Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Place identity and place scale: the impact of place salience.
Bernardo, Fátima; Palma-Oliveira, José-Manuel
2013-01-01
Research about place, place identity and attachment supports the idea that bonds with places may differ depending on the place scale. Based on the view that identity is context-dependent, this paper brings to the table the impact of manipulating the salience of place on the intensity of place identity and place attachment reported. A study was designed to examine place identity and place attachment in two groups of residents (permanent and temporary) at three different scales (nei...
A master identity for homotopy Gerstenhaber algebras
International Nuclear Information System (INIS)
Akman, F.
2000-01-01
We produce a master identity {m}{m,m,..}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
Quartic trace identity for exceptional Lie algebras
International Nuclear Information System (INIS)
Okubo, S.
1979-01-01
Let X be a representation matrix of generic element x of a simple Lie algebra in generic irreducible representation ]lambda] of the Lie algebra. Then, for all exceptional Lie algebras as well as A 1 and A 2 , we can prove the validity of a quartic trace identity Tr(X 4 ) =K (lambda)[Tr(X 2 )] 2 , where the constant K (lambda) depends only upon the irreducible representation ]lambda], and its explicit form is calculated. Some applications of second and fourth order indices have also been discussed
Play Memories and Place Identity.
Sandberg, Anette
2003-01-01
This retrospective study examined play memories from childhood to adulthood of 478 university students between ages 20 and 62 as exhibited in drawings of play memories and questionnaire responses. The study focused on the role of the physical environment and place identity in play memories and individual identity development. Findings showed that…
Ward identities of higher order Virasoro algebra
International Nuclear Information System (INIS)
Zha Chaozeng; Dolate, S.
1994-11-01
The general formulations of primary fields versus quasi-primary ones in the context of high order Virasoro algebra (HOVA) and the corresponding Ward identity are explored. The primary fields of conformal spins up to 8 are given in terms of quasi-primary fields, and the general features of the higher order expressions are also discussed. It is observed that the local fields, either primary of quasi-primary, carry the same numbers of central charges, and not all the primary fields contribute to the anomalies in the Ward identities. (author). 6 refs
Building Place Identity through Heritage
Alexandra PACESCU; Vlad THIERY
2015-01-01
In an increasingly globalized world, the fading specificity is producing homogeneous images that make cities more and more difficult to tell apart. The market economy tends to commodify each and every aspect of urban life, even those belonging to the cultural realm. As a consequence, a need for differentiators arises, which can be best embodied by the local heritage. The present paper is trying to establish a link between the concept of Place Identity, seen from a marketing point of view, ...
G-identities of non-associative algebras
International Nuclear Information System (INIS)
Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K
1999-01-01
The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution
Commutator identities on associative algebras and integrability of nonlinear pde's
Pogrebkov, A. K.
2007-01-01
It is shown that commutator identities on associative algebras generate solutions of linearized integrable equations. Next, a special kind of the dressing procedure is suggested that in a special class of integral operators enables to associate to such commutator identity both nonlinear equation and its Lax pair. Thus problem of construction of new integrable pde's reduces to construction of commutator identities on associative algebras.
General algebraic theory of identical particle scattering
International Nuclear Information System (INIS)
Bencze, G.; Redish, E.F.
1978-01-01
We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations
Place attachment, place identity and aesthetic appraisal of urban landscape
Directory of Open Access Journals (Sweden)
Jaśkiewicz Michał
2015-12-01
Full Text Available As the aesthetic of the Polish cities became a topic of wider discussions, it is important to detect the potential role of human-place relations. Two studies (N = 185 & N = 196 were conducted to explore the relationship between place attachment, place identity and appraisal of urban landscape. Satisfaction with urban aesthetic was predicted by two dimensions of place attachment (place inherited and place discovered, local identity (on the trend level and national-conservative identity. Place discovered and European identity were also predictors of visual pollution sensitivity. Place discovered is considered as more active type of attachment that permits both a positive bias concerning the aesthetics of one’s city, and a stronger criticism of the elements that can potentially violate the place’s landscape.
In Search of Place Brand Identity
DEFF Research Database (Denmark)
Kvistgaard, Hans-Peter; Blichfeldt, Bodil Stilling; Hird, John
2015-01-01
Place branding relates both to brand identity (what the place is) and brand image (what the place is/should be in the eyes of external audiences). Brand identity can be perceived as the set of values and attributes that those responsible for marketing and development of a place wish to reinforce...... that arise when trying to establish destination brand identity by means of more inclusive, bottom-up approaches. Drawing on both literature studies and the authors’ active involvement in destination branding across more than 50 Danish destinations, particularly the paper discusses how to decide who to give...
Sense of place and place identity: review of neuroscientific evidence.
Lengen, Charis; Kistemann, Thomas
2012-09-01
The aim of this review is to bring the phenomenological sense of place approach together with current results from neuroscience. We searched in neuroscientific literature for ten dimensions which were beforehand identified to be important in a phenomenological sense of place/place identity model: behaviour, body, emotion, attention, perception, memory, orientation, spirituality, meaning/value and culture/sociality. Neuroscience has identified many neurobiological correlates of phenomenological observations concerning sense of place. The human brain comprises specific and specialised structures and processes to perceive, memorise, link, assess and use spatial information. Specific parts (hippocampus, entorhinal, parahippocampal and parietal cortex), subregions (parahippocampal place area, lingual landmark area), and cells (place cells, grid cells, border cells, head direction cells) have been identified, their specific function could be understood and their interaction traced. Neuroscience has provided evidence that place constitutes a distinct dimension in neuronal processing. This reinforces the phenomenological argumentation of human geography and environmental psychology. Copyright © 2012 Elsevier Ltd. All rights reserved.
ISLAMIC IDENTITY VERSUS CITY/PLACE BRANDING
Directory of Open Access Journals (Sweden)
M. Alaa Mandour
2012-09-01
Full Text Available Is a brand a product, a service, or a company? Is it a logo, a marketing strategy or an attitude? As globalization intensifies, places increasingly compete with other places for attention, influence, markets, investments, businesses, visitors, residents, talent and events. And competition is no longer restricted to the well-known places down the road, over the hill or across the water. Places now compete with cities, regions and countries halfway around the world. Places are increasingly getting caught off guard by unpredicted and apparently rapid shifts in competition and abruptly lose their historic purpose or their competitive edge, be it economic, social or cultural. Culture fills our cities, regions, nations and even our rural landscapes with spiritual content. Our places are an expression of who we are and what we value and they are ruthless in projecting the bad alongside the good. In its widest sense culture includes art, design, education, science, religion and sport. In the context of place branding it is the manifestation of our beliefs, values, customs and behaviors. Merging culture to brand within our city tissue is an essential part of the morphology within its spaces. This paper is trying to discuss the contribution of Islamic culture to a place brand; Relationship between culture and identity, image, visual identity etc. in the context of place branding; Impact of culture on brand equity; Developing cultural brand assets to brand places and how should we value and evaluate culture in the context of place branding? Also will try to find answers to the following: Do we have a precise understanding of how Islamic culture adds value to or devalues a place? Do we have a methodology for capturing the value of our Islamic culture to places? And, can this culture be developed with the intent to create better places and place brands?
Classification of hypergeometric identities for pi and other logarithms of algebraic numbers.
Chudnovsky, D V; Chudnovsky, G V
1998-03-17
This paper provides transcendental and algebraic framework for the classification of identities expressing pi and other logarithms of algebraic numbers as rapidly convergent generalized hypergeometric series in rational parameters. Algebraic and arithmetic relations between values of p+1Fp hypergeometric functions and their values are analyzed. The existing identities are explained, and new exhaustive classes of new ones are presented.
Advertising identities: virtual galleries as places of identity
Directory of Open Access Journals (Sweden)
Alexandra Zontea
2010-10-01
Full Text Available This paper is focused on the public presentation of self through virtual art galleries, singling out the field of photography. Photography has always been disputed as being part of the highbrow arts because of its popular character. Today, anyone who owes a photo camera can experience photography as art, without a rigorous training. Everybody is able to expose the photos freely to a large number of people, on the Internet. Consequently, the Internet opens up a virtual space, in which photo artists and amateurs can promote their works and exhibit them in a personal online gallery, which represents their place in the virtual vastness. Therefore, my research approaches the matter of the virtual gallery as an identitary place, being focused on finding out why artists choose to exhibit in virtual galleries. I asked myself what are the new functions of the virtual art galleries?Are they understood as online markers that distinguish the owners in these virtual environments? In other words, are these personal galleries a way of expressing online identities?
Place-Identity in a School Setting: Effects of the Place Image
Marcouyeux, Aurore; Fleury-Bahi, Ghozlane
2011-01-01
Studies on place identity show positive relationships between the evaluation of a place and mechanisms involved in place identification. However, individuals also identify with places of low social prestige (places that bear a negative social image). Few authors investigate the nature of place identity processes in this case. The goal of this…
Properties of an associative algebra of tensor fields. Duality and Dirac identities
International Nuclear Information System (INIS)
Salingaros, N.; Dresden, M.
1979-01-01
An algebra of forms in Minkowski space has been constructed. A multiplication between forms is defined as an extension of the quaternionic multiplications. The algebra obtained is associative with respect to this multiplication of order 16. Duality is expressed as (new) multiplication by a basis element. Vector identities in the algebra lead to a number of new trace identities. A new derivative operator expresses the four Maxwell equations in an especially transparent form
On identities of free finitely generated alternative algebras over a field of characteristic 3
International Nuclear Information System (INIS)
Pchelintsev, S V
2001-01-01
In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent
Islamic Identity Versus City/place Branding
Mandour, M. Alaa
2012-01-01
Is a brand a product, a service, or a company? Is it a logo, a marketing strategy or an attitude? As globalization intensifies, places increasingly compete with other places for attention, influence, markets, investments, businesses, visitors, residents, talent and events. And competition is no longer restricted to the well-known places down the road, over the hill or across the water. Places now compete with cities, regions and countries halfway around the world. Places are increasingly gett...
A discrete variational identity on semi-direct sums of Lie algebras
Energy Technology Data Exchange (ETDEWEB)
M, Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)
2007-12-14
The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant {gamma} involved in the variational identity is determined through the corresponding solution to the stationary discrete zero-curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case furnishes Hamiltonian structures for the associated integrable couplings of the Volterra lattice hierarchy.
A discrete variational identity on semi-direct sums of Lie algebras
International Nuclear Information System (INIS)
M, Wenxiu
2007-01-01
The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant γ involved in the variational identity is determined through the corresponding solution to the stationary discrete zero-curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case furnishes Hamiltonian structures for the associated integrable couplings of the Volterra lattice hierarchy
Gross, Michal; Hochberg, Nurit
2016-01-01
How do pre-service teachers perceive place identity, and is there a connection between their formative place identity and the development of their professional teaching identity? These questions are probed among pre-service teachers who participated in a course titled "Integrating Nature into Preschool." The design of the course was…
Asymptotic identity in min-plus algebra: a report on CPNS.
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.
Asymptotic Identity in Min-Plus Algebra: A Report on CPNS
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446
Place-Related Identity, Texts, and Transcultural Meanings
Wyse, Dominic; Nikolajeva, Maria; Charlton, Emma; Hodges, Gabrielle Cliff; Pointon, Pam; Taylor, Liz
2012-01-01
The spatial turn has been marked by increasing interest in conceptions of space and place in diverse areas of research. However, the important links between place and identity have received less attention, particularly in educational research. This paper reports an 18-month research project that aimed to develop a theory of place-related identity…
"My Place": Exploring Children's Place-Related Identities through Reading and Writing
Charlton, Emma; Cliff Hodges, Gabrielle; Pointon, Pam; Nikolajeva, Maria; Spring, Erin; Taylor, Liz; Wyse, Dominic
2014-01-01
This paper considers how children perceive and represent their placed-related identities through reading and writing. It reports on the findings of an 18-month interdisciplinary project, based at Cambridge University Faculty of Education, which aimed to consider children's place-related identities through their engagement with, and creation of,…
Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications
International Nuclear Information System (INIS)
Aldazabal, G.; Camara, P.G.; Rosabal, J.A.
2009-01-01
We discuss the structure of 4D gauged supergravity algebras corresponding to globally non-geometric compactifications of F-theory, admitting a local geometric description in terms of 10D supergravity. By starting with the well-known algebra of gauge generators associated to non-geometric type IIB fluxes, we derive a full algebra containing all, closed RR and NSNS, geometric and non-geometric dual fluxes. We achieve this generalization by a systematic application of SL(2,Z) duality transformations and by taking care of the spinorial structure of the fluxes. The resulting algebra encodes much information about the higher dimensional theory. In particular, tadpole equations and Bianchi identities are obtainable as Jacobi identities of the algebra. When a sector of magnetized (p,q) 7-branes is included, certain closed axions are gauged by the U(1) transformations on the branes. We indicate how the diagonal gauge generators of the branes can be incorporated into the full algebra, and show that Freed-Witten constraints and tadpole cancellation conditions for (p,q) 7-branes can be described as Jacobi identities satisfied by the algebra mixing bulk and brane gauge generators
PLACE IDENTITY IN 21ST CENTURY ARCHITECTURE IN SOUTH KOREA
Directory of Open Access Journals (Sweden)
Hee Sun (Sunny Choi
2011-11-01
Full Text Available Changes to the built environment brought about by economic and cultural globalization have resulted in a blurring of national identities worldwide. Consequently, place identity has emerged as a central concern for setting the 21st century urban development agenda. This paper examines the ways in which specific aspects of urban typology relate with cultural engagements and meanings within old and new, in terms of the transferable values of place identity, particularly within South East and Far East Asian countries. Firstly, the theoretical and practical key concepts for design ideology are described in relation to the value of place identity within contemporary urban forms. These key concepts are then operationalized in order to identify the implementation of the role of place identity, not only within architectural typology, but also through a cultural sense of space and time; a hybrid typological language. The focus of this paper is to explore how the role of place identity in physical built form relates with design qualities and cultural engagement, and how the needs of local culture can be incorporated, sustained and developed alongside contemporary architecture and rapid urban development. The paper provides a critical reflection and discussion of 21st Century architecture in South Korea, particularly how the locally situated and informed might be reconciled with the global aspirations of the contemporary city.
Spencer, Christopher
2005-01-01
This is part of a campaign to encourage educational researchers, geographers in particular, to spread their literature searches beyond their immediate subject area. The question of place attachment and identity is reviewed through the psychologistal literature. The hypothesis is offered and supported, that place, in a geographical sense is also…
Triangle identity and free differential algebra of massless higher spins
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1989-09-25
In terms of Berezins's theory of symbols of operators, the integral formulation is suggested for the free differential algebra which gives rise to consistent equations of motion of interacting massless fields of all spins 0{le}s<{infinity} in the frameworks of gravity. In the first nontrivial order of the expansion in powers of curvatures, Frobenius consistency conditions for higher-spin equations of motion are shown to reduce to the simple geometrical fast that there are two ways for splitting any quadrangle in two triangles. To clarify our construction, we illustrate how it works in the simplest case of pure gravity. (orig.).
Repositioning identity in conceptualizations of human-place bonding
Gerard T. Kyle; Jinhee Jun; James D. Absher
2014-01-01
In this investigation, we adapted identity theory to reassess a conceptualization of place attachment—conceived herein as an attitudinal construct used by environmental psychologists to describe people's bonding to the physical landscape. Past work has conceptualized the construct in terms of three components: cognitive, affective, and conative elements...
Repositioning identity in conceptualizations human-place bonding
James D. Absher
2010-01-01
In this investigation, we adapted identity theory (references) to reassess a conceptualization of place attachment â an attitudinal construct used by environmental psychologists to describe peopleâs bonding to the physical landscape. Past work has conceptualized the construct in terms of three components; cognitive, affective and conative elements. Based on the tents...
Mapping Place and Identity in Academic Development: A Humanistic Dialogue
Holmes, Trevor; Dea, Shannon
2012-01-01
This article presents a humanistic dialogue between the authors that focuses on mapping place and identity in academic development. The authors chose this format in order to capture some of the important work that conversation among intellectual peers can do--work that forms the basis of much learning at conferences and in the corridors and…
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Solomontos-Kountouri, Olga; Hurry, Jane
2008-04-01
This study critically contrasts global identity with domain-specific identities (political, religious and occupational) and considers context and gender as integral parts of identity. In a cross-sectional survey, 1038 Greek Cypriot adolescents (449 boys and 589 girls, mean age 16.8) from the three different types of secondary schools (state, state technical and private) and from different SES completed part of the Extended Objective Measure of Ego Identity Status-2 (EOMEIS-2). The macro-context of Greek Cypriot society is used to understand the role of context in adolescents' identities. Results showed that Greek Cypriot young people were not in the same statuses across their global, political, religious and occupational identities. This heterogeneity in the status of global identity and of each identity domain is partially explained by differences in gender, type of school and SES (socio-economic status). The fact that identity status is found to be reactive to context suggests that developmental stage models of identity status should place greater emphasis on context.
Testing a new scale of place identity in the Texas Hill Country
Po-Hsin Lai; C. Scott Shafer; Gerard Kyle
2009-01-01
In this study, we proposed a three-factor structure of place identity comprising the dimensions of structure, function, and affect. This conception of place identity was tested against three competing models that viewed place identity as consisting of either: 1) a single dimension of place identity; 2) two dimensions of cognition and affection; or 3) a second-order...
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Narratives of Memory, Identity and Place in Male Prisoners
Medlicott, Diana
2004-01-01
This paper looks at some aspects of memory and identity in relation to male\\ud prisoners and their sense of place. Prison is, for those entering it, an exemplary\\ud life event, in terms of the jolt it gives to memory and self-image. In prison,\\ud there is all the time in the world to sit and think, and remember. Memory is a\\ud source of joy and of torment.\\ud I begin by offering a brief illustration of this. James (L6), a prisoner in his\\ud late thirties, told me about the house he lived in f...
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Li, Wendy Wen; Tse, Samson
2015-03-01
This article uses examples of problem gambling and help seeking among Chinese international students in New Zealand to demonstrate place identity transformation. Two-wave narrative interviews were conducted with 15 Chinese international students. Place identity among participants is shown to be a process that features the transformation of participants' identity. While the casinos in which the Chinese international students gambled gave rise to negative place identities, positive place identities facilitated the participants to change their problematic gambling. Through the investigation of place identity transformation, this article promotes a strength-based, non-labelling approach to intervention for people who are concerned about their gambling behaviours. © The Author(s) 2015.
International Nuclear Information System (INIS)
Huang Chaoshang; Xu Kaiwen; Zhao Zhiyong.
1989-09-01
By using Bernard's method, the Ward identities for N = 1 super-Kac-Moody algebras on supertorus are completely given in the sense that any correlation function with currents inserted in it can be reduced from the correlation functions without insertion. The differential equations for the super-characters on supertorus are derived from the Ward identities. (author). 7 refs
Directory of Open Access Journals (Sweden)
Basia Nikiforova
2016-09-01
Full Text Available Michel Foucault in the text “Of Other Spaces: Utopias and Heterotopias” wrote that “the present epoch will perhaps be above all the epoch of space”. Space, place, and territories are social productions. Territory is a polysemic concept. Place is “events” created by territories, fluid areas of control produced by territorial negotiation (horizontal dynamics and negotiations between places (vertical dynamics. Space produces places and is produced by places. Moreover, space, place and territories can be seen as the waves of territorialization and deterritorialization in an endless process. It is a form of seizure in the world, an a priori for Immanuel Kant, an ontological need for Martin Heidegger. Territory is a space, governed by a set of rules, named “code”. Territorialization is then synonymous of a certain codification, or the symbolical organization of space. Places are created by territorializational dynamics. They are the sum of “events”. The place and its territory is not “natural”, but it is a cultural artifact, a social product linked to desire, power and identity. The changes of the functions of places (what Foucault called heterotopy are an important subject of contemporary studies. There are also many new temporary uses of these spaces and different emerging functions, including new forms of control, access, surveillance, new forms of openness and closeness (passwords, access profiles, etc.. Informational territory creates new heterotopias, new functions for places and a redefinition of social and communicational practices. It is not the end of a concrete place and its territory, but rather, a new meaning, sense, and a function for these spaces. The contemporary meaning of place and space has a visible tendency in creating ambivalence of sacrum and profanum, which means the secularization of the sacred and the sacralization of the secular. One of the sides of this tendency is sacralizing market and marketing
Transformational capacity and the influence of place and identity
International Nuclear Information System (INIS)
Marshall, N A; Park, S E; Howden, S M; Adger, W N; Brown, K
2012-01-01
Climate change is altering the productivity of natural resources with far-reaching implications for those who depend on them. Resource-dependent industries and communities need the capacity to adapt to a range of climate risks if they are to remain viable. In some instances, the scale and nature of the likely impacts means that transformations of function or structure will be required. Transformations represent a switch to a distinct new system where a different suite of factors become important in the design and implementation of response strategies. There is a critical gap in knowledge on understanding transformational capacity and its influences. On the basis of current knowledge on adaptive capacity we propose four foundations for measuring transformational capacity: (1) how risks and uncertainty are managed, (2) the extent of skills in planning, learning and reorganizing, (3) the level of financial and psychological flexibility to undertake change and (4) the willingness to undertake change. We test the influence of place attachment and occupational identity on transformational capacity using the Australian peanut industry, which is presently assessing significant structural change in response to predicted climatic changes. Survey data from 88% of peanut farmers in Queensland show a strong negative correlation between transformational capacity and both place attachment and occupational attachment, suggesting that whilst these factors may be important positive influences on the capacity to adapt to incremental change, they act as barriers to transformational change. (letter)
Transformational capacity and the influence of place and identity
Marshall, N. A.; Park, S. E.; Adger, W. N.; Brown, K.; Howden, S. M.
2012-09-01
Climate change is altering the productivity of natural resources with far-reaching implications for those who depend on them. Resource-dependent industries and communities need the capacity to adapt to a range of climate risks if they are to remain viable. In some instances, the scale and nature of the likely impacts means that transformations of function or structure will be required. Transformations represent a switch to a distinct new system where a different suite of factors become important in the design and implementation of response strategies. There is a critical gap in knowledge on understanding transformational capacity and its influences. On the basis of current knowledge on adaptive capacity we propose four foundations for measuring transformational capacity: (1) how risks and uncertainty are managed, (2) the extent of skills in planning, learning and reorganizing, (3) the level of financial and psychological flexibility to undertake change and (4) the willingness to undertake change. We test the influence of place attachment and occupational identity on transformational capacity using the Australian peanut industry, which is presently assessing significant structural change in response to predicted climatic changes. Survey data from 88% of peanut farmers in Queensland show a strong negative correlation between transformational capacity and both place attachment and occupational attachment, suggesting that whilst these factors may be important positive influences on the capacity to adapt to incremental change, they act as barriers to transformational change.
Wellbeing in Urban Greenery: The Role of Naturalness and Place Identity.
Knez, Igor; Ode Sang, Åsa; Gunnarsson, Bengt; Hedblom, Marcus
2018-01-01
The aim was to investigate effects of urban greenery (high vs. low naturalness) on place identity and wellbeing, and the links between place identity and wellbeing. It was shown that participants (Gothenburg, Sweden, N = 1347) estimated a stronger attachment/closeness/belonging (emotional component of place-identity), and more remembrance and thinking about and mental travel (cognitive component of place-identity) in relation to high vs. low perceived naturalness. High naturalness was also reported to generate higher wellbeing in participants than low naturalness. Furthermore, place identity was shown to predict participants' wellbeing in urban greenery, accounting for 35% of variance explained by the regression. However, there was a stronger relationship between the emotional vs. the cognitive component of place identity and wellbeing. Finally, a significant role of place identity in mediating the naturalness-wellbeing relationship was shown, indicating that the naturalness-wellbeing connection can be partly accounted for by the psychological mechanisms of people-place bonding.
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1978-08-19
A minimal set of auxiliary fields (scalarpseudoscalar and pseudovector) providing the closed algebra in supergravity is constructed. A compact scheme for the generating functional with closed gauge algebra is proposed. The S-matrix and the Ward identities for arbitrary theory that admits the closing of the algebra by introducing auxiliary fields is obtained.
International Nuclear Information System (INIS)
Govorkov, A.B.
1980-01-01
The density matrix, rather than the wavefunction describing the system of a fixed number of non-relativistic identical particles, is subject to the second quantisation. Here the bilinear operators which move a particle from a given state to another appear and satisfy the Lie algebraic relations of the unitary group SU(rho) when the dimension rho→infinity. The drawing into consideration of the system with a variable number of particles implies the extension of this algebra into one of the simple Lie algebras of classical (orthogonal, symplectic or unitary) groups in the even-dimensional spaces. These Lie algebras correspond to the para-Fermi-, para-Bose- and para-uniquantisation of fields, respectively. (author)
Leisure identities, globalization, and the politics of place
Daniel R. Williams
2002-01-01
As a particularly modern modality for making and resisting claims bout the use and meaning of places leisure has a prominent role in the politics of place. This is particularly evident in land use politics in the western U.S., which serves as a launching point for examining the ways in which leisure makes competing claims on a place. Within leisure studies initial...
Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity.
Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly
2016-01-01
This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual's identification of his/her goals, values, beliefs, and interests corresponding to one's own identity development or enhancement. This study focuses on place identity, the identity's features relating to a person's relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one's own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one's own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT's understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one's own place identity, and therefore people-place relations, by means of facilitating a person's flow experience within psychologically meaningful places.
Mobilising Community? Place, Identity Formation and New Teachers' Learning
Somerville, Margaret; Rennie, Jennifer
2012-01-01
This paper analyses data from a longitudinal study which foregrounds the category of "place" to ask: How do new teachers learn to do their work, and how do they learn about the places and communities in which they begin teaching? Surveys and ethnographic interviews were carried out with 35 new teachers over a three-year period in a…
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Degenerate representation from tensorial identities and quantum realisations of YBZF algebras
International Nuclear Information System (INIS)
Iosifescu, M.; Scutaru, H.
1987-06-01
The second- degree irreducible tensors in the enveloping algebra of the classical semisimple Lie algebras are determined and the irreducible representations on which these tensors vanish are derived.(authors)
Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity
Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly
2016-01-01
This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual’s identification of his/her goals, values, beliefs, and interests corresponding to one’s own identity development or enhancement. This study focuses on place identity, the identity’s features relating to a person’s relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one’s own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one’s own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT’s understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one’s own place identity, and therefore people–place relations, by means of facilitating a person’s flow experience within psychologically meaningful places. PMID:27872600
Basia Nikiforova
2016-01-01
Michel Foucault in the text “Of Other Spaces: Utopias and Heterotopias” wrote that “the present epoch will perhaps be above all the epoch of space”. Space, place, and territories are social productions. Territory is a polysemic concept. Place is “events” created by territories, fluid areas of control produced by territorial negotiation (horizontal dynamics) and negotiations between places (vertical dynamics). Space produces places and is produced by places. Moreover, space, place and territor...
White, Dave D; Virden, Randy J; van Riper, Carena J
2008-10-01
It is generally accepted that recreation use in natural environments results in some degree of negative social and environmental impact. Environmental managers are tasked with mitigating the impact while providing beneficial recreation opportunities. Research on the factors that influence visitors' perceptions of environmental and social conditions is necessary to inform sound environmental management of protected natural areas. This study examines the effect of prior experience with the setting and two dimensions of place attachment (i.e., place identity and place dependence) on visitors' perceptions of three types of recreation impacts (i.e., depreciative behavior, environmental impacts, and recreation conflict). Principal components analysis, confirmatory factor analysis, and structural equation modeling were used to test the study hypotheses using data collected from 351 visitors through on-site questionnaires (response rate of 93 percent). The results show that prior experience exhibited a moderate and significant direct positive effect on place identity, place dependence, and visitors' perceptions of recreation impacts. Contrary to study hypotheses and prior research, neither place dependence nor place identity exhibited a significant effect on the dependent variables. The results show that prior experience causes visitors to be more sensitive to depreciative behaviors, environmental impacts, and recreation conflict. These findings raise concerns over potential visitor displacement and deterioration of site conditions. Implications for resource managers are discussed, which include education, modifying visitor use patterns, and site design strategies.
White, Dave D.; Virden, Randy J.; van Riper, Carena J.
2008-10-01
It is generally accepted that recreation use in natural environments results in some degree of negative social and environmental impact. Environmental managers are tasked with mitigating the impact while providing beneficial recreation opportunities. Research on the factors that influence visitors’ perceptions of environmental and social conditions is necessary to inform sound environmental management of protected natural areas. This study examines the effect of prior experience with the setting and two dimensions of place attachment (i.e., place identity and place dependence) on visitors’ perceptions of three types of recreation impacts (i.e., depreciative behavior, environmental impacts, and recreation conflict). Principal components analysis, confirmatory factor analysis, and structural equation modeling were used to test the study hypotheses using data collected from 351 visitors through on-site questionnaires (response rate of 93 percent). The results show that prior experience exhibited a moderate and significant direct positive effect on place identity, place dependence, and visitors’ perceptions of recreation impacts. Contrary to study hypotheses and prior research, neither place dependence nor place identity exhibited a significant effect on the dependent variables. The results show that prior experience causes visitors to be more sensitive to depreciative behaviors, environmental impacts, and recreation conflict. These findings raise concerns over potential visitor displacement and deterioration of site conditions. Implications for resource managers are discussed, which include education, modifying visitor use patterns, and site design strategies.
International Nuclear Information System (INIS)
Lashkevich, Michael; Pugai, Yaroslav
2013-01-01
We continue the study of form factors of descendant operators in the sinh- and sine-Gordon models in the framework of the algebraic construction proposed in [1]. We find the algebraic construction to be related to a particular limit of the tensor product of the deformed Virasoro algebra and a suitably chosen Heisenberg algebra. To analyze the space of local operators in the framework of the form factor formalism we introduce screening operators and construct singular and cosingular vectors in the Fock spaces related to the free field realization of the obtained algebra. We show that the singular vectors are expressed in terms of the degenerate Macdonald polynomials with rectangular partitions. We study the matrix elements that contain a singular vector in one chirality and a cosingular vector in the other chirality and find them to lead to the resonance identities already known in the conformal perturbation theory. Besides, we give a new derivation of the equation of motion in the sinh-Gordon theory, and a new representation for conserved currents
Picturing the Wheatbelt: exploring and expressing place identity through photography.
Sonn, Christopher C; Quayle, Amy F; Kasat, Pilar
2015-03-01
Community arts and cultural development is a process that builds on and responds to the aspirations and needs of communities through creative means. It is participatory and inclusive, and uses multiple modes of representation to produce local knowledge. 'Voices' used photography and photo elicitation as the medium for exploring and expressing sense of place among Aboriginal and non-Indigenous children, young people and adults in four rural towns. An analysis of data generated by the project shows the diverse images that people chose to capture and the different meanings they afforded to their pictures. These meanings reflected individual and collective constructions of place, based on positive experiences and emotions tied to the natural environment and features of the built environment. We discuss community arts and cultural development practice with reference to creative visual methodologies and suggest that it is an approach that can contribute to community psychology's empowerment agenda.
The air's got to be far cleaner here: a discursive analysis of place-identity threat.
Hugh-Jones, Siobhan; Madill, Anna
2009-12-01
That talk is never disinterested complicates the relationship between the environment and the claims people make about it. Talk about place, and one's self in it, is particularly complex when the environment poses risk or is otherwise problematized. This study, a secondary analysis of interview data, seeks to extend discursive work on place-identity by examining the ways in which 14 residents of a small English village talk about themselves and their locale. The locale accommodates an active quarry, and many residents had lodged complaints to the quarry about dust, noise and vibrations from blasting. Attention to the interactional context of the interviews illustrates the ways in which (simply) interviewing people about their locale can threaten self- and place-identity. When asked about life in the village, interviewees oriented to two main dilemmas in protecting self- and place-identity: (1) how to justify continued residence in a challenging environment and (2) how to complain about the locale whilst maintaining positive place-identity. Discursive responses to these dilemmas drew upon typical identity processes, such as self- and place distinctiveness and the formulation of out-groups, as well as upon constructions of localized power-sharing and morally obligated tolerance of risk. We suggest that research on problematical places, and of environmental risk, needs to be sensitized to how it may constitute a threat to self- and place-identity, and how this may mediate formulations self and place, as well as of environmental risk.
Stigma and attachment: performance of identity in an environmentally degraded place
Energy Technology Data Exchange (ETDEWEB)
Broto, V.C.; Burningham, K.; Carter, C.; Elghali, L. [University of Durham, Durham (United Kingdom). Dept. of Geology
2010-07-01
Research examining the relationship between place and identity shows that the experience of places influences a person's process of identification, through which an emotional bond with the place may be developed. However, the implications of this literature for land restoration remain unexplored. This is partially due to a gap in empirical research that explores the performance of identities in environmentally degraded settings. This article examines the relationship between identity and place among residents living around five coal ash disposal sites in Tuzla, Bosnia and Herzegovina. The article develops a qualitative model to understand the emergence of divergent responses toward the pollution and illustrates that in an environmentally degraded setting the bonds between the individuals and the place are not necessarily dislocated; in some cases, these bonds may be even reinforced by the performance of adaptative identities in response to environmental change.
Targowski, Wojciech; Piotr, Czyż
2017-10-01
The article presents process of shaping place identity on the example of an important for Pomerania region investment - European Solidarity Centre. The idea of a Solidarity social movement is strongly associated with the formation of post-socialist national identity of Poland as well as local identity of Pomerania, from which movement originates. The realization of the European Solidarity Centre aims to be one of the essential elements of shaping Gdańsk’s identity of space. The article is an attempt to analyse how the presence of realization gradually affects the formation of the place identity of new urban space. Analysis of this realization will allow on the one hand to verify design assumptions made by authors, on the other provides the opportunity to search for best description of still vague notion of local identity. This concept, though intuitively close to everyone still seems to elude conceptual apparatus of theory of architecture. The intention of this article is to explore the notion of identity based on the observations of the newly realized significant cultural space. This analysis approaches the concept of identity from two perspectives. The first approach draws from the concept of identity of Christian Norberg-Schulz. Here, local identity is seen as a unique set of characteristics of space. So seen the concept of place identity is a correlate of concept of personal identity. In this analysis, methods of description of personal identity were transferred to the identity of the place. In the second approach, the identity of place is understood as a unique for that place way of being in space, way to spend time and development of the site-specific urban rituals. Such a concept of identity, draws from the concept of place of Kim Dovey. Both presented approaches seems to complement each other but they also emphasize different qualities. The now-traditional concept of Genius Loci sees architecture as a structural system of meanings. Meaningful elements
An algebraic description of identical bands and of high-spin quadrupole collectivity
International Nuclear Information System (INIS)
Guidry, M.W.
1993-01-01
The Fermion Dynamical Symmetry Model (FDSM) has been used to describe electric quadrupole transition rates and static moments at high angular momentum in deformed nuclei. A quantitative description of these phenomena appears possible by these means. The formalism accounts naturally for those cases where significant reductions in B(E2) values are accompanied by relatively constant moments of inertia. A discussion of identical bands as being due to a dynamical symmetry will be given. The empirical properties of these bands and general principles of group theory will be used to place constraints on an acceptable symmetry. A model that represents a minimal implementation of these criteria will be presented
Joseph G. Champ; Daniel R. Williams; Katie Knotek
2009-01-01
A lack of research on the conceptual intersection of leisure, place and wildland fire and its role in identity prompted this exploratory study. The purpose of this research was to gather evidence regarding how people negotiate identities under the threat of wildland fire. Qualitative interviews with 16 homeowners and recreationists who value leisure activities in...
How Places Shape Identity: The Origins of Distinctive LBQ Identities in Four Small U.S. Cities.
Brown-Saracino, Japonica
2015-07-01
Tools from the study of neighborhood effects, place distinction, and regional identity are employed in an ethnography of four small cities with growing populations of lesbian, bisexual, and queer-identified (LBQ) women to explain why orientations to sexual identity are relatively constant within each site, despite informants' within-city demographic heterogeneity, but vary substantially across the sites, despite common place-based attributes. The author introduces the concept of "sexual identity cultures"--and reveals the defining role of cities in shaping their contours. She finds that LBQ numbers and acceptance, place narratives, and newcomers' encounters with local social attributes serve as touchstones. The article looks beyond major categorical differences (e.g., urban/rural) to understand how and why identities evolve and vary and to reveal the fundamental interplay of demographic, cultural, and other city features previously thought isolatable. The findings challenge notions of identity as fixed and emphasize the degree to which self-understanding and group understanding remain collective accomplishments.
Deconstructing Place Identity? Impacts of a "Racino" on Elora, Ontario, Canada
Shannon, Meghan; Mitchell, Clare J. A.
2012-01-01
The heritage-scape is a socially constructed place that provides locally crafted products, cuisine, and experiences to satisfy consumers' desire for authenticity. In this paper we question if the introduction of a functionally non-conforming structure causes an existing heritage-based place identity to dismantle (i.e. deconstruct). In 2003, a…
Carter, Jennifer; Hollinsworth, David; Raciti, Maria; Gilbey, Kathryn
2018-01-01
Place is a concept used to explore how people ascribe meaning to their physical and social surrounds, and their emotional affects. Exploring the university as a place can highlight social relations affecting Australian Indigenous students' sense of belonging and identity. We asked what university factors contribute to the development of a positive…
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
Relationships between Personal and Collective Place Identity and Well-Being in Mountain Communities.
Knez, Igor; Eliasson, Ingegärd
2017-01-01
The aim was to investigate the relationships between landscape-related personal and collective identity and well-being of residents living in a Swedish mountain county ( N = 850). It was shown that their most valued mountain activities were viewing and experiencing nature and landscape, outdoor recreation, rest and leisure, and socializing with friends/family. Qualitative analyses showed that the most valued aspects of the sites were landscape and outdoor restoration for personal favorite sites, and tourism and alpine for collective favorite sites. According to quantitative analyses the stronger the attachment/closeness/belonging (emotional component of place identity) residents felt to favorite personal and collective sites the more well-being they perceived when visiting these places. Similarly, the more remembrance, thinking and mental travel (cognitive component of place identity) residents directed to these sites the more well-being they perceived in these places. In both types of sites well-being was more strongly predicted by emotional than cognitive component of place-identity. All this indicates the importance of person-place bonds in beneficial experiences of the outdoors, over and above simply being in outdoor environments.
Lawrence, Eva K.
2012-01-01
This study examined college students' visits to natural areas on campus and how these visits relate to place identity and environmentally responsible behaviors. The majority (76.5%) of the 115 participants visited the natural areas, and 55.7% of these students visited for a course requirement. Students who lived on campus, were younger, and…
Place-Related Identities through Texts: From Interdisciplinary Theory to Research Agenda
Charlton, Emma; Wyse, Dominic; Hodges, Gabrielle Cliff; Nikolajeva, Maria; Pointon, Pam; Taylor, Liz
2011-01-01
The implications of the transdisciplinary spatial turn are attracting growing interest in a broad range of areas related to education. This paper draws on a methodology for interdisciplinary thinking in order to articulate a new theoretical configuration of place-related identity, and its implications for a research agenda. The new configuration…
Daniel R. Williams; Joseph G. Champ
2015-01-01
Efforts to understand leisure as a spatial practice are surprisingly recent. It is only in the past decade or two that leisure studies has devoted much attention to the vital role of place and spatial practices for understanding how leisure is performed and experienced, how leisure related identities are constructed and affirmed, and ultimately how through these...
Framing the Geographies of Higher Education Participation: Schools, Place and National Identity
Donnelly, Michael; Evans, Ceryn
2016-01-01
This paper considers the role of schools, place and national identity in shaping the ways in which young people make sense of the geography of higher education choice in the Welsh context. Drawing on two qualitative studies, it illustrates how attachment to nationhood and localities, as well as the internal processes of schools, bear upon the…
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Identity as "knowing your place": the narrative construction of space in a healthcare profession.
van Vuuren, Mark; Westerhof, Gerben J
2015-03-01
The construction of space in which a story takes place can have important consequences for the evaluation of health interventions. In this article, we explore the ways professionals narratively position themselves in a situation, treating identity literally as "knowing one's place." More specifically, we explore the spatial language health professionals use to describe their work. Using descriptions of professionals in a drug habilitation organization, we illustrate how they use route (i.e., an active tour through the space), survey (i.e., a stationary viewpoint from above), and gaze perspectives (i.e. a stable viewpoint onto a place) to explain the work situations they encounter. Each of these perspectives facilitates a different mode of evaluation in terms of distance, emotion, and identity. We propose opportunities for research and implications of the ways in which spaces and spatial perspectives set the scene in the narratives of healthcare professionals. © The Author(s) 2015.
Freire, Silvana; Espinosa, Agustín; Rottenbacher, Jan Marc
2015-01-01
Currently, in rural communities from the Peruvian northern coast, it is common to find a climate of distrust and pessimism that accompanies the lack of coordinated social action and community participation among residents. This study analyzes the relationships that people develop with regard to the place where they live in, how it associates to the ways they participate in their community and the relationship that these two variables have with the perceived emotional climate, in a rural community from the northern coast of Peru (n = 81). Results indicate that place identity is significantly associated with a high community participation and a climate of trust in the community. Finally, a Path Analysis is performed to analyze comprehensively the relationship between these variables. The results suggest that place identity does have an influence on perceived positive climate in the community, being mediated by the dimensions of community participation.
International Nuclear Information System (INIS)
Takao, Masaru
1989-01-01
We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)
Rebuilding lives and identities: The role of place in recovery among persons with complex needs.
Tran Smith, Bikki; Padgett, Deborah K; Choy-Brown, Mimi; Henwood, Benjamin F
2015-05-01
Photo-elicitation interviews (PEIs) were conducted to explore the role of place in recovery - specifically, narrative identity reconstruction - among persons with complex needs. PEIs with 17 formerly homeless adults with co-occurring disorders in New York City produced 243 photos. Content analysis of photos revealed three categories - apartment, neighborhood and people. Two narrative themes - having my own and civic identity - were mapped onto the apartment and neighborhood categories, respectively. Three additional cross-categorical narrative themes were identified: (re)negotiating relationships and boundaries, moving beyond old identities and future possibilities. Housing was central across themes. Understanding of recovery is enhanced when viewed through participant-controlled visual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward a common identity for relationally oriented clinicians: a place to hang one's hat.
Markin, Rayna D
2014-09-01
The goal of this special section is to work toward establishing a common identity for relationally inclined clinicians across proscribed theoretical orientations, facilitating a shared identity among diverse psychotherapists while placing a spotlight on relationship research. This article discusses the need for a more coherent and less polarizing professional identity for psychotherapists and why a more universal relational orientation to psychotherapy is timely given the current state of psychotherapy practice and research. Lastly, common relational themes that run throughout the diverse treatment paradigms presented in this special section are discussed, framing what it means to be a relational psychotherapist while hopefully providing some direction for future research and clinical training. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Pour en lire plus : Dark Tourism and Place Identity
DIAZ, Jérémy
2016-01-01
Quatre ans après The Darker Side of Travel: The Theory and Practice of Dark Tourism (2009, Bristol, Channel View Publications), dirigé par Richard Sharpley et Philip R. Stone, l’ouvrage collectif Dark Tourism and Place Identity: Managing and Interpreting Dark Places constitue une autre contribution remarquable à la compréhension scientifique du dark tourism. À l’intersection des travaux sur l’identité du lieu et le dark tourism, ce livre propose une approche internationale de l’objet dans une...
Street furniture concept in Pasar Buah and Bukit Gundaling Based on place identity
Ginting, Nurlisa; Vinky Rahman, N.; Delianur Nasution, Achmad; Nawawiy Loebis, M.; Sinaga, Fitri A.
2018-03-01
Tourism is one of the largest sources of the foreign exchange for a country, that encourage many developers to develop it. Karo District located in the province of North Sumatera, Indonesia, which has many tourist destinations with natural and cultural resources, including Pasar Buah and Bukit Gundaling. To develop Tourism, one of way is with increasing place identity in tourist destinations. Unfortunately, place identity in Pasar Buah and Bukit Gundaling are still lacking, so it needs improvement, one of that is the Street furniture in Pasar Buah and Bukit Gundaling. This study aims to design the concept of the Street furniture planning in Pasar Buah and Bukit Gundaling. The method used is a qualitative method, that is design street furniture using five groups elements of street furniture: decorative element, service furniture, trade furniture, signaling furniture, and advertisement furniture. The result of this study is the concept of the design street furniture of Pasar Buah and Bukit Gundaling, which can use to improve place identity in tourism of Karo District.
Restructuring locality: practice, identity and place-making on the German-Polish border
DEFF Research Database (Denmark)
Sandberg, Marie
2016-01-01
Taking cities as analytical entry points for investigating practice, identity and place-making, this article explores the differential restructurings of locality in the twin cities of Görlitz and Zgorzelec on the German-Polish border. Drawing on ethnographic fieldwork, it shows how the local cities......′ leaderships are attempting to wrestle the cities out of their downmarket positioning in the global economy. Deploying a performative research strategy of methodological relationalism, the article examines intersections between these cities′ strategies of situating local youth within urban regeneration...... and cross-border projects and local youth′s preferences for engaging in other kinds of place-making. By ‘seeing’ the cities in border regions through practices of place-making within the multiscalar processes of urban regeneration, new insights about ‘place’ are generated in which city branding...
PEG IS 40!: place, community, identity, memory and myth in the Dandenong Ranges
Dyson, Brydie Shae
2017-01-01
PEG IS 40! investigates memory, myth and storytelling as well as personal and communal identity with a sense of place, focusing on a particular site, that of the PEG IS 40! inscription on the train bridge in Upper Femtree Gully above Burwood Highway. The text there has not been weathered away, further graffiti has not overwritten it, and it has not been removed by council. In this time of rapid cultural transformation and global pressures, Peg is still and has always been 40. There is a certa...
Environment and Urban Tourism: AN Emergent System in Rhetorical Place Identity Definitions
Mura, Marina
Within the systemic framework of Environmental Psychology (Bechtel and Churchman, 2002) and following Urry (2002) and Pearce's approaches (2005), the aim of this research is to investigate within the context of urban tourism which world views emerge from a Discourse Analysis (Edwards, Potter, 1993). of the speech of native and non-native Sardinian residents. It addresses the issue of how social-physical diversity might be preserved (the problem of tourism sustainability, Di Castri, Balaji, 2002). In this regard, forty in-depth narrative interviews of inhabitants with short- and long-term residential experience in Cagliari (Italy) were conducted and examined (Discourse Analysis). It was found that the native and non-native's rhetorical devices expressed similar representations of urban places, but in diverse relationship to social and place identity. Their environmental transitions were based on the tourist gaze, or the functional view and heritage pride. This displays some basic central dimensions of sustainable tourism.
Cox, Genevieve R.; Tucker, Corinna Jenkins
2011-01-01
This brief explores the link between rural youths' identification with their community, their self-esteem, and their future plans. The panel study of New Hampshire's Coos County youth offers a snapshot into the dynamics of a population that is developing its identity in a region that is undergoing an identity transformation of its own. Place…
The role of social engagement and identity in community mobility among older adults aging in place.
Gardner, Paula
2014-01-01
The purpose of this study was to understand how neighbourhoods - as physical and social environments - influence community mobility. Seeking an insider's perspective, the study employed an ethnographic research design. Immersed within the daily lives of 6 older adults over an 8-month period, auditory, textual, and visual data was collected using the "go-along" interview method. During these interviews, the researcher accompanied participants on their natural outings while actively exploring their physical and social practices by asking questions, listening, and observing. Findings highlight a process of community mobility that is complex, dynamic and often difficult as participant's ability and willingness to journey into their neighborhoods were challenged by a myriad of individual and environmental factors that changed from one day to the next. Concerned in particular with the social environment, final analysis reveals how key social factors - social engagement and identity - play a critical role in the community mobility of older adults aging in place. Identity and social engagement are important social factors that play a role in community mobility. The need for social engagement and the preservation of identity are such strong motivators for community mobility that they can "trump" poor health, pain, functional ability and hazardous conditions. To effectively promote community mobility, the social lives and needs of individuals must be addressed.
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Making Space, Making Place: Digital Togetherness and the Redefinition of Migrant Identities Online
Directory of Open Access Journals (Sweden)
Sara Marino
2015-12-01
Full Text Available Immigrants have played a fundamental role in shaping the life and form of urban public spaces for generations. Their efforts, as many scholars have observed, mostly aimed at creating places of comfort in new and sometimes hostile receiving countries. In recent years, the combined contribution of the built environment and screen-based experiences have shaped migrants’ sense of community and belonging, thus making the concept of online community central to ideas about space and public life. Drawing upon a 3-year online ethnography, the article discusses to what extent new media constitute spaces of digital togetherness , where diasporic experiences and transnational identities are constructed and negotiated. It presents a transnational model of creative media consumption, which helps give insight as to how diasporas and ethnic minorities contribute to the transformation of public space in the Digital Age.
Leith, Peat; Vanclay, Francis
Making salient, credible and legitimate knowledge for natural resource management (NRM) and adaptation to climate change is achievable when scientific knowledge is grounded in place. Making scientific knowledge locally relevant can be assisted by an understanding of the way ` placed knowledge' comes
Brass, Jory
2013-01-01
This article examines constructions of "American" identity and place in the first influential guides for English teaching published in the United States at the cusp of the 20th Century. It recovers how English teaching was to weaken youths' ties to more immediate people and places and to reorient their sense of self, others and the…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Theorizing Teacher Identity: Self-Narratives and Finding Place in an Audit Society
Bullough, Robert V., Jr.
2015-01-01
Noting the need for richer theories of identity and identity formation in education, the author describes aspects of D. P. McAdams' psychosocial constructivist framework enriched by select concepts drawn from Life Course research for conceptualizing and analyzing identity development within audit-driven societies and educational systems. Drawing…
The fluidity of biosocial identity and the effects of place, space, and time.
Wiese, Daniel; Rodriguez Escobar, Jeronimo; Hsu, Yohsiang; Kulathinal, Rob J; Hayes-Conroy, Allison
2018-02-01
Public and scientific conceptions of identity are changing alongside advances in biotechnology, with important relevance to health and medicine. In particular, biological identity, once predominantly conceived as static (e.g., related to DNA, dental records, fingerprints) is now being recognized as dynamic or fluid, mirroring contemporary understandings of psychological and social identity. The dynamism of biological identity comes from the individual body's unique relationship with the world surrounding it, and therefore may best be described as biosocial. This paper reviews advances in scientific understandings of identity and presents a model that contrasts prior static approaches to biological identity from more recent dynamically-relational ones. This emerging viewpoint is of broad significance to health and medicine, particularly as medicine recognizes the significance of biography - i.e. the multiple, dense interactions imparted on a body across spatio-temporal dimensions - to phenotypic prediction, especially disease risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steele, Diana
2018-01-01
This paper offers an ethnographic analysis of indigenous Peruvian Amazonian youth pursuing higher education through urban migration to contribute to the resilience of their communities, place-based livelihoods, and indigenous Amazonian identities. Youth and their communities promoted education and migration as powerful tools in the context of…
H. Bart (Harm); T. Ehrhardt; B. Silbermann
2001-01-01
textabstractA logarithmic residue is a contour integral of the (left or right) logarithmic derivative of an analytic Banach algebra valued function. Logarithmic residues are intimately related to sums of idempotents. The present paper is concerned with logarithmic residues and sums of idempotents in
Identity, place, and bystander intervention: social categories and helping after natural disasters.
Levine, Mark; Thompson, Kirstien
2004-06-01
The authors developed a Self-Categorization Theory (SCT) approach to bystander behavior. Participants were 100 undergraduates at an English university. The authors made either a European or a British identity salient. Participants then rated their likelihood of offering both financial and political help after natural disasters in Europe and South America. When European (but not British) identity was salient, participants were less likely to offer help for disasters in South America than Europe. They were also more likely to offer financial help after disasters in Europe when European non-British identity was salient. There were no differences in levels of emotional response to disasters by identity salience. Results indicate that social category relations rather than geographical proximity or emotional reaction are most important in increasing helping behavior after natural disasters.
Underlying concerns in land-use conflicts--the role of place-identity in risk perception
Energy Technology Data Exchange (ETDEWEB)
Wester-Herber, Misse
2004-04-01
In the last few years, debates over proposed usage of land for high-risk ventures have caused some debate, both in the affected communities as well as among policy makers. It has been recognized by industry and government agencies that the opinion and concerns of the local population has to be considered in order to mediate or reduce conflicts. Usually these concerns tend to focus on issues of health and safety in relation to the risk presented by different projects. It is suggested in this paper that the discussion needs to be expanded, especially if the proposed project can alter the esthetic appearance of the landscape. It is argued in this paper that the local attachment to a specific geographical place, also referred to as place-identity, needs to be included in discussions concerning industrial risks. Research in environmental psychology has suggested that place-identity is vital to a person's identity and that this can be seen through four principles. In this paper, suggestions are made on how these four aspects of identity can be affected in a negative way if changes are made to a landscape by the introduction of a high-risk and stigmatized industrial venture.
Underlying concerns in land-use conflicts--the role of place-identity in risk perception
International Nuclear Information System (INIS)
Wester-Herber, Misse
2004-01-01
In the last few years, debates over proposed usage of land for high-risk ventures have caused some debate, both in the affected communities as well as among policy makers. It has been recognized by industry and government agencies that the opinion and concerns of the local population has to be considered in order to mediate or reduce conflicts. Usually these concerns tend to focus on issues of health and safety in relation to the risk presented by different projects. It is suggested in this paper that the discussion needs to be expanded, especially if the proposed project can alter the esthetic appearance of the landscape. It is argued in this paper that the local attachment to a specific geographical place, also referred to as place-identity, needs to be included in discussions concerning industrial risks. Research in environmental psychology has suggested that place-identity is vital to a person's identity and that this can be seen through four principles. In this paper, suggestions are made on how these four aspects of identity can be affected in a negative way if changes are made to a landscape by the introduction of a high-risk and stigmatized industrial venture
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Finding Canada outside: Building National Identity through Place-Based Outdoor Education
Joyce, Katherine
2011-01-01
In a country as diverse as Canada, spread over an incomprehensibly large land mass, the connections between citizens may require more imagination. One way that these connections have been traditionally imagined in Canada is through national myths, including the myth of the wilderness. This myth draws the Canadian identity out of an…
A.J.C. van der Hoeven (Arno)
2014-01-01
markdownabstract__Abstract __ Ever since the late 1950s, people have grown up with popular music as an important element of their daily lives. This dissertation explores the connections between popular music memories, cultural identity and cultural heritage, looking at the different ways in
Garavito-Bermúdez, Diana; Lundholm, Cecilia
2017-01-01
The ecological knowledge of those who interact with ecosystems in everyday-life is situated in social and cultural contexts, as well as accumulated, transferred and adjusted through work practices. For them, ecosystems represent not only places for living but also places for working and defining themselves. This paper explores psychological…
Beyond Bluff Oysters? Place Identity and Ethnicity in a Peripheral Coastal Setting
Panelli, Ruth; Allen, Deborah; Ellison, Brett; Kelly, Anna; John, Alistair; Tipa, Gail
2008-01-01
Studies of culture and place form a long tradition in geography but, within rural studies, less attention has been given to the ways in which contrasting ethnicities intersect with specific places and landscapes. Recently, an increasing number of authors have noted how dominant Anglophone, western, ethnicities (frequently labelled…
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
SENSES OF PLACE: CONFLICTING CULTURAL IDENTITIES WITHIN BIRMINGHAM’S BULLRING DEVELOPMENT
Directory of Open Access Journals (Sweden)
Fiona Waterhouse
2007-09-01
Bull, whilst alluding to Birmingham’s origins as a cattle market, also references the city’s European links – including its twinning with Barcelona. However, a third piece of public art is much older: Westmacott’s statue of Horatio Nelson was first unveiled in Birmingham in 1810, when the country was at war with France. Its nationalism is at odds with the desire to be seen as a forward‐thinking, more cosmopolitan city. Seen from one angle against the backdrop of Selfridges, the conflict between the two very different senses of cultural identity is particularly striking. To conclude, while public art reflects a very real sense of cultural identity, it is one that is specific to a particular time and group. The inclusion of art works from different periods only highlights this issue.
Relationships between Personal and Collective Place Identity and Well-Being in Mountain Communities
Knez, Igor; Eliasson, Ingegärd
2017-01-01
The aim was to investigate the relationships between landscape-related personal and collective identity and well-being of residents living in a Swedish mountain county (N = 850). It was shown that their most valued mountain activities were viewing and experiencing nature and landscape, outdoor recreation, rest and leisure, and socializing with friends/family. Qualitative analyses showed that the most valued aspects of the sites were landscape and outdoor restoration for personal favorite site...
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Postc(art)ographia: A Mapwork Project about Identity and Place
Hurren, Wanda
2008-01-01
This article presents a collection of postcards, titled "postcartographia," which is excerpted from an atlas of Mapwork and is one component of a gallery exhibition with the same title. Incorporating photography and poetic text, the postcards explore aesthetic approaches to knowing in the world, specifically, aesthetic ways of knowing places and…
Agbenyega, Joseph S.
2008-01-01
Inclusion in education is based on the premise that given the right educational opportunity and support, every student can achieve to his/her optimum level. This paper reports a study of 50 Junior Secondary Students' experiences of schooling using phenomenon auto-driven photo elicitation approach. The paper examines issues of school place in…
Doing Cultural Work: Local Postcard Production and Place Identity in a Rural Shire
Mayes, Robyn
2010-01-01
Studies of place construction in the rural studies literature have largely privileged the role of professionals over that of local lay actors. This paper contributes to redressing this imbalance through a critical case-study of lay postcard production in a rural shire. Drawing on original, qualitative research conducted in the Shire of…
Heft, Harry; Hoch, Justine; Edmunds, Trent; Weeks, Jillian
2014-10-13
"Behavior settings" are generated by joint actions of individuals in conjunction with the milieu features (or affordances) that are available. The reported research explores the hypothesis that the identity or meaning of a behavior setting can be perceived by means of the patterns of action collectively generated by the setting's participants. A set of computer animations was created based on detailed observation of activities in everyday settings. Three experiments were conducted to assess whether perceivers could extract "structure from motion" (in this case, collective actions) that was specific to the particular behavior setting displayed by way of the animations. Two experiments assessed whether individuals could accurately perceive the identity of the behavior settings with such displays, and a third experiment indirectly examined this possibility by evaluating whether setting possibilities and constraints were recognized. The results offered some support for the hypothesis, and suggested several refinements in how to conceptualize a typology of behavior settings. An ecological approach to place perception is also discussed.
Quantum Groupoids Acting on Semiprime Algebras
Directory of Open Access Journals (Sweden)
Inês Borges
2011-01-01
Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.
International Nuclear Information System (INIS)
Devchand, Chandrashekar; Fairlie, David; Nuyts, Jean; Weingart, Gregor
2009-01-01
The ternary commutator or ternutator, defined as the alternating sum of the product of three operators, has recently drawn much attention as an interesting structure generalizing the commutator. The ternutator satisfies cubic identities analogous to the quadratic Jacobi identity for the commutator. We present various forms of these identities and discuss the possibility of using them to define ternary algebras.
A trace formula for the Iwahori-Hecke algebra
Opdam, E.M.
1999-01-01
The Iwahori-Hecke algebra has a canonicaltrace $\\tau$. The trace is the evaluation at the identity element in the usual interpretation of the Iwahori-Hecke algebra as a sub-algebra of the convolution algebra of a p-adic semi-simple group. The Iwahori-Hecke algebra contains an important commutative
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
African Journals Online (AJOL)
Tadesse
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
Some general constraints on identical band symmetries
International Nuclear Information System (INIS)
Guidry, M.W.; Strayer, M.R.; Wu, C.; Feng, D.H.
1993-01-01
We argue on general grounds that nearly identical bands observed for superdeformation and less frequently for normal deformation must be explicable in terms of a symmetry having a microscopic basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms bilinear in fermion creation and annihilation operators. Observed features of these bands and the general properties of Lie groups are then used to place constraints on acceptable algebras. Additional constraints are placed by assuming that the collective spectrum is associated with a dynamical symmetry, and examining the subgroup structure required by phenomenology. We observe that requisite symmetry cannot be unitary, and that the simplest known group structures consistent with these minimal criteria are associated with the Ginocchio algebras employed in the fermion dynamical symmetry model. However, our arguments are general in nature, and we propose that they imply model-independent constraints on any candidate explanation for identical bands
The Growing Importance of Linear Algebra in Undergraduate Mathematics.
Tucker, Alan
1993-01-01
Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Jordan algebras versus C*- algebras
International Nuclear Information System (INIS)
Stormer, E.
1976-01-01
The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1995-01-01
New realizations of finite W-algebras are constructed by relaxing the usual constraint conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. ((orig.))
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Combinatorial Proofs and Algebraic Proofs
Indian Academy of Sciences (India)
Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/07/0630-0645. Keywords. Combinatorial proof; algebraic proof; binomial identity; recurrence relation; composition; Fibonacci number; Fibonacci identity; Pascal triangle. Author Affiliations. Shailesh A Shirali1. Sahyadri School Tiwai Hill, Rajgurunagar Pune 410 ...
Winterton, Rachel; Warburton, Jeni
2012-01-01
As a consequence of local population ageing, which is more pronounced in rural areas, the issue of maintaining a positive quality of life for rural older people is attracting significant attention. While environmental psychology theory has advocated the role of place identity in defining the self, there has been little applied research exploring…
Wanka, Anna
2018-01-18
Empirical research indicates that engagement with public space decreases with age. Why do some older adults withdraw from the public, and which role does the (urban) environment play in spatial (dis-)engagement? Environmental gerontology's model of person-environment (PE) fit suggests an interrelation between agency and belonging and their causal effects on identity and wellbeing in later life. However, there is little research on how these dimensions are actually related. This study sets out to investigate this relationship and how PE can be better adapted for deprived neighborhoods. The study follows a qualitative case studies approach, focusing on a deprived neighborhood in Vienna, Austria. Nonparticipant observations were conducted at this site and complemented by 13 episodic interviews with older residents. The results challenge PE's model of interrelation between agency and belonging and their causal effects on identity, wellbeing, and autonomy in later life. Spatial agency in the deprived neighborhood was intense but so was spatial alienation and distancing oneself from one's neighborhood. Drawing on notions of territorial stigma, this might be a coping strategy to prevent one's self-identity from being "stained". Which strategy is being adopted by whom depends on the position and the trajectory in social and physical space. PE can be complemented with intersubjective measures of environmental conditions (e.g., stigma) and spatial engagement. Gerontology should proceed to consider not only the poor, disadvantaged, disengaged elderly, but also the rebellious, resisting, provocative new generation of older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Inhomogeneous linear equation in Rota-Baxter algebra
Pietrzkowski, Gabriel
2014-01-01
We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.
Jordan and left derivations on locally C*-algebras
International Nuclear Information System (INIS)
Shahzad, Naseer
2002-07-01
We show that left derivations as well as Jordan derivations on locally G*-algebras are always continuous. We also obtain some noncommutative extensions of the classical Singer-Wermer theorem for locally C*-algebras: (1) Every left derivation D on a locally (7*-algebra A is identically zero. (2) Every Jordan derivation D on a locally C*-algebra A which satisfies [D(x), x]D(x]=0 for all x in A, is identically zero. (author)
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Kalev, Henriette Dahan
2012-01-01
Three fields of discourse regarding a masculine-like woman connect at a point that the queer field calls intersex, medical practice calls a sexual disorder, and rabbinic literature terms aylonit. The queer discursive field focuses on the freedom to choose an identity, but not the freedom from choosing one. The medical field focuses on sexual practice as the source of determining "normal" sexuality. In the discursive field of Jewish law there are no demands, because the Halakhic authority determines gender identity on behalf of the individual, maintaining ambiguity. Copyright © Taylor & Francis Group, LLC
Mueller, Anneliese Marie
Given the prominence of sense of place in new environmental education curricula, this study aims to strengthen the conceptual and empirical foundations of sense of place, and to determine how sense of place may be linked to environmentally responsible behavior. For this study, five commercial fishermen and five organic farmers from the New England Seacoast region participated in a series of in-depth phenomenological interviews and observations. The data was systematically coded in order to allow themes and categories to emerge. The results indicate that aspects of the existing conceptual framework of sense of place, such as place attachment, ecological knowledge, and public involvement, do in fact describe the relationship between people and place. However, the results also indicate that two conceptual elements---attention to social context and awareness of moral theory---are missing from the current conceptual framework in EE theory. These results suggest that the current framework should be expanded to emphasize the role of human and non-human communities: the development of a sense of place and the learning of environmentally responsible behavior must be situated within a social context. This study lends support to the view that for sense of place to move people to ethical action, it is crucial for them to recognize, and to participate in, a community of support and care.
Fermion dynamical symmetry and identical bands
International Nuclear Information System (INIS)
Guidry, M.
1994-01-01
Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation
Bounded elements in Locally C*-algebras
International Nuclear Information System (INIS)
El Harti, Rachid
2001-09-01
In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
Hone, A N W; Ragnisco, Orlando; Zullo, Federico
2016-01-01
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
Cassandra Y. Johnson; A.C. Halfacre; P.T. Hurley
2009-01-01
The cultural and political implications of landscape change and urban growth in the western U.S. are well-documented. However, comparatively little scholarship has examined the effects of urbanization on sense of place in the southern U.S. We contribute to the literature on competing place meanings with a case study from the rural âSewee to Santeeâ region of northern...
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
An algebraic approach to the scattering equations
Energy Technology Data Exchange (ETDEWEB)
Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)
2015-12-10
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
On compact multipliers of topological algebras
International Nuclear Information System (INIS)
Mohammad, N.
1994-08-01
It is shown that if the maximal ideal space Δ(A) of a semisimple commutative complete metrizable locally convex algebra contains no isolated points, then every compact multiplier is trivial. Particularly, compact multipliers on semisimple commutative Frechet algebras whose maximal ideal space has no isolated points are identically zero. (author). 5 refs
An algebraic approach to the scattering equations
International Nuclear Information System (INIS)
Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui
2015-01-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Directory of Open Access Journals (Sweden)
Carmen Zamorano Llena
2016-05-01
Full Text Available The current context of globalisation is often characterised by its transformative effects on traditional definitions of place and culture, especially in relation to the concept of the nation state and its role in structuring modern understandings of individual and collective belonging. In opposition to a bounded, reactionary notion of place, associated with a given, self-contained, local cultural community, human geographers have proposed a progressive “global sense of place” (Massey 1991, characterised by its unboundedness, and understood as “the location of the intersections of particular bundles of activity spaces, of connections and interrelations, of influences and movements” that link it to the wider world (Massey 1995: 59. This relational global sense of place informs sociologist Ulrich Beck’s conceptualisation of place from a cosmopolitan perspective, according to which national societies are transformed by a process of “internal cosmopolitanisation” (2004: 9 in which place becomes “the locus of encounters and interminglings or, alternatively, of anonymous coexistence and the overlapping of possible worlds and global dangers” (2004: 10. In this sense, the main aim of this paper is to analyse how British Indian writer Hari Kunzru’s Gods Without Men (2011 subverts, both thematically and in terms of narrative structure, a bounded notion of place from a “cosmopolitan outlook” (Beck 2004: 2. It is my contention that in the novel the location of the Pinnacles in the Mojave Desert, California, acts as a symbolic locus where the different stories that compose the narrative whole crisscross to outline a new topography of collective belonging. By historicising and re-examining from a current transnational viewpoint traditional understandings of the sense of place, with special attention to the inextricably interrelated concept of spirituality, Kunzru provides a cosmopolitanised narrative of America, which underscores the
International Nuclear Information System (INIS)
MacCallum, M.A.H.
1990-01-01
The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
DEFF Research Database (Denmark)
Jensen, Kim Ebensgaard
-specialized language in which it also serves a number of functions – some of which are quite fundamental to society as such. In other words, the lexeme identity is a polysemic word and has multiple, well, identities. Given that it appears to have a number of functions in a variety of registers, including terminologies...... in Academic English and more everyday-based English, identity as a lexeme is definitely worth having a look at. This paper presents a lexicological study of identity in which some of its senses are identified and their behaviors in actual discourse are observed. Drawing on data from the 2011 section...... of the Corpus of Contemporary American English, a behavioral profile of the distributional characteristics of identity is set up. Behavioral profiling is a lexicographical method developed by the corpus linguist Stefan Th. Gries which, by applying semantic ID tagging and statistical analysis, provides a fine...
Mejía, Margarita Gaviria; Périco, Eduardo; Oliveira, Laura Barbieri
2015-05-01
The paper presents a preliminary results of an ethnographic study in which we observe how is socially experienced the municipality process in six counties of the Forqueta Watershed in Rio Grande do Sul, where the municipal fragmentation has been used as an administrative strategy since the 1990s. Deal about cultural elements and social actions that support construction and/or reconstruction identities to define territories-county's borders. Sociological and anthropological theories have been used to think the identities and the assumption that the integration of social spaces into a territory creates the social necessity to produce a territorial identity, closely linked to a socio-political context and cultural setting. We realize that the decentralization process in small municipalities helps stem the rural exodus, being health services determinant in curbing the migratory flow that characterized these locations reality in recent decades as a result of the agribusiness growth. Today, in these same places, health services represent the main support of collective identity with the territory-county and, instead of emigration, stimulate the immigration.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Marcu, Silvia
2012-01-01
This article examines the experiences in terms of belonging and sense of place among young Romanian immigrants who came to Spain in search of opportunities for professional development. The research detects and analyses the process of mobility, the search for job opportunities and the necessity of working below one's level of training or…
Wiehe, Elsa M.
2013-01-01
This eleven-month ethnographic study puts critical discourse analysis in dialogue with postmodern conceptualizations of space and place to explore how eight educators talk about space and in the process, produce racialized spaces in Roche Bois, Mauritius. The macro-historical context of racialization of this urban marginalized community informs…
Progressive Presentations of Place-Based Identities in Meg Rosoff's "How I Live Now"
Lockney, Karen
2013-01-01
This article provides a close reading of Meg Rosoff's award-winning novel "How I Live Now". It argues that an understanding of the text can be extended through an application of ideas found in contemporary spatial discourse concerning place. Reading the novel within this context allows a discussion of ways in which it draws on…
Keegan, Patrick Joseph
2017-01-01
In the context of transnational migration, schools are reimagining their role in preparing students to become democratic citizens. The qualitative research study described in this article explores the places where five Dominican transnational youth attending a New York City public high school for late-arriving migrants enacted their civic…
Directory of Open Access Journals (Sweden)
Anya AHMED
2011-11-01
Full Text Available Intra-European migration is now a well-documented phenomenon among older people and for UK retirees, Spain is the most popular choice. ‘Belonging’ is particularly important when attempting to understand experiences of migration since often people become aware that they need to belong precisely when they realise that they do not. However, although belonging is a recurrent theme in identity and migration discourse it is rarely defined. This paper explores the concept of belonging in relation to the experiences of a group of retired women living in the Costa Blanca in Spain and considers its multiple and overlapping representations. The myriad forms of belonging that these ‘lifestyle migrants’ construct through narrative in relation to place, networks and ethnic identity and the central intersecting role of language are considered and discussed.
Computers in nonassociative rings and algebras
Beck, Robert E
1977-01-01
Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1994-09-01
New realizations of finite W-algebras are constructed by relaxing the usual conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. (author). 13 refs
Kambaru Windi, Yohanes; Whittaker, Andrea
2012-09-01
Qualitative research was undertaken among Dawan people living in Fatumnasi, West Timor, to investigate the reasons for the Dawan's retention of traditional houses, ume kbubu, in the face of a national development campaign to introduce modern, "healthy" homes (rumah sehat). Indoor smoke pollution from internal fires and poor ventilation is believed to contribute to poor respiratory health among this population. The study explored Dawan cultural constructions of health to find that ume kbubu are fundamental to the Dawan's sense of psychosocial well-being and ethnic identity. While rumah sehat are associated with prosperity, public image and social status they do not provide the warmth, security and emotional nurturance that the Dawan perceive as necessary for optimum health and to protect them from disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Indian Academy of Sciences (India)
Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Directory of Open Access Journals (Sweden)
Renate Lenz
2017-03-01
Full Text Available In Lost Ground, Michiel Heyns portrays the former white settlers’ position and experience in South Africa, Africa and Europe after the overturn of South Africa’s apartheid regime. An analysis of the novel illustrates that the legacy of the colonisation of Africa and apartheid in South Africa still shapes the settler descendants’ perception of self and the other and the formers’ place in South Africa and Africa. After the electoral victory of the African National Congress, contemporary white South African men, as exemplified by the English-speaking male protagonist who features in the novel, tend to dissociate themselves from the country and the African continent as home. Although the original colonisers’ experience of alienation and ambivalence about apartheid has been widely depicted, the significance of this experience in relation to white South African male identity has not been fully explored in a study of Heyns’s Lost Ground, principally as regards the novel’s detective narrative framework and the counterdiscursive technique of intertextual referencing that implies other interpretative possibilities. Lost Ground will be critically analysed in terms of the central character’s experience of space and place, and the influence of these paradigms on Peter Jacobs as he makes strides towards abandoning historical/racial restrictions and locating his identity in people.
Edix: A Software for Editing Algebraic Expressions.
Bouhineau , Denis; Nicaud , Jean-François; Pavard , X.
2001-01-01
International audience; The paper presents a computer software, called Edix, devoted to the edition of algebraic expressions in their usual 2D representation. At present, many systems display fine algebraic expressions, but the edition of such expressions is weak. Systems like Word and FrameMaker place sub-expressions in too many boxes so that many editing actions are not simple, while usual CAS (computer algebra systems) just use a 1D representation for the edition. Furthermore, Edix allows ...
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
International Nuclear Information System (INIS)
Jacob, M.
1967-01-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
Just Say Yes to Early Algebra!
Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy
2015-01-01
Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
identities in conformal field theory and so forth. It is remarkable that the key ingredients in such a variety of theories and models are captured and described universally in the common language of cluster algebras. This special issue provides a bird's-eye view of the known and latest results in various topics in mathematical physics where cluster algebras have played an essential role. The contributed articles are themselves an eloquent illustration of the breadth and depth of the subject of cluster algebras. We are confident that the issue will stimulate both newcomers and experts, since the applications to physics still seem to be growing
Homotopy Theory of C*-Algebras
Ostvaer, Paul Arne
2010-01-01
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
Hanlon, Neil; Halseth, Greg; Snadden, David
2010-09-01
Community-integrated undergraduate medical education is becoming a more common option for students predisposed to practice in rural and small town places. One such initiative, the Northern Medical Program, has been operating since 2004 in the northern interior of British Columbia, Canada. The NMP's curriculum relies heavily on the involvement of practicing physicians in its host community, Prince George. Drawing on Bourdieu's conceptualization of capital in its different forms, the commitment of the local physician community is understood as social capital derived from cultural capital centred on a collective sense of professional identity forged by conditions of practice in an underserviced area. The findings of this study are discussed with respect to the long-term operation and success of community-integrated medical education programs. Copyright 2010 Elsevier Ltd. All rights reserved.
Clifford Algebras and magnetic monopoles
International Nuclear Information System (INIS)
Recami, E.
1987-01-01
It is known that the introduction of magnetic monopolies in electromagnetism does still present formal problems from the point of view of classical field theory. The author attempts to overcome at least some of them by making recourse to the Clifford Algebra formalism. In fact, while the events of a two-dimensional Minkowski space-time M(1,1) are sufficiently well represented by ordinary Complex Numbers, when dealing with the events of the four-dimensional Minkowski space M(1,3)identical to M/sub 4/ one has of course to look for hypercomplex numbers or, more generally, for the elements of a Clifford Algebra. The author uses the Clifford Algebras in terms of ''multivectors'', and in particular by Hestenes' language, which suits space-time quite well. He recalls that the Clifford product chiγ is the sum of the internal product chi . γ and of the wedge product chiΛγ
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Exact WKB analysis and cluster algebras
International Nuclear Information System (INIS)
Iwaki, Kohei; Nakanishi, Tomoki
2014-01-01
We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Towards a classification of rational Hopf algebras
International Nuclear Information System (INIS)
Fuchs, J.; Ganchev, A.; Vecsernyes, P.
1994-02-01
Rational Hopf algebras, i.e. certain quasitriangular weak quasi-Hopf *-algebras, are expected to describe the quantum symmetry of rational field theories. In this paper methods are developed which allow for a classification of all rational Hopf algebras that are compatible with some prescribed set of fusion rules. The algebras are parametrized by the solutions of the square, pentagon and hexagon identities. As examples, we classify all solutions for fusion rules with not more than three sectors, as well as for the level three affine A 1 (1) fusion rules. We also establish several general properties of rational Hopf algebras and present a graphical description of the coassociator in terms of labelled tetrahedra. The latter construction allows to make contact with conformal field theory fusing matrices and with invariants of three-manifolds and topological lattice field theory. (orig.)
On the algebraic structure of differential calculus on quantum groups
International Nuclear Information System (INIS)
Rad'ko, O.V.; Vladimirov, A.A.
1997-01-01
Intrinsic Hopf algebra structure of the Woronowicz differential complex is shown to generate quite naturally a bicovariant algebra of four basic objects within a differential calculus on quantum groups - coordinate functions, differential forms, Lie derivatives, and inner derivatives - as the cross-product algebra of two mutually dual graded Hopf algebras. This construction, properly taking into account Hopf-algebraic properties of Woronowicz's bicovariant calculus, provides a direct proof of the Cartan identity and of many other useful relations. A detailed comparison with other approaches is also given
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Hereditary properties of Amenability modulo an ideal of Banach algebras
Directory of Open Access Journals (Sweden)
Hamidreza Rahimi
2014-10-01
Full Text Available In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show thatif $(e_{\\alpha}_{\\alpha}$ is a bounded approximate identity modulo $I$ of a Banach algebra $A$ and $X$ is a neo-unital modulo $I$, then $(e_{\\alpha}_{\\alpha}$ is a bounded approximate identity for $X$. Moreover we show that amenability modulo an ideal of a Banach algebra $A$ can be only considered by the neo-unital modulo $I$ Banach algebra over $A$
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
n-ary algebras: a review with applications
International Nuclear Information System (INIS)
De Azcarraga, J A; Izquierdo, J M
2010-01-01
This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical
Poincare invariant algebra from instant to light-front quantization
International Nuclear Information System (INIS)
Ji, Chueng-Ryong; Mitchell, Chad
2001-01-01
We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra
Quantum field theories on algebraic curves. I. Additive bosons
International Nuclear Information System (INIS)
Takhtajan, Leon A
2013-01-01
Using Serre's adelic interpretation of cohomology, we develop a 'differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Fermion dynamical symmetry and identical bands
International Nuclear Information System (INIS)
Guidry, M.
1995-01-01
Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basis principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation. (author). 9 refs., 11 figs., 1 tab
Understanding the Properties of Arithmetic: A Prerequisite for Success in Algebra
Tent, Margaret W.
2006-01-01
This article discusses the role of the commutative, associative, distributive, and identity properties of addition and multiplication in preparing children for future success in algebra. (Contains 3 figures.)
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Introduction to quantum algebras
International Nuclear Information System (INIS)
Kibler, M.R.
1992-09-01
The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs
Bases in Lie and quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2008-01-01
Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).
Directory of Open Access Journals (Sweden)
Deena Al-Kadi
2016-01-01
Full Text Available We introduce the notion of fq-derivation as a new derivation of G-algebra. For an endomorphism map f of any G-algebra X, we show that at least one fq-derivation of X exists. Moreover, for such a map, we show that a self-map dqf of X is fq-derivation of X if X is an associative medial G-algebra. For a medial G-algebra X, dqf is fq-derivation of X if dqf is an outside fq-derivation of X. Finally, we show that if f is the identity endomorphism of X then the composition of two fq-derivations of X is a fq-derivation. Moreover, we give a condition to get a commutative composition.
Generalized EMV-Effect Algebras
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
K-Bessel functions associated to a 3-rank Jordan algebra
Directory of Open Access Journals (Sweden)
Hacen Dib
2005-01-01
Full Text Available Using the Bessel-Muirhead system, we can express the K-Bessel function defined on a Jordan algebra as a linear combination of the J-solutions. We determine explicitly the coefficients when the rank of this Jordan algebra is three after a reduction to the rank two. The main tools are some algebraic identities developed for this occasion.
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
On Algebraic Approach for MSD Parametric Estimation
Oueslati , Marouene; Thiery , Stéphane; Gibaru , Olivier; Béarée , Richard; Moraru , George
2011-01-01
This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus ...
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Abstract algebra for physicists
International Nuclear Information System (INIS)
Zeman, J.
1975-06-01
Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)
Combinatorial commutative algebra
Miller, Ezra
2005-01-01
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.
Lie Algebras for Constructing Nonlinear Integrable Couplings
International Nuclear Information System (INIS)
Zhang Yufeng
2011-01-01
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Some quantum Lie algebras of type Dn positive
International Nuclear Information System (INIS)
Bautista, Cesar; Juarez-Ramirez, Maria Araceli
2003-01-01
A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
Extended Virasoro algebra and algebra of area preserving diffeomorphisms
International Nuclear Information System (INIS)
Arakelyan, T.A.
1990-01-01
The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Applied linear algebra and matrix analysis
Shores, Thomas S
2018-01-01
In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...
Algebraic properties of generalized inverses
Cvetković‐Ilić, Dragana S
2017-01-01
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...
Geometric Algebra Techniques in Flux Compactifications
International Nuclear Information System (INIS)
Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela
2016-01-01
We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.
Representations of quantum bicrossproduct algebras
International Nuclear Information System (INIS)
Arratia, Oscar; Olmo, Mariano A del
2002-01-01
We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Hall, Eric E.; Walkington, Helen; Shanahan, Jenny Olin; Ackley, Elizabeth; Stewart, Kearsley A.
2018-01-01
This study examines how Undergraduate Research (UR) mentoring fits into the career profile of award-winning UR mentors and the factors that motivate engagement as UR mentors. Twenty-four award-winning UR mentors in four countries were interviewed about their mentoring practices. Six themes emerged: (1) Academic Identity and Motivations; (2)…
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
On algebraic time-derivative estimation and deadbeat state reconstruction
DEFF Research Database (Denmark)
Reger, Johann; Jouffroy, Jerome
2009-01-01
This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...
Algebraic aspects of exact models
International Nuclear Information System (INIS)
Gaudin, M.
1983-01-01
Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
N.W. van den Hijligenberg; R. Martini
1995-01-01
textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Learning Activity Package, Algebra.
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Moduli spaces in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves
Semi-infinite Weil complex and the Virasoro algebra
International Nuclear Information System (INIS)
Feigin, B.; Frenkel, E.
1991-01-01
We define a semi-infinite analogue of the Weil algebra associated with an infinite-dimensional Lie algebra. It can be used for the definition of semi-infinite characteristic classes by analogy with the Chern-Weil construction. The second term of a spectral sequence of this Weil complex consists of the semi-infinite cohomology of the Lie algebra with coefficients in its 'adjoint semi-infinite symmetric powers'. We compute this cohomology for the Virasoro algebra. This is just the BRST cohomology of the bosonic βγ-system with the central charge 26. We give a complete description of the Fock representations of this bosonic system as modules over the Virasoro algebra, using Friedan-Martinec-Shenker bosonization. We derive a combinatorial identity from this result. (orig.)
Abstract algebra an inquiry based approach
Hodge, Jonathan K; Sundstrom, Ted
2013-01-01
""This book arose from the authors' approach to teaching abstract algebra. They place an emphasis on active learning and on developing students' intuition through their investigation of examples. … The text is organized in such a way that it is possible to begin with either rings or groups.""-Florentina Chirtes, Zentralblatt MATH 1295
Contemporary developments in algebraic K-theory
International Nuclear Information System (INIS)
Karoubi, M.; Kuku, A.O.; Pedrini, C.
2003-01-01
The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Roesgen, M.
2000-10-01
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
2D Toda chain and associated commutator identity
Pogrebkov, A. K.
2007-01-01
Developing observation made in \\cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generic conditions, enables derivation of the Toda chain equation and its Lax pair from the given commutator identity.
Phase Transitions in Algebraic Cluster Models
International Nuclear Information System (INIS)
Yepez-Martinez, H.; Cseh, J.; Hess, P.O.
2006-01-01
Complete text of publication follows. Phase transitions in nuclear systems are of utmost interest. An interesting class of phase transitions can be seen in algebraic models of nuclear structure. They are called shapephase transitions due to the following reason. These models have analytically solvable limiting cases, called dynamical symmetries, which are characterized by a chain of nested subgroups. They correspond to well-defined geometrical shape and behaviour, e.g. to rotation of an ellipsoid, or spherical vibration. The general case of the model, which includes interactions described by more than one groupchain, breaks the symmetry, and changing the relative strengths of these interactions, one can go from one shape to the other. In doing so a phase-transition can be seen. A phase transition is defined as a discontinuity of some quantity as a function of the control parameter, which gives the relative strength of the interactions of different symmetries. Real phase transitions can take place only in infinite systems, like in the classical limits of these algebraic models, when the particle number N is very large: N → ∞. For finite N the discontinuities are smoothed out, nevertheless, some indications of the phase-transitions can still be there. A controlled way of breaking the dynamical symmetries may reveal another very interesting phenomenon, i.e. the appearance of a quasidynamical (or effective) symmetry. This rather general symmetry-concept of quantum mechanics corresponds to a situation, in which the symmetry-breaking interactions are so strong that the energy-eigenfunctions are not symmetric, i.e. are not basis states of an irreducible representation of the symmetry group, rather they are linear combinations of these basis states. However, they are very special linear combinations in the sense that their coefficients are (approximately) identical for states with different spin values. When this is the case, then the underlying intrinsic state is the
California Natural Resource Agency — Census 2000 Place Names provides a seamless statewide GIS layer of places, including census designated places (CDP), consolidated cities, and incorporated places,...
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
On Roots of Polynomials and Algebraically Closed Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-10-01
Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS
Directory of Open Access Journals (Sweden)
Gaetana Restuccia
2016-01-01
Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
The algebra and geometry of SU(3) matrices
Mallesh, KS; Mukunda, N
1997-01-01
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed...
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
The algebra and geometry of SU(3) matrices
International Nuclear Information System (INIS)
Mallesh, K.S.; Mukunda, N.
1997-01-01
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of multiplying two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level system is outlined. (author)
Powell, Adam
2017-01-01
Durham University's 'Hearing the Voice' project involves a multi-disciplinary exploration of hallucinatory-type phenomena in an attempt to revaluate and reframe discussions of these experiences. As part of this project, contemporaneous religious experiences (supernatural voices and visions) in the United States from the first half of the nineteenth century have been analysed, shedding light on the value and applicability of contemporary bio-cultural models of religious experience for such historical cases. In particular, this essay outlines four historical cases, seeking to utilise and to refine four theoretical models, including anthropologist Tanya Luhrmann's 'absorption hypothesis', by returning to something like William James' concern with 'discordant personalities'. Ultimately, the paper argues that emphasis on the role of identity dissonance must not be omitted from the analytical tools applied to these nineteenth-century examples, and perhaps should be retained for any study of religious experience generally.
Directory of Open Access Journals (Sweden)
Dora Maria Nunes Gago
2016-01-01
Full Text Available Born in Braga in January 1932, where she also died (March 2003, the Portuguese writer and translator Maria Ondina Braga travelled to several countries, lived in England, France, India (Goa, Angola, Macau and China. Those existential journeys to different corners of the world are fictionalized into her narratives, as in Estátua de Sal (Braga, 1965b and A Passagem do Cabo (Braga, 1994 – which will be analyzed in this work. By drawing on imagology we shall discuss the mechanisms used by the narrator in the process of identity reconstruction, through the memory in the midst of alterity and the exotic ‘Other’, having Macao as a scenario.
Algebraic renormalization. Perturbative renormalization, symmetries and anomalies
International Nuclear Information System (INIS)
Piguet, O.
1995-01-01
This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Adaptive algebraic reconstruction technique
International Nuclear Information System (INIS)
Lu Wenkai; Yin Fangfang
2004-01-01
Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency
Cohen, A.M.; Liu, S.
2011-01-01
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular
DEFF Research Database (Denmark)
Hansen, Kim Toft; Waade, Anne Marit
2019-01-01
We introduce location studies as a new empirical approach to screen studies. Location studies represent an interdisciplinary perspective, including media, aesthetics and geography, and reflect a growing interest in places in a global media and consumption culture. The chapter analyses two recent......) with one being traditional and the other being commercial; both dramas include discussions of localities and social heritage, and both use local sports as a common metaphor for social cohesion; and both series have been partly funded by a local film Danish commissioner. However, The Legacy is shot...... to a large extent in studios, while Norskov is shot entirely on location. The study is based on interviews with producers, broadcasters, location scouts, production designers and writers, as well as quantitative and qualitative textual analyses of television drama series, the geographical places, and related...
Lie Algebras Associated with Group U(n)
International Nuclear Information System (INIS)
Zhang Yufeng; Dong Huanghe; Honwah Tam
2007-01-01
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
Profinite algebras and affine boundedness
Schneider, Friedrich Martin; Zumbrägel, Jens
2015-01-01
We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Real division algebras and other algebras motivated by physics
International Nuclear Information System (INIS)
Benkart, G.; Osborn, J.M.
1981-01-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Representation theory of current algebra and conformal field theory on Riemann surfaces
International Nuclear Information System (INIS)
Yamada, Yasuhiko
1989-01-01
We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)
Srinivas, V
1996-01-01
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...
Regularity of C*-algebras and central sequence algebras
DEFF Research Database (Denmark)
Christensen, Martin S.
The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Irrational "Coefficients" in Renaissance Algebra.
Oaks, Jeffrey A
2017-06-01
Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.
Loop homotopy algebras in closed string field theory
International Nuclear Information System (INIS)
Markl, M.
2001-01-01
Barton Zwiebach (1993) constructed ''string products'' on the Hilbert space of a combined conformal field theory of matter and ghosts, satisfying the ''main identity''. It has been well known that the ''tree level'' of the theory gives an example of a strongly homotopy Lie algebra (though, as we will see later, this is not the whole truth). Strongly homotopy Lie algebras are now well-understood objects. On the one hand, strongly homotopy Lie algebra is given by a square zero coderivation on the cofree cocommutative connected coalgebra on the other hand, strongly homotopy Lie algebras are algebras over the cobar dual of the operad Com for commutative algebras. No such characterization of the structure of string products for arbitrary genera has been available, though there are two series of papers directly pointing towards the requisite characterization. As far as the characterization in terms of (co)derivations is concerned, we need the concept of higher order (co)derivations. For our characterization we need to understand the behavior of these higher (co)derivations on (co)free (co)algebras. The necessary machinery for the operadic approach is that of modular operads. We also indicate how to adapt the loop homotopy structure to the case of open string field theory. (orig.)
Homotopy Lie algebras associated with a proto-bialgebra
International Nuclear Information System (INIS)
Bangoura, Momo
2003-10-01
Motivated by the search for examples of homotopy Lie algebras, to any Lie proto-bialgebra structure on a finite-dimensional vector space F, we associate two homotopy Lie algebra structures defined on the suspension of the exterior algebra of F and that of its dual F*, respectively, with a 0-ary map corresponding to the image of the empty set. In these algebras, all n-ary brackets for n ≥ 4 vanish. More generally, to any element of odd degree in Λ(F*+F), we associate a set of n-ary skew-symmetric mappings on the suspension of ΛF (resp. Λ F*), which satisfy the generalized Jacobi identities if the given element is of square zero. (author)
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Launey, Warwick De
2011-01-01
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Converting nested algebra expressions into flat algebra expressions
Paredaens, J.; Van Gucht, D.
1992-01-01
Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its
Vanishing theorems and effective results in algebraic geometry
International Nuclear Information System (INIS)
Demailly, J.P.; Goettsche, L.; Lazarsfeld, R.
2001-01-01
The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks
Vanishing theorems and effective results in algebraic geometry
Energy Technology Data Exchange (ETDEWEB)
Demailly, J P [Universite de Grenoble (France); Goettsche, L [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lazarsfeld, R [University of Michigan (United States)
2001-12-15
The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks.
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
DEFF Research Database (Denmark)
Ooi, Can-Seng; Peji´c Kristensen, Tatjana; Lomanová Pedersen, Zdenka
2004-01-01
and perceptions.This paper introduces the concept of the orientalist tourist gaze, and demonstrates howorientalism may manifest in tourism. Data on how these two countries are imagined werecollected in Denmark.Keywords: destination identity, host society-guest interaction, impact of tourism, orientalism......Tourism offers an arena through which a place identity is imagined, negotiated and contained.This paper compares the Czech Republic and Slovakia, and show how these countriesconstruct and assert their identities through tourism. They both share a common history asCzechoslovakia, however...
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Fusion algebras of logarithmic minimal models
International Nuclear Information System (INIS)
Rasmussen, Joergen; Pearce, Paul A
2007-01-01
We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are typically reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra p ≠ 1 is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for (p, p') = (2, 5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c p,p' (minimal) models defined algebraically
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
Canonical formulation of the self-dual Yang-Mills system: Algebras and hierarchies
International Nuclear Information System (INIS)
Chau, L.; Yamanaka, I.
1992-01-01
We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the fundamental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive conserved quantities, and hierarchies of nonlinear and linear equations
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics
Simzar, Rahila M.; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.
Simzar, Rahila M; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.
Algebraic characterization of vector supersymmetry in topological field theories
International Nuclear Information System (INIS)
Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G.; Sorella, S.P.
1997-01-01
An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author)
Algebraic characterization of vector supersymmetry in topological field theories
Energy Technology Data Exchange (ETDEWEB)
Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica. Dept. de Fisica Teorica
1997-01-01
An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author). 32 refs., 5 tabs.
Strong result for real zeros of random algebraic polynomials
Directory of Open Access Journals (Sweden)
T. Uno
2001-01-01
Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Indian Academy of Sciences (India)
BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
The algebraic collective model
International Nuclear Information System (INIS)
Rowe, D.J.; Turner, P.S.
2005-01-01
A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
Swan, R G
1968-01-01
From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."
Bergstra, J.A.; Baeten, J.C.M.
1993-01-01
The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
International Nuclear Information System (INIS)
Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1992-01-01
The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)
Some quantum Lie algebras of type D{sub n} positive
Energy Technology Data Exchange (ETDEWEB)
Bautista, Cesar [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico); Juarez-Ramirez, Maria Araceli [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico)
2003-03-07
A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D{sub n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D{sub n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.
Consistency conditions and representations of a q-deformed Virasoro algebra
International Nuclear Information System (INIS)
Polychronakos, A.P.
1990-01-01
We derive deformations of the Virasoro algebra in terms of ''diffeomorphisms'' of functions on a discretized circle. The Curtright-Zachos deformation is recovered in one case, for deformation parameter a root of unity. Consistency conditions are then derived for this algebra by introducing the so-called ''braid-Jacobi'' identities. All the representations are subsequently found through use of these identities. Further, it is shown that no nontrivial central term can be incorporated, since it clashes with the consistency conditions. Finally, an alternative deformation is derived which generalizes the Drinfeld deformation of the Su(1,1) subgroup to the full algebra. 16 refs
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
International Nuclear Information System (INIS)
Yu Zhang; Zhang Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Contemporary developments in algebraic K-theory
Energy Technology Data Exchange (ETDEWEB)
Karoubi, M [Univ. Paris (France); Kuku, A O [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Pedrini, C [Univ. Genova (Italy)
2003-09-15
The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory
On central ideals of finitely generated binary (-1,1)-algebras
International Nuclear Information System (INIS)
Pchelintsev, S V
2002-01-01
In 1975 the author proved that the centre of a free finitely generated (-1,1)-algebra contains a non-zero ideal of the whole algebra. Filippov proved that in a free alternative algebra of rank ≥4 there exists a trivial ideal contained in the associative centre. Il'tyakov established that the associative nucleus of a free alternative algebra of rank 3 coincides with the ideal of identities of the Cayley-Dickson algebra. In the present paper the above-mentioned theorem of the author is extended to free finitely generated binary (-1,1)-algebras. Theorem. The centre of a free finitely generated binary (-1,1)-algebra of rank ≥3 over a field of characteristic distinct from 2 and 3 contains a non-zero ideal of the whole algebra. As a by-product, we shall prove that the T-ideal generated by the function (z,x,(x,x,y)) in a free binary (-1,1)-algebra of finite rank is soluble. We deduce from this that the basis rank of the variety of binary (-1,1)-algebras is infinite
International Nuclear Information System (INIS)
Marquette, Ian
2013-01-01
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Directory of Open Access Journals (Sweden)
María Carolina Spinel G.
1990-01-01
Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.
Nonassociativity, Malcev algebras and string theory
International Nuclear Information System (INIS)
Guenaydin, M.; Minic, D.
2013-01-01
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Algebras of Information States
Czech Academy of Sciences Publication Activity Database
Punčochář, Vít
2017-01-01
Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
DEFF Research Database (Denmark)
Using a cross-cultural approach the book investigates children's places in different societies. "Children's Places" examines the ways in which children and adults, from their different vantage-points in society, negotiate proper places of children in both social and spatial terms. It looks at some...
International Nuclear Information System (INIS)
Zhang Yufeng; Guo Fukui
2007-01-01
Two types of Lie algebras, which are the subalgebras of the Lie algebra A 2 , A 3 respectively, are presented. The resulting loop algebras are following. As their applications, two different integrable couplings of the Yang hierarchy are obtained, called them the double integrable couplings. The Hamiltonian structure of one of them is worked out by a proper linear isomorphic transformation and the quadratic-form identity
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Correlates of gender and achievement in introductory algebra based physics
Smith, Rachel Clara
The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
DEFF Research Database (Denmark)
Medway, Dominic; Swanson, Kathryn; Neirotti, Lisa Delpy
2015-01-01
Purpose: – The purpose of this paper is to report on a special session entitled “Place branding: Are we wasting our time?”, held at the American Marketing Association’s Summer Marketing Educators’ conference in 2014. Design/methodology/approach: – The report details the outcome of an Oxford......: – The outcome of the debate points towards a need for place brands to develop as more inclusive and organic entities, in which case it may be best for place practitioners to avoid creating and imposing a place brand and instead help shape it from the views of stakeholder constituencies. This shifts the notion...... of place branding towards an activity centred on “curation”. Originality/value: – The use of a competitive debating format as a means for exploring academic ideas and concepts in the place management field....
2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras
International Nuclear Information System (INIS)
Ayupov, Shavkat; Kudaybergenov, Karimbergen
2016-01-01
The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)
Lockwood, Sandra Elizabeth
2013-01-01
This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.
A modal characterization of Peirce algebras
M. de Rijke (Maarten)
1995-01-01
textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
DEFF Research Database (Denmark)
Høyrup, Jens
with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
The Unitality of Quantum B-algebras
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
DEFF Research Database (Denmark)
Rask, Morten; Bakke, Nikolas; Lindhøj, Jan
Better Place is trying to reshape the automotive industry by shifting transportation from a dependency on oil to a reliance on environmentally friendly renewable energy. Better Place is developing an extensive infrastructure system that will utilise overcapacity in the production of wind power...... among others and that will drive the global transportation industry to becoming driven by electric vehicles (EVs). Better Place does this by selling its customers 'mileage' and a car without a battery. The case highlights the internationalisation process of Better Place from an international business...... perspective in order to encourage a discussion and debate about how Better Place can make their grand vision a reality in the future by overcoming the obstacles that historically have been challenging the rise of the EV industry. The case includes a historical background of the EV industry by using Denmark...
Codimensions of generalized polynomial identities
International Nuclear Information System (INIS)
Gordienko, Aleksei S
2010-01-01
It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q + and t element of Z + such that gc n (A)∼Cn t d n as n→∞, where d=PI exp(A) element of Z + . Thus, Amitsur's and Regev's conjectures hold for the codimensions gc n (A) of the generalized polynomial identities. Bibliography: 6 titles.
The quadratic-form identity for constructing the Hamiltonian structure of integrable systems
International Nuclear Information System (INIS)
Guo Fukui; Zhang Yufeng
2005-01-01
A usual loop algebra, not necessarily the matrix form of the loop algebra A-tilde n-1 , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra A-tilde 1 , the quadratic-form identity presented in this paper is completely consistent with the trace identity
DEFF Research Database (Denmark)
Muhr, Sara Louise
2012-01-01
Employees working across multiple cultures are exposed to a vast number of different norms and values, and consequentially work is often a struggle to retain a coherent sense of self. However, when international workers travel, they also encounter more bland spaces where familiarity and similarity...... are important. These spaces appear culturally generic to the Western traveler, but are highly Westernized to bring comfort to Western employees traveling in foreign cultures. This paper argues that these spaces are important in cross-cultural identity work in the sense that international workers – professional...... strangers – need these places to belong and relate to familiarity and to regain a sense of identity. Drawing on an illustrative empirical vignette of an international consultant, I demonstrate how culturally generic spaces can be used in identity work of an international relations consultant....
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
General distributions in process algebra
Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
2001-01-01
This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...
Logarithmic residues in Banach algebras
H. Bart (Harm); T. Ehrhardt; B. Silbermann
1994-01-01
textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In
Modular specifications in process algebra
R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)
1987-01-01
textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,
Galois Connections for Flow Algebras
DEFF Research Database (Denmark)
Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis
2011-01-01
to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Learning Algebra from Worked Examples
Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.
2014-01-01
For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…
Covariant representations of nuclear *-algebras
International Nuclear Information System (INIS)
Moore, S.M.
1978-01-01
Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
Waterloo Workshop on Computer Algebra
Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday
2018-01-01
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
Centers for Disease Control (CDC) Podcasts
Every person has a stake in environmental public health. As the environment deteriorates, so does the physical and mental health of the people within it. Healthy places are those designed and built to improve the quality of life for all people who live, work, worship, learn, and play within their borders -- where every person is free to make choices amid a variety of healthy, available, accessible, and affordable options. The CDC recognizes significant health issues and places that are vital in developing the Healthy Places program and provides examples in this report.
Size and type of places, geographical region, satisfaction with life, age, sex and place attachment
Directory of Open Access Journals (Sweden)
Mandal Alan
2016-04-01
Full Text Available The topic of the article concerns the issue of place attachment and its determinants. An analysis of place attachment was performed in terms of place identity and place dependence (Williams, Vaske, 2003. Moreover, links between place attachment and selected geographical (size and type of place, geographical region, demographic (age, sex and psychological (satisfaction with life variables were investigated.
The Concept of Place and Sense of Place In Architectural Studies
Mina Najafi; Mustafa Kamal Bin Mohd Shariff
2011-01-01
Place is a where dimension formed by people-s relationship with physical settings, individual and group activities, and meanings. 'Place Attachment', 'Place Identity'and 'Sense of Place' are some concepts that could describe the quality of people-s relationships with a place. The concept of Sense of place is used in studying human-place bonding, attachment and place meaning. Sense of Place usually is defined as an overarching impression encompassing the general ways in wh...
Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS
Landsman, N. P.
Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.
Representations of the Virasoro algebra from lattice models
International Nuclear Information System (INIS)
Koo, W.M.; Saleur, H.
1994-01-01
We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))
Introduction to the theory of abstract algebras
Pierce, Richard S
2014-01-01
Intended for beginning graduate-level courses, this text introduces various aspects of the theory of abstract algebra. The book is also suitable as independent reading for interested students at that level as well as a primary source for a one-semester course that an instructor may supplement to expand to a full year. Author Richard S. Pierce, a Professor of Mathematics at Seattle's University of Washington, places considerable emphasis on applications of the theory and focuses particularly on lattice theory.After a preliminary review of set theory, the treatment presents the basic definitions
Race and Teacher Evaluations as Predictors of Algebra Placement
Faulkner, Valerie N.; Stiff, Lee V.; Marshall, Patricia L.; Nietfeld, John; Crossland, Cathy L.
2014-01-01
This study is a longitudinal look at the different mathematics placement profiles of Black students and White students from late elementary school through 8th grade. Results revealed that Black students had reduced odds of being placed in algebra by the time they entered 8th grade even after controlling for performance in mathematics. An important…
Department of Transportation — This map layer includes cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands (NTAD). A city or town is a place with a recorded population,...
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
Algebra of pseudo-differential operators over C*-algebra
International Nuclear Information System (INIS)
Mohammad, N.
1982-08-01
Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2005-01-01
A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established
The BRS algebra of a free differential algebra
International Nuclear Information System (INIS)
Boukraa, S.
1987-04-01
We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
The Algebra of a q-Analogue of Multiple Harmonic Series
Directory of Open Access Journals (Sweden)
Yoshihiro Takeyama
2013-10-01
Full Text Available We introduce an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a q-analogue of Hoffman's identity for multiple zeta values. We also discuss the dimension of the space spanned by the linear relations realized in our algebra.
Meijer, Alko R
2016-01-01
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Current algebra for parafields
International Nuclear Information System (INIS)
Palev, Ch.D.
1976-01-01
Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)
Applications of computer algebra
1985-01-01
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed for...
Pérez López, César
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...
Quantum algebra of N superspace
International Nuclear Information System (INIS)
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-01-01
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Invertibility-preserving maps of C∗-algebras with real rank zero
Directory of Open Access Journals (Sweden)
Istvan Kovacs
2005-01-01
Full Text Available In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras and Φ:A→B is a linear map onto B that preserves the spectrum of elements, then Φ is a Jordan isomorphism if either A or B is a C∗-algebra of real rank zero. We also generalize a theorem of Russo.
Hard Identity and Soft Identity
Directory of Open Access Journals (Sweden)
Hassan Rachik
2006-04-01
Full Text Available Often collective identities are classified depending on their contents and rarely depending on their forms. Differentiation between soft identity and hard identity is applied to diverse collective identities: religious, political, national, tribal ones, etc. This classification is made following the principal dimensions of collective identities: type of classification (univocal and exclusive or relative and contextual, the absence or presence of conflictsof loyalty, selective or totalitarian, objective or subjective conception, among others. The different characteristics analysed contribute to outlining an increasingly frequent type of identity: the authoritarian identity.
Simultaneous power factorization in modules over Banach algebras
Jeu, de M.F.E.; Jiang, X.
2017-01-01
Let A be a Banach algebra with a bounded left approximate identity {eλ}λ∈Λ" role="presentation">{eλ}λ∈Λ, let π" role="presentation">π be a continuous representation of A on a Banach space X, and let S be a non-empty subset of X such that limλπ(eλ)s=s" role="presentation">limλπ(eλ)s=s uniformly on S.
Centers for Disease Control (CDC) Podcasts
2007-04-10
Every person has a stake in environmental public health. As the environment deteriorates, so does the physical and mental health of the people within it. Healthy places are those designed and built to improve the quality of life for all people who live, work, worship, learn, and play within their borders -- where every person is free to make choices amid a variety of healthy, available, accessible, and affordable options. The CDC recognizes significant health issues and places that are vital in developing the Healthy Places program and provides examples in this report. Created: 4/10/2007 by CDC National Center for Environmental Health. Date Released: 4/13/2007.
DEFF Research Database (Denmark)
Stender, Marie
The 2008 financial crisis has left traces in the built environment of Copenhagen like many other places: Building projects are left unfinished or their function or finish is changed due to new economic circumstances. An ethnographic exploration of these traces exposes central aspects of what is a......, and when the ceilings leak water, the residents suspect it to be a consequence of the crisis. The paper discusses how market forces interact with the material surroundings we inhabit and explores the relationship between controlled and uncontrollable in the design of places....
1996-01-01
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d
P-commutative topological *-algebras
International Nuclear Information System (INIS)
Mohammad, N.; Thaheem, A.B.
1991-07-01
If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
International Nuclear Information System (INIS)
Barbarin, F.; Sorba, P.; Ragoucy, E.
1996-01-01
The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Lie Algebras and Integrable Systems
International Nuclear Information System (INIS)
Zhang Yufeng; Mei Jianqin
2012-01-01
A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)
Study guide for college algebra
Snow, James W; Shapiro, Arnold
1981-01-01
Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)