel training and also for basic research. For that purposes it is necessary to change his core configuration in order to adapt the reactor for different uses. The work will transform various existent programs into subroutines of a principal program, i.e.,a program which call each of the programs automatically when necessary, and create another programs for manipulation the output data and therefore making practical the process

  1. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  2. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  3. Proposal of a synchro panel meter instrument to replace the obsolete Synchro/Resolver reading device used as position indicator of safety rods assembly of the Brazilian IEA-R1 Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Toledo, Fabio de; Brancaccio, Franco; Cardenas, Jose Patricio N.

    2015-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) was founded in 1956 (as Atomic Energy Institute - IEA) as a facility complex, for the research, development and application, in the nuclear technology field. The institute is recognized as a national leader in nuclear research and development (R and D), including the areas of reactor operation, radiopharmaceuticals, industrial and laboratory applications, materials science and laser technologies and applications. IPEN's main facility is the IEA-R1, nuclear research reactor (NRR), today, the only one in Brazil with a power level suitable for applications in physics, chemistry, biology and engineering. Some radioisotopes are also produced in IEA-R1, for medical and other applications. A common problem faced in the IEA-R1 maintenance is instrumentation obsolescence; spare parts are no more available, because of discontinued production, and an updating program is mandatory, aiming at modernization of old-aged I and C systems. In the presented context, an electronic system is here proposed, as a replacement for the reactor safety (shim) rods assembly position indicator, based on an open-source physical computing platform called Arduino, which includes a simple microcontroller board and a software-code development environment. A mathematical algorithm for the synchro-motor signal processing was developed, and the obtained resolution was better than 1.5%. (author)

  4. Proposal of a synchro panel meter instrument to replace the obsolete Synchro/Resolver reading device used as position indicator of safety rods assembly of the Brazilian IEA-R1 Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Fabio de; Brancaccio, Franco; Cardenas, Jose Patricio N., E-mail: fatoledo@ipen.br, E-mail: fbrancac@ipen.br, E-mail: ahiru@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) was founded in 1956 (as Atomic Energy Institute - IEA) as a facility complex, for the research, development and application, in the nuclear technology field. The institute is recognized as a national leader in nuclear research and development (R and D), including the areas of reactor operation, radiopharmaceuticals, industrial and laboratory applications, materials science and laser technologies and applications. IPEN's main facility is the IEA-R1, nuclear research reactor (NRR), today, the only one in Brazil with a power level suitable for applications in physics, chemistry, biology and engineering. Some radioisotopes are also produced in IEA-R1, for medical and other applications. A common problem faced in the IEA-R1 maintenance is instrumentation obsolescence; spare parts are no more available, because of discontinued production, and an updating program is mandatory, aiming at modernization of old-aged I and C systems. In the presented context, an electronic system is here proposed, as a replacement for the reactor safety (shim) rods assembly position indicator, based on an open-source physical computing platform called Arduino, which includes a simple microcontroller board and a software-code development environment. A mathematical algorithm for the synchro-motor signal processing was developed, and the obtained resolution was better than 1.5%. (author)

  5. Real-time neutron radiography at the Iea-R1 m nuclear research reactor

    International Nuclear Information System (INIS)

    Menezes, M.O. de; Pugliesi, R.; Pereira, M.A.S.; Andrade, M.L.G.

    2003-01-01

    A LIXI (Light Intensifier X-ray Image) device has been employed in a real-time neutron radiography system. The LIXI is coupled to a video camera and the real-time images can be observed in a TV monitor, and processed in a computer. In order to get the real-time system operational, the neutron radiography facility installed at the IEA-R1 m nuclear research reactor of the IPEN-CNEN/S P has been optimized. The most important improvements were the neutron/gamma ratio, the effective energy of the neutron beam, decrease of the scattered radiation at the irradiation position, and the additional shielding of the video camera. Several one-frame as well as computer processed images are presented. The overall Modulation Transfer Function for the real-time system was obtained from the resolution parameter p = 0:44 +- 0:04 mm; the system sensitivity, evaluated for a Perspex step wedge, was determined and the average value is 0:70 +- 0:09 mm. (author)

  6. Development of an artificial neural network for nuclear power monitoring and fault detection in the IEA-R1 research reactor at IPEN

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Ting, Daniel Kao Sun; Goncalves, Iraci M.P.

    2005-01-01

    The purpose of this paper is to develop a system to monitor the nuclear power of a reactor using Artificial Neural Networks. The database used in this work was developed using a theoretical model of IEA-R1 Research Reactor. The IEA-R1 is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. To monitor the nuclear power the following variables were chosen: T3 . temperature above the reactor core, T4 . outlet core temperature, FE01 . primary loop flow rate and the nuclear power. The inputs are T3, T4 and FE01 and the output is the nuclear power. It was used several networks using the backpropagation algorithm. The conclusion is that the multiplayer perceptrons networks (MLPs), training by the backpropagation algorithm, can be used to solve this problem. The results obtained with the MLPs networks are satisfactory and the mean square error was in the order of 10 -4 during the network training and in the order of 10 -2 during the network testing. We intend to monitor the other variables of this model using the same methodology, and after this we will use the real database from the system to compare the results obtained with the model. The monitoring of the reactor variables is part of the development of a fault detection and isolation system which is underway and which is, by its turn, part of a comprehensive ageing management program. (author)

  7. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  8. Spatial distribution of the neutron flux in the IEA-R1 reactor core obtained by means of foil activation

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1979-01-01

    A three-dimensional distribution of the neutron flux in IEA-R1 reactor, obtained by activating gold foils, is presented. The foils of diameter 8mm and thickness 0,013mm were mounted on lucite plates and located between the fuel element plates. Foil activities were measured using a 3x3 inches Nal(Tl) scintilation detector calibrated against a 4πβγ coincidence detector. Foil positions were chosen to minimize the errors of measurement; the overall estimated error on the measured flux is 5%. (Author) [pt

  9. Development of a computational program to planning and control of the IEA-R1 reactor maintenance

    International Nuclear Information System (INIS)

    Martins, Mauro Onofre; Madi Filho, Tufic

    2013-01-01

    Maintenance is an essential activity in nuclear reactors. The components of safety systems of an industrial plant should have a low probability of failure, especially if there is a high risk of accidents that may cause environmental damage. In nuclear facilities, the presence of security systems is a technical specification and a requirement for their license and operation. In order to manage the entire information flow from the maintenance of the IEA-R1, a computational program (software) was developed, which not only plans and control all the maintenance, but also updates the documents and records to safeguard the quality, ensuring the safe operation of the reactor. The software has access levels and provides detailed reports of all maintenance planned and implemented, together with an individual history of the equipment during its lifetime in the facility. This work presents all the stages of the software development, description, compatibility, application, advantages and results obtained experimentally. (author)

  10. Considerations about decommissioning of the IEA-R1 research reactor and the future of its installations after shutdown

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2014-01-01

    The IEA-R1 Nuclear Research Reactor, in operation since 1957, in the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), is one of the oldest research reactors in the world. However at some point in time in the future, as example of the other reactors, it will be shutdown definitively. Before that time actually arrives, the operational organization needs to plan the future of its installations and define the final destination of equipment and radioactive as well as non-radioactive material contained inside the installations. These and other questions should be addressed in the so called Preliminary decommissioning plan of the installation, which is the subject of this work. The work initially presents an over view about the theme and defines the general and specific objectives describing, in succession, the directions that the operating organization should consider for the formulation of a decommissioning plan. The present structure of the Brazilian nuclear sector emphasizing principally the norms utilized in the management of radioactive waste is also presented. A description of principle equipment of the IEA-R1 reactor which constitutes its inventory of radioactive and non-radioactive material is given. The work emphasizes the experience of the reactor technicians, acquired during several reforms and modifications of the reactor installations realized during its useful life time. This experience may be of great help for the decommissioning in the future. An experiment using the high resolution gamma spectrometric method and computer calculation using Monte Carlo theory were performed with the objective of obtaining an estimate of the radioactive waste produced from dismantling of the reactor pool walls. The cost of reactor decommissioning for different choices of strategies was determined using the CERREX code. Finally, a discussion about different strategies is presented. On the basis of these discussions it is concluded that the most advantageous

  11. Development of an emergency core cooling system for the converted IEA-R1m research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Tecnologia de Reatores]. E-mail: wmtorres@net.ipen.br; bdbfilho@net.ipen.br; dksting@net.ipen.br

    1998-07-01

    This present work describes the development program carried out in the design and construction of the Emergency Core Cooling System for the IEA-R1m Research Reactor, including the system design, the experiments performed to validate the design, manufacturing, installation and commissioning. The experiments were performed in two phases. In the first phase, the spray flow rate and distribution were measured, using a full scale mock-up of the entire core, to establish the spray header geometry and specifications. In the second phase, a test section was fitted with electrically heated plates to simulate the fuel plates. Temperature measurements were carried out to demonstrate the effectiveness of the system to keep the temperatures below the limiting value. The experimental results were shown to the licensing authorities during the certification process. The main difficulties during the system assembly are also described. (author)

  12. Thermal, thermo-hydraulic and thermo-mechanic analysis for fuel elements of IEA-R1 reactor at 5MW

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Silva Macedo, L.V. da

    1989-01-01

    In connection with the on going conversion of IEA-R1 Research Reactor, operated by IPEN-CNEN/SP, from the use of highly enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel, steady-state thermal and thermo-hydraulic analysis of both existing HEU and proposed LEU cores under 2 MW operating conditions have been carried out. Keeping in mind the possibility of power upgrading, steady-state thermal, thermo-hydraulic and thermomechanical analysis of proposed LEU core under 5 MW operating conditions have also been carried out. The thermal and thermo-hydraulic analysis at 2 MW show that the conversion of the existing HEU core to be proposed LEU core will not change the reactor safety margins. Although the upgrading of the reactor power to 5 MW will result in safety margins lower than in case of 2MW, these will be still sufficient for optimum operation and safe behaviour. The thermomechanical analysis at 5 MW show that the thermal stresses induced in the fuel element will satisfy the design limits for mechanical strenght and elastic stability. (author) [pt

  13. Considerations about decommissioning of the IEA-R1 research reactor and the future of its installations after shutdown; Consideracoes sobre o descomissionamento do reator de pesquisa IEA-R1 e futuro de suas instalacoes apos o seu desligamento

    Energy Technology Data Exchange (ETDEWEB)

    Frajndlich, Roberto

    2014-07-01

    The IEA-R1 Nuclear Research Reactor, in operation since 1957, in the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), is one of the oldest research reactors in the world. However at some point in time in the future, as example of the other reactors, it will be shutdown definitively. Before that time actually arrives, the operational organization needs to plan the future of its installations and define the final destination of equipment and radioactive as well as non-radioactive material contained inside the installations. These and other questions should be addressed in the so called Preliminary decommissioning plan of the installation, which is the subject of this work. The work initially presents an over view about the theme and defines the general and specific objectives describing, in succession, the directions that the operating organization should consider for the formulation of a decommissioning plan. The present structure of the Brazilian nuclear sector emphasizing principally the norms utilized in the management of radioactive waste is also presented. A description of principle equipment of the IEA-R1 reactor which constitutes its inventory of radioactive and non-radioactive material is given. The work emphasizes the experience of the reactor technicians, acquired during several reforms and modifications of the reactor installations realized during its useful life time. This experience may be of great help for the decommissioning in the future. An experiment using the high resolution gamma spectrometric method and computer calculation using Monte Carlo theory were performed with the objective of obtaining an estimate of the radioactive waste produced from dismantling of the reactor pool walls. The cost of reactor decommissioning for different choices of strategies was determined using the CERREX code. Finally, a discussion about different strategies is presented. On the basis of these discussions it is concluded that the most advantageous

  14. FALCAO - a relational database to storaging the variables monitored in the research reactor IEA-R1

    International Nuclear Information System (INIS)

    Gomes Neto, Jose; Andrade, Delvonei Alves de

    2007-01-01

    The objective of this work is to introduce all initial steps for the creation of a relational database, named FALCAO, to support the storaging of the monitored variables in the IEA-R1 research reactor, located in the Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP. As introduction, it is considered the modeling importance of the logic diagram and its direct influence in the integrity of the provided information. It is presented the concepts and steps of normalization and denormalization including the entities and relations involved in the logical model. It is also presented the effects of the model rules in the acquisition, loading and availability of the final information, under the performance concept, since the acquisition process, loads and provides lots of information in small intervals of time. The data logical model, considering the desired performance and the sharing information is also presented. (author)

  15. Calibration of SPND/Rhodium device for mapping the neutron fluence in the IEA-R1 reactor by means of the activation foil method; Calibracao de um dispositivo de mapeamento de fluxo de neutrons - SNPD/Rodio no reator IEA-R1, por meio do metodo de ativacao de folhas

    Energy Technology Data Exchange (ETDEWEB)

    Ricci Filho, Walter; Dias, Mauro S.; Tondin, Julio B.M.; Koskinas, Marina F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    The IEA-R1 reactor has undergone a modernization to increase its operating power to 5 MW, in order to allow a more efficient production of radioisotopes. The objective of this work is to provide the reactor with flux monitoring device using a rhodium Self-Powered Neutron Detector (SPND). The work presents the results obtained with Rhodium-SPND in several irradiation positions inside the reactor core. A calibration procedure has been performed by means of {sup 197} Au activation foils, with and without cadmium cover, in order do measure the thermal and epithermal neutron fluxes. (author)

  16. Method development and validation for simultaneous determination of IEA-R1 reactor’s pool water uranium and silicon content by ICP OES

    Science.gov (United States)

    Ulrich, J. C.; Guilhen, S. N.; Cotrim, M. E. B.; Pires, M. A. F.

    2018-03-01

    IPEN’s research reactor, IEA-R1, an open pool type research reactor moderated and cooled by light water. High quality water is a key factor in preventing the corrosion of the spent fuel stored in the pool. Leaching of radionuclides from the corroded fuel cladding may be prevented by an efficient water treatment and purification system. However, as a safety management policy, IPEN has adopted a water chemistry control which periodically monitors the levels of uranium (U) and silicon (Si) in the pool’s reactor, since IEA-R1 employs U3Si2-Al dispersion fuel. An analytical method was developed and validated for the determination of uranium and silicon by ICP OES. This work describes the validation process, in a context of quality assurance, including the parameters selectivity, linearity, quantification limit, precision and recovery.

  17. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A.

    1998-01-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. Many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their 137 Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the 137 Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A 137 Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment

  18. Project, installation and operational tests of a pneumatic system for the IEA-R1 reactor materials

    International Nuclear Information System (INIS)

    Fernando, Alberto de Jesus; Madi Filho, Tufic

    2009-01-01

    Pneumatic Transfer Systems (PTS) are equipment broadly and world widely used for the transport, movement and transfer of diverse types of materials, objects and cargo between two or more environments, near or distant from each other [1]. Due to their flexibility and quickness, the system application is present in several areas, such as medicine (hospitals and clinic analyses laboratories); industry (automobile, metallurgy, iron-making. chemical, food production) commerce (gasoline stations, cinemas, supermarkets, banks, tolls, on-line commerce, casinos); public service (public institutions, courts). In the nuclear field, the PTS has, also, a vast application, highlighting its use in the radioisotope and radiopharmaceuticals of short half life production, such as 67 Ga, 201 Tl, 18F and 123 I-ultra pure. The development of this work is directed to the application of the Pneumatic Transfer System in transport and transfer of materials that will be irradiated in the IEA-R1 reactor, located in the Institute of Energetic and Nuclear Research, IPEN/CNEN-SP, for application of the Neutron Activation Analysis (NAA). (author)

  19. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T.

    2015-01-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  20. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T., E-mail: bgeraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  1. Development and implementation of a new pneumatic transfer system for materials irradiation at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Fernando, Alberto de Jesus

    2011-01-01

    Pneumatic Transfer Systems (PTS) are classified as mechanical equipment largely operated all over the world for transport of a huge sort of objects, samples and materials located at nearly terminals or even at separated ones. System applicability is often recognized in many activities, such as medicine (hospital settings, clinical analysis labs), industry (steel, automobiles, mining, chemical, food, construction), trading (gas station, movies, supermarkets, banks, e-commerce) and federal agencies (post services, federal courts, public enterprises). In the nuclear settings, PTS shows also a vast array of applications, being a part of radioisotope production, as well as short-lived radiopharmaceuticals, including 67 Ga, 201 Tl, 18 F and 123 I-ultra pure. Besides, PTS are also used at radioactive waste management plants and research institutes that apply neutron activation analysis (NAA). This work was directed toward the design and operation of a new PTS for the IEA-R1 nuclear research reactor settled at Instituto de Pesquisas Energeticas e Nucleares (IPEN) for NAA application. With this aim, it was calculated the charge of reactor core grid plate and sample transport testing. Neutron flux at irradiating position was determined as 3,70 ± 0,26 10 12 n cm -2 s -1 . (author)

  2. Flow distribution experimental study on the emergency core cooling system of the IEA-R1m - IPEN-CNEN/SP - Brazil

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias; Ting, Daniel Kao Sun

    1999-01-01

    This paper presents a brief description of Emergency Core Cooling System designed by the IEA-R1m Reactor and the experimental results of flow distribution over the core. Several parameters were evaluated, such as: relative position of spray header to the reactor core; type and quantity of spray nozzles; spray nozzles position on spray header; and total spray flow. The main conclusions are presented. (author)

  3. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Souza, Gregorio Soares de

    2011-01-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10 B (n, α) 7 Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  4. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C.

    2011-01-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  5. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  6. Development of an artificial neural network for monitoring and diagnosis of sensor fault and detection in the IEA-R1 research reactor at IPEN; Utilizacao de redes neurais artificiais na monitoracao e deteccao de falhas em sensores do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio

    2006-07-01

    The increasing demand on quality in production processes has encouraged the development of several studies on Monitoring and Diagnosis Systems in industrial plant, where the interruption of the production due to some unexpected change can bring risk to the operator's security besides provoking economic losses, increasing the costs to repair some damaged equipment. Because of these two points, the economic losses and the operator's security, it becomes necessary to implement Monitoring and Diagnosis Systems. In this work, a Monitoring and Diagnosis Systems was developed based on the Artificial Neural Networks methodology. This methodology was applied to the IEA-R1 research reactor at IPEN. The development of this system was divided in three stages: the first was dedicated to monitoring, the second to the detection and the third to diagnosis of failures. In the first stage, several Artificial Neural Networks were trained to monitor the temperature variables, nuclear power and dose rate. Two databases were used: one with data generated by a theoretical model and another one with data to a typical week of operation of the IEA-R1 reactor. In the second stage, the neural networks used to monitor the variables was tested with a fault database. The faults were inserted artificially in the sensors signals. As the value of the maximum calibration error for special thermocouples is {+-}0,5 deg C, it had been inserted faults of {+-} 10 C in the sensors for the reading of the variables T3 and T4. In the third stage a Fuzzy System was developed to carry out the faults diagnosis, where were considered three conditions: a normal condition, a fault of {sub 1}0 C , and a fault of + 10 C . This system will indicate which thermocouple is faulty. (author)

  7. Development of an artificial neural network for monitoring and diagnosis of sensor fault and detection in the IEA-R1 research reactor at IPEN

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio

    2007-01-01

    The increasing demand on quality in production processes has encouraged the development of several studies on Monitoring and Diagnosis Systems in industrial plant, where the interruption of the production due to some unexpected change can bring risk to the operator's security besides provoking economic losses, increasing the costs to repair some damaged equipment. Because of these two points, the economic losses and the operator's security, it becomes necessary to implement Monitoring and Diagnosis Systems. In this work a Monitoring and Diagnosis Systems was developed based on the Artificial Neural Networks methodology. This methodology was applied to the IEA-R1 research reactor at IPEN. The development of this system was divided in three stages: the first was dedicated to monitoring, the second to the detection and the third to diagnosis of failures. In the first stage, several Artificial Neural Networks were trained to monitor the temperature variables, nuclear power and dose rate. Two databases were used: one with data generated by a theoretical model and another one with data to a typical week of operation of the IEA-R1 reactor. In the second stage, the neural networks used to monitor the variables were tested with a fault database. The faults were inserted artificially in the sensors signals. As the value of the maximum calibration error for special thermocouples couples is ± 0,5 deg C, it had been inserted faults of ±1 deg C in the sensor for the reading of the variables T3 and T4. In the third stage was developed a Fuzzy System to carry out the faults diagnosis, where were considered three conditions: a normal condition, a fault of -1 deg C , and a fault of +1 deg C . This system will indicate which thermocouple is faulty. (author)

  8. Development of an artificial neural network for monitoring and diagnosis of sensor fault and detection in the IEA-R1 research reactor at IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio [Centro Federal de Educacao Tecnologica de Sao Paulo (CEFET/SP), Guarulhos, SP (Brazil). Unidade Guarulhos]. E-mail: ebueno@cefetsp.br; Ting, Daniel Kao Sun; Goncalves, Iraci M.P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: dksting@ipen.br; martinez@ipen.br

    2007-07-01

    The increasing demand on quality in production processes has encouraged the development of several studies on Monitoring and Diagnosis Systems in industrial plant, where the interruption of the production due to some unexpected change can bring risk to the operator's security besides provoking economic losses, increasing the costs to repair some damaged equipment. Because of these two points, the economic losses and the operator's security, it becomes necessary to implement Monitoring and Diagnosis Systems. In this work a Monitoring and Diagnosis Systems was developed based on the Artificial Neural Networks methodology. This methodology was applied to the IEA-R1 research reactor at IPEN. The development of this system was divided in three stages: the first was dedicated to monitoring, the second to the detection and the third to diagnosis of failures. In the first stage, several Artificial Neural Networks were trained to monitor the temperature variables, nuclear power and dose rate. Two databases were used: one with data generated by a theoretical model and another one with data to a typical week of operation of the IEA-R1 reactor. In the second stage, the neural networks used to monitor the variables were tested with a fault database. The faults were inserted artificially in the sensors signals. As the value of the maximum calibration error for special thermocouples couples is {+-} 0,5 deg C, it had been inserted faults of {+-}1 deg C in the sensor for the reading of the variables T3 and T4. In the third stage was developed a Fuzzy System to carry out the faults diagnosis, where were considered three conditions: a normal condition, a fault of -1 deg C , and a fault of +1 deg C . This system will indicate which thermocouple is faulty. (author)

  9. Development and implementation of a new pneumatic transfer system for materials irradiation at IEA-R1 reactor; Desenvolvimento e implementacao de um novo sistema pneumatico de transferencia para irradiacao de materiais no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Alberto de Jesus

    2011-07-01

    Pneumatic Transfer Systems (PTS) are classified as mechanical equipment largely operated all over the world for transport of a huge sort of objects, samples and materials located at nearly terminals or even at separated ones. System applicability is often recognized in many activities, such as medicine (hospital settings, clinical analysis labs), industry (steel, automobiles, mining, chemical, food, construction), trading (gas station, movies, supermarkets, banks, e-commerce) and federal agencies (post services, federal courts, public enterprises). In the nuclear settings, PTS shows also a vast array of applications, being a part of radioisotope production, as well as short-lived radiopharmaceuticals, including 67 Ga, 201 Tl, 18 F and 123 I-ultra pure. Besides, PTS are also used at radioactive waste management plants and research institutes that apply neutron activation analysis (NAA). This work was directed toward the design and operation of a new PTS for the IEA-R1 nuclear research reactor settled at Instituto de Pesquisas Energeticas e Nucleares (IPEN) for NAA application. With this aim, it was calculated the charge of reactor core grid plate and sample transport testing. Neutron flux at irradiating position was determined as 3,70 {+-} 0,26 10{sup 12} n cm{sup -2} s{sup -1}. (author)

  10. Remote level radiation monitoring system for the brazilian IEA-R1 nuclear research reactor for routine radiation protection procedures and as a support tool in case of radiological emergency

    International Nuclear Information System (INIS)

    Cardenas, Jose P.N.; Romero Filho, Christovam R.; Madi Filho, Tufic

    2008-01-01

    Nuclear facilities must monitoring radiation levels to establish procedures for radiological protection staff involving workers and the public. The Instituto de Pesquisas Energeticas e Nucleares - IPEN has 5 important plants and in case of accident in one of them, the Institute keeps operational an Emergency Response Plan (ERP). This document (ERP) is designed to coordinate all procedures to assure safe and secure conditions for workers, environment and the public. One of this plants is the IEA-R1 reactor, it is the oldest nuclear research reactor (pool type) in Latin America, reached it first criticality in September of 1957. The reactor is used 60 hours/week with continuous operation and with nominal power of 3.5 MW, with technical conditions to operate at 5 MW thermal power. This reactor has a Radiological Emergency Plan that establishes the implementation of rules for workers and people living at the exclusion area in the case of an emergency situation. This paper aims to describe the implementation of a computational system developed for remote radiation monitoring, in a continuous schedule of IEA-R1 nuclear research reactor containment building. Results of this action can be used as a support mean in a radiological emergency. All necessary modules for radiation detection, signals conditioners and processing, data acquisition board, software development and computer specifications are described. The data acquisition system operating in the reactor shows readings concerned to radiation environment such as activity, doses and concentration in real time and displays a periodical data bank (Data Base) of this features allowing through the surveillance of the operation records anytime, leading to studies and analysis of radiation levels. Results of this data acquisition are shown by means of computer graphics screens developed for windows environment using Visual Basic software. (author)

  11. The evolution of doses in the IEA-R1 reactor environment and tendencies based on the current results

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio

    2016-01-01

    The IPEN / CNEN-SP have a Nuclear Research Reactor-NRR named IEA-R1, in operation from 1957. It is an open swimming pool reactor using light water as shielding, moderator and as cooling, the volume of this pool is 273m 3 .Until 1995 the reactor operated daily at a power of 2,0 MW. From June of that year, after a few safety modifications the reactor began operating in continuous way from Monday to Wednesday without shutdown totalizing 64 hours per week and the power was increased to 4,5MW also. Because of these changes, continuous operation and increased power, workers' doses would tend to increase. In the past several studies were conducted seeking ways to reduce the workers' doses. A study was made on the possibility to introduce a shielding at the top of the reactor core with a hot water layer. Studies have shown that a major limitation for operating a reactor at high power comes from the gamma radiation emitted by the sodium-24. Other elements such as magnesium-27, aluminum-28, Argon-51, contribute considerably to the water activity of the pool. The introduction of a hot water layer on the swimming pool would form a layer of surface, stable and free of radioactive elements with a 1.5m to 2m thickness creates a shielding to radiation from radioactive elements dissolved in water. Optimization studies proved that the installation of the hot layer was not necessary for the regime and the current power reactor operation, because other procedures adopted were more effective. From this decision the Radiological Protection Reactor Team, set up a dose assessment program to ensure them remained in low values based on principles established in national and international standards. The purpose of this paper is to analyze the individual doses of OEI (Occupationally Exposed Individual), which will be checked increasing doses resulting from recent changes in reactor operation regime and suggested viable safety and protection options, in the first instance to reducing

  12. Development of an artificial neural network for monitoring and diagnosis of sensor fault and detection in the IEA-R1 research reactor at IPEN

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio

    2006-01-01

    The increasing demand on quality in production processes has encouraged the development of several studies on Monitoring and Diagnosis Systems in industrial plant, where the interruption of the production due to some unexpected change can bring risk to the operator's security besides provoking economic losses, increasing the costs to repair some damaged equipment. Because of these two points, the economic losses and the operator's security, it becomes necessary to implement Monitoring and Diagnosis Systems. In this work, a Monitoring and Diagnosis Systems was developed based on the Artificial Neural Networks methodology. This methodology was applied to the IEA-R1 research reactor at IPEN. The development of this system was divided in three stages: the first was dedicated to monitoring, the second to the detection and the third to diagnosis of failures. In the first stage, several Artificial Neural Networks were trained to monitor the temperature variables, nuclear power and dose rate. Two databases were used: one with data generated by a theoretical model and another one with data to a typical week of operation of the IEA-R1 reactor. In the second stage, the neural networks used to monitor the variables was tested with a fault database. The faults were inserted artificially in the sensors signals. As the value of the maximum calibration error for special thermocouples is ±0,5 deg C, it had been inserted faults of ± 10 C in the sensors for the reading of the variables T3 and T4. In the third stage a Fuzzy System was developed to carry out the faults diagnosis, where were considered three conditions: a normal condition, a fault of 1 0 C , and a fault of + 10 C . This system will indicate which thermocouple is faulty. (author)

  13. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  14. The evolution of doses in the IEA-R1 reactor environment and tendencies based on the current results; Evolucao das doses no ambiente do Reator IEA-R1 e tendencias com base nos resultados atuais

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Eduardo Yoshio

    2016-11-01

    The IPEN / CNEN-SP have a Nuclear Research Reactor-NRR named IEA-R1, in operation from 1957. It is an open swimming pool reactor using light water as shielding, moderator and as cooling, the volume of this pool is 273m{sup 3}.Until 1995 the reactor operated daily at a power of 2,0 MW. From June of that year, after a few safety modifications the reactor began operating in continuous way from Monday to Wednesday without shutdown totalizing 64 hours per week and the power was increased to 4,5MW also. Because of these changes, continuous operation and increased power, workers' doses would tend to increase. In the past several studies were conducted seeking ways to reduce the workers' doses. A study was made on the possibility to introduce a shielding at the top of the reactor core with a hot water layer. Studies have shown that a major limitation for operating a reactor at high power comes from the gamma radiation emitted by the sodium-24. Other elements such as magnesium-27, aluminum-28, Argon-51, contribute considerably to the water activity of the pool. The introduction of a hot water layer on the swimming pool would form a layer of surface, stable and free of radioactive elements with a 1.5m to 2m thickness creates a shielding to radiation from radioactive elements dissolved in water. Optimization studies proved that the installation of the hot layer was not necessary for the regime and the current power reactor operation, because other procedures adopted were more effective. From this decision the Radiological Protection Reactor Team, set up a dose assessment program to ensure them remained in low values based on principles established in national and international standards. The purpose of this paper is to analyze the individual doses of OEI (Occupationally Exposed Individual), which will be checked increasing doses resulting from recent changes in reactor operation regime and suggested viable safety and protection options, in the first instance to

  15. Estimative of core damage frequency in IPEN'S IEA-R1 research reactor due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami; Sabundjian, Gaiane; Cabral, Eduardo Lobo Lustosa

    2009-01-01

    The National Commission of Nuclear Energy (CNEN), which is the Brazilian nuclear regulatory commission, imposes safety and licensing standards in order to ensure that the nuclear power plants operate in a safe way. For licensing a nuclear reactor one of the demands of CNEN is the simulation of some accidents and thermalhydraulic transients considered as design base to verify the integrity of the plant when submitted to adverse conditions. The accidents that must be simulated are those that present large probability to occur or those that can cause more serious consequences. According to the FSAR (Final Safety Analysis Report) the initiating event that can cause the largest damage in the core, of the IEA-R1 research reactor at IPEN-CNEN/SP, is the LOCA (Loss of Coolant Accident). The objective of this paper is estimate the frequency of the IEA-R1 core damage, caused by this initiating event. In this paper we analyze the accident evolution and performance of the systems which should mitigate this event: the Emergency Coolant Core System (ECCS) and the isolated pool system. They will be analyzed by means of the event tree. In this work the reliability of these systems are also quantified using the fault tree. (author)

  16. Optimization of neutronic characteristics of U3Si2 low enrichment fuel elements for a new design of IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.; Maiorino, J.R.; Gouvea, E.A.

    1989-01-01

    This work shows a study of neutronic optimization of U 3 Si 2 -Al low enrichment fuel element. This study has a goal to propose a optimized Core to be used in the research reactor IEA-R1. The external dimensions of the fuel element were maintained as constraints and the loss of reactivity along fuel life-time was defined as 'objective function', and it has been minimized by varying the fuel element dimensions. Cell calculations were made with HAMMER-TECH /3/ Code, for burnups up to 50% of U-235 initial mass. The Computer values of the objective function for several combinations of fuel element dimensions were fitted by a surface using the SAS system /9/, and it has been minimized by a Harwell subroutine /10/. (author) [pt

  17. Implementation of the optimization for the methodology of the neutronic calculation and thermo-hydraulic in IEA-R1 reactor

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo de; Conti, Thadeu das Neves; Fedorenko, Giuliana G.; Castro, Vinicius A.; Maio, Mireia F.; Santos, Thiago Augusto dos

    2011-01-01

    This work objective was to create a manager program that would automate the programs and computer codes in use for neutronic calculation and thermo-hydraulic in IEA-R1 reactor thus making the process for calculation of safety parameters and for configuration change up to 98% faster than that used in the reactor today. This process was tested in combination with the reactor operators and is being implemented by the quality department. The main codes and programs involved in the calculations of configuration change are Leopard, Hammier-Technion, Twodb, Citation and Cobra. Calculations of delayed neutron and criticality coefficients given in the process of safety parameters calculation are given by the Hammer-Technion and Citation in a process that involves about eleven repetitions so that it meets all the necessary conditions (such different temperatures of the moderator and fuel). The results are entirely consistent with the expected and absolutely the same as those given by manual process. Thus the work shows its reliability as well the advantage of saving time, once a process that could take up to four hours was turned in one that takes around five minutes when done in a home computer. Much of this advantage is due to the fact that were created subprograms to treat the output of each program used and transform them into the input of the other programs, removing from it the intermediate essential data for this to occur, thus avoiding also a possible human error by handling the various data supplied. (author)

  18. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor; Metodologia para monitoracao e diagnostico de vibracao das bombas moto-operadas do circuito primario de refrigeracao do Reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Benevenuti, Erion de Lima

    2004-07-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  19. Study of human factors and its basic aspects, focusing the operators of IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Martins, Maria da Penha Sanches; Andrade, Delvonei Alves de

    2008-01-01

    Human factors and situational variables, which ca, when modified, interfere in the actions of operators of nuclear installations is studied. This work is focused in the operators of the IEA-R1 research reactor, which is located in the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Brazil. The accidents in Nuclear Plants have shown that the most serious have occurred due to human failure. This work also considers the item 5.5.3 of CNEN-NN-3.01 standard - 'Actions must be taken to reduce, as much as possible, the human failures that can lead to accidents or even other events which can originate inadvertent or unintentional expositions in any individual'. The model named 'Behavioral Analysis' is adopted. Relevant factors and aspects of the operators' routine are also considered. It is worth to remind that the performance depends on a series of variables, not only on the individual, but also situational, including in these categories; physical variables, work environment, organizational and the social ones. The subjective factors are also considered, such as: attitude, ability, motivation etc., aiming at a global perspective of the situation, which counts on a set of principles for the behaviour analysis and comprehension. After defining the applicability scenario, mechanisms and corrective actions to contribute with the reduction of failures will be proposed. (author)

  20. Study of human factors and its basic aspects, focusing the operators of IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Martins, Maria da Penha Sanches; Andrade, Delvonei Alves de

    2007-01-01

    The objective of this work is the study of human factors and situational variables, which, when modified, can interfere in the work actions of the operators of nuclear installations. This work is focused on the operators of the IEA-R1 research reactor, which is located in the Instituto de Pesquisas Energeticas e Nucleares - IPEN - CNEN/SP. The accidents in Nuclear Plants have shown that the most serious have occurred due to human failure. This work also considers the item 5.5.3 of CNEN-NN-3.01 standard - 'Actions must be taken to reduce, as much as possible, the human failures that may lead to accidents or even other events which may originate inadvertent or unintentional expositions in any individual'. The model named - Behavioral Analysis - is adopted. Relevant factors and aspects of the operators' routine are also considered. It is worth to remind that the performance depends on a series of variables, not only on the individual, but also the situational ones, which include physical, work, environment, organizational and social variables. Subjective factors are also considered, such as: attitude, ability, motivation etc., aiming at a global perspective of the situation, which counts on a set of principles for the behavior analysis and comprehension. After defining the applicability scenario, mechanisms and corrective actions to contribute with the reduction of failures will be proposed. (author)

  1. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  2. Evolution of doses in the IEA-R1/NRR environment and tendencies based on the current results

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Sordi, Gian-Maria; Vaz, Antonio C.A.

    2015-01-01

    The IPEN / CNEN-SP has a Nuclear Research Reactor-NRR named IEA-R1, in operation since 1957. Until 1995 the reactor operated daily at a power of 2,0 MW. From June of that year, after a few safety modifications the reactor began operating in continuous way from Monday to Wednesday without shutdown totaling 64 hours per week, also the power was increased until 4,5MW in 2012. Because of these changes, continuous operation and increased power, workers' doses increased. In the past, several studies were conducted seeking ways to reduce the workers' doses. The purpose of this paper is to analyze the individual doses of OEI (occupationally exposed individual), considering the changes in reactor operation mode and to suggest the viable protection and safety options, in the first instance to reduce the doses in question aimed at the goal of reaching acceptable region, that is, lower or at most equal to 5 mSv / year for the International Commission on Radiological Protection(ICRP). (author)

  3. Design and construction of an irradiation apparatus with controlled atmosphere and temperature for radiation damage evaluation of nuclear materials in the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Lucki, Georgi; Silva, Jose Eduardo Rosa da; Castanheira, Myrthes; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida

    2005-01-01

    A material irradiation apparatus CIMAT (Capsula de Irradiacao de Materiais) with controlled temperature and atmosphere is described. The device was specifically designed to perform experiments inside the core of the IEA-R1 swimming pool reactor and allows fast neutron (E=1 MeV) irradiations of multiple miniature metallic samples at temperature between 100 deg C and 500 deg C, in Argon or Helium atmosphere to inhibit corrosion. The aim of CIMAT is to make a comparative assessment of Radiation Embrittlement (RE) on the AS 508 cl.3 steel, of different origins (ELETROMETAL-Brazil and VITCOVICE-Chekia) used in Pressure Vessels (PV) of PWR, for fluence of 10 exp 19 nvt at 300 C, by means of mechanical post irradiation evaluation. Previous characterization of non-irradiated samples of these materials is presented. In situ electrical and magnetic measurements, at high temperatures, are foreseen to be made with this apparatus. Extensive temperature stability and leak-tightness tests performed in the reactor swimming pool have proven the CIMAT to be intrinsically safe and operational. (author)

  4. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAlx-Al targets for 99Mo production in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-01-01

    Technetium-99m ( 99m Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of 99 Mo per week. Due to the crisis and the shortage of 99 Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce 99 Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for 99 Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl x -Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm 3 . For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of 99 Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the 99 Mo will be five days after the irradiation, we have that the 99 Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'

  5. Uranium hexafluoride reconversion used for dispersion fuel elements fabrication for IEAR-1/SP reactor; Reconversao de hexafluoreto de uranio para a fabricacao de combustiveis na forma de dispersoes para o reator IEA-R1/SP

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, E.F. Urano de; Lainetti, P.E.; Gomes, R.P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1996-07-01

    In this paper are described the main chemical process employed in the Chemical Processes Division of the Fuel Technology Department - IPEN for conversion of enriched UF{sub 6} in ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. These activities have assured the continuity of fuel elements production at IPEN since 1984. The uranium recovery from scraps of the fuel elements production and the purification processes are also described. Those compounds are important intermediate products in the fabrication routine and in development dispersed fuel elements with higher uranium loading for IEA{sub R}1 research reactor power increase program. (author)

  6. Control and instrumentation system of the Zero Power Reactor at IEA, Sao Paulo (Brazil)

    International Nuclear Information System (INIS)

    Peluso, M.A.V.; Matsuda, K.; Hukai, R.

    1974-01-01

    The control and instrumentation system of the Zero Power Reactor at the IEA (Institute of Atomic Energy - Sao Paulo, Brazil) is described. Technical specifications of the main items of equipment are presented in a general way. Information is also given on the connection between the system described and the electrical supply system of the IEA reactor physics laboratory [pt

  7. Development of methodology for characterization of cartridge filters from the IEA-R1 using the Monte Carlo method

    International Nuclear Information System (INIS)

    Costa, Priscila

    2014-01-01

    The Cuno filter is part of the water processing circuit of the IEA-R1 reactor and, when saturated, it is replaced and becomes a radioactive waste, which must be managed. In this work, the primary characterization of the Cuno filter of the IEA-R1 nuclear reactor at IPEN was carried out using gamma spectrometry associated with the Monte Carlo method. The gamma spectrometry was performed using a hyperpure germanium detector (HPGe). The germanium crystal represents the detection active volume of the HPGe detector, which has a region called dead layer or inactive layer. It has been reported in the literature a difference between the theoretical and experimental values when obtaining the efficiency curve of these detectors. In this study we used the MCNP-4C code to obtain the detector calibration efficiency for the geometry of the Cuno filter, and the influence of the dead layer and the effect of sum in cascade at the HPGe detector were studied. The correction of the dead layer values were made by varying the thickness and the radius of the germanium crystal. The detector has 75.83 cm 3 of active volume of detection, according to information provided by the manufacturer. Nevertheless, the results showed that the actual value of active volume is less than the one specified, where the dead layer represents 16% of the total volume of the crystal. A Cuno filter analysis by gamma spectrometry has enabled identifying energy peaks. Using these peaks, three radionuclides were identified in the filter: 108m Ag, 110m Ag and 60 Co. From the calibration efficiency obtained by the Monte Carlo method, the value of activity estimated for these radionuclides is in the order of MBq. (author)

  8. Estimative of core damage frequency in IPEN's IEA-R1 research reactor (PSA level 1) due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami

    2009-01-01

    This work applies the methodology of probabilistic safety assessment level 1 to the research reactor IEA-R1 IPEN-CNEN/SP. Two categories of identified initiating events of accidents in the reactor are studied: loss of flow and loss of primary coolant. Among the initiating events, blockage of flow channel and loss of cooling fluid by major pipe rupture in the primary circuit are chosen for a detailed analysis. The event tree technique is used to analyze the evolution of the accident, including the actuation or the fail of actuation of the safety systems and the reactor damages. Using the fault tree the reliability of the following reactor safety systems is evaluated: reactor shutdown system, isolation of the reactor pool, emergency core cooling system (ECCS) and the electric system. Estimative for the frequency of damage to the reactor core and the probability of failure of the analyzed systems are calculated. The estimated values for the frequencies of core damage are within the expected margins and are of the same order of magnitude as those found for similar reactors. The reliability of the reactor shutdown system, isolation of the reactor pool and ECCS are satisfactory for the conditions these systems are required. However, for the electric system it is suggested an upgrade to increase its reliability. (author)

  9. k{sub 0}-INAA method at the pneumatic station of the IEA-R1 nuclear research reactor. Application to geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Mariano, Davi B.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: davimariano@usp.br, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There is a significant number of analytically important elements, when geological samples are concerned, whose activation products are short-lived (seconds to minutes) or medium-lived radioisotopes (minutes to hours). As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in geological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by The International Atomic Energy Agency (IAEA). The elements Al, Dy, Eu, Na, K, Mn, Mg, Sr, V and Ti were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the -bare triple-monitor- method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0,1% Au alloy, high purity zirconium, Ni and Lu comparators were irradiated. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials basalt BE-N (IWG-GIT), basalt JB- 1 (GSJ), andesite AGV-1 (USGS), granite GS-N (IWG-GIT), SOIL-7 (IAEA) and sediment Buffalo River Sediment (NIST-BRS-8704), which represent different geological matrices. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors less than 10% for most elements. (author)

  10. Criticality analysis of the storage tubes for irradiated fuel elements from the IEA-R1 with the MCNP code

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1992-01-01

    A criticality safety analysis has been carried out for the storage tubes for irradiated fuel elements from the IEA-R1 research reactor. The analysis utilized the MCNP computer code which allows exact simulations of complex geometries. Aiming reducing the amount of input data, the fuel element cross-sections have been spatially smeared out. The earth material interstice between fuel elements has been approximated conservatively as concrete because its composition was unknown. The storage tubes have been found subcritical for the most adverse conditions (water flooding and un-irradiated fuel elements). A similar analysis with the KENO-IV computer code overestimated the KEF result but still confirmed the criticality safety of the storage tubes. (author)

  11. Self-organizing maps of Kohonen (SOM) applied to multidimensional monitoring data of the IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    Affonso, Gustavo S.; Pereira, Iraci M.; Mesquita, Roberto N. de; Bueno, Elaine I.

    2011-01-01

    Multivariate statistics comprise a set of statistical methods used in situations where many variables are database space subsets. Initially applied to human, social and biological sciences, these methods are being applied to many other areas such as education, geology, chemistry, physics, engineering, and many others. This spectra expansion was possible due to recent technological development of computation hardware and software that allows high and complex databases to be treated iteratively enabling further analysis. Following this trend, the neural networks called Self-Organizing Maps are turning into a powerful tool on visualization of implicit and unknown correlations in big sized database sets. Originally created by Kohonen in 1981, it was applied to speech recognition tasks. The SOM is being used as a comparative parameter to evaluate the performance of new multidimensional analysis methodologies. Most of methods require good variable input selection criteria and SOM has contributed to clustering, classification and prediction of multidimensional engineering process variables. This work proposes a method of applying SOM to a set of 58 IEA-R1 operational variables at IPEN research reactor which are monitored by a Data Acquisition System (DAS). This data set includes variables as temperature, flow mass rate, coolant level, nuclear radiation, nuclear power and control bars position. DAS enables the creation and storage of historical data which are used to contribute to Failure Detection and Monitoring System development. Results show good agreement with previous studies using other methods as GMDH and other predictive methods. (author)

  12. Self-organizing maps of Kohonen (SOM) applied to multidimensional monitoring data of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Gustavo S.; Pereira, Iraci M.; Mesquita, Roberto N. de, E-mail: rnavarro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine I., E-mail: ebueno@ifsp.gov.b [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2011-07-01

    Multivariate statistics comprise a set of statistical methods used in situations where many variables are database space subsets. Initially applied to human, social and biological sciences, these methods are being applied to many other areas such as education, geology, chemistry, physics, engineering, and many others. This spectra expansion was possible due to recent technological development of computation hardware and software that allows high and complex databases to be treated iteratively enabling further analysis. Following this trend, the neural networks called Self-Organizing Maps are turning into a powerful tool on visualization of implicit and unknown correlations in big sized database sets. Originally created by Kohonen in 1981, it was applied to speech recognition tasks. The SOM is being used as a comparative parameter to evaluate the performance of new multidimensional analysis methodologies. Most of methods require good variable input selection criteria and SOM has contributed to clustering, classification and prediction of multidimensional engineering process variables. This work proposes a method of applying SOM to a set of 58 IEA-R1 operational variables at IPEN research reactor which are monitored by a Data Acquisition System (DAS). This data set includes variables as temperature, flow mass rate, coolant level, nuclear radiation, nuclear power and control bars position. DAS enables the creation and storage of historical data which are used to contribute to Failure Detection and Monitoring System development. Results show good agreement with previous studies using other methods as GMDH and other predictive methods. (author)

  13. The awareness of the functional and near population with the relation to the research nuclear reactor IEA-R1

    International Nuclear Information System (INIS)

    Vanni, Silvia R.; Martins, Maria da Penha S.; Sabundjian, Gaiane

    2011-01-01

    After the natural accident that hit Japan in the beginning of March of 2011, and that ended into an accident of great proportions in the nuclear installations of Fukushima, it has now the debate over the lack of information that the population in general has over the nuclear energy. The dissemination of information, about the operation and security of the nuclear reactors, has the purpose of softening the effect that the pessimistic atmosphere has over its using. This study was reinforced by the memories of serious consequences due to other nuclear accidents that have already happened (Chernobyl, Three-Mile and Hiroshima/Nagasaki event), bringing insecurity, fear and even revenge from part of the public. Over all, people are not sufficiently informed about the positives and negatives aspects of the nuclear energy. It is necessary the adoption of a clear and aware policy with the population, about the pacific use of nuclear energy. Today, the international and national organizations of control of nuclear energy, the International Atomic Energy Agency (IAEA) and the Comissao Nacional de Energia Nuclear (CNEN), have respectively, published information about this subject using a more professional way and of hard access for the public in general. This work has the goal of checking the level of information that the population of workers and individuals of the close public to the research nuclear reactor IEA-R1, located in the Institute of Nuclear Research (IPEN), University City, Sao Paulo, Brazil, has over it. The way used for this study, involved questionnaires with straight questions and of simple language over the subject, to people of all different social, economic and cultural classes, from 12 to 80 years old. From the results found after this work, it was verified the necessity to elaborate a project of awareness of information and clarification about the nuclear energy, using ways of communication that exist and that are easy for the public to understand. (author)

  14. The awareness of the functional and near population with the relation to the research nuclear reactor IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Vanni, Silvia R.; Martins, Maria da Penha S. [Centro Tecnologico da Marinha (CTMSP), SP (Brazil); Sabundjian, Gaiane, E-mail: gdjian@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    After the natural accident that hit Japan in the beginning of March of 2011, and that ended into an accident of great proportions in the nuclear installations of Fukushima, it has now the debate over the lack of information that the population in general has over the nuclear energy. The dissemination of information, about the operation and security of the nuclear reactors, has the purpose of softening the effect that the pessimistic atmosphere has over its using. This study was reinforced by the memories of serious consequences due to other nuclear accidents that have already happened (Chernobyl, Three-Mile and Hiroshima/Nagasaki event), bringing insecurity, fear and even revenge from part of the public. Over all, people are not sufficiently informed about the positives and negatives aspects of the nuclear energy. It is necessary the adoption of a clear and aware policy with the population, about the pacific use of nuclear energy. Today, the international and national organizations of control of nuclear energy, the International Atomic Energy Agency (IAEA) and the Comissao Nacional de Energia Nuclear (CNEN), have respectively, published information about this subject using a more professional way and of hard access for the public in general. This work has the goal of checking the level of information that the population of workers and individuals of the close public to the research nuclear reactor IEA-R1, located in the Institute of Nuclear Research (IPEN), University City, Sao Paulo, Brazil, has over it. The way used for this study, involved questionnaires with straight questions and of simple language over the subject, to people of all different social, economic and cultural classes, from 12 to 80 years old. From the results found after this work, it was verified the necessity to elaborate a project of awareness of information and clarification about the nuclear energy, using ways of communication that exist and that are easy for the public to understand. (author)

  15. Structural analysis of the as-built IEA-R1 primary coolant piping system using a complete three dimensional model

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Martins, Lucas B.; Marcolin, Gabriel; Mattar Neto, Miguel

    2011-01-01

    IEA-R1 is an open pool type research reactor, moderated by light water and upgraded from 2 MW to 5 MW of operating power level. Heat generated in the reactor core is removed by a coolant system divided in two circuits, primary and secondary, composed by pumps, piping, heat exchangers, cooling tower, and some other auxiliary components. The 5 MW operating power level is now possible due to a modernization program started in 1996. As a part of the modernization program, ageing assessment studies recommend the replacement of one of the two heat exchangers in the circuit. To manage this replacement, modifications in the layout of the primary and secondary piping and supporting systems were performed, based on preliminary stress analysis study. Then, the aim of this work is to present the final stress analysis of the primary circuit. To reach this and taking the modifications of the primary into account, a 3D model of the whole circuit, in the as-built condition, was made. Stress results and discussions are shown. (author)

  16. Impurities determination on nuclear fuel element components for the IEA-R1 research reactor by analytical methods based on ED-XRF and ICP-OES

    International Nuclear Information System (INIS)

    Reis, Edson Luis Tocaia dos; Scapin, Marcos; Cotrim, Marycel Elena Barboza; Salvador, Vera Lucia; Pires, Maria Aparecida Faustino

    2009-01-01

    The production of nuclear fuel used in the research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) requires a series of chemical and metallurgical processes. The quality of the end product depends on the control over all the stages of the manufacturing process and over the quality of raw materials employed. In fact, spectrometric methods are increasingly used as quantitative analytical techniques applicable to uranium compounds because of simultaneous determination of several elements with minimum amounts of sample. However, the main obstacle of uranium compounds analysis by spectrometric techniques such as optical emission spectrometry with inductively coupled plasma (ICP-OES) is the complex emission spectrum of uranium. The ICP-OES is not appropriately capable of determining the major elements of interest without initial chemical separation of uranium. In this sense, the use of X-ray fluorescence spectrometry (XRF) has been considered for quantitative determination of main elements with the advantage of not being destructive and not requiring a prior preparation of samples for analysis. Due to the simplicity of this technique, its applicability includes research and quality control in universities, research institutions, petrochemical industries, metallurgy, mining, etc. In this work, some components considered impurities in nuclear fuel element samples used in the IEA-R1 research reactor of IPEN/CNEN-SP were chemically characterized by ICP-OES analysis after chromatography extraction separation by using TBP/XAD-14 system and compared to results obtained by energy dispersive X-ray fluorescence spectrometry (EDXRF) and wavelength dispersive X-ray fluorescence (WDXRF). (author)

  17. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAl{sub x}-Al targets for {sup 99}Mo production in the IEA-R1 reactor; Analises neutronica e termo-hidraulica de um dispositivo para irradiacao de alvos tipo LEU de UAl{sub x}-Al para producao de {sup 99}MO no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-07-01

    Technetium-99m ({sup 99m}Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of {sup 99}Mo per week. Due to the crisis and the shortage of {sup 99}Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce {sup 99}Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for {sup 99}Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl{sub x}-Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm{sup 3}. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of {sup 99}Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the {sup 99}Mo will be five days after the irradiation, we have that the {sup 99}Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'.

  18. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  19. Application of the k{sub 0}-INAA method for analysis of biological samples at the pneumatic station of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, Daniel C.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: dcpuerta@hotmail.com, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute (JSI), Ljubljana, LJU (Slovenia). Department of Environmental Sciences

    2013-07-01

    As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in biological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by the International Atomic Energy Agency (IAEA). The elements Al, Ba, Br, Na, K, Mn, Mg, Sr and V were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 4.5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the 'bare triple-monitor' method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0.1%Au alloy and high purity zirconium comparators were used. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials NIST SRM 1547 Peach Leaves, INCT-MPH-2 Mixed Polish Herbs and NIST SRM 1573a Tomato Leaves. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors (bias, %) less than 30% for most elements. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The E{sub n}-number showed that all results, except Na in NIST SRM 1547 and NIST SRM 1573a and Al in INCT-MPH-2, were within 95% confidence interval. (author)

  20. Innovation in the energy sector: Lessons learnt from R and D expenditures and patents in selected IEA countries

    International Nuclear Information System (INIS)

    Bointner, Raphael

    2014-01-01

    Long time series of the IEA and international patent offices offer a huge potential for scientific investigations of the energy innovation process. Thus, this paper deals with a broad literature review on innovation drivers and barriers, and an analysis of the knowledge induced by public research and development expenditures (R and D) and patents in the energy sector. The cumulative knowledge stock induced by public R and D expenditures in 14 investigated IEA-countries is 102.3 bn EUR in 2013. Nuclear energy has the largest share of 43.9 bn EUR, followed by energy efficiency accounting for 14.9 bn EUR, fossil fuels with 13.5 bn EUR, and renewable energy with 12.1 bn EUR. A regression analysis indicates a linear relation between the GDP and the cumulative knowledge, with each billion EUR of GDP leading to an additional knowledge of 3.1 mil EUR. However, linearity is not given for single energy technologies. Further, the results show that appropriate public R and D funding for research and development associated with a subsequent promotion of the market diffusion of a niche technology may lead to a breakthrough of the respective technology. - Highlights: • The cumulative energy knowledge stock in 14 IEA-countries is 102.3 bn EUR in 2013. • Each billion EUR of GDP lead to an additional knowledge of 3.1 mil EUR. • Medium IEA-countries may compete with large ones by promoting a niche strategy. • Patent knowledge grew 5.9 times in medium and 5.6 in large IEA-countries since 1990

  1. Fault detection of sensors in nuclear reactors using self-organizing maps

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Guarulhos, SP (Brazil); Pereira, Iraci Martinez, E-mail: martinez@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  2. Fault detection of sensors in nuclear reactors using self-organizing maps

    International Nuclear Information System (INIS)

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi; Bueno, Elaine Inacio; Pereira, Iraci Martinez

    2011-01-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  3. Theoretical analysis of the temperature changes and resultant loss of fuel integrity in the IEA-R1 research reactor fuel elements following a loss of coalant accident

    International Nuclear Information System (INIS)

    Garone, J.G.M.

    1983-01-01

    The IEA-R1 core following a loss of coolant accident (LOCA) is analysed. THe AIRLOCA code was used to calculate fuel temperatures, heat generation due to fission product decay and convective and radiative heat transfer from the fuel elements to the surrounding air both during and following the loss of coolant. The influence of certain critical parameters, such as log time, specific power was studied in detail. Representative results are presented and suggestions made to ensure that fuel integrity is maintained following a LOCA. (Author) [pt

  4. Study of human factors, and its basic aspects focusing the IEA-R1 research reactor operators, aiming at the prevention of accidents caused by human failures

    International Nuclear Information System (INIS)

    Martins, Maria da Penha Sanches

    2008-01-01

    This work presents a study of human factors and possible human failure reasons that can cause incidents, accidents and workers exposition, associated to risks intrinsic to the profession. The objective is to contribute with the operators of IEA-R1 reactor located at IPEN CNEN/S P. Accidents in the technological field, including the nuclear, have shown that the causes are much more connected to human failure than to system and equipment failures, what has led the regulatory bodies to consider studies on human failure. The research proposed in this work is quantitative/qualitative and also descriptive. Two questionnaires were used to collect data. The first of them was elaborated from the safety culture attributes which are described by the International Atomic Energy Agency - IAEA. The second considered individual and situational factors composing categories that could affect people in the work area. A carefully selected transcription of the theoretical basis according to the study of human factors was used. The methodology demonstrated a good reliability degree. Results lead to mediate factors which need direct actions concerning the needs of the group and of the individual. This research shows that it is necessary to have a really effective unit of planning and organization, not only to the physical and psychological health issues but also to the safety in the work. (author)

  5. Evaporation rate measurement in the pool of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Cegalla, Miriam A.; Baptista Filho, Benedito Dias

    2000-01-01

    The surface water evaporation in pool type reactors affects the ventilation system operation and the ambient conditions and dose rates in the operation room. This paper shows the results of evaporation rate experiment in the pool of IEA-R1 research reactor. The experiment is based on the demineralized water mass variation inside cylindrical metallic recipients during a time interval. Other parameters were measured, such as: barometric pressure, relative humidity, environmental temperature, water temperature inside the recipients and water temperature in the reactor pool. The pool level variation due to water contraction/expansion was calculated. (author)

  6. The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation

    International Nuclear Information System (INIS)

    Peluso, M.A.V.

    1978-01-01

    The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author) [pt

  7. Qualification process of dispersion fuels in the IEAR1 research reactor

    International Nuclear Information System (INIS)

    Domingos, D.B.; Silva, A.T.; Silva, J.E.R.

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a miniplate irradiation device (MID) to be placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 -Al dispersion fuels, LEU type (19,9% of 235 U) with uranium densities of, respectively, 3.0 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and TWODB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer code LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. This paper also presents a system designed for fuel swelling evaluation. The determination of the fuel swelling will be performed by means of the fuel miniplate thickness measurements along the irradiation time. (author)

  8. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Taddei, Maria Helena Tirollo

    2013-01-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as 60 Co and 137 Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  9. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UALx-Al and U-Ni to production of 99Mo in reactor IEA-R1 and RMB

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2014-01-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)

  10. IEA Journal: Issue 1 [Autumn 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    IEA Energy covers a broad range of today's energy issues, from technology to market developments, and highlights the energy challenges of tomorrow. It features a variety of perspectives from government, industry and other intergovernmental organisations -- both in IEA member countries and beyond -- as well as from IEA experts.

  11. IEA Journal: Issue 1 [Autumn 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    IEA Energy covers a broad range of today's energy issues, from technology to market developments, and highlights the energy challenges of tomorrow. It features a variety of perspectives from government, industry and other intergovernmental organisations -- both in IEA member countries and beyond -- as well as from IEA experts.

  12. IEA Wind Energy Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  13. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  14. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  15. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor; Determinacao de fatores de escala para estimativa do inventario de radionuclideos em rejeitos de media e baixa atividades do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Maria Helena Tirollo

    2013-07-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as {sup 60}Co and {sup 137}Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  16. Findings of recent IEA work - 2003

    International Nuclear Information System (INIS)

    2003-01-01

    and Equipment; 3 - Energy technology: Energy Technology: Facing the Climate Challenge, CO 2 Capture and Storage Technologies, Experience Curves for Energy Technology Policy, Creating Markets for Energy Technologies, Basic Science and Future Energy Technologies, Information Centres, International Collaboration in Energy Technology, Oil and Gas Supply Technologies and Energy Security, Innovative Nuclear Reactor Development: Opportunities for International Co-operation IEA R and D Collaboration on Fusion Power and ITER, Coal Technology and Policy Reviews, Transport Technologies to Reduce Oil Consumption and Emissions, Sustainable Public Transport Systems; 4 - environment and climate change: CO 2 Emissions from Fuel Combustion, Dealing with Climate Change: Policies and Measures, Greenhouse Gas Emissions Trading: an Energy View, Longer Term Energy and Environment Scenarios, Beyond Kyoto, Energy and Sustainable Development, Calculating Emissions Reductions from Project-based Activities; 5 - Energy in the wider world: Producer-consumer Dialogue, The IEA's Energy Experts Meeting, Economic and Energy Developments in Saudi Arabia, Russian Energy Policy Developments, IEA-Russia Co-operation, Caspian and Central Asia Energy Market Development, New Energy Policies for South-east Europe, District Heating Policy in Transition Economies, China's Quest for Energy Security, China's Challenges in Developing its Gas Market, Electricity and Coal in India, Promoting Trade and Market Reform in South-East Asia, South American Gas, Energy and Poverty, The Impact of Higher Oil Prices on Developing Countries, Africa Energy Information Forum

  17. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  18. First results of U3Si2 production and its relevance in the power scale-up of IPEN research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Souza, J.A.B.; Frajndlich, E.U.C.; Durazzo, M.; Perrotta, J.A.

    1997-01-01

    The own supply of LEU U 3 Si 2 is crucial for IPEN, since the whole scale-up of IPEN MTR IEA-Rlm reactor will rely on it. The Brazilian request for radioisotopes production is fully linked with the already made power scale-up from 2 to 5 MW for this reactor. IPEN now depends on fuel element material upgrading from U 3 O 8 towards LEU U 3 Si 2 . The fuel plate productive technology from the powdered material is already well established, only needing simple making of minor adjustments, but to reach the stage of producing U 3 Si 2 we need a fully settled chemical pilot plant in order to reach a LEU UF 4 productive routine. Complementing this process, it was also needed to scale down the previous practice of uranium magnesiothermic reduction to around a sub-critical safe uranium mass of approximately 3000g. To complete the metallurgical processing, it is being developed the production of U 3 Si 2 in a vacuum induction furnace. Some experiments to get this intermetallic, using natural uranium, have already been carried out in order to build up a general idea of the future process of LEU U 3 Si 2 . These experiments are described in this paper and also some of the initial characterization results, such as the qualification pattern of the ingot. It is also discussed some new features of inhomogeneity of solidified phases that may be deleterious to future production routine. (author)

  19. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora

    2002-01-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  20. Brazilian Irradiation Project: CAFE-MOD1 validation experimental program

    International Nuclear Information System (INIS)

    Mattos, Joao Roberto Loureiro de; Costa, Antonio Carlos L. da; Esteves, Fernando Avelar; Dias, Marcio Soares

    1999-01-01

    The Brazilian Irradiation Project whose purpose is to provide Brazil with a minimal structure to qualify the design, fabrication and quality procedures of nuclear fuels, consists of three main facilities: IEA-R1 reactor of IPEN-CNEN/SP, CAFE-MOD1 irradiation device and a unit of hot cells. The CAFE-MOD1 is based on concepts successfully used for more than 20 years in the main nuclear institutes around the world. Despite these concepts are already proved it should be adapted to each reactor condition. For this purpose, there is an ongoing experimental program aiming at the certification of the criteria and operational limits of the CAFE-MOD1 in order to get the allowance for its installation at the IEA-R1 reactor. (author)

  1. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UAL{sub x}-Al and U-Ni to production of {sup 99}Mo in reactor IEA-R1 and RMB; Analises neutronicas e termo-hidraulica de dispositivos para irradiacao de alvos tipo LEU de UAL{sub x}-Al e U-Ni para producao de {sup 99}Mo nos reatores IEA-R1 e RMB

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges

    2014-07-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl{sub 2}-Al, U-Ni cylindrical and U-Ni plate) used for the production of {sup 99}Mo by fission of {sup 235}U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of {sup 99}Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl{sub 2}-Al (10 mini plates). Analyses have shown that the total activity obtained for {sup 99}Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl{sub 2}-Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental

  2. Report of the 13th IEA workshop on radiation effects in ceramic insulators

    International Nuclear Information System (INIS)

    2004-03-01

    The 13th IEA Workshop on Radiation Effects in Ceramic Insulators, based on Annex II: Experimentation on Radiation Damage in Fusion Materials, to the IEA Implementing Agreement for a Programme of Research and Development on Radiation Damage in Fusion Materials, was held on the 9th, December, 2003, at Kyoto International Conference Center, in Kyoto, Japan, in conjunction with the 11th International Conference on Fusion Reactor Materials (ICFRM-11). 44 participants from 10 countries (26 from Japan, 5 from Spain, 3 from Belgium, 3 from USA, 2 from RF, each 1 from Austria, Greece, Italy, Romania, and UK) gathered together and discussed following issues extensively, with the newest experimental results, after the welcome remarks by one of the organizer and chairpersons, Dr. E.R. Hodgson of CIEMAT. Effects of electric field on radiation induced microstructural evolution, parasitic electrical current and voltage induced in cables and wires by radiation effects, optical materials, IFMIF related issues and fundamental aspects were discussed. Significant results such as an observation of γ-alumina and aluminum colloid formation for the Radiation Induced Electrical Degradation mechanism are obtained. This report is workshop summary, abstracts and documents of the 13th IEA Workshop on Radiation Effects in Ceramic Insulators. (author)

  3. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1; Emprego do MCNP no estudo dos TLDS 600 e 700 visando a implementacao da caracterizacao do feixe de irradiacao da instalacao de BNCT do IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio Antonio

    2013-07-01

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of {sup 6}Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  4. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor

    International Nuclear Information System (INIS)

    Benevenuti, Erion de Lima

    2004-01-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  5. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  6. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor; Analise termo-hidraulica do reator TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2002-07-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  7. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  8. RMB. The new Brazilian multipurpose research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto; Soares, Adalberto Jose

    2015-01-01

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also presents the

  9. RMB. The new Brazilian multipurpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto; Soares, Adalberto Jose [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2015-01-15

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also

  10. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  11. New instrumentation for the IPR-R1 reactor of CDTN

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de.

    1992-01-01

    The Nuclear Engineering Institute reactor instrumentation area has developed systems and equipment for reactor operation and safety. In such way, the new I and C for IEN Argonauta reactor and the nuclear instrumentation for IPEN critical facility were built. This paper describes our real work, the new I and C systems for IPR-R1, a Triga type reactor, located at CDTN (Belo Horizonte - MG). (author)

  12. Irradiation routine in the IPR-R1 Triga reactor

    International Nuclear Information System (INIS)

    Maretti Junior, F.

    1980-01-01

    Information about irradiations in the IPR-R1 TRIGA reactor and procedures necessary for radioisotope solicitation are presented All procedures necessary for asking irradiation in the reactor, shielding types, norms of terrestrial and aerial expeditions, payment conditions, and catalogue of disposable isotopes with their respective saturation activities are described. (M.C.K.)

  13. IEA Hydrogen Implementing Agreement: Three Decades of Collaborative Hydrogen R and D

    International Nuclear Information System (INIS)

    Nick Beck; Mary-Rose de Valladares

    2006-01-01

    Created in 1977 and now in its Second Generation of Hydrogen R, D and D, the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) is the oldest, largest international collaboration on hydrogen Research, Development and Demonstration (RD and D). As a global resource for technical expertise in hydrogen R, D and D, the HIA has expanded worldwide opportunities for hydrogen by undertaking 21 annexes (or tasks) on hydrogen production, storage, analysis of integrated systems and related topics with its 19 member countries. Related topics include hydrogen safety, conversion, economics and markets. The majority of the HIA's R and D portfolio has focused on longer term, pre-competitive R, D and D issues. Of the 21 annexes undertaken by the HIA, 15 are now complete. The HIA is also committed to outreach in support of both its core R and D activities and related issues such as regulation and infrastructure. As ever, the HIA welcomes collaboration and liaison with interested groups in the public and private sectors. (authors)

  14. IEA PVPS Task 1 - UK Expert. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, R.

    2003-07-01

    The paper relates to work carried out under contract to the UK Renewable Energy Programme, and describes the terms of reference of the UK representation in the IEA PVPS Task 1 which provides a forum for exchange of information on photovoltaic (PV) technology between 21 participating countries. The main benefit derived by the UK is access to international expertise in PV technology. Using information obtained from participation in Task 1, the UK produces a National Survey Report which reports on developments in PV technology in the UK over the previous 12 months. The report covers installed capacity, prices, budgets and costs: it is freely available on the UK PVPS website. The newsletter PV Power, is prepared and distributed biannually - 18 issues have been published by mid-2003. IT Power is currently the UK representative on the IEA PVPS Task 1.

  15. New digital control system for the operation of the Colombian research reactor IAN-R1; Nuevo sistema de control digital para la operacion del reactor de investigacion Colombiano IAN-R1

    Energy Technology Data Exchange (ETDEWEB)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  16. Data acquisition, monitoring and diagnostic system for predictive control and protection of rotating components of IEAR-1 reactor by vibration analysis

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti; Tecco, Dorival Goncalves

    1996-01-01

    This work presents the vibration and temperature data acquisition, monitoring and diagnostic systems, recently installed in the primary circuit, secondary circuit and emergency generator of the IEA-R1 reactor at IPEN during the course of the first power elevation tests to 5MW. It incorporates a series of routines for equipment configuration, interactive automatic monitoring , data processing and documentation/storage without the exposure of operators in the radiological protection areas. (author)

  17. The implementation and evaluation of physical protection system of the IEA-R1 reactor; Implementacao e avaliacao do sistema de protecao fisica do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Antonio Carlos Alves

    2016-11-01

    The September 11, 2001 terrorist attacks in New York, the accident at the Fukushima nuclear power plant on March 2011 and the recent attacks in Paris on November 2015 are examples of events that justify the efforts of the International Agency of Energy Atomic - IAEA to improve security at nuclear facility. The Brazilian government has been collaborating with this project and investing resources to improve the Physical Protection System - PPS of the nuclear research reactor system, technically is associated with the elements of detection, delay and response. The PPS is an integrated system of people, equipment and procedures used to protect nuclear facilities and radioactive sources against threat, theft or sabotage. The PPS works to avoid, to mitigate or to minimize the consequences caused by these actions. This study evaluates the PPS of the reactor, identifying the vulnerabilities and suggesting ways to improve the system effectiveness. The analyses were based on the methodology developed by Sandia National Laboratories´ security experts in Albuquerque - USA, allowing the system evaluation through hypothetical and probabilistic analyzes; identifying threats, determining the targets and analyzing the possible adversaries paths. From the methodology adopted was obtained the value around 40% for PE indicator, which shows the need to improve the system to minimizing the vulnerabilities. (author)

  18. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  19. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  20. Calculation of static harmonics of a nuclear reactor using CITATION code

    International Nuclear Information System (INIS)

    Belchior Junior, A.; Moreira, J.M.L.

    1989-01-01

    The CITATION code, which solves the multigroup diffusion equation by the finite difference method, calculates the fundamental λ-mode (harmonic) for nuclear reactors. In this work, two fission source correction methods are attempted to obtain higher λ-modes through the CITATION code. The two methods are compared, their advantages and disadvantages analysed and verified against analytical solutions. Two dimensional harmonic modes are calculated for the IEA-R1 research reactor and for the ANGRA-I power reactor. The results are shown in graphics and tables. (author) [pt

  1. IEA Hydrogen Implementing Agreement: Three Decades of Collaborative Hydrogen R and D

    Energy Technology Data Exchange (ETDEWEB)

    Nick Beck; Mary-Rose de Valladares

    2006-07-01

    Created in 1977 and now in its Second Generation of Hydrogen R, D and D, the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) is the oldest, largest international collaboration on hydrogen Research, Development and Demonstration (RD and D). As a global resource for technical expertise in hydrogen R, D and D, the HIA has expanded worldwide opportunities for hydrogen by undertaking 21 annexes (or tasks) on hydrogen production, storage, analysis of integrated systems and related topics with its 19 member countries. Related topics include hydrogen safety, conversion, economics and markets. The majority of the HIA's R and D portfolio has focused on longer term, pre-competitive R, D and D issues. Of the 21 annexes undertaken by the HIA, 15 are now complete. The HIA is also committed to outreach in support of both its core R and D activities and related issues such as regulation and infrastructure. As ever, the HIA welcomes collaboration and liaison with interested groups in the public and private sectors. (authors)

  2. Neutron radiography on the research reactor IEA-R1

    International Nuclear Information System (INIS)

    Fuga, R.

    1984-01-01

    The neutron radiography device is composed of a conical neutron collimator, having a 1/250 collimation ratio, an object chamber and an irradiation cassete. Each component on the system is described and some representative results are presented. Selected examples of the potentialities of this technique are given. (Author) [pt

  3. Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors

    International Nuclear Information System (INIS)

    Umbehaun, Pedro Ernesto

    2000-01-01

    This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)

  4. The implementation and evaluation of physical protection system of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Vaz, Antonio Carlos Alves

    2016-01-01

    The September 11, 2001 terrorist attacks in New York, the accident at the Fukushima nuclear power plant on March 2011 and the recent attacks in Paris on November 2015 are examples of events that justify the efforts of the International Agency of Energy Atomic - IAEA to improve security at nuclear facility. The Brazilian government has been collaborating with this project and investing resources to improve the Physical Protection System - PPS of the nuclear research reactor system, technically is associated with the elements of detection, delay and response. The PPS is an integrated system of people, equipment and procedures used to protect nuclear facilities and radioactive sources against threat, theft or sabotage. The PPS works to avoid, to mitigate or to minimize the consequences caused by these actions. This study evaluates the PPS of the reactor, identifying the vulnerabilities and suggesting ways to improve the system effectiveness. The analyses were based on the methodology developed by Sandia National Laboratories´ security experts in Albuquerque - USA, allowing the system evaluation through hypothetical and probabilistic analyzes; identifying threats, determining the targets and analyzing the possible adversaries paths. From the methodology adopted was obtained the value around 40% for PE indicator, which shows the need to improve the system to minimizing the vulnerabilities. (author)

  5. Experimental study of the IPR-R1 TRIGA reactor power channels responses

    International Nuclear Information System (INIS)

    Mesquita, Henrique F.A.; Ferreira, Andrea V.

    2015-01-01

    The IPR-R1 nuclear reactor installed at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil, is a Mark I TRIGA reactor (Training, Research, Isotopes, General Atomics) and became operational on November of 1960. The reactor has four irradiation devices: a rotary specimen rack with 40 irradiation channels, the central tube, and two pneumatic transfer tubes. The nuclear reactor is operated in a power range between zero and 100 kW. The instrumentation for IPR-R1 operation is mainly composed of four neutronic channels for power measurements. The aim of this work is to investigate the responses of neutronic channels of IPR-R1, Linear, Log N and Percent Power channels, and to check their linearity. Gold foils were activated at low powers (0.125-1.000 kW), and cobalt foils were activated at high powers (10-100kW). For each sample irradiated at rotary specimen rack, another one was irradiated at the same time at the pneumatic transfer tube-2. The obtained results allowed evaluating the linearity of the neutronic channels responses. (author)

  6. IPR-R1 TRIGA research reactor decommissioning plan

    International Nuclear Information System (INIS)

    Andrade Grossi, Pablo; Oliveira de Tello, Cledola Cassia; Mesquita, Amir Zacarias

    2008-01-01

    The International Atomic Energy Agency (IAEA) is concerning to establish or adopt standards of safety for the protection of health, life and property in the development and application of nuclear energy for peaceful purposes. In this way the IAEA recommends that decommissioning planning should be part of all radioactive installation licensing process. There are over 200 research reactors that have either not operated for a considerable period of time and may never return to operation or, are close to permanent shutdown. Many countries do not have a decommissioning policy, and like Brazil not all installations have their decommissioning plan as part of the licensing documentation. Brazil is signatory of Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management, but until now there is no decommissioning policy, and specifically for research reactor there is no decommissioning guidelines in the standards. The Nuclear Technology Development Centre (CDTN/CNEN) has a TRIGA Mark I Research Reactor IPR-R1 in operation for 47 years with 3.6% average fuel burn-up. The original power was 100 k W and it is being licensed for 250 k W, and it needs the decommissioning plan as part of the licensing requirements. In the paper it is presented the basis of decommissioning plan, an overview and the end state / final goal of decommissioning activities for the IPR-R1, and the Brazilian ongoing activities about this subject. (author)

  7. New digital control system for the operation of the Colombian research reactor IAN-R1

    International Nuclear Information System (INIS)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J.

    2015-09-01

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  8. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  9. Modifications done in the IPR-R1 reactor and their auxiliary systems

    International Nuclear Information System (INIS)

    Maretti Junior, F.; Amorim, V.A. de; Coura, J.G.

    1986-01-01

    The improvements done in the IPR-R1 reactor for adequateness of operation conditions and increase of irradiation sample capability. The cooling systems, reactor pool, system of control rods were substituted. The optimization of transfer pneumatic system was done. (M.C.K.) [pt

  10. Modification of the IAN-R1 reactor

    International Nuclear Information System (INIS)

    Jaime, J.; Ahumada, S.; Spin, R.A.

    1990-01-01

    The IAN-R1 reactor is the only nuclear reactor operating in Colombia; it is installed at the Institute of Nuclear Affairs (AIN) in Bogota, which is an official body coming under the Ministry of Mining and Energy. This reactor started operation in January 1965 with a rated power of 10 kW and was modified a year later to operate at 20 kW, which has been its rated power up to the present. Given its importance for the application of nuclear technology in Columbia for various purposes, principally in the areas of neutron activation analysis, determination of uranium content in minerals using the delayed neutron counting method, production of certain radioisotopes such as 198 Au and 82 Br for engineering applications, and production of radioactive material for teaching and research purposes, research has been in progress for some years into ways of increasing its power. The study on experimental requirements and on the demand for locally produced radioisotopes came to the conclusion that its power should be increased to 1000 kW, which would allow the facility to remain on the same site. The modification includes conversion of the core to low-enriched fuel, operation up to 1 MW, modification of the shielding, renovation of instrumentation and installation of a radioisotope processing plant. When the reactor is modified we will be able to produce other radioisotopes for applications in nuclear medicine, industry and engineering; at the same time, the safety of the facility will be optimized and the experimental facilities improved

  11. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    Alencar, Donizete Anderson de

    2004-01-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  12. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  13. Development of a digital card to simulate period transients in research reactors

    International Nuclear Information System (INIS)

    Masotti, Paulo Henrique Ferraz

    1999-01-01

    This work presents the development of a card to be used in a 'slot' of a micro-computer for evaluation of a nuclear channel used to monitor the start up of nuclear reactors. The results of the bench tests showed good linearity and 2% error deviation in the entire range of operation. Fields tests, performed with the start up channel of IEA-R1 research reactor showed that the card is an excellent device to verify the performance of the channel during steady state, and transient conditions. (author)

  14. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  15. GMDH and neural networks applied in temperature sensors monitoring

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2009-01-01

    In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)

  16. IEA-NEA Nuclear Technology Road-map Update - Asia Stakeholder Engagement Workshop

    International Nuclear Information System (INIS)

    Tam, Cecilia; ); Paillere, Henri; ); Guoxing, Gu; Tianmin, Xin; Autebert, Remy; Murphy, Paul; Barkatullah, Nadira; Nkong-Njock, Vincent; Dubinsky, Melissa; Cordero, Didier

    2014-01-01

    In 2010, the International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) released a Nuclear Energy Technology Road-map which outlined the steps needed to accelerate the development of nuclear power and its role in achieve deep greenhouse-gas emissions reduction. Both the global energy sector and the outlook for nuclear have changed significantly since then and an update of this Road-map is currently underway. The IEA and NEA held a stakeholder dialogue meeting focused on nuclear develop in Asia on 25 February 2014 in Hong Kong. The meeting brought together key stakeholders from industry, government, finance and other relevant organisations from Asia and beyond to help define and prioritise key items to be discussed in the IEA/NEA's Nuclear Road-map Update. One of the expected outcomes of this intensive brainstorming and Road-map development session was to discus key targets, milestones, policy measures and other actions needed to support the development and deployment of nuclear power. The workshop was organized in 3 sessions dealing with: Session 1 - Technology development needs for nuclear (Reactor technology, Fuel cycle and decommissioning); Session 2 - Breakout Discussion: - Group I: Financing nuclear. This session focussed on today's reality for financing nuclear and the current economics of nuclear. Mechanisms such as government loan guarantees, vendor financing and role of export credit agencies were discussed. Participants were asked to share lessons learnt and current practices on financing nuclear as well as recommendations (if needed) for additional policy support or changes in technology development (e.g. SMR) which would facilitate greater deployment of nuclear technologies. - Group II: Nuclear regulation and safety. This session focussed on regulatory needs for enhanced security and regulation for new build programmes, institutional development requirements for new nuclear countries. Safety research following the Fukushima Daiichi accident

  17. Evaluation of power behavior during startup and shutdown procedures of the IPR-R1 Triga Reactor

    International Nuclear Information System (INIS)

    Zangirolami, Dante M.; Mesquita, Amir Z.; Ferreira, Andrea V.

    2009-01-01

    The IPR-R1 nuclear reactor of Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN is a TRIGA Mark I pool type reactor cooled by natural circulation of light water. In the IPR-R1, the power is measured by four nuclear channels, neutron-sensitive chambers, which are mounted around the reactor core: the Startup Channel for power indication during reactor startup; the Logarithmic Wide Range Power Monitoring Channel; the Linear Multi-Range Power Monitoring Channel and the Percent Power Safety Channel. A data acquisition system automatically does the monitoring and storage of all the reactor operational parameters including the reactor power. The startup procedure is manual and the time to reach the desired reactor power level is different on each irradiation which may introduces differences in induced activity of samples irradiated in different irradiations. In this work, the power evolution during startup and shutdown periods of IPR-R1 operation was evaluated and the mean values of reactor energy production in these operational phases were obtained. The analyses were performed on basis of the Linear Multi-Range Channel data. The results show that the sum of startup and shutdown periods corresponds to 1% of released energy for irradiations during 1h at 100kW. This value may be useful to correct experimental data in neutron activation experiments. (author)

  18. Soutien institutionnel à l'Institute for Economic Affairs - Ghana (IEA ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'Institute of Economic Affairs - Ghana (IEA-Ghana) a été fondé en 1989, vers la fin de la dictature militaire. Le pays n'ayant pas à l'époque de centre indépendant voué à l'étude des politiques, il y avait peu de dialogue sur les politiques publiques. L'IEA-Ghana a néanmoins réussi à créer un forum de discussion et à faire ...

  19. An improved slow neutron spectrometer at nuclear research reactor et-r r-1. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abu El-Ela, M A [Reactor and Neutron Physics, Nuclear Research Center, AEA, Cairo (Egypt)

    1996-03-01

    An improved slow neutron selector has been aligned at channel number 6 of the nuclear research reactor ET-R R-1 Inshas. The flight path is 4 meter. The collimator-rotor-collimator system has the dimensions 0.3 x 2.5 x 70 cm with the rotor diameter 16 cm and 3 slits of 0.3 x 2.5 cm cross section. The rotor rotation rate varies between 600 r.p.m. the counting system has one of the best modern high electronic advanced technology time analyzer with minimum dwell time 2 sec, 8192 channels and a double detector inputs of TTL and NEG NIM standard pulses. The analyzer external triggering signals are of TTL standard type. A special design {sup 3} He detector for time of flight spectrometry has been used in the SNS. The reactor bare thermal neutron spectrum has been successfully measured, to show good agreement with the previous data. 6 figs.

  20. Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model

    International Nuclear Information System (INIS)

    Costa, Antonella L.; Reis, Patricia Amelia L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.

  1. IEA SHC Task 42/ECES Annex 29 WG A1

    DEFF Research Database (Denmark)

    Ristić, Alenka; Furbo, Simon; Moser, Christoph

    2016-01-01

    An overview on the recent results on the engineering and characterization of sorption materials, PCMs and TCMs investigated in the working group WG A1 “Engineering and processing of TES materials” of IEA SHC Task 42 / ECES Annex 29 (Task 4229) entitled “Compact Thermal Energy Storage” is presented....

  2. Restart of R reactor at SRP

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1983-01-01

    Restart of the Savannah River R-Reactor is an alternative to L-Reactor operation for increased production of defense nuclear material. R-Reactor was shut down in 1964 after 11-years operation and has been on standby for 19 years. This report presents a description of R-Reactor operation to serve as a basis for analysis of environmental impacts after restoration to meet current SRP performance standards. R-Reactor operation would differ from L-Reactor operation principally in discharge and recycle of effluent cooling water to Par Pond, rather than direct discharge to the Savannah River by way of Steel Creek. Significant differences in environmental effects could result. A costly renovation program would be required to restore R-Reactor to operability, and the reactor could not contribute to material production before about 1989

  3. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  4. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  5. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  6. Radioactive inventory in structural materials of ET-R R-1 reactor and its implication on decommissioning.

    Energy Technology Data Exchange (ETDEWEB)

    Elkady, A; Amin, E [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    A plan for decommissioning of ET-R R-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences decommissioning. Conservative calculations have been made to evaluate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are present in significant quantities in the reactor structural materials are aluminium, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from Co-60 and Fe-55 which are present in aluminium as trace elements in larger quantities in other construction materials. 2 figs., 4 tabs.

  7. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias

    2005-01-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  8. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  9. Energy policies of IEA countries: 2006 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This compilation contains a broad analysis of recent trends and an easily accessible overview of energy policy of the 26 member countries of the International Energy Agency and other key non-member countries such as China, India and Russia, during the last 12 months. The overview section examines trends in energy markets, including an analysis of energy demand and supply, energy prices and energy related CO{sub 2} emissions. It highlights key policy trends across member and non-member countries on energy security, energy market reform, climate change mitigation, energy efficiency, renewables and energy R&D. The book contains a special chapter on energy efficiency, which compares the most successful efficiency policies of member countries on the basis of In-Depth Review findings of the past three years. It also presents the major findings of the World Energy Outlook 2006, key statistical information and brief summaries of major IEA publications released during the past year. In past years summaries of In-Depth Reviews conducted in the cycle covered by this book, as well as Standard Reviews, were published as part of the book. From this year they will only be available from the IEA's website on www.iea.org. Chapter headings are: Executive summary; Energy efficiency; World energy outlook 2006; Energy security; Energy market reform; Climate change; Renewable energy; Technology, research and development; Energy policies in key non-member countries; and Energy balances and key statistical data of IEA countries. 25 figs., 11 tabs., 4 annexes.

  10. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.

    2015-01-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  11. Verification of the linearity of the IPR-R1 TRIGA reactor power channels

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado; Campolina, Daniel de Almeida Magalhaes

    2013-01-01

    The aim of this paper is to verify the linearity of the three power channels of the IPR-R1 TRIGA reactor. Located at Nuclear Technology Development Center-CDTN in Belo Horizonte, the IPR-R1 reactor is a typical 100 kW Mark I light-water reactor cooled by natural convection. When the experiments were performed, the reactor core had 59 fuel elements, containing 8% by weight of uranium enriched to 20% in 235 U. The core has cylindrical configuration with an annular graphite reflector. The responses of the detectors of the Linear, Log N and Percent Power channels were compared with the responses of detectors which only depend on the overall neutron flux within the reactor. Gold and cobalt foils were activated at low and high powers, respectively, and the specific count results were compared with measurements performed, simultaneously, with a fission chamber, and with the power registered by the three channels. The results show that the Linear channel responds linearly up to 100 kW, and the Log N channel responses are linear at low powers. In the range of high power, the Log N and the Percent Power channels exhibit linearity only from 10 kW to 50 kW. (author)

  12. Assessment of a RELAP5 model for the IPR-R1 TRIGA research reactor

    International Nuclear Information System (INIS)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    RELAP5 code was developed at the Idaho National Environmental and Engineering Laboratory and it is widely used for thermal hydraulic studies of commercial nuclear power plants and, currently, it has been also applied for thermal hydraulic analysis of nuclear research systems with good predictions. This work is a contribution to the assessment of RELAP5/3.3 code for research reactors analysis. It presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor conditions operating at 50 and 100 kW. The reactor is located at the Nuclear Technology Development Centre (CDTN), Brazil. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of code-to-data validation. The RELAP5 results were also compared with calculation performed using the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The use of a cross flow model has been essential to improve results in the transient condition respect to preceding investigations.

  13. Feasibility study of application of Prompt Gamma Neutron Activation Analysis (PGNAA) method in TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guerra, Bruno Teixeira

    2016-01-01

    The TRIGA Mark I IPR-R1 research reactor is located at Nuclear Technology Development Centre (CDTN), Brazilian Commission for Nuclear Energy (CNEN), in Belo Horizonte, Brazil. The reactor operates at 100 kW but the core configuration allows the increasing of the power up to 250 kW. It has been applied research, training and radioisotopes production. The establishment of the Prompt Gamma Neutron Activation Analysis (PGNAA) method at the TRIGA IPR-R1 reactor will significantly increase the types of matrices analysed as well as the number of chemical elements. Additionally it will complement the neutron activation analysis. This work presents a proposed design of a PGNAA facility to be installed at the TRIGA IPR-R1. The proposed design is based on a tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room’s level where shall be located the rack containing the set sample/detector/shielding. Thus, the aim of this study is to verify the feasibility to establish the PGNAA method in IPR-R1 through theoretical study applying the Monte Carlo code. The feasibility of establishing the PGAA method at the IPR-R1 installations was evaluated through of the calculations of neutron flux, radioactive capture reaction rates and detection limits for some isotopes. According to the obtained results, it can be concluded that is possible to establish the PGAA method at the IPR-R1 reactor, even with some restrictions in its theoretical design calculated by MCNP. (author)

  14. Energy investments as foreseen by the IEA

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    A new study carried out by the international energy agency (IEA) completes the previous analysis made by the World Energy Outlook and published in September 2002. The IEA study make a projection over the coming 30 years of the investments required for the transformation of the energy resources into the necessary supplies to the growing up world population needs. In addition to the IEA team, 63 French and foreign experts contributed to this study. This work has been carried out under the direction of F. Birol, economic director of the IEA. The reference scenario is the one of the 2002 edition of the World Energy Outlook, according to which the world energy market would show a growth of about two thirds during the next three decades, which corresponds to a yearly growth of 1.7%. This article summarizes the content of this study. (J.S.)

  15. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  16. Energy policies of IEA countries: 2006 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This compilation contains a broad analysis of recent trends and an easily accessible overview of energy policy of the 26 member countries of the International Energy Agency and other key non-member countries such as China, India and Russia, during the last 12 months. The overview section examines trends in energy markets, including an analysis of energy demand and supply, energy prices and energy related CO{sub 2} emissions. It highlights key policy trends across member and non-member countries on energy security, energy market reform, climate change mitigation, energy efficiency, renewables and energy R&D. The book contains a special chapter on energy efficiency, which compares the most successful efficiency policies of member countries on the basis of In-Depth Review findings of the past three years. It also presents the major findings of the World Energy Outlook 2006, key statistical information and brief summaries of major IEA publications released during the past year. In past years summaries of In-Depth Reviews conducted in the cycle covered by this book, as well as Standard Reviews, were published as part of the book. From this year they will only be available from the IEA's website on www.iea.org. Chapter headings are: Executive summary; Energy efficiency; World energy outlook 2006; Energy security; Energy market reform; Climate change; Renewable energy; Technology, research and development; Energy policies in key non-member countries; and Energy balances and key statistical data of IEA countries. 25 figs., 11 tabs., 4 annexes.

  17. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  18. Modernization of the CDTN IPR-R1 TRIGA reactor instrumentation and control

    International Nuclear Information System (INIS)

    Mesquita, A.Z.; Costa, A.C.L.; Souza, R.M.G.P.

    2009-01-01

    The control system of the IPR-R1 was changed in 1995. Although since the year's 80 was generalized the use of microprocessor technology and video monitors for visual interface, in the IPR-R1 control room it was used analogical system by relay-based logic, and were maintained the mechanical strip chart recorders (ink-pen drive) to measure, monitor and store the operational parameters. It was maintained the measure and the control of, practically, the same variables of the original system, although the reactor power already have been upgraded to 100 kW and began the studies to increase it to 250 kW, which is the current core configuration. For 250 kW operations the fuel heat transfer becomes important and new parameters should be used as safety operational limits. A state-of-the-art instrumentation and control system using microprocessor technology is proposed to replace the present analogical systems. The new system can eliminates most manual data logging, provides automatic or manual reactor operation modes, provides complete real-time operator display, replays historical operating data on monitor or printer, eliminates spare parts replacement problems and meets all applicable international standards as NRC and IEE specifications. This paper describes the research project in process in CDTN that has as objective the modernization of the IPR-R1 TRIGA reactor instrumentation and control of the operational variables. The project also will improve the accomplishment of neutronic and thermal-hydraulic experiments, foreseen in the CDTN research program. (author)

  19. Spent fuel management - two alternatives at the FiR 1 reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J.

    2001-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The reactor with its subsystems has experienced a large renovation work in 1996-97. The main purpose of the upgrading was to install the new Boron Neutron Capture Therapy (BNCT) irradiation facility. The BNCT work dominates the current utilization of the reactor: four days per week for BNCT purposes and only one day per week for neutron activation analysis and isotope production. The Council of State (government) granted for the reactor a new operating license for twelve years starting from the beginning of the year 2000. There is however a special condition in the new license. We have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel, if we want to continue the reactor operation beyond the year 2006. In addition to the choosing of one of the spent fuel management alternatives the future of the reactor will also depend strongly on the development of the BNCT irradiations. If the number of patients per year increases fast enough and the irradiations of the patients will be economically justified, the operation of the reactor will continue independently of the closing of the USDOE alternative in 2006. Otherwise, if the number of patients will be low, the funding of the reactor will be probably stopped and the reactor will be shut down. (author)

  20. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  1. Report on a survey in fiscal 1999. Analysis of materials related to IEA Greenhouse Gas R and D Program (IEA/GHG); 1999 nendo EIA/GHG kanren shiryo bunseki chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Materials related to IEA Greenhouse Gas Rand D Program (IEA/GHG) were analyzed. The Sleipner carbon dioxide underground storage workshop is acting to narrow themes for understanding the technologies, observation methods, and research activities. The IEA/GHG has verified the known facts about ocean storage of carbon dioxide, and discussed the important development targets. Researches were made on improving methane recovery efficiency and the possibility of sealing carbon dioxide by injecting carbon dioxide in order to improve recovery of carbon bed methane. The IEA/GHG has developed a methodology for complete fuel cycles of LNG, and evaluated cost and benefit of reducing greenhouse effect gas emission. A process combining electric power generation, carbon dioxide absorption and hot heat energy utilization can reduce emission of carbon dioxide into atmosphere at relatively low cost and low energy loss. The paper also describes reduction of greenhouse effect gas emitted from cement factories, petroleum refining and petro-chemical industries, and offshore petroleum and gas facilities. It also describes influence of forestry on carbon absorption and timber markets. Case studies have discussed effects of modifying power generation plants. (NEDO)

  2. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  3. Spent fuel management plans for the FiR 1 Reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S. E. J.

    2002-01-01

    The FiR 1-reactor, a 250 kW TRIGA reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. The final disposal site is situated in Olkiluoto, on the western coast of Finland. Olkiluoto is also one of the two nuclear power plant sites in Finland. In the new operating license of our reactor there is a special condition. We have to achieve a binding agreement between our Research Centre and either the domestic Nuclear Power Companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel or US DOE about the return of our spent fuel back to USA. If we want to continue the reactor operation beyond the year 2006. the domestic final disposal is the only possibility. At the moment it seems to be reasonable to prepare to both possibilities: the domestic final disposal and the return to the USA offered by US DOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will decide, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNCT treatments will cover the costs. If the BNCT and other irradiations develop satisfactorily, the reactor can be kept in operation beyond the year 2006 and the domestic final disposal will be implemented. If, however, there is still lack of money, there is no reason to continue the operation of the reactor and the choice of US DOE alternative is natural. (author)

  4. The history of the IEA. Volume four. Supplement to volumes 1, 2 et 3

    International Nuclear Information System (INIS)

    2004-01-01

    Published in 1994, The History of the International Energy Agency: The First Twenty Years, the comprehensive story of the IEA's decisions since its founding in 1974, has been an invaluable resource to the Agency's Member country governments, to the IEA Secretariat, and to all those who are interested in international, inter-governmental organisations. The author was Richard Scott, a former IEA Legal Counsel. Now, his successor Craig S. Bamberger, has extended The History through most of the Agency's third decade, up to the end of 2003. In this Supplement to Mr. Scott's History, Mr. Bamberger has remained faithful to the structure of the original work, enabling the reader to move easily between time periods when researching a particular subject. Continuity and change are both in evidence. The IEA's basic institutional arrangements remain essentially as Mr. Scott described them in Volume I of The History, but the Supplement's extensive treatment of budget and programme of work issues reflects significant changes in Agency practice, during a period when governments were engrossed in the management and financing of international organisations generally. In the policy realm, the Supplement recounts numerous new initiatives that the IEA has launched, while remaining true to its focus on the 'three E' policy goals: Energy Security, Environmental Protection and Economic Growth

  5. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Tello, Cledola Cassia Oliveira

    2009-01-01

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  6. Findings of recent IEA work 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This new edition of 'Findings of recent IEA work' provides a sample of the Agency's activities since its 2005 Ministerial meeting. Each page focuses on a specific subject or project, including references to IEA work that will be of use to governments, academics, journalists and the wider public. This volume is not all-inclusive, but seeks to highlight IEA efforts to respond to the concerns of its member countries and identify ways to overcome the energy challenges we face. Since the last meeting of IEA energy ministers in May 2005, the global energy picture has changed. The challenges of energy security and climate change have moved higher on the agenda. To this end, the IEA ministers and the G8 have asked the IEA to make concrete recommendations to achieve a 'clean, competitive and clever energy future'. Energy efficiency is a vital first step, but strong commitment to research, development and deployment of technology is essential for the longer term. Some specific topics reported included are: Coal: responding to the challenges; CO{sub 2} emissions from fuel combustion; Emissions trading for climate policy; CO{sub 2} capture and storage technologies; Russian energy policy developments; and Coal in China.

  7. The role of IEA governments in energy. 1996 update

    International Nuclear Information System (INIS)

    1996-01-01

    The role of governments in the energy sector of IEA countries is changing significantly. Governments are intervening less directly and are relying more on market forces to achieve energy policy goals. However, their role in setting market rules is becoming even more important. This report describes in detail the changing role of IEA governments. Part 1 of the report provides an overview of the rationale, scope and approaches of government action, including institutional arrangements and sectoral policies. Part 2 contains detailed surveys of each of the 23 IEA Member countries and the European Union. (author)

  8. Current utilization and long term strategy of the Finnish TRIGA research reactor FiR 1

    International Nuclear Information System (INIS)

    Auterinen, Iiro; Salmenhaara, Seppo

    2008-01-01

    FiR 1 (TRIGA Mark II, 250 kW) has an important international role in the development of boron neutron capture therapy (BNCT) for cancer. The safety and efficacy of BNCT is studied for several different cancers: - primary glioblastoma, a highly malignant brain tumour (since 1999); - recurrent glioblastoma or anaplastic astrocytoma (since 2001); - recurrent inoperable head and neck carcinoma (since 2003). It is one of the few facilities in the world providing this kind of treatments. The successes in the BNCT development have now created a demand for these treatments, although they are given on an experimental basis. Well over 100 patients treated now since May 1999: - at least 1 patient irradiation / week, often 2 (Tuesday and Thursday) - patients are referred to BNCT-treatments from several hospitals, also outside research protocols; - the hospitals pay for the treatment. The FiR 1 reactor has proven to be a reliable neutron source for the BNCT treatments; no patient irradiations have been cancelled because of a failure of the reactor. The BNCT facility has become a center of extensive academic research especially in medical physics. Nuclear education and training continue to play also a role at FiR 1 in the form of university courses and training of nuclear industry personnel. FiR 1 is one of the two sources in Scandinavia for short lived radioisotopes used in tracer studies in industry. The main isotope produced is Br-82 in the form of either KBr or ethylene bromide. Other typical isotopes are Na-24, Ar-41, La-140. The isotopes are used mainly in tracer studies in industry (Indmeas Inc., Finland). Typical activity of one irradiated Br-sample is 20 - 80 GBq; total activity produced in one year is over 3 TBq; the reactor operating time needed for the isotope production is one or two days per week. Accelerator based neutron sources are developed for BNCT. The prospect is that when BNCT will achieve a status of a fully accepted and efficient treatment modality for

  9. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  10. Chairman's report. Report on the IEA round table on information exchange and co-operation in R and D

    International Nuclear Information System (INIS)

    Doucet, G.

    1997-01-01

    In contrast to the parallel Workshops, the Round Table was designed to stimulate simultaneous discussion among panelists and interaction with the audience. The task of the Round Table and Information Exchange and Co-operation in R and D was to answer six key questions: what are then more recent prospects or opportunities for natural gas utilisation which justify major commitments to information exchange and R and D? How have government social or economic goals affected funding for R and D in North America, Europe and Asia? Is the move to energy service and, in some key markets, deregulation forcing natural gas companies to reassess private commitments to R and D? How well do natural gas companies or centres of excellence around the world exchange information and promote technology transfer compared with coal and electricity interests? What is the future role of governments, universities, laboratories and international agencies like IEA to eliminate duplication and to foster funding partnerships? Are there useful models of information exchange using state-of-the-art electronic data which optimise linkages among key production and consumption markets? (R.P.)

  11. Applications of neutron activation analysis technique in the IPR-R1 research reactor

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Mansur, N.

    1986-01-01

    A review is made of the neutron activation analysis technique used in the IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear - NUCLEBRAS. Some characteristics of the method are described, types of samples and elements analyzed are also mentioned. (Author) [pt

  12. Thermal hydraulic and neutron kinetic coupled simulation of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Silva, Clarysson A.M. da; Veloso, Maria Auxiliadora F.; Soares, Humbero V., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: betovitor@ig.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq Rede), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The nuclear industry and the scientific community have turned the attention for the development of coupled 3D neutron kinetics (NK) and thermal-hydraulic (TH) system codes to investigate specific nuclear reactor transients. Improving in theoretical investigations of complex phenomena in nuclear reactor technology have been increased thanks to numerical methods and computational resources incorporated in nuclear codes. This paper presents a model for the IPR-R1 TRIGA research reactor using the RELAP5-3D 3.0 code. The development and the assessment of the thermal-hydraulic RELAP5 code model for the IPR-R1 have been validated for steady state and transient situations and the results were published in preceding works. Results of RELAP5-3D steady state and a transient case presented in this paper show good agreement with experimental data, validating then this model for point kinetic calculations. To supply adequate cross sections to the NK code, the WIMSD5 is being used. First results of steady state calculation using the 3D neutron modeling are being presented in this paper. (author)

  13. The history of the IEA volume II: major policies and actions

    International Nuclear Information System (INIS)

    Scott, R.

    1995-01-01

    Volume II of the History of the International Energy Agency (IEA) continues the story which began with the Origins and Structure of the Agency in Volume I. After examining the industrial countries'energy policies leading up to the 1973-1974 crisis, the current Volume focuses on the new policies adopted in the IEA during its first twenty years.The first part of this book deals with a section on 'Energy Policy Origins of the 1973-1974 Oil Supply Vulnerability : The Optimistic-Passive Approach to Oil Policy'. The main events and developments leading up to the crisis are briefly outlined together with a short presentation of the policy views and critical conclusions that were made on that situation by some of the most knowledgeable oil specialists of the period. The second part surveys IEA oil security, beginning with the oil Emergency Sharing System. The IAE's long-term policies for reducing its Members'dependence on imported oil are the subject of the third part. In this part is described the development of some of the leading IEA work in the field of energy and the environment, the Agency's far-reaching reviews of Members'policies in this sector and a discussion of the 'free markets' policy and of the IEA Shared Goals of 1993. The fourth part deals with the still longer-term Energy Research and Development in the IEA and is a review of the internal organization of IEA work in the R and D field. The fifth part follows with a discussion of the Oil Market policies and practices of the Agency, where the main and durable goals are 'transparency and information dissemination'. The last part addresses the Agency's policies and actions with respect to Co-operation with Non-Member Countries. Then, it takes up Members'policies and activities in connection with the oil producer and consumer country dialogue of 1976-1977 and outlines its disappointing outcome. (O.L.). 2 figs., 13 tabs

  14. Current activities at the FiR 1 TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, Seppo

    2002-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The epithermal neutrons needed for the irradiation of brain tumor patients are produced from the fast fission neutrons by a moderator block consisting of Al+AlF 3 (FLUENTAL), which showed to be the optimum material for this purpose. Twenty-one patients have been treated since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. In the near future the back end solutions of the spent fuel management will have a very important role in our activities. The Finnish Parliament ratified in May 2001 the Decision in Principle on the final disposal facility for spent fuel in Olkiluoto, on the western coast of Finland. There is a special condition in our operating license. We have now about two years' time to achieve a binding agreement between VTT and the Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel. If this will not happen, we have to make the agreement with the USDOE with the well-known time limits. At the moment it seems to be reasonable to prepare for both spent fuel management possibilities: the domestic final disposal and the return to the USA offered by USDOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will determine, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNC treatments will cover

  15. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gual, Maritza R., E-mail: mrgual@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, InSTEC, Avenida Salvador Allende y Luaces, Quinta de Los Molinos, Plaza de la Revolucion, Havana, AP 6163 (Cuba); Milian, Felix M. [Universidade Estadual de Santa Cruz, UESC (Brazil); Deppman, Airton [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, Travessa R, no. 187, Ciudade Universitaria, Butanta, CEP 05508-900, Sao Paulo (Brazil); Coelho, Paulo R.P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2011-02-15

    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation.

  16. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor; Investigacao experimental da distribuicao de temperaturas no reator nuclear de pesquisa TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Zacarias

    2005-07-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  17. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  18. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997

  19. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia; Diseno de los circuitos de la logica de actuacion del sistema de proteccion del reactor nuclear IAN-R1 de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E., E-mail: joseluis.gonzalez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  20. 25th birthday of the first criticality of IPR-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    Tofani, P.C.; Stasiulevicius, R.; Roedel, G.

    1988-01-01

    The historical evolution of IPR-R1 research reactor of Instituto de Pesquisas Radioativas-Nuclebras, since the data of its first criticality, is presented. The modifications and the main activities carried out, are presented. (M.C.K.) [pt

  1. Proceedings of the IEA-technical workshop on the test cell system for an international fusion materials irradiation facility, Karlsruhe, Germany, July 3-6, 1995. IEA-implementing agreement for a programme of research and development on fusion materials

    International Nuclear Information System (INIS)

    Moeslang, A.; Lindau, R.

    1995-09-01

    After a Conceptual Design Activity (CDA) study on an International Fusion Material Irradiation Facility (IFMIF) has been launched under the auspices of the IEA, working groups and relevant tasks have been defined and agreed in an IEA-workshop that was held September 26-29 1994 at Karlsruhe. For the Test Cell System 11 tasks were identified which can be grouped into the three major fields neutronics, test matrix/users and test cell engineering. In order to discuss recently achieved results and to coordinate necessary activities for an effective design integration, a technical workshop on the Test Cell System was initiated. This workshop was organized on July 3-6 1995 by the Institute for Materials Research I at the Forschungszentrum Karlsruhe and attended by 20 specialists working in the fields neutronics, fusion materials R and D and test cell engineering in the European Union, Japan, and the United States of America. The presentations and discussions during this workshop have shown together with the elaborated lists of action items, that has been achieved in all three fields, and that from the future IFMIF experimental program for a number of materials a database covering widerspread loading conditions up to DEMO-reactor relevant end-of-life damage levels can be expected. (orig.)

  2. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E.

    2014-10-01

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  3. Gas Emergency Policy: Where do IEA Countries Stand?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Natural gas is of increasing importance in the energy mix of IEA Member countries. And yet this growing reliance on natural gas has been coupled with an increased risk of gas disruptions in recent years. Gas security is now an important policy concern for many IEA Member countries, and the IEA has sought to develop its expertise and analysis in this field. This Working Paper looks at the possible remedies that are available for dealing with gas security concerns, and takes stock of developments in gas emergency policy in IEA Member countries.

  4. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  5. Development of a digital card to simulate period transients in research reactors; Desenvolvimento de um cartao digital para simulacao da variacao do periodo em reatores de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Masotti, Paulo Henrique Ferraz

    1999-07-01

    This work presents the development of a card to be used in a 'slot' of a micro-computer for evaluation of a nuclear channel used to monitor the start up of nuclear reactors. The results of the bench tests showed good linearity and 2% error deviation in the entire range of operation. Fields tests, performed with the start up channel of IEA-R1 research reactor showed that the card is an excellent device to verify the performance of the channel during steady state, and transient conditions. (author)

  6. Calculations and selection of a TRIGA core for the Nuclear Reactor IAN-R1

    International Nuclear Information System (INIS)

    Castiblanco, L.A.; Sarta, J.A.

    1997-01-01

    The Reactor Group used the code WIMS reduced to five groups of energy, together with the code CITATION, and evaluated four configurations for a core, according to the grid actually installed. The four configurations were taken from the two proposals presented to the Instituto de Ciencias Nucleares y Energias Alternativas by General Atomics Company. In this paper, the Authors selected the best configuration according to the performance of flux distribution and excess reactivity, for a TRIGA core to be installed in the Nuclear Reactor IAN-R1

  7. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection; Avaliacao de integridade de revestimentos de combustiveis de reatores de pesquisa e teste de materiais utilizando o ensaio de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete Anderson de

    2004-07-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  8. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  9. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  10. The Swedish Zero Power Reactor R0

    International Nuclear Information System (INIS)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-01

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of ± 0. 1 mm

  11. Thermal neutron flux distribution in the ET R R-1 reactor core as experimentally measured and theoretically calculated by the code triton

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.

  12. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  13. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements; Calculos neutronicos, termo-hidraulicos e de seguranca de um dispositivo para Irradiacao de miniplacas (DIM) de elementos combustiveis tipo dispersao

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges

    2010-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}- Al dispersion fuels, LEU type (19.75 % {sup 235}U) with uranium densities of, respectively, 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  14. Energy policies of IEA countries: 1994 review

    International Nuclear Information System (INIS)

    1995-01-01

    This 1994 edition contributes to the IEA's on-going analysis of countries'energy policies and market developments. it reviews recent trends and developments in energy demand and supply, efficiency, technology and environment. This year's Energy Policies includes: - critical reviews of all 23 IEA Member countries, including in-depth reviews of Finland, Ireland, Italy, Japan, Luxembourg and Switzerland; - a synthesis report highlighting major energy policy developments and market trends in IEA Member countries and an overview of significant energy developments elsewhere in the world; -an analysis of trends in key energy indicators over a twenty year period. (authors)

  15. Neutrons characterization of the nuclear reactor Ian-R1 of Colombia; Caracterizacion de los neutrones del reactor nuclear IAN-R1 de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez P, L. X.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Carretera Central del Norte Km. 1, Via Paipa, 150003 Tunja, Boyaca (Colombia); Vega C, H. R., E-mail: s.agustin.martinez@uptc.edu.co [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of Monte Carlo methods, with the code MCNPX, the neutron characteristics of the research nuclear reactor Ian-R1 of Colombia, in power off but with the neutrons source in their start position, have been valued. The neutrons spectra, the total flow and their average power were calculated in the irradiation spaces inside the graphite reflector, as well as in the cells with air. Also the spectra, the total flow and the absorbed dose were calculated in several places distributed along the radial shaft inside the water moderator. The neutrons total flow was also considered to the long of the axial shaft. The characteristics of the neutrons spectra vary depending on their position regarding the source and the material that surrounds to the cell where the calculation was made. (Author)

  16. Real time monitoring system of the operation variables of the TRIGA IPR-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Mesquita, Amir Zacarias

    2007-01-01

    During the last two years all the operation parameters of the TRIGA IPR-R1 were monitored and real time indicated bu the data acquisition system developed for the reactor. All the information were stored on a rigid disk, at the collection system computer, leaving the information on the reactor performance and behaviour available for consultation in a chronological order. The data acquisition program has been updated and new reactor operation parameters were included for increasing the investigation and experiments possibilities. The register of reactor operation variables are important for the immediate or subsequent safety analyses for reporting the reactor operations to the external organizations. This data acquisition satisfy the IAEA recommendations. (author)

  17. Oil supply security: the emergency response potential of IEA countries

    International Nuclear Information System (INIS)

    1995-01-01

    This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs

  18. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  19. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  20. The IPR-R1 TRIGA Mark I Reactor in 39 years: Operations and general improvements

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Prado Fernandes, Marcio; Oliveira, Paulo Fernando; Alves de Amorim, Valter

    1999-01-01

    The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960. Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 kW, a new control rod mechanism, an aluminum tank for the reactor pool, an optimization in the pneumatic system, a new reactor control console and a general remodeling of the reactor laboratory were some of the improvements added. To prevent and mitigate the ageing effects, the reactor operation personnel is starting a program to minimize future operation problems. This paper describes the improvements made, the results obtained during the past 39 years, and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe work. (author)

  1. Thermal power calibrations of the IPR-R1 TRIGA reactor by the calorimetric and the heat balance methods

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Souza, Rose Mary Gomes do Prado

    2009-01-01

    Since the first nuclear reactor was built, a number of methodological variations have been evolved for the calibration of the reactor thermal power. Power monitoring of reactors is done by means of neutronic instruments, but its calibration is always done by thermal procedures. The purpose of this paper is to present the results of the thermal power calibration carried out on March 5th, 2009 in the IPR-R1 TRIGA reactor. It was used two procedures: the calorimetric and heat balance methods. The calorimetric procedure was done with the reactor operating at a constant power, with primary cooling system switched off. The rate of temperature rise of the water was recorded. The reactor power is calculate as a function of the temperature-rise rate and the system heat capacity constant. The heat balance procedure consists in the steady-state energy balance of the primary cooling loop of the reactor. For this balance, the inlet and outlet temperatures and the water flow in the primary cooling loop were measured. The heat transferred through the primary loop was added to the heat leakage from the reactor pool. The calorimetric method calibration presented a large uncertainty. The main source of error was the determination of the heat content of the system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the water temperature. The heat balance calibration in the primary loop is the standard procedure for calibrating the power of the IPR-R1 TRIGA nuclear reactor. (author))

  2. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  3. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  4. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S.

    2011-01-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched ( 235 U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  5. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  6. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-UO2 configuration.

    Energy Technology Data Exchange (ETDEWEB)

    Klann, R. T.; Perret, G.; Nuclear Engineering Division

    2007-10-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R1-UO2 core configuration were completed. The reactor model was generated using the REBUS code developed at Argonne National Laboratory. The calculations are based on the specifications for fabrication, so they are considered preliminary until sampling and analysis have been completed on the fabricated samples. The estimates indicate a range of reactivity effect from -22 pcm to +25 pcm compared to the natural U sample.

  7. Comparison of low enriched uranium (UAlx-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G.; Nishiyama, Pedro J.B. de O.

    2011-01-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium ( 235 U) UAl x dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  8. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  9. Study of neutronic flux in IPR-R1 reactor with MCNPX; Estudo do fluxo neutronico no reator IPR-R1 com o MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.A.S.; Castrillo, L.S., E-mail: julio.angelo@poli.br, E-mail: lazara@poli.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica; Oliveira, R.M.B.M., E-mail: romero.matias@educacao.pe.gov.br [Secretaria Executiva de Educacao do Estado de Pernambuco (SEE), Recife, PE (Brazil)

    2016-11-01

    MCNPX computer code, one of the latest versions of code MCNP transport were used to study the flux distribution and its neutronic fluence as a function of energy in two research reactor irradiation IPR-R1. The model developed was validated with research conducted by Dalle (2005). Initially, in the simulation is considered fresh fuel whose core configuration contained three neutron rods control, being two of them 100% ejected while the other inserted 3,1 x 10{sup -1} m deep, as adopted in the literature situation. The neutron source used was the critical type, through KSRC card. The results of the neutron flow and neutronic fluence were obtained in the central tube and the turntable on a range of energy spectrum that ranged from 1.0 x 10{sup -9} MeV to 10 MeV, showing good correlations with the model used in validation. Finally, a hypothetical situation wherein the three reactor control rods are ejected simultaneously was simulated. The simulation results showed an increase in the neutron flux of 7% in the central tube and 5% on the turntable.

  10. Experimental distribution of coolant in the IPR-R1 Triga nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z., E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN/RJ), Rio de Janeiro, RJ (Brazil); Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Reis, Patricia A.L., E-mail: claubia@nuclear.ufmg.b, E-mail: dora@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    The IPR-R1 is a typical TRIGA Mark I light-water and open pool type reactor. The core has an annular configuration of six rings and is cooled by natural circulation. The core coolant channels extend from the bottom grid plate to the top grid plate. The cooling water flows through the holes in the bottom grid plate, passes through the lower unheated region of the element, flows upwards through the active region, passes through the upper unheated region, and finally leaves the channel through the differential area between a triangular spacer block on the top of the fuel element and a round hole in the grid. Direct measurement of the flow rate in a coolant channel is difficult because of the bulky size and low accuracy of flow meters. The flow rate through the channel may be determined indirectly from the heat balance across the channel using measurements of the water inlet and outlet temperatures. This paper presents the experiments performed in the IPR-R1 reactor to monitoring some thermo-hydraulic parameters in the core coolant channels, such as: the radial and axial temperature profile, temperature, velocity, mass flow rate, mass flux and Reynolds's number. Some results were compared with theoretical predictions, as it was expected the variables follow the power distribution (or neutron flux) in the core. (author)

  11. Experimental distribution of coolant in the IPR-R1 Triga nuclear reactor core

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Reis, Patricia A.L.

    2011-01-01

    The IPR-R1 is a typical TRIGA Mark I light-water and open pool type reactor. The core has an annular configuration of six rings and is cooled by natural circulation. The core coolant channels extend from the bottom grid plate to the top grid plate. The cooling water flows through the holes in the bottom grid plate, passes through the lower unheated region of the element, flows upwards through the active region, passes through the upper unheated region, and finally leaves the channel through the differential area between a triangular spacer block on the top of the fuel element and a round hole in the grid. Direct measurement of the flow rate in a coolant channel is difficult because of the bulky size and low accuracy of flow meters. The flow rate through the channel may be determined indirectly from the heat balance across the channel using measurements of the water inlet and outlet temperatures. This paper presents the experiments performed in the IPR-R1 reactor to monitoring some thermo-hydraulic parameters in the core coolant channels, such as: the radial and axial temperature profile, temperature, velocity, mass flow rate, mass flux and Reynolds's number. Some results were compared with theoretical predictions, as it was expected the variables follow the power distribution (or neutron flux) in the core. (author)

  12. Feasibility study of application of Prompt Gamma Neutron Activation Analysis (PGNAA) method in TRIGA IPR-R1 reactor; Estudo da viabilidade de aplicação do método Prompt Gamma Neutron Activation Analysis (PGNAA) no reator TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Bruno Teixeira

    2016-07-01

    The TRIGA Mark I IPR-R1 research reactor is located at Nuclear Technology Development Centre (CDTN), Brazilian Commission for Nuclear Energy (CNEN), in Belo Horizonte, Brazil. The reactor operates at 100 kW but the core configuration allows the increasing of the power up to 250 kW. It has been applied research, training and radioisotopes production. The establishment of the Prompt Gamma Neutron Activation Analysis (PGNAA) method at the TRIGA IPR-R1 reactor will significantly increase the types of matrices analysed as well as the number of chemical elements. Additionally it will complement the neutron activation analysis. This work presents a proposed design of a PGNAA facility to be installed at the TRIGA IPR-R1. The proposed design is based on a tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room’s level where shall be located the rack containing the set sample/detector/shielding. Thus, the aim of this study is to verify the feasibility to establish the PGNAA method in IPR-R1 through theoretical study applying the Monte Carlo code. The feasibility of establishing the PGAA method at the IPR-R1 installations was evaluated through of the calculations of neutron flux, radioactive capture reaction rates and detection limits for some isotopes. According to the obtained results, it can be concluded that is possible to establish the PGAA method at the IPR-R1 reactor, even with some restrictions in its theoretical design calculated by MCNP. (author)

  13. Thermal neutron flux measurements in the rotary specimen rack of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G. do Prado; Rodrigues, Rogério R.; Souza, Luiz Claudio A., E-mail: souzarm@cdtn.br, E-mail: rrr@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The thermal neutron flux in the rotary specimen rack of the IPR-R1 TRIGA reactor at the Nuclear Technology Development Center (CDTN), Belo Horizonte, Brazil, has been measured by the neutron activation method, using bare and cadmium covered gold foils. Those foils were irradiated in the rotary specimen rack with the reactor at 100 kW. The reactor core configuration has 63 fuel elements, composed of 59 original aluminum-clad elements and 4 stainless steel-clad fuel elements. The gamma activities of the foils were measured using Ge spectrometer. The perturbations of the thermal neutron flux caused by the introduction of an absorbing foil into the medium were considered in order to obtain accurate determination of the flux. The thermal neutron flux obtained was 7.4 x 10{sup 11} n.cm{sup -2}.s{sup -1}. (author)

  14. Energy policies of IEA countries 2003. 2003 review

    International Nuclear Information System (INIS)

    2003-01-01

    This volume contains an analysis of developments in energy policies in the Member countries of the International Energy Agency. It features an overview of major trends in the energy markets, notably the renewed interest in energy security on the part of policy-makers. The study describes how, during the period before and during the war in Iraq, the IEA successfully worked to secure oil supply. 2003 was also a year when growing gas demand and rising import dependency in most IEA Member countries obliged energy policy makers to look at the longer term issue of security of gas supply. In addition to these external developments, an internal dimension of energy security arose in the context of electricity and gas market reform. The book also describes the efforts by countries having ratified the Kyoto Protocol to implement the agreements and the trend of energy R and D policies, as well as developments in energy security and energy market reform in major non-OECD countries. It includes: summaries of the in-depth reviews of Austria, Hungary, Italy, Ireland, Japan and Switzerland conducted from October 2002 to June 2003. The full reviews are published separately

  15. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched (<20% {sup 235}U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  16. Institutional Support : Institute for Economic Affairs (IEA-Kenya ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IEA-Kenya is an independent organization that uses research to inform its policy advocacy work, relying on a small team of in-house staff and a large set of external ... This grant from IDRC's Think Tank Initiative (TTI) will allow IEA-Kenya to strengthen its governance structure, managerial capacity, research skills and staff ...

  17. Institutional Support : Institute of Economic Affairs (IEA-Ghana ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Institute of Economic Affairs in Ghana (IEA-Ghana) was founded in 1989 during the twilight of the military dictatorship. At that time there were no independent policy centres in the country and hence little public policy dialogue. Still, IEA-Ghana succeeded in creating a platform for debate and made a strong case for major ...

  18. The IEA Model of Short-term Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Ensuring energy security has been at the centre of the IEA mission since its inception, following the oil crises of the early 1970s. While the security of oil supplies remains important, contemporary energy security policies must address all energy sources and cover a comprehensive range of natural, economic and political risks that affect energy sources, infrastructures and services. In response to this challenge, the IEA is currently developing a Model Of Short-term Energy Security (MOSES) to evaluate the energy security risks and resilience capacities of its member countries. The current version of MOSES covers short-term security of supply for primary energy sources and secondary fuels among IEA countries. It also lays the foundation for analysis of vulnerabilities of electricity and end-use energy sectors. MOSES contains a novel approach to analysing energy security, which can be used to identify energy security priorities, as a starting point for national energy security assessments and to track the evolution of a country's energy security profile. By grouping together countries with similar 'energy security profiles', MOSES depicts the energy security landscape of IEA countries. By extending the MOSES methodology to electricity security and energy services in the future, the IEA aims to develop a comprehensive policy-relevant perspective on global energy security. This Working Paper is intended for readers who wish to explore the MOSES methodology in depth; there is also a brochure which provides an overview of the analysis and results.

  19. The future of the IPR-R1 TRIGA MARK I reactor after 48 years operation

    International Nuclear Information System (INIS)

    Maretti, Fausto Junior; Sette Camara, Luiz Otavio I.; Oliveira, Paulo Fernando

    2008-01-01

    The TRIGA Mark I IPR-R1 Reactor operates in the Nuclear Technology Development Center/ Brazilian Committion for Nuclear Energy (CDTN/CNEN), originally Institute of Radioactive Researches, in Belo Horizonte, Minas Gerais, since November 6, 1960. Initially it operated for isotope production for different uses, being later used in wide scale for another purposes as analyses for activation with neutrons and training of nuclear power plants operators. Dozens of degree theses were also developed with the use of the reactor. Along the years, several improvements were introduced in the reactor and its auxiliary systems, with the purpose to provide better use of the facilities and with the objective to increase the safety in the operation. The reactor is ready right now to operate at 250 kW, and for sure the nuclear applications programmed will be improved. The Operation Manual and the Safety Analysis report were already modified, as well as the Emergency Plan and the relative procedures to the same. After the tests at the end of 2008, the reactor will already be operating in the new power. This work presents a description of the several accomplishments of the last years and comments about the possibility of new uses for the reactor in the several areas of nuclear applications and some of the experiments and tests results during the upgrading program. (authors)

  20. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina [Bioenergy 2020+ GmbH, Graz (Austria); Ludwiczek, Nikolaus [Bioenergy 2020+ GmbH, Graz (Austria); Pointner, Christian [Bioenergy 2020+ GmbH, Graz (Austria); Verma, Vijay Kumar [Bioenergy 2020+ GmbH, Graz (Austria)

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented. All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.

  1. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1

    International Nuclear Information System (INIS)

    Cavalieri, Tassio Antonio

    2013-01-01

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of 6 Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  2. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  3. IEA FBC Biannual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Matinlinna, J.

    1995-12-31

    This publication is the 14th report (biannual, 1993-1994) of the Executive Committee of the International Energy Agency (IEA) Implement Agreement for Co-operation in the Filed of Fluidized Bed Conversion of Fuels Applied to Clean Energy Production. It has been submitted to IEA in accordance with the provisions of the agreement. This report is edited by Aabo Akademi University, Finland, which has been the operating agent during 1994. The report includes contributions from all the participating member countries. During this period Aabo Akademi University received additional financial support from the Combustion and Gasification Programme LIEKKI 2 of Finland

  4. Water chemical control of the TRIGA IPR-R1 reactor primary cooling system

    International Nuclear Information System (INIS)

    Auler, Lucia M.L.A; Chaves, Renata D.A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.; Oliveira, Paulo F.; Kastner, Geraldo F.; Damazio, Ilza; Fagundes, Oliene dos R.; Cintra, Maria Olivia C.; Andrade, Geraldo V. de; Amaral, Angela M.; Franco, Milton B.; Fortes, Flavio; Gomes, Nilton Carlos; Vidal, Andrea; Maretti Junior, Fausto; Knupp, Eliana A.N.; Souza, Wagner de; Guedes, Joao B.; Furtado, Renato C.S.

    2013-01-01

    The TRIGA Mark I IPR-R1 reactor located at CDTN/CNEN has been in operation and contributed to research and with services to society since 1960. Is has been used in several activities such as nuclear power plant operation, graduate and post-graduate training courses, isotope production, and as an analytical irradiation tool of different types of samples. Among the several structural and operational safety requirements is the chemical quality control of the primary circuit cooling water. The aim of this work was to check the cooling water quality from the pool reactor. A water sampling plan was proposed (May, 2011 - June, 2012) and presents the results obtained in this period. The natural radioactivity level as gross alpha and gross beta activity and other chemical parameters (pH and electric conductivity) of the samples were analyzed. Some instrumental techniques were used: potentiometric methods (pH), conductometric methods (electrical conductivity, EC) and gross α and gross β proportional counting system). (author)

  5. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2013-01-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  6. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.br, E-mail: amir@cdtn.br, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  7. IEA policies-G8 recommendations and an afterwards

    International Nuclear Information System (INIS)

    Onoda, Takao

    2009-01-01

    In response to threats posed to the future supply of energy and to the environment, the G8 leaders, in Gleneagles, UK in 2005, agreed to an initiative called the Gleneagles Plan of Action (GPOA) which addresses climate change, clean energy and sustainable development. In the GPOA, G8 leaders pledged to encourage the development of cleaner, more efficient and lower-emitting vehicles, and to promote their deployment by, among other means, asking the IEA to review existing standards and codes for vehicle efficiency and to identify best practices. In order to properly response to the above-mentioned requests from G8 leaders, the IEA has launched, among other activities, study on policies for 'transforming the way we use energy' focusing on end-use efficiency including the one in transport sector and made a comprehensive response to the GPOA at the 2008 G8 Summit Meeting in Japan with 25 recommendations on energy efficiency. Regarding these recommendations, the G8 leaders have proclaimed, in the G8 Hokkaido Toyako Summit Leaders Declaration, that they would maximize implementation of the IEA's 25 recommendations. This paper summarizes the IEA activities in transport sector regarding the GPOA and their findings and recommendations.

  8. Public and private energy RTD expenditures in Belgium, Luxembourg and the Netherlands. A pilot study on behalf of SenterNovem based on an IEA format

    International Nuclear Information System (INIS)

    Lako, P.; Ros, M.E.

    2007-07-01

    This study aims to present a broad view of energy RTD expenditures of Belgium, Luxembourg, and the Netherlands, in the public domain and by private enterprises. Data is provided as much as possible by disaggregating into a format of the IEA (IEA code). IEA data serve as the starting point for data collection. The main task is to fill in the gaps in the database, viz.: Completing the IEA database for Belgium with regard to public energy RTD; Starting with a database of public energy RTD for Luxembourg; Collecting, retrieving, and analysing private energy RTD data for the Netherlands. The latter data, based on a 'bottom-up' approach, are compared to recent data of SenterNovem based on an R and D subsidy scheme in the Netherlands. The private energy RTD expenditures from both sources (the bottom-up approach in this study and the data of SenterNovem) are combined to one database of private energy RTD that may be used for, e.g., the IEA

  9. Comparison of low enriched uranium (UAl{sub x}-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium (<20% {sup 235}U) UAl{sub x} dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  10. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  11. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  12. Data acquisition and signal processing system for IPR R1 TRIGA-Mark I nuclear research reactor of CDTN

    International Nuclear Information System (INIS)

    Mesquita, A.Z.; Maretti, F. Jr.; Rezende, H.C.; Tambourgi, E.B.

    2004-01-01

    The TRIGA IPR-R1 Nuclear Research Reactor, located at the Nuclear Technology Development Center (CDTN/CNEN) in Belo Horizonte, Brazil, is being operated since 44 years ago. The main operational parameters were monitored by analog recorders and counters located in the reactor control console. The reactor operators registered the most important operational parameters and data in the reactor logbook. This process is quite useful, but it can involve some human errors. It is also impossible for the operators to take notes of all variables involving the process mainly during fast power transients in some operations. A PC-based data acquisition was developed for the reactor that allows online monitoring, through graphic interfaces, and shows operational parameters evolution to the operators. Some parameters that were not measured, like the power and the coolant flow rate at the primary loop, are monitored now in the computer video monitor. The developed system allows measuring out all parameters in a frequency up to 1 kHz. These data is also recorded in text files available for consults and analysis. (author)

  13. Neutrons characterization of the nuclear reactor Ian-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez P, L. X.; Martinez O, S. A.; Vega C, H. R.

    2014-08-01

    By means of Monte Carlo methods, with the code MCNPX, the neutron characteristics of the research nuclear reactor Ian-R1 of Colombia, in power off but with the neutrons source in their start position, have been valued. The neutrons spectra, the total flow and their average power were calculated in the irradiation spaces inside the graphite reflector, as well as in the cells with air. Also the spectra, the total flow and the absorbed dose were calculated in several places distributed along the radial shaft inside the water moderator. The neutrons total flow was also considered to the long of the axial shaft. The characteristics of the neutrons spectra vary depending on their position regarding the source and the material that surrounds to the cell where the calculation was made. (Author)

  14. A research reactor simulator for operators training and teaching

    International Nuclear Information System (INIS)

    De Carvalho, R. P.; Maiorino, J. R.

    2006-01-01

    This work describes a training simulator of Research Reactors (RR). The simulator is an interactive tool for teaching and operator training of the bases of the RR operation, reactor physics and thermal hydraulics. The Brazilian IEA-R1 RR was taken as the reference (default configuration). The implementation of the simulator consists of the modeling of the process and system (neutronics, thermal hydraulics), its numerical solution, and the implementation of the man-machine interface through visual interactive screens. The point kinetics model was used for the nuclear process and the heat and mass conservation models were used for the thermal hydraulic feed back in the average core channel. The heat exchanger and cooling tower were also modeled. The main systems were: the reactivity control system, including the automatic control, and the primary and secondary coolant systems. The Visual C++ was used to codes and graphics lay-outs. The simulator is to be used in a PC with Windows XP system. The simulator allows simulation in real time of start up, power maneuver, and shut down. (authors)

  15. Qualification of JEFF3.1.1 library for high conversion reactor calculations using the ERASME/R experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J. F.; Noguere, G.; Peneliau, Y.; Santamarina, A. [CEA, DEN, DER/SPRC/LEPh, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    With its low CO{sub 2} production, Nuclear Energy appears to be an efficient solution to the global warming due to green-house effect. However, current LWR reactors are poor uranium users and, pending the development of Fast Neutron Reactors, alternative concepts of PWR with higher conversion ratio (HCPWR) are being studied again at CEA, first studies dating from the middle 80's. In these French designs, low moderation ratio has been performed by tightening the lattice pitch, achieving a conversion ratio of 0.8-0.9 with a MOX fuel coming from PWR UOX recycling. Theses HCPWRs are characterized by a harder neutron spectrum and the calculation uncertainties on the fundamental neutronics parameters are increased by a factor 3 regarding a standard PWR lattice, due to the major contribution of the Plutonium isotopes and of the epithermal energy range to the reaction rates. In order to reduce these uncertainties, a 3-year experimental validation program called ERASME has been performed by CEA from 1984 to 1986 in the EOLE reactor. Monte Carlo analysis of the ERASME/R experiments with the Monte Carlo code TRIPOLI4 allowed the qualification of the recommended JEFF.3.1.1 library for major neutronics parameters. K{sub eff} of the MOX under-moderated lattice is over-predicted by 440 {+-} 830 pcm (2{sigma}); the conversion ratio, indicator of the good use of uranium, is also slightly over-predicted: 2 % {+-} 4 % (2{sigma}) and the same for B4C absorber rods worth and soluble boron worth, over-predicted by 2 %, both in the 2 standard deviations range. The radial fission maps of heterogeneities (water-holes, B4C and fertile rods) are well reproduced: maximal (C-E)/E dispersion is 1.3 %, maximal power peak error is 2.7 %. The void reactivity worth is the only parameter poorly calculated with an overprediction of +12.4% {+-} 1.5%. ERASME/R analysis of MOX reactivity, void effect and spectral indexes will contribute to the reevaluation of {sup 241}Am and Plutonium isotopes

  16. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  17. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  18. Dispositivo de posicionamiento de muestras biológicas para su irradiación en un canal radial de un reactor nuclear // Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    Directory of Open Access Journals (Sweden)

    Maritza Rodríguez - Gual

    2010-05-01

    for morethan five years at the IEA-R1 Brazilian research reactor according to the solicited requirements thedevice. The designed device increases considerably the type of studies can be conducted in thisreactor. Its practical application in research taking place in that facility, in the field of radiobiology anddosimetry, and so on is immediate.Key words: research nuclear reactor, sample positioning device, radial channel, appropriate technology.canal radial, tecnología apropiada. del reactor nuclear de investigaciones brasileño IEA-R1 de acuerdo a los requisitos solicitados. El dispositivo construido incrementó los tipos de estudios quepueden ser realizados en el reactor. Su aplicación práctica en el campo de la radiobiología y ladosimetría es inmediata.

  19. Development in fiscal 1999 of technology to put photovoltaic power generation system into practical use. International cooperation project Collection of information on IEA wind power research and development program; 1999 nendo taiyoko hatsuden systsem jitsuyoka gijutsu kaihatsu kokusai kyoryoku jigyo seika hokokusho. IEA furyoku kenkyu kaihatsu program ni kansuru joho shushu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Participation was taken place in the executive committee for the implementation agreement of the IEA wind power research and development and other task workshops to investigate the status of research and development of wind power generation systems in other countries. The contents of the main activities under the implementation agreement of the IEA wind power research and development include researches on innovative technologies, analysis of the state-of-art wind power technologies, exchange of technological information, and expansion of the cooperation with industries, electric power operators, and non-IEA member countries. The agreement is participated currently by 17 countries and 19 contracted organizations from EC. The participants to the IEA R and D wind implementation agreement are taking activities in the tasks called the annexes. The activities of the annexes include exchange of fundamental technological information, annual generalization of the promotion of wind power energy utilization in the countries participated in the IEA implementation agreement, round-robin tests of windmills, and expansion of the wind characteristics database and the database for field rotor aerodynamics. Publications that have been issued include the 'Annual report', and newsletters issued once to twice annually. (NEDO)

  20. Development in fiscal 1999 of technology to put photovoltaic power generation system into practical use. International cooperation project Collection of information on IEA wind power research and development program; 1999 nendo taiyoko hatsuden systsem jitsuyoka gijutsu kaihatsu kokusai kyoryoku jigyo seika hokokusho. IEA furyoku kenkyu kaihatsu program ni kansuru joho shushu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Participation was taken place in the executive committee for the implementation agreement of the IEA wind power research and development and other task workshops to investigate the status of research and development of wind power generation systems in other countries. The contents of the main activities under the implementation agreement of the IEA wind power research and development include researches on innovative technologies, analysis of the state-of-art wind power technologies, exchange of technological information, and expansion of the cooperation with industries, electric power operators, and non-IEA member countries. The agreement is participated currently by 17 countries and 19 contracted organizations from EC. The participants to the IEA R and D wind implementation agreement are taking activities in the tasks called the annexes. The activities of the annexes include exchange of fundamental technological information, annual generalization of the promotion of wind power energy utilization in the countries participated in the IEA implementation agreement, round-robin tests of windmills, and expansion of the wind characteristics database and the database for field rotor aerodynamics. Publications that have been issued include the 'Annual report', and newsletters issued once to twice annually. (NEDO)

  1. Fiscal 2000 survey report. Survey for verification of new load levelling technique - IEA international joint project (Participation in IEA/DSM task); 2000 nendo fuka heijunka shuho jissho chosa hokokusho. IEA kokusai kyoryoku jigyo 'IEA/DSM task eno sanka ni tsuite'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Japan participated in IEA/DSM (International Energy Agency/demand side management) Task X (performance contracting) for collecting information on energy service contracting business designed to promote load levelling centered DSM activities on the basis of market principles for achieving efficient operation of facilities. Task X aims to adjust and popularize the energy service contracting business. In the energy service contracting business, the facility related party and the energy service related party work under a contract to enhance efficiency of facility operation, and share the gains between them. In concrete terms, information was collected and exchanged at the 14th and 15th executive committee meeting of IEA/DSM Task X (Turkey in April 2000, Sweden in September 2000); new task preparation conference (Sweden in September 2000); 1st specialist conference (France in February 2001); and 17th annual convention of All-America ESCO (energy service company) Council (U.S. in November 2000). (NEDO)

  2. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  3. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  4. IEA Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Meier, Alan; Runci, Paul J.

    2008-08-05

    This guide presents insights and guidance from DOE’s gathered through longstanding and extensive participation in IEA implementing agreements (IAs) and annexes. Even though DOE has been a key participant in international research activities through the IEA since the 1970s, the experience, knowledge, and institutional memory associated with these activities can be lost or forgotten easily as key DOE managers retire or leave the department. The guide seeks to assemble in a single reference some of the learning that has occurred through participation in IEA IAs as a guide for BTP managers currently responsible for IAs and for those who might consider entering into new IEA activities in the future.

  5. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da

    2002-01-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  6. Danish participation in the IEA solar cell activities

    International Nuclear Information System (INIS)

    1994-05-01

    In the 12-month period 01.05.93 - 30.04.94 the Danish activities in the IEA 'Solar Cell Agreement' consisted in: participation in the Executive Committee (ExCo) and participation in Task 1 'Exchange and Dissemination of Information on PV Power Systems'. ExCo has meetings every half-year and is a coordinating organ for the Agreement. Work on the Task 1 is organized in 4 subtasks: (1) mapping of solar cell activities in the OECD countries and preparation of an IEA handbook on solar cell technology; (2) publishing of a semiannual newsletter about the agreement; (3) an 'executive conference' on solar cell technology and its uses with participation of the decision-makers in respective power industries; (4) information dissemination whenever required. Demonstration projects, like a photovoltaic roof-integrated system connected to the grid. have been implemented. Three larger solar cell projects, subsidized by the EU means, comprehend 'real time monitoring' by a solar system, WHO project 'Solar Energy Applications for Primary Health Care Clinics for Remote Rural Areas' (SAPHIR) and a grid-connected photovoltaic system in a suburb residential settlement. (EG)

  7. IEA Task 24 Solar procurement 2000

    International Nuclear Information System (INIS)

    Ellehauge, K.; Oestergaard, I.; Gramkow, L.

    2002-04-01

    The objective of the project is to develop and improve large procurements of solar heating systems in order to be able to place large orders with manufacturers and suppliers. The project work will be carried out as an international co-operation under IEA Task 24 with the title 'Solar Procurement'. By co-ordinating the effort between the 4-6 participating countries, the objective is to purchase at least 10,000 solar heating systems, of this amount 1,000-2,000 in Denmark. Such large orders make it possible for manufacturers and suppliers to deliver systems considerably cheaper, and it will be possible to develop systems for given specifications on output and efficiency. These co-ordinated large orders are expected to improve the price/efficiency conditions by up to 50%. The so called 'procurement process' (co-ordinated international procurement based on goal-oriented system development in co-operation between customers and suppliers/manufacturers) will in the project be followed up by information/marketing, education, financing schemes, service schemes, quality assurance and technical support. The project is divided into two main areas (IEA subtasks). 1: 'Procurement and Marketing' and 2: 'Creation of Tools'. Denmark has been requested to be the project manager of subtask 2, 'Creation of Tools'. (EHS)

  8. Characterization of film-converter screens systems for neutron radiography; Caracterizacao de sistemas filme-conversor para radiografia com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2002-07-01

    In general a good quality radiography is that one able to furnish high contrast and sharp edge images. Technically 'high contrast' means high capability to discern material thickness and 'sharp edges', high resolution power. In the present work the optimal conditions to obtain neutron radiography images by using the following film-converter screen systems, Kodak-AA/Gd vaporated; Kodak-AA/Gd metallic; Kodak-AA/LiF; Min-R/GdS{sub 2}O{sub 4}, have been determined. The irradiations were performed in a radiographic facility which was designed and constructed by the neutron radiography working group and is installed at the beamhole 08 of the IEA-R1 nuclear research reactor of the IPEN-CNEN/SP. In order to determine such conditions, the start point was to evaluate the neutron exposure interval for which the optical contrast is maximal and so quantify the sensitivity or capability to discern material thickness, as well as the spatial resolution achieved in the radiographic image, for these systems. The best results have been obtained for the Kodak-AA/Gd vaporated system which is able to discern, for example, 0,024 cm of lucite, with a maximal resolution of 22{mu}m. The radiography images presently obtained in IPEN-CNEN/SP have similar quality when compared to the ones from several other research centers, around the world, whose making use of the same film-converter screens systems. (author)

  9. Preliminary analysis of control rod accidents in the CRCN-R1 multipurpose reactor core of Recife in Brazil

    International Nuclear Information System (INIS)

    Souza dos Santos, Rubens; Rubens Maiorino, Jose

    1999-01-01

    The paper shows some results of the neutronic accident analyses arisen by uncontrolled control rod withdrawal, based on the Conceptual Project of the CRCN-R1 MultiPurpose Reactor of Recife. In that reactor, a project of the CNEN/Brazil, under the leadership of the IPEN/Sao Paulo, is verified the thermal hydraulic limits in the reactor core during transients that simulate startup and power operation accidents. It has utilized a computer program that solved the kinetic equations based on multigroup diffusion theory, in our case we have used 4 energy groups, Two-Dimensional X-Y in the space, and 6 groups of delayed neutrons. A simple model of feedback is admitted in the capture and scattering macroscopic cross sections, in the fuel regions, temperature and coolant densities dependents. Based on those models, the results demonstrated that the reactor exhibits good degree of safety. (author)

  10. International Energy Agency's Heat Pump Centre (IEA-HPC) Annual National Team Working Group Meeting

    Science.gov (United States)

    Broders, M. A.

    1992-09-01

    The traveler, serving as Delegate from the United States Advanced Heat Pump National Team, participated in the activities of the fourth IEA-HPC National Team Working Group meeting. Highlights of this meeting included review and discussion of 1992 IEA-HPC activities and accomplishments, introduction of the Switzerland National Team, and development of the 1993 IEA-HPC work program. The traveler also gave a formal presentation about the Development and Activities of the IEA Advanced Heat Pump U.S. National Team.

  11. Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Deppman, Airton; Pinto Coelho, Paulo Rogerio

    2010-01-01

    For the demand of an experimental device for biological samples positioning system for irradiations on a radial channel at the nuclear research reactor in operation was constructed and started up a device for the place and remove of the biological samples from the irradiation channels without interrupting the operation of the reactor. The economical valuations are effected comparing with another type of device with the same functions. This work formed part of an international project between Cuba and Brazil that undertook the study of the induced damages by various types of ionizing radiation in DNA molecules. Was experimentally tested the proposed solution, which demonstrates the practical validity of the device. As a result of the work, the experimental device for biological samples irradiations are installed and operating in the radial beam hole No3(BH3) for more than five years at the IEA-R1 Brazilian research reactor according to the solicited requirements the device. The designed device increases considerably the type of studies can be conducted in this reactor. Its practical application in research taking place in that facility, in the field of radiobiology and dosimetry, and so on is immediate

  12. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  13. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  14. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  15. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  16. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  17. 2006 highlights according to the IEA

    International Nuclear Information System (INIS)

    Lafon, M.

    2007-01-01

    The 2007 natural gas market review of the International energy agency (IEA) is this year subtitled: 'security in a globalizing market to 2015'. The review thus stresses on the 2006 highlights but reinforces the idea already expressed in the 2006 issue that energy security is now an inevitable topic. It offers also a prospective analysis of the natural gas market up to 2015 and devotes a full chapter to LNG development. As a matter of fact, the IEA considers that, from now to 2015, two thirds of the additional gas supplies will be in the form of LNG. The review supplies also some complements about some national markets. The present article reviews the most important points of this analysis. (J.S.)

  18. Summary of IEA PVPS international conference 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report for the International Energy Agency (IEA) summarises the two-day international conference held on Photovoltaic Power Systems (PVPS) by the IEA in 2003 in Osaka, Japan. The aim of this fourth Executive Conference was to present the achievements of this important international co-operation programme and to discuss the future needs for creating sustainable growth and expanding markets for photovoltaic power systems. The conference was attended by 258 participants. During the conference, the future visions for photovoltaics from both country and industry perspectives were presented and discussed. National issues and needs with respect to grid-connected and stand-alone PV systems were discussed. International issues and future visions were examined. Asian countries presented their current status and experience with the market introduction of photovoltaics. Photovoltaics and its opportunities within the framework of international institutions, namely the IEA, the International Finance Corporation (IFC) and the Clean Development Mechanism (CDM) were addressed, as were the needs of the most important markets - namely for distributed grid-connected applications and rural electrification in developing countries. A round-table discussion was also held on the future role and missions of the PVPS programme.

  19. Renewable energy. Market and policy trends in IEA countries

    International Nuclear Information System (INIS)

    2004-01-01

    Renewable energy has received high levels of attention in recent years as an alternative to traditional hydrocarbons. Governments, industry and consumers have adopted and promoted renewable technologies in response to concerns about energy security and the environment, and as a solution to electricity access problems in developing countries. To what degree has renewable energy gained a share in the energy mix? What lessons can be learned from efforts made thus far? Renewable Energy - Market and Policy Trends in IEA Countries reviews the experience of IEA countries after the oil crisis in the 1970's initiated a surge of investments in renewables research and development. While use of renewables has grown rapidly, they still account for only a small portion of the IEA energy mix. Hydropower, bio-energy and geothermal energy are mature technologies that contribute about 5 - 6% to primary energy supply. Solar, wind, and other new renewables have experienced rapid technology development, but as yet they represent only a small share. This work examines policies and measures that have been introduced in IEA countries to increase the cost effective deployment of renewables, reviews the objectives behind these policies, and evaluates the results. The aim is to identify best practices in order to assist governments in making future policy decisions

  20. Partner Country Series: Gas Pricing - China's Challenges and IEA Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    China will play a positive role in the global development of gas, the International Energy Agency’s (IEA) Executive Director, Maria Van der Hoeven has said in Beijing on 11 September, 2012 when launching a new IEA report: Gas Pricing and Regulation, China’s challenges and IEA experiences. In line with its aim to meet growing energy demand while shifting away from coal, China has set an ambitious goal of doubling its use of natural gas from 2011 levels by 2015. Prospects are good for significant new supplies – both domestic and imported, conventional and unconventional – to come online in the medium-term, but notable challenges remain, particularly concerning gas pricing and the institutional and regulatory landscape. While China’s circumstances are, in many respects unique, some current issues are similar to those a number of IEA countries have faced. This report highlights some key challenges China faces in its transition to greater reliance on natural gas, then explores in detail relevant experiences from IEA countries, particularly in the United Kingdom, the Netherlands, and the United States as well as the European Union (EU). Preliminary suggestions about how lessons learned in other countries could be applied to China’s situation are offered as well. The aim of this report is to provide stakeholders in China with a useful reference as they consider decisions about the evolution of the gas sector in their country.

  1. IEA Task 24 Solar procurement 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K.; Oestergaard, I. [Teknologisk Institut, Taastrup. SolEnergiCentret (Denmark); Gramkow, L. [Esbensen, Copenhagen (Denmark)

    2002-04-01

    The objective of the project is to develop and improve large procurements of solar heating systems in order to be able to place large orders with manufacturers and suppliers. The project work will be carried out as an international co-operation under IEA Task 24 with the title 'Solar Procurement'. By co-ordinating the effort between the 4-6 participating countries, the objective is to purchase at least 10,000 solar heating systems, of this amount 1,000-2,000 in Denmark. Such large orders make it possible for manufacturers and suppliers to deliver systems considerably cheaper, and it will be possible to develop systems for given specifications on output and efficiency. These co-ordinated large orders are expected to improve the price/efficiency conditions by up to 50%. The so called 'procurement process' (co-ordinated international procurement based on goal-oriented system development in co-operation between customers and suppliers/manufacturers) will in the project be followed up by information/marketing, education, financing schemes, service schemes, quality assurance and technical support. The project is divided into two main areas (IEA subtasks). 1: 'Procurement and Marketing' and 2: 'Creation of Tools'. Denmark has been requested to be the project manager of subtask 2, 'Creation of Tools'. (EHS)

  2. Management of spent fuel from research reactors - Brazilian progress report (within the framework of Regional Project IAEA-RLA-4/018)

    International Nuclear Information System (INIS)

    Soares, A.J.; Silva, J.E.R.

    2005-01-01

    There are four research reactors in Brazil. For three of them, because of the low reactor power and low burn-up of the fuel, except for the concern about ageing, spent fuel storage is not a problem. However for one of the reactors, more specifically IEA-R1 research reactor, the storage of spent fuel is a major concern, because, according to the proposed operation schedule for the reactor, unless an action is taken, by the year 2009 there will be no more racks available to store its spent fuel. This paper gives a brief description of the type and amount of fuel elements utilized in each one of the Brazilian research reactors, with a short discussion about the storage capacity at each installation. It also gives a description of the activities developed by Brazilian engineers and researchers during the period between 2001 and 2004, within the framework of regional project 'RLA-4/018-Management of Spent Fuel from Research Reactors'. As a conclusion, we can say that the advances of the project, and the integration promoted among the engineers and researchers of the participant countries were of fundamental importance for Brazilian researchers and engineers to understand the problems related to the storage of spent fuel, and to make a clear definition about the most suitable alternatives for interim storage of the spent fuel from IEAR1 research reactor. (author)

  3. Energy policies of IEA countries. 1993 review

    International Nuclear Information System (INIS)

    1994-01-01

    Energy policies in Member countries's and the international energy situation are highlighted in this 1993 edition. It reviews recent trends and developments in energy demand, conservation and efficiency, supply of primary fuels, environment, technology and R and D. This year's Review also gives an overview of significant developments in key policy areas since the IEA's creation, on the occasion of its 20th anniversary. Member countries' energy policies are reviewed in depth on a four-year cycle. In-depth reviews of the energy policies of Austria, Denmark, Germany, Greece, the United Kingdom and the United States were conducted in 1993. Energy policy developments and supply and demand trends for the other 17 countries are updated from the previous in-depth reviews and summarized in this volume. (authors). figs., tabs

  4. Oil and Gas Security. Emergency Response of IEA Countries - Denmark 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Denmark for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  5. Oil and Gas Security. Emergency Response of IEA Countries - Norway 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Norway for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  6. Oil and Gas Security. Emergency Response of IEA Countries - Poland 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Poland for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  7. Oil and Gas Security. Emergency Response of IEA Countries - Spain 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Spain for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  8. Oil and Gas Security. Emergency Response of IEA Countries - Italy 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Italy for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  9. Oil and Gas Security. Emergency Response of IEA Countries - Belgium 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Belgium for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  10. Oil and Gas Security. Emergency Response of IEA Countries - Portugal 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Portugal for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  11. Oil and Gas Security. Emergency Response of IEA Countries - Ireland 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Ireland for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  12. Oil and Gas Security. Emergency Response of IEA Countries - Canada 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Canada for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  13. Oil and Gas Security. Emergency Response of IEA Countries - Luxembourg 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Luxembourg for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  14. Dose measurements in controlled area of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Alvarenga, F.L.; Junior, F.M.

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers

  15. Real-Time Monitoring of Neutron Capture Cross Section in the IPR-R1 TRIGA Research Reactor as a Fuel Temperature Function

    Energy Technology Data Exchange (ETDEWEB)

    Palma, D.A.P. [Comissao Nacional de Energia Nuclear, CNEN, General Severiano Street, 90, 22290-901, Rio de Janeiro (Brazil); Mesquita, A.Z.; Souza, R.M.G.P. [Comissao Nacional de Energia Nuclear, CNEN/CDTN, Av. Presidente Antonio Carlos, 6627, 31270-901, Belo Horizonte (Brazil); Martinez, A.S. [Programa de Engenharia Nuclear, COPPE/UFRJ, Av. Horacio Macedo, 2030, Bloco G, 21941- 914, Rio de Janeiro (Brazil)

    2011-07-01

    Nuclear reactor operators have to monitor the behaviour of different nuclear and design parameters that vary in time to ensure the operating safety of the reactor. In recent years several operating parameters for the IPR-R1 TRIGA research reactor were monitored and indicated in real-time by the data acquisition system developed for the reactor, with all the data being stored in a hard disk in the data acquisition computer, to build in this way a database. The goal of this work is to insert in the set of parameters already collected the neutron capture cross sections for the fuel, from the power and temperature numbers obtained in real-time. The experimental data was obtained by using a fuel element instrumented with temperature sensors, located in the core of the IPR-R1 TRIGA research reactor at the CDTN - Centre for Development of Nuclear. This information is useful for the continuous monitoring of the reaction rate in neutron capture. For that, a new analytical formulation is used for the Doppler broadening function proposed by Palma and Martinez which is free from special functions in its functional form and with easy computing implementation. The results obtained were satisfactory from the standpoint of accuracy in comparison with the numerical reference method and indicate that it is possible to carry out real-time monitoring of the neutron capture cross section in the fuel. (author)

  16. Lead-based Fast Reactor Development Plan and R&D Status in China

    International Nuclear Information System (INIS)

    Wu Yican

    2013-01-01

    • Lead-based fast reactors have good potential for waste transmutation, fuel breeding and energy production, which has been selected by CAS as the advanced reactor development emphasis with the support of ADS program and MFE program. Sharing of technologies R&D is possible among GIF/ADS/Fusion. • The concepts and test strategy of series China lead-based fast reactors (CLEAR) have been developed. The preliminary engineering design and safety analysis of CLEAR-I are underway. • Technology R&D on CLEAR with series lead alloy loops and accelerator-based neutron generator have been constructed or under construction. • CLEAR series reactor design and construction have big challenges, widely international cooperation on reactor design and technology R&D is welcome

  17. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  18. IEA Response System for Oil Supply Emergencies (2012 update)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  19. The past and the future in the forty years of the IPR-R1 TRIGA MARK I reactor operation

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto

    2008-01-01

    Full text: The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960. Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 kW, a new control rod mechanism, an aluminum tank for the reactor pool, an optimization in the pneumatic system, a new reactor control console and a general remodeling of the reactor laboratory were some of the improvements added. During these years a lot of irradiations, analysis , MSc and PhD thesis, training courses and isotopes production take place at the reactor. This paper describes the improvements made, the results obtained during the past 40 years, type of works realized, isotopes produced, the neutron activation analysis and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe work. (authors)

  20. Obtaining of total and thermal neutron flux in the carousel facility of the TRIGA MARK IPR-R1 reactor using the Monte Carlo transport method

    International Nuclear Information System (INIS)

    Guerra, Bruno Teixeira

    2011-01-01

    The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN) of Brazilian Nuclear Energy Commission (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor. IPR-R1 works at 100 kW but it will be briefly licensed to operate at 250 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in 235 U. The goal this work is modelling of the IPR-R1 Research Reactor TRIGA using the codes MCNPX2.6.0 (Monte Carlo N-Particle Transport extend) and MCNP5 to the calculating the neutron flux in the carousel facility. In each simulation the sample was placed in a different position, totaling forty positions around of the reactor core. The comparison between the results obtained with experimental values from other work showing a relatively good agreement. Moreover, this methodology is a theoretical tool in validating of the experimental values and necessary for determining neutron flux which can not be accessible experimentally. (author)

  1. Nondestructive inspection of the tubes of TRIGA IPR-R1 reactor heat exchanger by eddy current testing

    International Nuclear Information System (INIS)

    Silva Junior, Silverio F.; Silva, Roger F.; Oliveira, Paulo F.; Barreto, Erika S.; Ribeiro, Isabela G.; Fraiz, Felipe C.

    2013-01-01

    The IPR-R1 TRIGA MARK 1 reactor is an open pool type reactor, cooled light water. It is used for research activities, personnel training and radioisotopes production, in operation since 1960 at the Nuclear Technology Development Center - CDTN/CNEN. It operates at a maximum thermal power of 100 kW and usually, the fuel cooling is done by natural circulation. If necessary, an external auxiliary cooling system, with a shell-and-tube type heat exchanger, can be used to improve the water heat removal. As part of the ageing management program of the reactor, a nondestructive evaluation of their heat exchanger stainless steel tubes will be performed, in order to verify its integrity. The examinations will be performed using the eddy current test method, which allows the detection and characterization of structural discontinuities in the wall of the tubes, if existing. For this purpose, probes and reference standards were designed and manufactured at CDTN facilities and test procedures were established and validated. In this paper, a description of the proposed infrastructure as well as the test methodology to be used in the examinations are presented and discussed. (author)

  2. IEA Wind Task 23 Offshore Wind Technology and Deployment. Subtask 1 Experience with Critical Deployment Issues. Final Technical Report

    OpenAIRE

    Lemming, Jørgen Kjærgaard

    2010-01-01

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. ...

  3. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holttinen, H. [VTT (Finland); Meibom, P. [DTU Riso (Denmark); Orths, A. [Energinet.dk (Denmark); O' Malley, M. [Univ. College Dubline (Ireland); Ummels, B. C. [Delft Univ. of Technology (Netherlands); Tande, J. [SINTEF (Norway); Estanqueiro, A. [INETI (Portugal); Gomez, E. [Univ. Castilla la Mancha (Spain); Smith, J. C. [Utility Wind Integration Group (UWIG), Reston, VA (United States)

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  4. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  5. R and D directions for the development of CANDU reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1998-01-01

    Full text: AECL is carrying out a comprehensive R and D programme to advance all aspects of CANDU reactor technology. These programs are focusing on three main strategic directions: improved economics, enhanced safety, and fuel cycle flexibility. R and D areas include fuel cycle development, heavy water technology, fuel channel development, safety technology, control and instrumentation, reactor chemistry, systems and components, and health and environment. In each case, the R and D programs have short, medium, and long-term goals to achieve the overall strategic directions. Most of the programs seek to further develop and exploit some of the unique characteristics of pressurized heavy water reactors. Examples of this include high neutron economy and on-power fueling which allow several different fuel cycles, the presence of large water heat sinks for enhanced safety, and modular components that can be easily replaced for plant life extension. This presentation reviews AECL's product development directions and the R and D programs that have been begun for their development

  6. Task V of the IEA Photovoltaic Power Systems Program: Accomplishments and Activities

    International Nuclear Information System (INIS)

    Bower, Ward

    1999-01-01

    The International Energy Agency (IEA) is an energy forum for 24 industrialized countries and was established in 1974 as an autonomous body within the Organization for Economic Cooperation and Development (OECD). The IEA Photovoltaic Power Systems (PVPS) program implementing agreement was signed in 1993, and renewed for another five years in 1998. Twenty-two countries are collaborating under the auspices of the IEA in the PVPS to address common technical and informational barriers that often limit the rate at which photovoltaic technologies advance into the markets. Task V of the IEA PVPS is entitled ''Grid Interconnection of Building-Integrated and Other Dispersed Photovoltaic Power Systems.'' The task sponsored a workshop in September 1997 on grid-interconnection of photovoltaic systems and is planning a second workshop to address impacts of more penetration of dispersed systems into the utility grid. This paper will summarize the accomplishments of Task V over the last five years and will detail the planned work for the next three years

  7. Energy policies of IEA countries. Canada 1996 review

    International Nuclear Information System (INIS)

    1996-01-01

    This IEA report provides a comprehensive, in-depth assessment of the energy policies of Canada, including recommendations on future policy developments. The report acknowledges the marked shift of federal energy policy in the last decade away from heavy intervention to a more market-based approach. This has increased the strength and competitive position of Canada's energy producers, especially in oil and gas, and has provided more choice for consumers. Electricity, however, is an area that could benefit from a more market-based policy orientation. Federal provincial co-ordination is of fundamental importance. Other key issues highlighted in the review include the opportunities and challenges of international agreements on the environment, which increasingly drive energy policy decision-making; the adequacy and effectiveness of programmes to promote energy efficiency; and the balance and direction of energy research and development efforts. This report forms part of a series of periodic in-depth reviews conducted and discussed by the IEA Member countries on a four-year cycle. Short reviews of energy policy developments in all twenty-three Member countries are published annually in Energy Policies of IEA Countries. (author)

  8. The uranium fuel cycle at IPEN - Energy and Nuclear Research Institute, SP, Brazil

    International Nuclear Information System (INIS)

    Abrao, Alcidio

    1994-09-01

    This paper summarizes the progress of research concerning the uranium fuel cycle set up at the IPEN, Sao Paulo, from the raw yellow-cake to the uranium hexafluoride. It covers the reconversion of the hexafluoride to ammonium uranyl tricarbonate and the manufacturing of the fuel elements for the swimming pool IEA-R1 reactor. This review extends the coverage of two pilot plants for uranium purification based upon ion exchange, one demonstration unity for the purification of uranyl nitrate by solvent extraction in pulsed columns, the unity of uranium tetrafluoride into moving bed reactors and a second one based upon the wet chemistry via uranium dioxide and aqueous hydrogen fluoride. The paper mentions the pilot plant for the preparation of uranium trioxide by the thermal decomposition of ammonium diuranate and a second unity by the thermal denitration of uranyl nitrate. The paper outlines the fluorine plant and the unity for the hexafluoride preparation, the unity for the conversion of the hexa to the ammonium uranyl tricarbonate and the fabrication of fuel elements for the IEA-R1 reactor. (author)

  9. 4th IEA International CCS Regulatory Network Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    On 9 and 10 May 2012, the IEA International CCS Regulatory Network (Network), launched in Paris in May 2008 to provide a neutral forum for CCS regulators, policy makers and stakeholders to share updates and views on CCS regulatory developments, held its fourth meeting at the International Energy Agency (IEA) offices in Paris, France. The aim of the meeting was to: provide an update on government efforts to develop and implement carbon capture and storage (CCS) legal and regulatory frameworks; and consider ways in which governments are dealing with some of the more difficult or complex aspects of CCS regulation. This report summarises the proceedings of the meeting.

  10. IEA Bioenergy Task 40 country report for the Netherlands 2011

    NARCIS (Netherlands)

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for

  11. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  12. Energy use in the new millenium. Trends in IEA countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-10

    At their Gleneagles Summit in July 2005, G8 leaders identified climate change and securing clean energy and sustainable development as key global challenges. They agreed that we must transform the way we use energy and that we must start now. Improved energy efficiency is essential to meeting this goal. Therefore, the G8 asked the IEA to provide analysis of energy use and efficiency developments in buildings, appliances, transport and industry. This publication is a response to the G8 request. Looking back, it shows how changes in energy efficiency, economic structure, income, prices and fuel mix have affected recent trends in energy use and CO2 emissions in IEA countries. The results are a 'wake-up call' for us all. Since 1990, the rate of energy efficiency improvement in IEA countries has been less than 1% per year - much lower than in previous decades and not nearly enough to stem the growth of CO2 emissions. If we are to tackle climate change and move towards a sustainable energy future then this rate will need to double. We must - and we can - do better. By means of in-depth energy indicators, this publication provides important insights to policy-makers about current energy use and CO2 emission patterns that will help shape priorities for future action.

  13. Oil and Gas Security. Emergency Response of IEA Countries - Czech Republic 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Czech Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  14. Oil and Gas Security. Emergency Response of IEA Countries - Slovak Republic 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Slovak Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  15. Oil and Gas Security. Emergency Response of IEA Countries - United Kingdom 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in United Kingdom for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  16. Oil and Gas Security. Emergency Response of IEA Countries - New Zealand 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in New Zealand for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  17. Neutron activation analysis at CDTN/CNEN using the IPR-R1 Triga Mark I reactor

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Maretti Junior, Fausto; Kastner, Geraldo Frederico; Amaral, Angela Maria; Souza, Wagner de

    2009-01-01

    This paper describes in summary the activities developed by the Laboratory for Neutron Activation Analysis since the starting up of the IPR-R1 TRIGA Mark I research reactor in 1960. This Laboratory is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for significant percentage of CDTN's analytical demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays the neutron activation analysis is responsible for 70% of the analytical demand and the k 0 - Instrumental method for 80% of this demand answering clients' request and researches. In Brazil, CDTN is the only Institute that fully masters the Instrumental Neutron Activation Analysis k 0 -method using its own nuclear reactor. (author)

  18. Determination of burnup for IEAR-1 fuel elements by non destructive method of gamma spectrometry

    International Nuclear Information System (INIS)

    Madi Filho, T.; Holland, L.

    1982-01-01

    Burnup determination, by non-destructive gamma spectrometry of spent fuel with high and low activity of IEAR-1 reactor, using Cs-137 as burnup monitor, were done. To measure the Cs-137 distribution in these elements a Ge(Li) detector, with volume equal to 73,7 cm 3 , in two measurement systems with defined geometry and good colimation, was used. The IEA-14 taken from the core about 20 years ago, presents a gamma spectra due to Cs-137. The IEA-80, with cooling time approximately to 5 years, shows a more complex gamma spectrum due to other fission products still found in significant quantities. The IEA-14 measures were done in a measurement system used outside the reactor pool (S.I.), being the global efficiency of this system obtained by using a plane, calibrated and extense Ag-110 m source. Detailed measures of gamma transmission, using Cs-137 as a calibrated and punctiforme source, showed the high homogenity of the fuel plates. (E.G.) [pt

  19. The molten salt reactor: R and D status and perspectives in Europe

    International Nuclear Information System (INIS)

    Renault, Claude; Delpech, Sylvie; Merle-Lucotte, Elsa; Konings, Rudy; Hron, Miloslav; Ignatiev, Victor

    2010-01-01

    The paper concentrates on molten salt fast reactor (MSFR) concepts which are receiving most attention in the EU context. It shows the main R and D achievements and some remaining issues to be addressed in such essential areas as (a) reactor conceptual design, (b) molten salt properties, (c) fuel salt clean-up scheme and (d) high temperature materials. The status and perspectives of molten salt reactor R and D efforts in Europe are then discussed

  20. The neutron and gamma-ray dose characterization using the Monte Carlo method to study the feasibility of the Prompt Gamma Activation Analysis technique at IPR-R1 TRIGA reactor in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Bruno T.; Soares, Alexandre L.; Grynberg, Suely E.; Menezes, Maria Angela B.C., E-mail: brunoteixeiraguerra@yahoo.com.br, E-mail: menezes@cdtn.br, E-mail: asleal@cdtn.br, E-mail: seg@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN) of Brazilian Nuclear Energy Commission (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor. IPR-R1 works at 100 kW but it will be briefly licensed to operate at 250 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in {sup 235}U. The Implementation of the PGNAA (Prompt Gamma Neutron Activation Analysis) Technical at the TRIGA IPR-R1 research reactor of the CDTN will significantly increase in the types of matrices analyzable. A project is underway in order to implement this technique in CDTN. In order of verified the feasibility of the PGNAA at the TRIGA reactor, the MCNP (Monte Carlo N-Particle) method is used to theoretical calculations. This paper presents the results of a preliminary study of the neutron and gamma-ray dose in the room where the reactor is located, in case of implementation of this technique in the IPR-R1. (author)

  1. The neutron and gamma-ray dose characterization using the Monte Carlo method to study the feasibility of the Prompt Gamma Activation Analysis technique at IPR-R1 TRIGA reactor in Brazil

    International Nuclear Information System (INIS)

    Guerra, Bruno T.; Soares, Alexandre L.; Grynberg, Suely E.; Menezes, Maria Angela B.C.

    2013-01-01

    The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN) of Brazilian Nuclear Energy Commission (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor. IPR-R1 works at 100 kW but it will be briefly licensed to operate at 250 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in 235 U. The Implementation of the PGNAA (Prompt Gamma Neutron Activation Analysis) Technical at the TRIGA IPR-R1 research reactor of the CDTN will significantly increase in the types of matrices analyzable. A project is underway in order to implement this technique in CDTN. In order of verified the feasibility of the PGNAA at the TRIGA reactor, the MCNP (Monte Carlo N-Particle) method is used to theoretical calculations. This paper presents the results of a preliminary study of the neutron and gamma-ray dose in the room where the reactor is located, in case of implementation of this technique in the IPR-R1. (author)

  2. Shadow corrosion evaluation in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Sanders, Ch.; Lysell, G.

    2000-01-01

    Post-irradiation examination has shown that increased corrosion occurs when zirconium alloys are in contact with or in proximity to other metallic objects. The observations indicate an influence of irradiation from the adjacent component as the enhanced corrosion occurs as a 'shadow' of the metallic object on the zirconium surface. This phenomenon could ultimately limit the lifetime of certain zirconium alloy components in the reactor. The Studsvik R2 materials test reactor has an In-Core Autoclave (INCA) test facility especially designed for water chemistry and materials research. The INCA facility has been evaluated and found suitable for shadow corrosion studies. The R2 reactor core containing the INCA facility was modeled with the Monte Carlo N-Particle (MCNP) code in order to evaluate the electron deposition in various materials and to develop a hypothesis of the shadow corrosion mechanism. (authors)

  3. IEA is concerned by the costs of the energy transition in Germany

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    Last May the International Energy Agency (IEA) published an analysis of the energy transition in Germany. This analysis acknowledges the efforts made by Germany for a better energy efficiency and for the important development of renewable energies but also highlights 3 concerns. First, the cost for the energy transition is not fairly dispatched: electrical power is far more expensive for households than for enterprises. Secondly, according to the IEA, measures must be taken to restrain the growing costs of renewable energies and to foster investment to develop smart grids. Thirdly, the IEA misses the lack of coordination of Germany's energy policy with foreign countries' ones as German decisions have an impact beyond its frontiers. (A.C.)

  4. Experience gained in refurbishing of the ET-R R-1 reactor in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Khattab, M; Dimitri, F; Chaath, K [Reactor department, nuclear research center atomic energy authority, Cairo, (Egypt)

    1995-10-01

    This paper describes the in-service program and rehabilitation plan of the control, measuring instrumentation and radiation monitoring equipment as well as the computerized safety logic and signaling systems. the in-service program includes reactor core and pressure vessels. Spent fuel tank and primary cooling circuit have been inspected. Current problems and future plan for improving the safety systems are discussed. 10 figs., 1 tab.

  5. Experience gained in refurbishing of the ET-R R-1 reactor in Egypt

    International Nuclear Information System (INIS)

    Khattab, M.; Dimitri, F.; Chaath, K.

    1995-01-01

    This paper describes the in-service program and rehabilitation plan of the control, measuring instrumentation and radiation monitoring equipment as well as the computerized safety logic and signaling systems. the in-service program includes reactor core and pressure vessels. Spent fuel tank and primary cooling circuit have been inspected. Current problems and future plan for improving the safety systems are discussed. 10 figs., 1 tab

  6. Energy policies of IEA countries. Sweden 1996 review

    International Nuclear Information System (INIS)

    1996-01-01

    This IEA report provides a comprehensive, in-depth assessment of the energy policies of Sweden, including recommendations on future policy developments. Electricity is a focal point of Sweden's energy policy. After a shift in the energy mix to favour electricity in the early 1970's, nuclear and hydro power each make up about half of the electricity supply. Two key events have occurred since then: the 1980 referendum, which calls for the phase-out of all nuclear plants by 2010; the recent restructuring and liberalization of the electricity sector with the creation of a Nordic electricity market. In this context, the report argues the case for making a decision now on the nuclear issue to clarify Sweden's electricity future. Other key issues highlighted in the report include Sweden's use of economic policy instruments such as a carbon tax to achieve energy and environment goals, and the adequacy and effectiveness of government efforts to promote biofuels and energy efficiency. This report forms part of a series of periodic in-depth reviews conducted and discussed by the IEA Member countries on a four-year cycle. Short reviews of energy policy developments in all twenty-three Member countries are published annually in Energy Policies of IEA Countries. (author). 13 figs., 9 tabs., 4 appends

  7. Partner Country Series: Gas Pricing - China's Challenges and IEA Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    China will play a positive role in the global development of gas, the International Energy Agency’s (IEA) Executive Director, Maria Van der Hoeven has said in Beijing on 11 September, 2012 when launching a new IEA report: Gas Pricing and Regulation, China’s challenges and IEA experiences. In line with its aim to meet growing energy demand while shifting away from coal, China has set an ambitious goal of doubling its use of natural gas from 2011 levels by 2015. Prospects are good for significant new supplies – both domestic and imported, conventional and unconventional – to come online in the medium-term, but notable challenges remain, particularly concerning gas pricing and the institutional and regulatory landscape. While China’s circumstances are, in many respects unique, some current issues are similar to those a number of IEA countries have faced. This report highlights some key challenges China faces in its transition to greater reliance on natural gas, then explores in detail relevant experiences from IEA countries, particularly in the United Kingdom, the Netherlands, and the United States as well as the European Union (EU). Preliminary suggestions about how lessons learned in other countries could be applied to China’s situation are offered as well. The aim of this report is to provide stakeholders in China with a useful reference as they consider decisions about the evolution of the gas sector in their country.

  8. The new IEA Wind Task 36 on Wind Power Forecasting

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, Joel; Frank, Helmut

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind E...... forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions....

  9. Design of first reactor protection system prototype for C A R E M reactor

    International Nuclear Information System (INIS)

    Azcona, A; Lorenzo, G.; Maciel, F.; Fittipaldi, A

    2006-01-01

    In this paper we present the design of a prototype of the C A R E M Reactor Protection System, which is implemented on a basis of the digital platform T E L E P E R M X S.The proposed architecture for the Reactor Protection System (R P S) has 4 redundant trains composed by a complete set of sensors, a data acquisition computer and a processing computer.The information from the 4 processing computers goes into to a two voting units with a two out of four (2004) logic and its outputs are combined by a final actuation logic with a voting scheme of one out of two (1002).The prototype is implemented with a unique train.The train inputs are simulated by an Automatic Testing Unit.The pre-established test case or procedure results are fed back into the A T U.The choice of the digital platform T E L E P E R M X S for the R P S implementation allows versatility in the design stage and permits the prototype expansion due to its modular characteristic and the software tools flexibility [es

  10. Neutron flux of 100kW in the irradiation terminals of the IPR-R1 Triga Reactor

    International Nuclear Information System (INIS)

    Zangirolami, Dante Marco

    2009-01-01

    In this work, it was carried out a study of the neutron flux in the IPR-R1 TRIGA reactor irradiation facilities: rotary specimen rack (RSR), pneumatic transfer tube two (PTT2) and the central thimble (CT). The objective was to obtain the neutron flux profile on the RSR, which has forty irradiation positions, and also values for the thermal and epithermal neutron fluxes of some RSR positions and also of the PTT2 and of the CT facility. It was applied the neutron activation analysis of a reference material, Al-Au (0.1%) alloy. Irradiations were performed on 16 different dates. It was concluded that for the RSR, the average value of thermal and epithermal neutron fluxes depends on the vertical position of the reactor control rods. Neutron flux variations along the RSR form a characteristic profile, whose values depend on the location of the irradiation position in the reactor core and on the control rods vertical position. In the RSR, the obtained values of thermal and epithermal neutron flux were (8.1 +- 0.3) x 10 11 n.cm -2 .s -1 , and (3.4 +- 0.2)x10 10 n.cm -2 .s -1 , respectively. For the PTT2 and the CT, the values for the epithermal neutron flux were respectively (3.3 +- 0.2) x 10 9 n.cm -2 .s -1 and (2.6 +- 0.1) x 10 11 n.cm -2 .s -1 . For these facilities, the thermal neutron flux was estimated, and the obtained values were (2.4 +- 0.2) x 10 11 n.cm -2 .s -1 and (2.8 +- 0.1)x10 12 n.cm -2 .s -1 for the PTT2 and the CT, respectively. (author)

  11. Energy Policies of IEA Countries: European Union 2008 Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    For the first time, the IEA has reviewed the energy policies of the European Union which shape the energy use of almost 500 million citizens in 27 EU member countries. A unique entity governed under complex and almost constantly evolving structures, the EU constitutes a challenge for energy policy makers. Its energy policy has a global impact, not only because of its 16% share of world energy demand, but also because of the EU leadership in addressing climate change. Strong policy drives are underway in the EU to achieve the completion of the internal energy market, increase renewable energy supply, reduce CO2 emissions and make the EU more energy-efficient. Concerns about security of supply have also led to a greater focus on improved energy relations with supplier countries, and new institutional structures are being put in place. How much progress has been made in the field of security, internal market and external energy policies? And in which of these areas has the EU already implemented a fully integrated policy? IEA Energy Policies Review: The European Union - 2008 addresses these questions and also analyses the impact of the most recent major EU policy measures, in particular the Energy & Climate Package of January 2008 and the 3rd Liberalisation Package of September 2007. This book finds that both of these proposals are highly ambitious. But implementing them and reviewing both volume and allocation of energy R&D will be necessary to achieve a sustainable energy future in a fully competitive integrated EU energy market.

  12. R-matrix parameters in reactor applications

    International Nuclear Information System (INIS)

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL

  13. Final report on the Swedish participation in Annex 37 of the International Energy Agency (IEA), 2010 - 2012; Slutrapport oever svensk medverkan i Internationella energiraadets (IEA) Annex 37, 2010 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tobias

    2012-07-01

    The National Team Leader within the International Energy Agency (IEA) task 37 during 2010 - 2012 has been Anneli Petersson and Tobias Persson from Swedish Gas Technology Center (SGC). In total 14 countries and the EU have been members within the task. The following countries have been members in Task 37 during 2010 - 2012: Brazil, Denmark, Ireland, Canada, France, Finland, The Netherlands, Norway, Turkey, Germany, Switzerland, United Kingdom, Sweden, Austria. The meetings within the task have been situated in the new member countries to get insight into the biogas situation and biogas development in these countries. The work within the group has been focused on eight areas: Substrates for biogas production, Optimisation of digestion processes, Biogas upgrading and pipeline injection, Digestate processing and quality, Emissions from biogas installations, Information and education, Workshops and seminars, Joint projects with other IEA Bioenergy tasks. All presentations from the meetings and workshops and other published material can be downloaded from the home page of task 37 www.iea-biogas.net. During the period 2010 - 2012 has the following brochures been published: 1. Biogas from crop digestion. 2. Utilisation of digestate from biogas plants as bio fertiliser. 3. Quality management of digestate from biogas plants used as fertiliser.

  14. Program of nuclear techniques application (triennial 88-89-90)

    International Nuclear Information System (INIS)

    1988-01-01

    A real analysis of the potentiality and the possibility from Nuclear Energetic Research Institute (IPEN) Sao Paulo, Brazil in realize the researches and developments for offering specialized services of nuclear techniques for using in bioengineering, industry, isotope production, IEA-R1 reactor irradiation and radiation detectors and sensors are described. (author)

  15. Environmental issues associated with R Reactor renovation and startup

    International Nuclear Information System (INIS)

    Marter, W.L.

    1982-01-01

    This memorandum identifies the more significant environmental issues that would be associated with renovation and startup of R Reactor to meet future demands for nuclear weapon materials. Some key environmental issues identified are: potential occupational radiation exposures associated with repairing the leaks in the reactor nozzles and thermal shield tanks and with renovating the disassembly basin facilities; the impacts of constructing additional cooling water pumping capacity; the effect of increased pumping on impingement and entrainment at the pump houses; thermal effects on the R Canal-precooler pond-Par Pond ecosystem from increased discharge of cooling water; and effects of increased water flow in Lower Three Runs Creek on biota and on cesium-137 remobilization

  16. Equipment for thermal neutron flux measurements in reactor R2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Nilsson, T; Claeson, S

    1960-04-15

    For most of the thermal neutron flux measurements in reactor R2 cobalt wires will be used. The loading and removal of these wires from the reactor core will be performed by means of a long aluminium tube and electromagnets. After irradiation the wires will be scanned in a semi-automatic device.

  17. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  18. Analysis of Mexico wind tunnel measurements. Final report of IEA Task 29, Mexnext (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.; Boorsma, K. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Cho, T. [Korea Aerospace Research Institute KARI, Daejeon (Korea, Republic of); Gomez-Iradi, S. [National Renewable Energy Center of Spain CENER, Sarriguren (Spain); Schaffarczyk, P. [A. Jeromin University of Applied Sciences, CEWind EG, Kiel (Germany); Shen, W.Z. [The Technical University of Denmark, Kongens Lyngby (Denmark); Lutz, T. [K. Meister University of Stuttgart, Stuttgart (Germany); Stoevesandt, B. [ForWind, Zentrum fuer Windenergieforschung, Oldenburg (Germany); Schreck, S. [National Renewable Energy Laboratory NREL, Golden, CO (United States); Micallef, D.; Pereira, R.; Sant, T. [Delft University of Technology TUD, Delft (Netherlands); Madsen, H.A.; Soerensen, N. [Risoe-DTU, Roskilde (Denmark)

    2012-02-15

    This report describes the work performed within the first phase of IEA Task 29 Mexnext. In this IEA Task 29 a total of 20 organisations from 11 different countries collaborated in analysing the measurements which have been performed in the EU project 'Mexico'. Within this Mexico project 9 European institutes carried out a wind tunnel experiment in the Large Low Speed Facility (LLF) of the German Dutch Wind Facilities DNW on a rotor with a diameter of 4.5 m. Pressure distributions were measured at five locations along the blade along with detailed flow field measurements around the rotor plane using stereo PIV. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The detailed pressure measurements along the blade in combination with the detailed flow field measurements gave a unique opportunity to better understand the response of a wind turbine to the incoming flow field. Deficiencies in modelling have been established and directions for model improvement can be given.

  19. Status of beryllium R and D in Japan

    International Nuclear Information System (INIS)

    Kawamura, H.; Ishida, K.

    2004-01-01

    Recently, several R and D program of beryllium for fusion are being promoted in Japan and community of beryllium study is growing up. In the R and D area of beryllium for solid breeding blanket, major subjects are beryllide application for prototype reactor, lifetime evaluation of neutron multiplier, impurity effect of beryllium and recycling of irradiated beryllium. Especially, the study of beryllide application has significant progress in these two years. The basic properties such as tritium inventory, oxidation behavior, steam interaction for stoichiometric Be 12 Ti fabricated by HIP (Hot Isostatic Pressing) have been studied and some advantages against beryllium were made clear. For manufacturing technology development, phase diagram and ductility improvement have been studied. And, Be 12 Ti pebbles with the improved microstructure were successfully fabricated by Rotating Electrode Process. In order to enhance the R and D activities, the R and D network consisted of industries, universities and laboratories in all Japan have been organized. Many collaboration and information exchange strongly promotes the R and D and some projects for commercial application have been launched form these activities. Also international collaborative project such as IEA and ISTC have been launched or planned. Recent result of R and D in Japan is described on this paper. (author)

  20. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  1. Remote Sensing of Complex Flows by Doppler Wind Lidar: Summary of Issues and Preliminary Recommendations from IEA Wind Task 32 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew

    2017-06-21

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. In Phase 1 of the task, a working group looked at the state of the art of wind lidar in complex flow conditions. This presentation is a short summary of that work, given at the start of Phase 2.

  2. IEA Mobility Model (MoMo) and its use in the ETP 2008

    International Nuclear Information System (INIS)

    Fulton, Lew; Cazzola, Pierpaolo; Cuenot, Francois

    2009-01-01

    The IEA published 'Energy Technology Perspectives' (ETP) in June 2008. That document reports on IEA scenarios for baseline and low-CO 2 alternative scenarios to 2050, across the energy economy. The study included creating scenarios for transport, using the IEA Mobility Model (MoMo). This paper reports on the transport-related ETP scenarios and describes the model used in the analysis. According to the ETP Baseline scenario, world transport energy use and CO 2 emissions will more than double by 2050. In the most challenging scenario, called 'BLUE', transport emissions are reduced by 70% in 2050 compared to their baseline level in that year (and about 25% below their 2005 levels). There are several versions of the BLUE scenario, but all involve: a 50% or greater improvement in LDV efficiency, 30-50% improvement in efficiency of other modes (e.g. trucks, ships and aircraft), 25% substitution of liquid fossil fuels by biofuels, and considerable penetration of electric and/or fuel-cell vehicles. In the second half of this paper, an overview of the MoMo model is provided. Details on the complete analysis are contained in the ETP 2008 document, available at (www.iea.org). Details of the LDV fuel economy analysis are contained in a separate paper in this collection.

  3. Studsvik's R2 reactor - Review of activities

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, Mikael; Tomani, Hans; Graeslund, Christian; Rundquist, Hans; Skoeld, Kurt [Studsvik Nuclear AB, Nykoeping (Sweden)

    1993-07-01

    A general description of the R2 reactor, its associated facilities and its history is given. The facilities and range of work are described for the following types of activities: fuel testing, materials testing, neutron transmutation doping of silicon, activation analysis, radioisotope production and basic research including thermal neutron scattering, nuclear chemistry and neutron capture radiography. (author)

  4. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  5. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Marumo, Julio T.; Taddei, Maria Helena T.

    2013-01-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  6. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Marumo, Julio T., E-mail: bgeraldo@ipen.br, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taddei, Maria Helena T., E-mail: mhtaddei@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil)

    2013-07-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  7. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  8. Studies review and exploration purpose of neutron radiography technique in the TRIGA IPR-R1 reactor at CDTN, Brazil

    International Nuclear Information System (INIS)

    Costa, Antonella Lombardi; Amorim, Valter Alves de; Stasiulevicius, Roberto; Rocha, Zildete

    2002-01-01

    Neutron Radiography - NR - consists of obtaining on a sensitive plate, the image produced by neutron flux after crossing an object. Through NR is possible to inspect plastics and explosives materials and organic composition. Is difficult to analyze these materials by the radiography technique. The neutron beam extractor was installed, in the TRIGA IPR-R1 reactor at the CDTN. This work presents preliminaries results of the NR researches in the past at CDTN, which are being retaken. (author)

  9. Management of European fast reactor R and D

    International Nuclear Information System (INIS)

    Judd, A.M.; Sheriff, N.

    1993-01-01

    Since 1984 government-funded fast reactor R and D in France, Germany and the UK has been run as a collaborative activity, and since 1988 as a unified programme in support of the design and construction of the advanced European Fast Reactor. This paper describes the international management structure which has been set up, and the means used to control the work. It is written from the point of view of those engaged in the project, and makes no attempt at a formal analysis of the structure. The main difficulty is that control of funding remains with the three governments. The R and D programme has to be managed so that it meets the needs of each government separately as well as the designers' requirements. To start with the management structure was excessively bureaucratic, but it has become more flexible and efficient. This has happened as the initial nationalistic suspicions have broken down, and the staff engaged in the work have learnt more about each others' ways of working so that an atmosphere of trust and inter-dependence has grown up. (This paper was written before the changes in UK policy on fast reactor development were announced in November 1992). (Author)

  10. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1996-01-01

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations

  11. IEA countries energy policy. Report 1992

    International Nuclear Information System (INIS)

    1994-01-01

    The International Energy Agency is interested by the energy policy of its 23 members countries. This book sums up the evolution of energy policy in 1991 and 1992, sticking particularly to energy proposal and demand, to energy efficiency, to interaction between energy and environment, to the energy technology and to research and development activities. The 23 countries are examined regularly. The elaborate examinations refer to the energy policy of each member country to dictate the common orientation of their policy. Ministers meetings of IEA take place regularly. The latest took place in PARIS on the fourth of June 1993 where the ministers confirmed that there were essential elements of the energy policy and that they recommended to all countries to take that in account in the formulation of their strategies. Beyond the examinations by country, this book contains a whole report which throws into relief the main new acts which were happened in the IEA members countries and a glimpse on the evolution of the energy situation in the no members countries. It gives specific data and informations on the governmental budgets allocated to research and development energy activities. 6 annexes, 12 graphs., 5 tabs

  12. Fast reactors: R and D targets and outlook for their introduction

    International Nuclear Information System (INIS)

    Poplavsky, V.; Barre, B.; Aizawa, K.

    1997-01-01

    In this paper the current status of fast reactors development is briefly outlined, including experimental, demonstration, and commercial installations. Data on the experience gained in development and operation of NPPs with reactors of this type are presented. The issues are discussed in connection with possibilities of fast reactor development in the nuclear power structure for the near (up to 2010-2020) and distant future. In the final part of the paper, an analysis is given of possible ways for R and D development in the field of NPPs with fast neutron reactors. (author)

  13. Human error probability quantification using fuzzy methodology in nuclear plants

    International Nuclear Information System (INIS)

    Nascimento, Claudio Souza do

    2010-01-01

    This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations a hypothesis on Research Reactor IEA-R1 from IPEN. It was also obtained a Performance Shaping Factors (PSF) evaluation in order to classify them according to their influence level onto the operator's actions and to determine these PSF actual states over the plant. Both HEP estimation and PSF evaluation were done based on Specialists Evaluation using interviews and questionnaires. Specialists group was composed from selected IEA-R1 operators. Specialist's knowledge representation into linguistic variables and group evaluation values were obtained through Fuzzy Logic and Fuzzy Set Theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on Human Reliability Analysis (HRA). (author)

  14. Third system test of IEA crisis management

    Energy Technology Data Exchange (ETDEWEB)

    Lefeldt, P K

    1981-04-01

    The crisis mechanism conceived by IEA for coping with major incidents liable to interrupt regular supplies was submitted last autumn to a test over a fairly long period. The test proved that the international and the national institutions and arrangements are, fundamentally, capable of functioning efficiently, and furthermore produced suggestions for minor improvements.

  15. Development Plan and R and D Status of China Lead-based Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS [Institute of Nuclear Energy Safety Technology, Beijing (Switzerland)

    2013-07-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  16. Development Plan and R and D Status of China Lead-based Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS

    2013-01-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  17. IEA Bioenergy Task 40 country report for the Netherlands 2011

    OpenAIRE

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for change in the Netherlands and point out barriers & opportunities for trade in detail, and Current biomass user (energy use) Table ES-1 shows the energy use of biomass in the Netherlands in 2010. The...

  18. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  19. Determination of the radiological capacity in the IEA environment

    International Nuclear Information System (INIS)

    Palacios, E.; Oliveira, P.L.C.

    1976-01-01

    The radiological capacity in the IEA environment, was calculated according to the recommendations of the International Commission on Radiological Protection, in order to assess the management wastes disposal programming. The value of radiological capacity, take into account the isotopic composition, at the production moment, was 850 Ci/year. The IEA radioactive environment disposal, up to now, employed just a small fraction of its capacity. Iodine I-131 air inhalation, and external radiation, derivated from the sediments around the discharged point of Pinheiros river, were the 'critical pathways'; for the second case the 'critical radionuclides' were: Te-125m, Te-123m, Te-127m, I-131 e Cs-137. The 'Dose Commitment' of one year operation will be not upper than 20 mrad in the infant's thyroid and 140 mrad in the whole body [pt

  20. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  1. Development of the user Interface of digital simulation system of the operational parameters of the TRIGA IPR-R1 Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Felippe, Adriano de A.M.; Lage, Aldo M.F.; Mesquita, Amir Z.

    2017-01-01

    The development of simulation systems has been increasingly improved to ensure security and reliability to the systems being associated. Computational tools, simulation systems and programming languages increasingly allow the diversification of control systems. With increasing concern about monitoring the key parameters involved in chain reactions inside a nuclear reactor, new technologies are being developed to ensure operations safety. This paper deals with a practical application of a work that is being developed in the Center for the Development of Nuclear Technology - CDTN, which intends to simulate the operation of the TRIGA-IPR-R1 nuclear research reactor using the LabVIEW® software, evaluating the evolution of the neutron flux and other related events. In this paper, the visual interface of the reactor control table, developed through virtual instruments that allow, in a vast repertoire of tools, replicating the panels of the control table in modern screens that can be operated by a user of an analogous form, but still more practical and complete. Since the innovations developed for research reactors can be replicated in power reactors, and because of their lower operating and maintenance costs, projects in this area allow the development of several technologies

  2. Assessing the Effectiveness of International Environmental Agreements (IEAs

    Directory of Open Access Journals (Sweden)

    Chenaz B. Seelarbokus

    2014-02-01

    Full Text Available It is commonly claimed that assessing the effectiveness of International Environmental Agreements (IEAs from the environmental problem-solving perspective is challenging because environmental data are not available. However, not much research has been done on the characterization of the nature and causes of such data unavailability. This article analyzes the term “data unavailability” and provides three typologies for data unavailability: (a “true unavailability,” where data collection complexities and resource constraints limit data collection and analysis; (b “false unavailability,” which refers to the existence of relevant data, but failure to report due to various causes; and (c “external availability,” which refers to the existence of relevant data in several organizations and research institutions, but with no established networks for data sharing between such institutions and the IEA institutions. This article discusses the causes for the various types of data unavailability and makes recommendations for promoting data availability.

  3. Neutron flux determination at the IPR-R1 Triga Mark I neutron beam extractor

    International Nuclear Information System (INIS)

    Zangirolami, Dante Marco; Maretti Junior, Fausto; Ferreira, Andrea Vidal

    2009-01-01

    The IPR-R1 Triga Mark I Reactor located at the CDTN/CNEN, Belo Horizonte, Brazil, has been operating since November of 1960. In this work, measurements of thermal and epithermal neutron flux along the IPR-R1 neutron beam extractor were performed by neutron activation of reference materials using the two foils method. The obtained results were compared with results from two previous works: an experimental measurement done in a previous reactor core configuration and a numerical work made by Monte Carlo simulation using the actual reactor core configuration. The main purpose of this work is to update the measured data to the actual reactor core configuration. (author)

  4. Final report on the IAEA research contracts No. 1194/RB, 1194/R1/RB and 1194/R2/RB

    International Nuclear Information System (INIS)

    Zobor, E.; Janosy, J.S.; Szentgali, A.

    1980-09-01

    The final report summarizes the research activities made in the framework of the IAEA Research Contracts No. 1194/RB, 1194/R1/RB and 1194/R2/RB. A multilevel hierarchical control system is treated which uses weakly-coupled low dimensional subsystems under the supervision of a dynamic coordinator program. This self-organizing adaptive control system was checked by a 5 MW research reactor. As an example the paper describes the experimental computer control system of the 5 MW WWR-SM research reactor, where the reactor power and outlet temperature have been controlled on the basis of the treated control concept since 1978. (author)

  5. Design and properties of marine reactors and associated R and D

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A; Ignatiev, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs.

  6. Design and properties of marine reactors and associated R and D

    International Nuclear Information System (INIS)

    Gagarinski, A.; Ignatiev, V.; Devell, L.

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs

  7. Energy policies of IEA countries: the Republic of Korea 2006 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Through analysis of its existing policies and comparisons with good examples in other IEA countries, this book provides critiques and recommendations for policy improvements. Covering not only traditional energy sectors, but also energy efficiency, renewables and the environment, the IEA report serves as a guide to understanding - and addressing - the energy challenges that face the modern Republic of Korea. The great strides that the Republic of Korea has made over the last three decades are not confined to its economy. Its energy industry has similarly leapt forward in terms of infrastructure and security. Though it has no links to nearby countries that would allow it to rely on electricity imports or piped natural gas, the country has rapidly electrified, built a diverse portfolio of electricity supply, developed a robust nuclear energy industry and become one of the pioneers in the liquefied natural gas trade. As the most recent member of the International Energy Agency (IEA), this progress is remarkable and its enhancement of its policy goals - adding economic efficiency and environmental sustainability to energy security - is commendable. Building on the liberalisation of its economy, the Republic of Korea set out an ambitious plan for reform of its state-controlled natural gas and electricity industries. However, the plans have been stalled and there is currently little vision for effective reform going forward. As the economy makes the transition to one with less phenomenal, more sustainable and less predictable growth, the IEA encourages the Republic of Korea to press forward with liberalisation in order to underpin a more flexible and efficient energy sector. 22 figs., 33 tabs., 3 apps.

  8. Norwegian participation in IEA Heat Pump Programme Annex 29 - final report

    International Nuclear Information System (INIS)

    Stene, Joern

    2006-06-01

    Ground source heat is a collective name for tapping, recharging and storing thermal energy at moderate temperature in the bedrock, ground water and soil (renewable energy). By means of heat pumps, ground source heating systems can be used as highly energy efficient and environmentally-friendly heating and cooling in all kinds of buildings. IEA's heat pump programme (IEA HPP) has in the period March 2004 to June 2006 carried out an Annex on heating pump systems based on ground source heat: 'Annex 29 - Ground-source heat pumps overcoming market and technical barriers'. The project has i.a. covered the development of more cost- and energy efficient solutions, identification and analysis of market obstacles, technology transfer and the task of making visible the energy economising potential and environmental gains that this type of systems represent. The six participating countries have been Canada, Japan, Norway, Sweden, USA and Austria (operating agent). Norway's participation in IEA Annex 29 has been financed by ENOVA SF, while SINTEF Energy research AS has been in charge of planning and executing the Norwegian project activities. This report provides a general presentation of ground source heat pump systems, and gives a summary of the most important Norwegian activities in IEA Annex 29, which includes: The development of a Norwegian internet home page (http://www.energy.sintef.no/prosjekt/annex29), preparation of Norwegian status report, initiation, coordination and carrying out of Norwegian research projects and reports, communication of results (technology transfer) in Norway, networking activities towards important market actors in Norway, participation and delivering discourse at international seminars (workshops), and participation at international working sessions (ml)

  9. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-05-24

    The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D and D). D and D activities consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS and T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D and D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement groupt (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel cotnains significantly less aluminum based on current facility process knowledge, surface observations, and drawings. Therefore, a Portland cement grout may be considered for grouting operations as well as the other grout formulations. For example, if the grout fill rate is less than 1 inch/min and the grout temperature is maintained at 70 C or less, the risk of hydrogen accumulation during fill

  10. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  11. Energy Policies of IEA Countries - Canada -- 2009 Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-04-12

    Canada, with its diverse and balanced portfolio of energy resources, is one of the largest producers and exporters of energy among IEA member countries. The energy sector plays an increasingly important role for the Canadian economy and for global energy security, as its abundant resource base has the potential to deliver even greater volumes of energy. The federal, provincial and territorial governments of Canada are all strongly committed to the sustainable development of the country's natural resources and have a long-standing and informed awareness of the need for each to contribute to the development of the energy sector. Furthermore, the government of Canada seeks to achieve a balance between the environmentally responsible production and use of energy, the growth and competitiveness of the economy, and secure and competitively priced energy and infrastructure. Nonetheless, the long-term sustainability of the sector remains a challenge. Due to climatic, geographic and other factors, Canada is one of the highest per-capita CO2 emitters in the OECD and has higher energy intensity than any IEA member country. A comprehensive national energy efficiency strategy, coupled with a coordinated climate change policy targeted at the key emitting sectors, is needed. Carbon capture and storage (CCS) is a priority for the federal government and presents Canada with an opportunity to develop a new technology that can reduce greenhouse gas emissions on a large scale. The IEA recommends that Canada provide international leadership in the development of CCS technology. This review analyses the energy challenges facing Canada and provides sectoral critiques and recommendations for further policy improvements. It is intended to help guide Canada towards a more sustainable energy future.

  12. Energy Policies of IEA Countries - Canada -- 2009 Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-04-12

    Canada, with its diverse and balanced portfolio of energy resources, is one of the largest producers and exporters of energy among IEA member countries. The energy sector plays an increasingly important role for the Canadian economy and for global energy security, as its abundant resource base has the potential to deliver even greater volumes of energy. The federal, provincial and territorial governments of Canada are all strongly committed to the sustainable development of the country's natural resources and have a long-standing and informed awareness of the need for each to contribute to the development of the energy sector. Furthermore, the government of Canada seeks to achieve a balance between the environmentally responsible production and use of energy, the growth and competitiveness of the economy, and secure and competitively priced energy and infrastructure. Nonetheless, the long-term sustainability of the sector remains a challenge. Due to climatic, geographic and other factors, Canada is one of the highest per-capita CO2 emitters in the OECD and has higher energy intensity than any IEA member country. A comprehensive national energy efficiency strategy, coupled with a coordinated climate change policy targeted at the key emitting sectors, is needed. Carbon capture and storage (CCS) is a priority for the federal government and presents Canada with an opportunity to develop a new technology that can reduce greenhouse gas emissions on a large scale. The IEA recommends that Canada provide international leadership in the development of CCS technology. This review analyses the energy challenges facing Canada and provides sectoral critiques and recommendations for further policy improvements. It is intended to help guide Canada towards a more sustainable energy future.

  13. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    . The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...... the modeling, free scientific contributions have been invited from specific fields that need the most attention in order to better accomplish the integral building simulations. This paper will give an overview of the advances in whole-building hygrothermal simulation that have been accomplished and presented...

  14. Nuclear energy in a low carbon future: updating the IEA/NEA nuclear technology road-map

    International Nuclear Information System (INIS)

    Paillere, H.; Cameron, R.; ); Tam, C.; )

    2014-01-01

    the '2 deg. C' scenario developed by the IEA's ETP 2014 model. About 900 GW of installed nuclear capacity is projected by 2050, a drop from the 2010 'Blue Map' targets. However, 900 GW by 2050 is still a formidable challenge for the nuclear industry. Asia, India and other non-OECD countries are expected to represent the bulk of this growth. The capacity increases that would be needed to reach this level of installed capacity have been estimated at over 12 GW per year in the present decade, and over 20 GW per year in the following decade, far higher than the present grid connection rates. Higher grid connection rates were observed in the mid 1980's. However, the number of reactors under construction, 72 at the end of 2013, is the highest number for 25 years, indicating a rebound in new build projects. The road-map will highlight technological development tracks that can accelerate the deployment of nuclear energy to meet the 2DS targets as well as make recommendations to address the challenges facing the nuclear sector

  15. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  16. Software development for managing nuclear material database; Desenvolvimento de um programa computacional para gerenciamento de banco de dados de material nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tondin, Julio Benedito Marin

    2011-07-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  17. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  18. Human error probability quantification using fuzzy methodology in nuclear plants; Aplicacao da metodologia fuzzy na quantificacao da probabilidade de erro humano em instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Claudio Souza do

    2010-07-01

    This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations a hypothesis on Research Reactor IEA-R1 from IPEN. It was also obtained a Performance Shaping Factors (PSF) evaluation in order to classify them according to their influence level onto the operator's actions and to determine these PSF actual states over the plant. Both HEP estimation and PSF evaluation were done based on Specialists Evaluation using interviews and questionnaires. Specialists group was composed from selected IEA-R1 operators. Specialist's knowledge representation into linguistic variables and group evaluation values were obtained through Fuzzy Logic and Fuzzy Set Theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on Human Reliability Analysis (HRA). (author)

  19. IEA Wind Task 23 Offshore Wind Technology and Deployment. Subtask 1 Experience with Critical Deployment Issues. Final Technical Report

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background...... information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. The Subtask 2 report covers OC3 background information and objectives of the task, OC3 benchmark exercises...... of aero-elastic offshore wind turbine codes, monopile foundation modeling, tripod support structure modeling, and Phase IV results regarding floating wind turbine modeling....

  20. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  1. IEA World Energy Outlook 2010-A comment

    International Nuclear Information System (INIS)

    Khatib, Hisham

    2011-01-01

    The World Energy Outlook 2010 is a comprehensive energy report issued by the IEA. It is rewritten annually to reflect the world's changing energy and economy realities; it also introduces new issues relevant to the energy sector. This year it dealt with Caspian Energy, Energy Poverty and Energy Subsidies. WEO is controversial in few aspects; it still promotes a 450 Scenario which has become out of reach. This year however it introduced a more realistic New Policies Scenario which will need a lot of good will and investments to accomplish. Governmental policies are going to chart future energy sector performance; increasingly this is becoming decided by non-OECD countries. A more pragmatic future energy outlook is needed to reflect developing countries priorities for growth and utilization of local resources and how to accommodate this with abatement priorities through energy efficiency measures and technologies. - Research highlights: → We critically review the findings of the IEA - World Energy Outlook 2010. → The main '450 Scenario' is no longer realistic. → Some of the other indicators like the Energy Development Index are also critically reviewed and improvements proposed.

  2. A two dimensional code (R,Z) for nuclear reactor analysis and its application to the UAR-RI reactor

    International Nuclear Information System (INIS)

    Bishay, S.T.; Mikhail, I.F.I.; Gaafar, M.A.; Michaiel, M.L.; Nassar, S.F.

    1988-01-01

    A detailed study is given of fuel consumption in completely reflected cylindrical reactors. A two group, two dimensional (r,z) code is developed to carry out the required procedure. The code is applied to the UAR-RI reactor and the results are found to be in complete agreement with the experimental observations and with the theoretical interpretations. 7 fig., 12 tab

  3. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  4. Achievement Data in IEA Studies and Simpson's Paradox

    Science.gov (United States)

    Zuzovsky, Ruth; Steinberg, David M.; Libman, Zipi

    2011-01-01

    This paper is meant to highlight the occurrence of Simpson's Paradox when using aggregated data obtained from two IEA studies in Israel, while ignoring the effect of a powerful intervening variable in the local context--the ethnicity factor. It will demonstrate faulty conclusions regarding either the absence of relationships between a contextual…

  5. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  6. BUBE. Better Use of Biomass for Energy. Background Report to the Position Paper of IEA RETD and IEA Bioenergy

    International Nuclear Information System (INIS)

    Fritsche, U.R.; Henneberg, K.; Huenecke, K.; Kampman, B.; Bergsma, G.; Schepers, B.; Croezen, H.; Molenaar, J.W.; Kessler, J.J.; Slingerland, S.; Van der Linde, C.

    2010-07-01

    This report aims to provide a document that gives guidance on the issue of biomass energy policies in OECD countries. The main conclusions and messages from this project were published in a joint IEA RETD and IEA Bioenergy Position Paper and presented at the COP15 in December 2009. As the main contributor to renewable energy around the world (about 10% of total energy consumption), the term 'biomass for energy' covers a broad range of products, including traditional use of wood for cooking and heating, industrial process heat, co-firing of biomass in coal-based power plants, biogas and biofuels. In many OECD countries, bioenergy is deployed to reduce fossil fuel use and improve security of supply, reduce greenhouse gas emissions and/or create new employment. Modern biomass can be more expensive than its fossil competitors, however, and there is evidence that biomass, unless produced sustainable, could have significant negative environmental and socio-economic impacts. This report elaborates on how to improve the use of biomass for energy. It assesses and provides guidelines on how to make better use of sustainable biomass potential and how to increase the positive and reduce the negative impacts.

  7. BUBE. Better Use of Biomass for Energy. Background Report to the Position Paper of IEA RETD and IEA Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, U.R.; Henneberg, K.; Huenecke, K. [Oeko-Institut, Freiburg (Germany); Kampman, B.; Bergsma, G.; Schepers, B.; Croezen, H. [CE Delft, Delft (Netherlands); Molenaar, J.W.; Kessler, J.J. [AidEnvironment, Amsterdam (Netherlands); Slingerland, S.; Van der Linde, C. [Clingendael International Energy Programme CIEP, Den Haag (Netherlands)

    2010-07-15

    This report aims to provide a document that gives guidance on the issue of biomass energy policies in OECD countries. The main conclusions and messages from this project were published in a joint IEA RETD and IEA Bioenergy Position Paper and presented at the COP15 in December 2009. As the main contributor to renewable energy around the world (about 10% of total energy consumption), the term 'biomass for energy' covers a broad range of products, including traditional use of wood for cooking and heating, industrial process heat, co-firing of biomass in coal-based power plants, biogas and biofuels. In many OECD countries, bioenergy is deployed to reduce fossil fuel use and improve security of supply, reduce greenhouse gas emissions and/or create new employment. Modern biomass can be more expensive than its fossil competitors, however, and there is evidence that biomass, unless produced sustainable, could have significant negative environmental and socio-economic impacts. This report elaborates on how to improve the use of biomass for energy. It assesses and provides guidelines on how to make better use of sustainable biomass potential and how to increase the positive and reduce the negative impacts.

  8. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil; Licenciamento de reatores: proposta de uma estrutura regulatoria integrada com abordagem em qualidade e meio ambiente para reatores de pesquisa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Reynaldo Cavalcanti

    2014-07-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  9. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  10. Thermal power calibration of the TRIGA Mark I IPR-R1 reactor during the upgrading tests to 250 kW

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Maretti, Fausto Junior; Rezende, Hugo Cesar

    2002-01-01

    This paper presents the results and the methodology used to calibrate the thermal power of the TRIGA MARK I IPR-R1 Reactor in CDTN, Belo Horizonte, Brazil. This calibration was realized during the operation tests carried out to allow the reactor power upgrade from the current 100 kW to 250 kW. The methodology consisted in the measurement of the inlet and outlet temperature and the water flow in the primary cooling loop. The thermal balance together with the thermal losses gave the thermal power. There were made three sequences of tests. The first rising of the thermal power was made with the usual configuration of the core (59 fuel elements). After the changing of the ion chambers position and the control rod and the increase of the number of fuels (63 fuel elements), a new evaluation of the thermal power was accomplished, having been obtained a thermal power of 234 kW, for an indication of 250 kW in the lineal channel. After the return of the core to the initial configuration (59 fuel elements), it took place a new test, getting back the reactor to the power level of 100 kW. (author)

  11. Energy policies of IEA countries: Sweden - 2008 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-05-15

    Sweden is one of the leading IEA countries in the use of renewable energy and has a long tradition of ambitious and successful policies to improve energy efficiency. Compared to the other IEA countries, Sweden's CO2 emissions per capita and per unit of GDP are low, partly owing to efficient and low-carbon space heating, and virtually carbon-free electricity generation. The country also remains a forerunner in electricity market liberalisation. Still, even if Sweden has continued to make progress in most areas of its energy policy since the IEA last conducted an in-depth review in 2004, there is room for improvement. As Sweden plans to further increase the use of renewable energy, it is crucial that these supplies are produced and used in the most sustainable manner for the environment and the economy as a whole. With regard to CO2 emissions, more can be done in all sectors, but as transport is the largest polluter and its emissions are increasing, it is the logical focus for Sweden's efforts to reduce emissions further. This is a significant challenge. Nuclear provides almost half of the electricity in Sweden, at a low cost and without CO2 emissions. But the future of nuclear power in the national power mix is still uncertain. To provide clear guidance to the electricity sector, Sweden will need to resolve the ambiguity about the future of nuclear power in the country. This review analyses the energy challenges facing Sweden and provides critiques and recommendations for further policy improvements. It is intended to provide input to Swedish energy policy makers to help them identify a path towards a more sustainable energy future.

  12. Energy policies of IEA countries: Germany 2007 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The IEA report takes an in-depth look at the energy challenges facing Germany, and through comparisons with good examples in other IEA countries, provides critiques and recommendations for policy improvements. The review guides the country towards a sustainable energy future. Few countries can have as great an impact on energy policy in Europe as Germany. Its large size and strategic location make it a critical component of the region's energy markets - as a result, sound energy policies and strong energy market design are a necessity. In these respects, Germany continues to make notable progress. The country has continued to reform its electricity and natural gas markets, set a timetable to phase out coal subsidies, is meeting key climate and environmental targets and is bringing energy, efficiency and environment to the top of the world agenda with its presidencies of both the G8 and European Union. The International Energy Agency (IEA) praises these efforts. Nevertheless, work remains to be done to further improve German energy policies and markets. The planned phase-out of nuclear power over the coming years would have major impacts on the country's energy mix, raising concerns about energy security, economic efficiency and environmental sustainability for the country and for Europe as a whole. Furthermore, though progress has been made, more needs to be done to set a truly level playing field for competition to develop in gas and electricity markets, which means effective unbundling of transport activities and a strongly empowered regulatory authority. Finally, the country's environmental policies, though helping meet ambitious goals, are expensive - and sometimes various policies work at cross-purposes. 22 figs., 27 tabs., 4 apps.

  13. IEA Bioenergy Annual Report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  14. IEA Bioenergy Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-31

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  15. Prognosefejl i IEA-landenes energiprognoser

    DEFF Research Database (Denmark)

    Linderoth, Hans

    1999-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985, 1990 and 1995 can now be compared to the actual values. The second oil crises resulted in big positive forcast errors. The oil price drop in 1986 did...... not have a similar effect. A correction for economic growth reduces forecast errors during the second oil crises but not elsewhere. Industry has a relatively big positive forecast error while transportation has a negative forecast error. Even when the forecast error is small, the results are not so "nice...

  16. The IEA/bioenergy implementing agreement and other activities

    Energy Technology Data Exchange (ETDEWEB)

    Costello, R [U.S. Department of Energy, Washington D.C. (United States). Biofuels Systems Div.

    1997-12-31

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  17. The IEA/bioenergy implementing agreement and other activities

    International Nuclear Information System (INIS)

    Costello, R.

    1996-01-01

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  18. The IEA/bioenergy implementing agreement and other activities

    Energy Technology Data Exchange (ETDEWEB)

    Costello, R. [U.S. Department of Energy, Washington D.C. (United States). Biofuels Systems Div.

    1996-12-31

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  19. Determination of 238Pu, 239+240Pu, 241Pu and 241Am in radioactive waste from IPEN reactor

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Taddei, Maria Helena T.; Cheberle, Sandra M.; Ferreira, Marcelo T.

    2011-01-01

    Ion exchange resin is a common type of radioactive waste arising from treatment of coolant water of the main circuit of research and nuclear power reactors. This waste contains high concentrations of fission and activation products. The management of this waste includes its characterization in order to determine and quantify specific radionuclides including those known as difficult-to-measure radionuclides (RDM). The analysis of RDMs generally involves expensive and time-consuming complex radiochemical analysis for purification and separation of the radionuclides. The objective of this work is to show an easy methodology for quantifying plutonium and americium isotopes in spent ion exchange resin, used for purification of the cooling water of the IEA-R1 reactor located at the Nuclear and Energy Research Institute, IPEN-CNEN/SP. The resins were destroyed by acid digestion, followed by purification and separation of the Pu and Am isotopes with anionic and chromatographic resins. 238 Pu, 239 + 24 '0Pu, and 24 '1Am isotopes were analyzed in an alpha spectrometer equipped with surface barrier detectors. 241 Pu isotope was analyzed by liquid scintillation counting. Chemical recovery yield ranged from 73 to 98% for Pu and 77 to 98% for Am, demonstrating that the methodology is suitable for identification and quantification of the isotopes studied in spent resins. (author)

  20. Program for in-pile qualification of high density silicide dispersion fuel at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Silva, Jose E.R. da; Silva, Antonio T. e; Terremoto, Luis A.A.; Durazzo, Michelangelo

    2009-01-01

    The development of high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 is on going at IPEN, at this time. This fuel has been considered to be utilized at the new Brazilian Multipurpose Reactor (RMB), planned to be constructed up to 2014. As Brazil does not have hot-cell facilities available for post-irradiation analysis, an alternative qualifying program for this fuel is proposed based on the same procedures used at IPEN since 1988 for qualifying its own U 3 O 8 -Al (1,9 and 2,3 gU/cm 3 ) and U 3 Si 2 -Al (3,0 gU/cm 3 ) dispersion fuels. The fuel miniplates and full-size fuel elements irradiations should be tested at IEA-R1 core. The fuel characterization along the irradiation time should be made by means of non-destructive methods, including periodical visual inspections with an underwater video camera system, sipping tests for fuel elements suspected of leakage, and underwater dimensional measurements for swelling evaluation, performed inside the reactor pool. This work presents the program description for the qualification of the high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 , and describes the IPEN fuel fabrication infrastructure and some basic features of the available systems for non-destructive tests at IEA-R1 research reactor. (author)

  1. Specific induced activity profile at the rotary specimen rack of IPR-R1 TRIGA reactor after the introduction of a new pneumatic transfer tube

    International Nuclear Information System (INIS)

    Souza, Luiz Claudio Andrade; Zangirolami, Dante Marco; Maretti Junior, Fausto; Ferreira, Andrea Vidal

    2011-01-01

    The IPR-R1 TRIGA nuclear reactor is located in Belo Horizonte, Brazil, at the Nuclear Technology Development Center (Centro de Desenvolvimento da Tecnologia Nuclear, CDTN) of the National Committee on Nuclear Energy (Comissao Nacional de Energia Nuclear, CNEN). One of its irradiation devices is the rotary specimen rack (RSR), outside the reactor core, with forty irradiation positions arranged in a cylindrical geometry. In a previous work, the neutron fluence rate distribution at the RSR and its variation under different irradiation conditions were evaluated by means of specific induced activity measurements in samples of Al-0.1%Au reference material. Since then the core's configuration has been altered with the (re)introduction of another irradiation device, the pneumatic transfer tube 1 (PT-1). This paper aims at identifying and quantifying any changes in neutron fluence that such modification may have caused. (author)

  2. Nuclear reactors

    International Nuclear Information System (INIS)

    Yoshioka, Michiko.

    1985-01-01

    Purpose: To obtain an optimum structural arrangement of IRM having a satisfactory responsibility to the inoperable state of a nuclear reactor and capable of detecting the reactor power in an averaged manner. Constitution: As the structural arrangement of IRM, from 6 to 16 even number of IRM are bisected into equial number so as to belong two trip systems respectively, in which all of the detectors are arranged at an equal pitch along a circumference of a circle with a radius rl having the center at the position of the central control rod in one trip system, while one detector is disposed near the central control rod and other detectors are arranged substantially at an equal pitch along the circumference of a circle with a radius r2 having the center at the position for the central control rod in another trip system. Furthermore, the radius r1 and r2 are set such that r1 = 0.3 R, r2 = 0.5 R in the case where there are 6 IRM and r1 = 0.4 R and R2 = 0.8 R where there are eight IRM where R represents the radius of the reactor core. (Kawakami, Y.)

  3. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C

    2006-10-15

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions.

  4. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    International Nuclear Information System (INIS)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C.

    2006-10-01

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions

  5. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  6. Energy policies of IEA countries: New Zealand 2006 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-23

    New Zealand faces some serious energy sector challenges, requiring special attention to security of supply issues, both in oil and gas domains. Natural gas production from the major Maui field is rapidly declining. New Zealand's greenhouse gas emissions are rising: the most recent estimates put them at 21% above their Kyoto target over the first commitment period. These challenges are not insurmountable. New Zealand's energy policy is characterised by a commitment to free and open markets complimented by light-handed regulation. The IEA commends this approach and encourages continued policy improvements and enhancements. The energy policy review of New Zealand offers a comprehensive analysis of the country's energy sector, evaluating its strengths and weaknesses across the fuel mix, as well as looking at broader issues such as energy efficiency, environmental performance and technology research and development. It also includes policy critiques and recommendations, drawing on experience across IEA member countries. 33 figs., 21 tabs., 3 annexes.

  7. ORNL R and D on advanced small and medium power reactors: selected topics

    International Nuclear Information System (INIS)

    White, J.D.; Trauger, D.B.

    1989-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, an assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable R and D would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current R and D efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described

  8. Evaluation of PAHs in groundwater and surface waters at Multipurpose Reactor Installation Area

    International Nuclear Information System (INIS)

    Pereira, Karoline P.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F.

    2017-01-01

    Brazil has four research reactors in operation, all old and low power. The IEA-R1 reactor of IPEN/CNEN-SP has only limited radioisotope production capacity, materials irradiation, and neutron beam utilization. This reactor has been operating for fifty-nine years and has prospects of operation for a maximum period of ten years. It is necessary to implement a new reactor, which will support nuclear activities, and the national strategic objectives related to technological development in the areas of energy and defense; scientific and technological development; training of human resources and the growing production of radioisotopes for medical application. The Brazilian Multipurpose Reactor (RMB) will be a nuclear reactor for research and will be built in the state of São Paulo, in the municipality of Iperó. Its construction may involve the release of effluents into the environment. With monitoring before, during and after construction, it will be possible to verify if the construction itself will harm the environment. Several organics compounds are released daily in water bodies collaborating for environmental imbalance. Many of them have carcinogenic and mutagenic properties, receiving more attention by the scientific community. Most of the organic compounds are not included in environmental legislation and many of them present high toxicity, especially those classified as endocrine disrupters, as some Polycyclic Aromatic Hydrocarbons (PAHs). Only seven of the thirteen PAHs studied in this project are contemplated in Brazilian legislation, and just one is contained in international legislation. The PAHs studied in this work present, considered hazardous chemical compounds due to their toxicity, persistence in the environment, their bioaccumulative potential and their tendency to biomagnify. For the determination of the PAHs, the samples were concentrated by solid phase extraction (SPE) followed by quantification by High Performance Liquid Chromatography (HPLC). It

  9. Evaluation of PAHs in groundwater and surface waters at Multipurpose Reactor Installation Area

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Karoline P.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F., E-mail: karolinedepaulapereira@usp.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Brazil has four research reactors in operation, all old and low power. The IEA-R1 reactor of IPEN/CNEN-SP has only limited radioisotope production capacity, materials irradiation, and neutron beam utilization. This reactor has been operating for fifty-nine years and has prospects of operation for a maximum period of ten years. It is necessary to implement a new reactor, which will support nuclear activities, and the national strategic objectives related to technological development in the areas of energy and defense; scientific and technological development; training of human resources and the growing production of radioisotopes for medical application. The Brazilian Multipurpose Reactor (RMB) will be a nuclear reactor for research and will be built in the state of São Paulo, in the municipality of Iperó. Its construction may involve the release of effluents into the environment. With monitoring before, during and after construction, it will be possible to verify if the construction itself will harm the environment. Several organics compounds are released daily in water bodies collaborating for environmental imbalance. Many of them have carcinogenic and mutagenic properties, receiving more attention by the scientific community. Most of the organic compounds are not included in environmental legislation and many of them present high toxicity, especially those classified as endocrine disrupters, as some Polycyclic Aromatic Hydrocarbons (PAHs). Only seven of the thirteen PAHs studied in this project are contemplated in Brazilian legislation, and just one is contained in international legislation. The PAHs studied in this work present, considered hazardous chemical compounds due to their toxicity, persistence in the environment, their bioaccumulative potential and their tendency to biomagnify. For the determination of the PAHs, the samples were concentrated by solid phase extraction (SPE) followed by quantification by High Performance Liquid Chromatography (HPLC). It

  10. Mechanical behaviour of neutron irradiated Nb monocrystalline

    International Nuclear Information System (INIS)

    Otero, M.P.; Lucki, G.

    1986-01-01

    Nb [941] - oriented single crystal was irradiated to a fluence of 1,1 x 10 19 n/cm 2 in the IEA-R1 reactor at IPEN-CNEN/SP. Tensile-Stress experiments showed an irradiation induced hardening, characterized by an increase in the yield stress of about 16%. This result was interpreted using the 'lattice hardening' model. The observed slip systems are attributed to the gliding of the anomalous slip planes. (Author) [pt

  11. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  12. Strengthening the R and D on fast reactor technology, and promoting its industrialization

    International Nuclear Information System (INIS)

    Wan Gang

    2008-01-01

    Based on the strategic thoughts of energy development in China expounded by Jiang Zemin in the article entitled 'Reflections on Energy Issues in China', the author points out in this paper that R and Ds on fast reactor technology shall be carried out timely in China by taking full advantage of international scientific resources, and overall planning in this regard shall be made as well. The point of view of strengthening fast reactor technology R and D and promoting its industrialization is also put forward in the paper. (authors)

  13. Some effects that influence the measurement of a nuclear resonance by using of a crystal spectrometer. Alguns efeitos que influenciam a medida de uma ressonancia nuclear com um espctrometro de cristal

    Energy Technology Data Exchange (ETDEWEB)

    Stasiulevicius, R [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    1993-10-01

    This work describes the neutron transmission experiments aimed at evaluating the thermal resonance of [sup 176] Lu by using a crystal spectrometer located next to an irradiation channel of the IEA-R1 reactor. The iridium resonance was used to calibrate the experimental data. The effects of several phenomena affecting the measurements were also accounted for. Finally, the results were compared to values from the literature. (author).

  14. Leaching Studies on ACR-1000{sup R} Fuel Under Reactor Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sunder, S. [Atomic Energy of Canada Limited, Fuel and Fuel Channel Safety Branch, Chalk River, Ontario, K0J 1J0 (Canada)

    2009-06-15

    ACR-1000{sup R} is the latest nuclear power reactor being developed by AECL. The ACR-1000 fuel uses a modified CANFLEX{sup R} fuel bundle that contains low-enriched uranium and pellets of burnable neutron absorbers (BNA) in a central element. Dysprosium and gadolinium are used as the burnable neutron absorbers and are present as oxides in a 'fully-stabilized' zirconia matrix. The BNA material in the centre element is designed to limit the coolant void reactivity of the reactor core during postulated loss-of-coolant accidents. As part of the ACR-1000 fuel development, the stability of the BNA material under conditions associated with defects of the Zircaloy sheathing of the BNA central element has been investigated. The results of these tests can be used to demonstrate the phase stability and leaching behaviour of the ACR-1000 fuel under reactor operating conditions. The samples were disks, about 3-4 mm thick, obtained from BNA pellets and Candu fuel (natural uranium UO{sub 2}) pellets (the UO{sub 2} measurements provide a reference point). Leaching tests were carried out in light water at 325 deg. C, above the maximum coolant temperature in an ACR-1000 fuel channel during normal operating conditions (319 deg. C). This temperature also bounds the maximum operating temperature for the current Candu reactors (311 deg. C). The initial pH of the solution (measured at room temperature) used in the leaching tests was 10.3. The leach rates were determined by monitoring the amount of metals leached into solutions. Leaching tests were also carried out with BNA pellet samples in the presence of Zr-2.5%Nb pressure tube coupons to determine the effects, if any, of the presence of pressure tube material on leach rates. Other leaching tests with BNA pellet samples and UO{sub 2} pellets were conducted at 80 deg. C to study the effects of temperature on the leach rates. The temperature of 80 deg. C was selected as representative of typical shutdown temperatures

  15. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  16. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  17. The Causality Study of External Environment Analysis (EEA), Internal Environment Analysis (IEA), Strategy Implementation on Study Program Performance at Vocational High School (VHS) in Nias Archipelago, Indonesia

    Science.gov (United States)

    Waruwu, Binahati; Sitompul, Harun; Manullang, Belferik

    2016-01-01

    The purposes of this study are to find out the significant effect of: (1) EEA on strategy implementation, (2) IEA on strategy implementation, (3) EEA on study program performance, (4) IEA on study program performance, and (5) strategy implementation on study program performance of Vocational High School (VHS) in Nias Archipelago. The population of…

  18. FY1998 survey on IEA international cooperation project on demonstration and survey of new load leveling methods (participation in the IEA/DSM task VI); 1998 nendo fuka heijunka shinshuho jissho chosa IEA kokusai kyoryoku jigyo 'IEA/DSM task 6 eno sanka ni tsuite' chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    It is intended to participate in the IEA international cooperation project related to DSA, exchange items of information, and promote demonstration and survey of new load leveling methods. The existing and newly proposed DSM mechanisms as the achievement of the previous tasks were put into order. The arena of information exchange and discussions was prepared through use of the Internet homepage for the IEA/DSM implementation agreement. Necessary official policies were also made available. Points of precautions when the mechanisms of other countries are used in Japan: the key to the success depends on social or cultural situations that work as the base; therefore, comparisons and analyses are necessary on such elements as customers as the object, energy projects and governments; compatibility of the situation and pattern of the demand side with the DSM technologies governs the reasonability thereof; the types of the mechanisms are narrowed down by size of the customer division, consumption pattern, electric power quality and safety, and needs on the flexibility; proliferation levels of the DSM technologies determine the appropriate mechanisms; and how the DSM is conceived against the final consumption is governed by the conception by both of the customers and the government. (NEDO)

  19. Trends on R and D of the innovative nuclear reactors in Japan

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    2002-01-01

    In Japan, since LWRs introduced from U.S.A. began their business operations one by one from 1970 and 1971, their scale-up were carried out, to reach, at present, a condition on developments of ABWR-2 of 1700 MW class in output and APWR+. They are on a line of large scale LWR development aiming at further upgrading of their economical efficiency, safety, operability and maintenance by improving and developing conventional reactors. On the other hand, an innovative small scale reactor capable of siting at proximity of its markets and flexibly responsible to needs, a low decelerated spectrum reactor intending to effectively use the resources, an super-critical pressure reactor aiming at upgrading of thermal efficiency, a high temperature gas reactor aiming at hydrogen production using nuclear heat , and so on, and so forth, are investigated at a number of institutes. And, on the fast breeder reactor, some innovative investigations such as small-scale reactor, reactor using coolant except metal sodium, and so on, in addition to development of sodium cooling large-scale reactor, under the 'Actual use strategy survey research' progressed at a center of the Japan Nuclear Cycle Development Institute, are promoted. Here were outlined on trends of R and D on various innovative reactors under classification of water cooling reactor, gas cooling reactor, and liquid metal cooling reactor. (G.K.)

  20. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...... climate conditions are compared and differences explained. Special innovative installations and systems are de-scribed and evaluated. In general the measured energy consumption was higher than the expected values due to user influence and unforeseen technical problems but still an energy saving of 60...

  1. IEA-Advanced Motor Fuels Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-02

    The annual report from the IEA implementing agreement on Advanced Motor Fuels (AMF) describes the agreement, activities, and projects for the year. A section on the global situation for Advanced Motor Fuels includes country reports from each participating AMF member. A status report on each active annex for the agreement is also included, as is a message from the AMF Chairman. Final sections include an Outlook for Advanced Motor Fuels, further information, and a glossary of terms.

  2. A critical review of IEA's oil demand forecast for China

    International Nuclear Information System (INIS)

    Nel, Willem P.; Cooper, Christopher J.

    2008-01-01

    China has a rapidly growing economy with a rapidly increasing demand for oil. The International Energy Agency (IEA) investigated possible future oil demand scenarios for China in the 2006 World Energy Outlook. The debate on whether oil supplies will be constrained in the near future, because of limited new discoveries, raises the concern that the oil industry may not be able to produce sufficient oil to meet this demand. This paper examines the historical relationship between economic growth and oil consumption in a number of countries. Logistic curve characteristics are observed in the relationship between per capita economic activity and oil consumption. This research has determined that the minimum statistical (lower-bound) annual oil consumption for developed countries is 11 barrels per capita. Despite the increase reported in total energy efficiency, no developed country has been able to reduce oil consumption below this lower limit. Indeed, the IEA projections to 2030 for the OECD countries show no reduction in oil demand on a per capita basis. If this lower limit is applied to China, it is clear that the IEA projections for China are under-estimating the growth in demand for oil. This research has determined that this under-estimation could be as high as 10 million barrels per day by 2025. If proponents of Peak Oil such as Laherrere, Campbell and Deffeyes are correct about the predicted peak in oil production before 2020 then the implications of this reassessment of China's oil demand will have profound implications for mankind

  3. Comparison of ASTEC 1.3 and ASTEC 1.3 R2 calculations in case of SBO for VVER-1000 reactor

    International Nuclear Information System (INIS)

    Atanasova, B.; Stefanova, A.; Grudev, P.

    2009-01-01

    The report presents the results from severe accident analyses performed with the both versions of ASTEC v1.3 and ASTEC v1.3R2 computer code for a VVER 1000 type of reactor. The purpose of this analysis is to assess the progress of ASTEC code modeling of main phenomena arising during hypothetical severe accidents. The final target of these analyses is to estimate the behaviour of the ASTEC code, its capability for simulation of severe accidents, including safety systems and Severe Accident Management (SAM) procedures. The analyses have been performed assuming a station blackout with simultaneous loss of HPIS, LPIS (ECCSs), EFWS and spray system due to failure of DGs. Hydro accumulators are not available. In the calculation it is assumed opening and stuck-open of PRZ relief valves. It has been organized the Fission Products path through the SEMPELL valve. It should be said that this investigation was limited to the 'in-vessel' phase of the sequence; therefore the effect of sprays on containment atmosphere has not been studied. (authors)

  4. Wind power forecasting: IEA Wind Task 36 & future research issues

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, J.; Frank, Helmut Paul

    2016-01-01

    the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD...

  5. Thermal and fast neutron distribution determination in the IPR-R1 reactor core; Levantamento das distribuicoes dos fluxos de neutrons termicos e rapidos no nucleo do reator IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R R.R.

    1985-06-01

    The work is aimed at obtaining a physical method for neutron flux distribution determination within the reactor core, in order to analyze the project of power increase in the TRIGA IPR-R1 reactor at the Nuclebras Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), located in Belo Horizonte, Minas Gerais, Brazil. The experimental process utilizes the neutron activation technique in impurities of stainless steel welding rods 700 mm long, set in acrylic supports. These rods provide simultaneous information on the thermal and fast neutron fluxes through capture and threshold reactions. The process of detection and counting of activation products utilizes a high resolution Ge (Li) detector and a mechanical scanning device, designed and manufactured at CDTN for burn-up measurements of irradiated fuel elements. Besides its simplicity, the method presents the advantage of substituting high purity imported materials by one easily obtained that also furnishes simultaneous information on the thermal and fast neutron fluxes. Furthermore, values for the absolute thermal neutron flux a long the whole core height are obtained. The procedure consists of the assessment of the thermal neutron flux in a fixed point by means of a conventional detector, and then establishing the correspondence of this measurement with the response of the stainless steel rods. (author). 30 refs, 39 figs, 9 tabs.

  6. IEA Vehicle Efficiency Workshops Drive New Vehicle Policy Approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Fuel economy is not only about getting more performance from the engine. Components outside the engine are also large fuel consumers. If fuel-economy test methods always remembered that, vehicle manufacturers would optimise component performance. A number of initiatives addressing component test standards and related policies have been triggered by IEA's recent workshops.

  7. Gas-fired power. IEA ETSAP technology brief E02

    Energy Technology Data Exchange (ETDEWEB)

    Seebregts, A.J. [Energy research Centre of the Netherlands (Netherlands)], E-mail: seebregts@ecn.nl

    2010-04-15

    This technology brief on gas-fired power is part of a series produced by the IEA called the energy technology data source (E-Tech-DS). The E-Tech-DS series consists of a number of 5-10 page technology briefs similar to the IEA Energy Technology Essentials. Based on the data collected for the models that the Energy Technology Systems Analysis Programme (ETSAP) is known for, ETSAP also prepares technology briefs, called E-TechDS. The E-TechDS briefs are standardized presentations of basic information (process, status, performance, costs, potential, and barriers) for key energy technology clusters. Each brief includes an overview of the technology, charts and graphs, and a summary data table, and usually ending with some key references and further information. The E TechDS briefs are intended to offer essential, reliable and quantitative information to energy analysts, experts, policymakers, investors and media from both developed and developing countries. This specific brief focuses on the state of combined-cycle gas turbines (CCGT). CCGT's have become the technology of choice for new gas-fired power plants since the 1990's.

  8. J-R Fracture Resistance of SA533 Gr.B-Cl.1 Steel for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji-Hyun; Hong, Seokmin; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A rolled plate might show different mechanical behaviors from a forging, even though they contain same chemical compositions. Furthermore, it is known that the fracture behavior of a rolled plate is very sensitive to material orientation comparing to a forging. In this study, the J-R fracture resistances of SA533 Gr.B-Cl.1 plate were measured at reactor operating temperature and the material orientation sensitivity was discussed. The decrease of fracture resistance of this kind of low alloy steel at an elevated temperature is known as the effect of dynamic strain aging (DSA). It was attributed to that the carbides and grains elongated to primary rolling direction, so that the aspect ratio of carbides and grains in the specimen with T-L orientation is larger. Generally, the hard second phase could take a roll of trigger point of unstable fracture. It is needed that the fracture surfaces of the tested specimens to be examined profoundly.

  9. Energy policies of IEA countries: Australia 2005 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-16

    The report reviews Australia's energy policies and makes recommendations to the government on future policy development. The IEA commends the efficiency and security of the Australian energy market but recommends that the country will have to substantially alter future energy supply and/or demand behaviour if it wants to moderate emission levels and work within any future global climate change mitigation programme. 23 figs., 27 tabs., 3 annexes.

  10. Energy policies of IEA countries: Australia 2005 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-16

    The report reviews Australia's energy policies and makes recommendations to the government on future policy development. The IEA commends the efficiency and security of the Australian energy market but recommends that the country will have to substantially alter future energy supply and/or demand behaviour if it wants to moderate emission levels and work within any future global climate change mitigation programme. 23 figs., 27 tabs., 3 annexes.

  11. Investigation of Fe and Ca in non-stimulated human saliva using NAA

    Science.gov (United States)

    de Medeiros, J. A. G.; Zamboni, C. B.; Kovacs, L.; Lewgoy, H. R.

    2015-07-01

    In this study we investigated non-stimulated human whole saliva of healthy subjects and patients with periodontal disease using Neutron Activation Analysis technique (NAA). The measurements were performed in the IEA-R1 nuclear reactor at IPEN-CNEN/SP. We found considerable metabolic changes mainly in Fe and Ca concentration in whole saliva of periodontal patients. These data are useful for identifying or preventing this oral disease in the Brazilian population.

  12. Study of IPR-R1 dynamics by reactivity random excitations

    International Nuclear Information System (INIS)

    Roedel, G.

    1983-01-01

    To demonstrate the viability of the utilization of analitical techniques of neutronic noise, a dynamic model for IPR-R1 reactor from CDTN was developed. This model allows reactivity feedback due to variations of temperature in fuel and coolant [pt

  13. Neutron activation of microspheres containing 165Ho: theoretical and experimental radionuclidic impurities study

    International Nuclear Information System (INIS)

    Squair, Peterson L.; Pozzo, Lorena; Ivanov, Evandro; Osso Junior, Joao A.

    2011-01-01

    The 166 Ho microspheres are potentially interesting for medical applications for treatment of many tumors. The internal radionuclide therapy can use polymer or glass device that provides structural support for the radionuclide. After activation, beta minus emission of 166 Ho (T 1/2 =26.8h, β - E max =1.84 MeV, γ E p =80.6 keV) can be used for therapeutic purposes. The aim of this work is study the influence of radionuclide impurities between End of Bombardment (EOB) and the medical application. The appropriate specific activities and purity along decay should be adequate for their safe and efficient medical applications. The good practices on neutron activation techniques are choice a high purity target to avoid production of undesirable radionuclides and when possible with enriched targets to obtain higher specific activity. In this work the target used was Ho 2 O 3 and polymeric microspheres containing holmium acetylacetonate (HoAcAc) manufactured at the Biotechnology Center-IPEN/CNEN-SP. Three conditions were evaluated: preliminary test with 1.0x10 13 n.cm -2 s -1 for 1.0 hour; nowadays maximum capability of IEA-R1 reactor with 5.0x10 13 n.cm -2 s -1 for 64.0 hours and the ideal IEA-R1 operation with 5.0x10 13 n.cm -2 s -1 for 120.0 hours. Considering the sample with 99.9% 165 Ho purity and 0.1% for each impurities elements with its natural abundance, the highest radionuclidic impurity is the Lutetium followed by Ytterbium, Lanthanum and Cerium. The intrinsic radionuclidic impurity of 166 mHo is less relevant. This review is important to identify the radionuclidic purity characteristics of the preliminary studies with different time and flux irradiation. The data produced in this paper will help to define strategies for the production of 166 Ho radioisotope at IEA-R1 IPEN/CNEN-SP reactor. (author)

  14. FY 1998 Report on development of technologies for commercialization of photovoltaic power systems. International co-operative project (IEA implementing agreement for a co-operative programme on photovoltaic power systems); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai kyoryoku jigyo. IEA taiyoko hatsuden system kenkyu kyoryoku program jisshi kyotei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are outline of the International Energy Agency/Co-operative programme on Photovoltaic Power Systems (IEA/PVPS). Japan signed the IEA Implementing Agreement for a co-operative programme on Photovoltaic Power Systems in April 1993, and has been participating in the programme for research and development, demonstration, analysis, information exchange and introduction promotion, among others. This programme is managed by Executive Committee composed of the representatives, one nominated by each participating country, and each task is managed by each Operating Agency. There are 9 tasks (Tasks 1 to 9), and Executive Committee deliberates and approves the plans, and manages the progresses, budgetary plans and budgets for each task. IEA implementing agreement for a co-operative programme on PVPS, originally set effective for 5 years, has been extended for another 5 years to 2002, and the second phase activities have been started. The 9th to 11th Executive Committee meetings were held during the 1997-1998 period in Denmark, ROK, Spain, Austria and Australia, respectively. (NEDO)

  15. IEA-ECBCS Annex 51: energy efficient communities. Experience from Denmark

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Svendsen, Svend

    2011-01-01

    The paper describes the Danish contribution to the IEA-ECBCS Annex 51: “energy efficient communities”. We present three case studies, two from Annex subtask A (state-of-the-art review) and one from subtask B (ongoing projects). The first case study is “Samsoe: a renewable energy island”. The comm...

  16. Lessons Learned from the Energy Policies of IEA Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This information paper provides policy makers and managers, facing tough energy policy challenges, with a wider perspective of how the same issues are being addressed by different IEA member countries. The topics included are: Government structures for co-ordinating energy and climate policies; The use of long-term energy forecasts and scenarios; and Progress in the delivery of key energy security policies.

  17. CFD simulation of IPR-R1 Triga subchannels fluid flow

    International Nuclear Information System (INIS)

    Silva, Vitor V.; Santos, A.; Mesquita, Amir Z.; Silva, P.S. da; Pereira, C.

    2013-01-01

    Computational fluid dynamics (CFD) codes have been extensively used in engineering problems, with increasing use in nuclear engineering. One of these computer codes is OpenFOAM. It is freely distributed with source code and offers a great flexibility in simulating particular conditions like those found in many problems in nuclear reactor analysis. The aim of this work is to simulate fluid flow and heat flux in three different configurations of subchannels of IPR-R1 TRIGA reactor using OpenFOAM. The data will be then validated against real experimental data obtained during the operation of the reactor at 100kW. This validation process is fundamental to allow the use of the software and associated model to simulate reactor's operation at different conditions, namely different power e fluid flow velocities. (author)

  18. CFD simulation of IPR-R1 Triga subchannels fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vitor V.; Santos, A.; Mesquita, Amir Z.; Silva, P.S. da, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br, E-mail: amir@cdtn.br, E-mail: psblsg@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN - MG), Belo Horizonte, MG (Brazil); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    Computational fluid dynamics (CFD) codes have been extensively used in engineering problems, with increasing use in nuclear engineering. One of these computer codes is OpenFOAM. It is freely distributed with source code and offers a great flexibility in simulating particular conditions like those found in many problems in nuclear reactor analysis. The aim of this work is to simulate fluid flow and heat flux in three different configurations of subchannels of IPR-R1 TRIGA reactor using OpenFOAM. The data will be then validated against real experimental data obtained during the operation of the reactor at 100kW. This validation process is fundamental to allow the use of the software and associated model to simulate reactor's operation at different conditions, namely different power e fluid flow velocities. (author)

  19. IEA HPT ANNEX 41 – Cold climate heat pumps: US country report

    Energy Technology Data Exchange (ETDEWEB)

    Groll, Eckhard A. [Purdue Univ., West Lafayette, IN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availability of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.

  20. Protection of spent aluminum-clad research reactor fuels during extended wet storage

    International Nuclear Information System (INIS)

    Fernandes, Stela M.C.; Correa, Olandir V.; Souza, Jose A.; Ramanathan, Lalgudi V.; Antunes, Renato A.

    2013-01-01

    Aluminum-clad spent nuclear fuel from research reactors (RR) is stored in light water filled pools or basins worldwide. Many incidences of pitting corrosion of the fuel cladding has been reported and attributed to synergism in the effect of certain water parameters. Protection of spent Al-clad RR fuel with a conversion coating was proposed in 2008. Preliminary results revealed increased pitting corrosion resistance of cerium oxide coated aluminum alloys AA 1050 and AA 6061, used as RR fuel plate cladding. Further development of conversion coatings for Al alloys was carried out and this paper presents: (a) the preparation and characterization of hydrotalcite (HTC) coatings; (b) the results of laboratory tests in which the corrosion behavior of coated Al alloys in NaCl solutions was determined; (c) the results of field tests in which un-coated, boehmite coated, HTC coated and cerium modified boehmite / HTC coated AA 1050 and AA 6061 coupons were exposed to the IEA-R1 reactor spent fuel basin for extended periods. In these field tests the coupons coated with HTC from a high temperature (HT) bath and subsequently modified with Ce were the most resistant to pitting corrosion. In laboratory tests also, HT- hydrotalcite + Ce coated specimens were the most corrosion resistant in 0.01 M NaCl. The role of cerium in increasing the corrosion resistance imparted by the different conversion coatings of spent Al-clad RR fuel elements is presented. (author)

  1. Neutron tomography at IPEN-CNEN/SP: images and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pugliesi, Reynaldo; Pereira, Marco Antonio Stanojev; Andrade, Marcos Leandro Garcia, E-mail: pugliesi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The neutron tomography is a non destructive testing technique used to inspect the internal structure of a sample by means of tridimensional digital images. Because of the neutron-matter interaction characteristics this technique can be used to inspect hydrogen-rich substances like ceramics, oil, grease, water, rubber, blood and others, even wrapped by thick metal layers. In this way, the information provided by neutrons are complementary to the ones provided by X-rays. The Brazilian Institute for Nuclear Technology IPEN-CNEN/SP has an equipment for neutron tomography which since Nov/2011 is operational and installed at the IEA-R1 Nuclear Research Reactor. This equipment is able to provide high quality tomographs and some important results obtained for Proton Exchange Membranes (PEM) cell, for an archaeological sample and for pottery, will be presented. Furthermore, details of its construction and its versatility, in the sense that by means of small adjustments is possible to obtain images by other neutron imaging techniques, will be also presented. Is very important enhance that the high quality of the obtained images is due to the excellence of the IEA-R1 reactor which is able to furnish neutron beams with adequate intensity for such purpose. (author)

  2. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-15

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  3. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    International Nuclear Information System (INIS)

    2009-01-01

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  4. IEA-Advanced Motor Fuels Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The annual report from the IEA implementing agreement on Advanced Motor Fuels (AMF) describes what the agreement is about, how to join, various activities of the agreement, a message from the Chairman, and projects/annexes active for the year. An annual section covers the global situation for the topic of advanced motor fuels. Another section includes highlights coming from each country participating in AMF, and major sections relaying activities on each of the ongoing annexes. Information regarding participating delegations, contact information, publications resulting from AMF, and upcoming meetings rounds out the report.

  5. IEA-Advanced Motor Fuels Annual Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The annual report from the IEA implementing agreement on Advanced Motor Fuels (AMF) describes what the agreement is about, how to join, various activities of the agreement, a message from the Chairman, and projects/annexes active for the year. An annual section covers the global situation for the topic of advanced motor fuels. Another section includes highlights coming from each country participating in AMF, and major sections relaying activities on each of the ongoing annexes. Information regarding participating delegations, contact information, publications resulting from AMF, and upcoming meetings rounds out the report.

  6. FY 1998 Report on development of technologies for commercialization of photovoltaic power systems. International co-operative project (Information collected for IEA Solar Heating and Cooling Programme); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai kyoryoku jigyo. IEA taiyo reidanbo kyuto program ni kansuru joho shushu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The IEA/ Solar Heating and Cooling Programme (SHCP) committee members were dispatched to the IEA/SHCP Executive Committee and Expert Meetings, to collect information, present the reports and hold the discussions, among others. Described herein are the results. The third Expert Meeting of the IEA/SHCP Task 23 prepared the document covering the examples of solar energy use in large buildings and distributed them in Subtask A, and proposed and discussed the comprehensive performance evaluation methods and simulation-based design tools in Subtask C. The second workshop of the IEA/SHCP Task 25 discussed evaluation of the current technologies for solar assisted air conditioning, design of the solar assisted cooling systems, economic evaluation and market researches, investigations of cooling system hardware, and development of simulation programs and design tools. The examples of solar cooling are mostly found in Japan, and European countries are conducting experiments and field tests, because of lack of commercial grade freezers. (NEDO)

  7. The determination of thermal neutron cross section of 81Br

    International Nuclear Information System (INIS)

    Kovacs, Luciana; Zamboni, Cibele B.; Dalaqua Junior, Leonardo

    2009-01-01

    In this investigation several standard materials were used to determine the thermal neutron cross section of 81 Br. This nuclear parameter is an important data to perform several quantitative investigations, mainly in medical area. In other to confirm and to reduce the uncertainty, a new measurement was preformed using thermal neutron at IEA-R1 nuclear reactor of IPEN/CNEN-SP. The result obtained is compatible with the tabulated value and present small uncertainly. (author)

  8. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  9. An approach to estimate the reactivity worth of R-5 poison tube system and experimental verification in ZERLINA reactor

    International Nuclear Information System (INIS)

    Khosla, S.K.; Paul, O.P.K.; Sengupta, S.N.

    1976-01-01

    It is proposed to employ a liquid poison injection system as an emergency shut down device for R-5 reactor. The liquid poison consists of gadolinium nitrate solution, which is injected into twenty poison tubes made of zircaloy that are located in between the regular lattice positions in R-5 reactor. The calculational model adopted to estimate the reactivity worth of the poison tubes so as to hold the reactor subcritical by 50 mk at full tank, is described. Similar reactivity estimates have also been carried out for R-5 poison tubes installed in Zerlina reactor in order to assess the adequacy of the calculational mode. The results of the calculations are compared with experimental values for single poison tubes. (author)

  10. Energy policy of the International Energy Agency (IEA) countries. General review of the year 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This book is a general review on energy policy leaded by Members countries of International Energy Agency (IEA) during the year 1990. This book describes also the trends and the recent events which have affected energy demand, energy conservation, energy efficiency, energy supply and energy source development. This annual review gives the IEA energy forecasting for the next years, till year 2001. A detailed study of energy policy in Federal Republic of Germany, Austria, Denmark, Greece, Ireland and Japan is given. The policy of fifteen another Members countries, which have been analyzed the previous years, is recapitulated and briefly brought up to date

  11. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    International Nuclear Information System (INIS)

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  12. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  13. Neutronic calculations in core conversion of the IAN-R1 research reactor from MTR HEU to TRIGA LEU fuel

    International Nuclear Information System (INIS)

    Sarta Fuentes, Jose A.; Castiblanco, L.A.

    2003-01-01

    With cooperation of the International Atomic Energy Agency (IAEA), neutronic calculations were carried out for conversion of the Ian-R1 Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to establish a staff for neutronic calculation at the Instituto de Cancan's Nucleares y Energia s Alternatives (INEA) a program was established. This program included training, acquisition of hardware, software and calculation for the core with MTR-HEU fuel , enriched nominally to 93% and calculation for several arrangements with the TRIGA-LEU fuel, enriched to 19.7%. The results were verified and compared with several groups of calculation at the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, and General Atomics (GA) in United States. As a result of this program, several technical reports have been wrote. (author)

  14. Estonia 2013: Energy Policies Beyond IEA Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    One of the fastest-growing economies in the OECD, Estonia is actively seeking to reduce the intensity of its energy system. Many of these efforts are focused on oil shale, which the country has been using for almost a century and which meets 70% of its energy demand. While it provides a large degree of energy security, oil shale is highly carbon-intensive. The government is seeking to lessen the negative environmental impact by phasing out old power plants and developing new technologies to reduce significantly CO2 emissions. The efforts on oil shale complement Estonia’s solid track record of modernising its overall energy system. Since restoring its independence in 1991, Estonia has fully liberalised its electricity and gas markets and attained most national energy policy targets and commitments for 2020. It has also started preparing its energy strategy to 2030, with an outlook to 2050. Estonia is also promoting energy market integration with neighbouring EU member states. The strengthening of the Baltic electricity market and its timely integration with the Nordic market, as well as the establishment of a regional gas market, are therefore key priorities for Estonia. Following its accession to the Organisation for Economic Co-operation and Development (OECD) in 2010, Estonia applied for International Energy Agency (IEA) membership in 2011. This review of Estonia’s energy policies is part of the IEA accession process. It analyses the energy policy challenges and opportunities facing Estonia, and provides critiques and recommendations for future policy improvements. It is intended to guide the country towards a more secure and sustainable energy future.

  15. Status of the R and D activities on fast reactors and ADS in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens

    2001-01-01

    Research and Development in Nuclear Science and Technology is conducted by Research Institutes of the Brazilian Nuclear Energy Commission. In Fast Reactor, R and D activities started in the sixties, and in 1972 a small Na loop (100 kW) was constructed. At the same time, during the seventies at IPEN, research in cooperation with GA for Gas Cooled Fast Breeder Reactor was conducted. The motivation of such research was Thorium Fuel Cycle. As a result of this research a Helium Loop was constructed and a Split Table Critical Assembly (ZPR) was designed. During the eighties, an agreement with ANSALDO-NIRA resulted in an acquisition of a Sodium Loop for Thermohydraulics studies, however it never had been assembled. At the same time, a concept of a Binary Breeder Reactor using two cycles, Th and U, was developed. During the nineties, a National Program to conduct R and D (pyroprocess; U-Zr Metallic Fuel; HT-9; Electromagnetic Pump; and a conceptual design of a Experimental Reactor (60/20 MWth/MWe)) was proposed, however it was closed at the end of the decade. Now, only academic research is being conducted, and it is summarized in this report. Basically, they are: an integral lead fast reactor concept for developing countries, and an alternative concept for a fast energy amplifier accelerator driven system. The first is an combination of best characteristics of the American Integral Fast Reactor and the Russian Lead Cooled Reactor. The second is a conceptual design of ADS helium cooled imbedded in a solid lead subcritical array of fuel, using more than one point of spallation trying to reduce the requirement for energy and current of the accelerator

  16. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... the small value is often the sum of large positive and negative errors. Almost no significant correlation is found between forecast errors in the 3 years. Correspondingly, no significant correlation coefficient is found between forecasts errors in the 3 main energy sectors. Therefore, a relatively small...

  17. Workshop report and proposal for a new IEA Task: Daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P E; Johnsen, K

    1994-04-01

    The IEA workshop on Daylight in Buildings was held in Copenhagen on March 14-16, 1994. At the workshop, presentations were given on key topics as a basis for discussions by the experts participating in the meeting. The presentations and discussions covered a range of technical, architectural and amenity aspects of daylighting in buildings. A great interest in research collaboration on daylight was expressed, and it was agreed that plenty of work still needs to be done, and that the appropriate form of work would be an IEA Task. It was agreed that daylighting systems and control strategies should be evaluated and tested in test rooms, as well as in existing buildings as case studies. Furthermore, the workshop expressed that one of the best ways to realize and present the Task results to practice would be through a few demonstration buildings, build in different countries and under different climatic conditions. (EG)

  18. Self-powered detectors sensitivity determination

    International Nuclear Information System (INIS)

    Surkov, V.; Soares, A.J.

    1994-01-01

    The determination of the initial sensitivity of Self Powered Detectors (SPDs) was performed. Measurements of thermal, epithermal and to gamma flux sensitivities were made with Vanadium, Cobalt, Rhodium, Silver and Platinum SPDs and, when possible, the values are compared with the ones from the existing literature. The determination of neutron sensitivity was realized using the IEA-R1 Reactor from IPEN. The thermal and epithermal neutron flux were determined with bare and Cadmium covered activation foils. (GOLD). (author)

  19. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  20. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs