WorldWideScience

Sample records for identifying varying water

  1. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    Science.gov (United States)

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  2. Inferring time‐varying recharge from inverse analysis of long‐term water levels

    Science.gov (United States)

    Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.

    2004-01-01

    Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  3. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  4. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  5. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  6. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  7. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  8. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    Science.gov (United States)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  9. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.

    Science.gov (United States)

    Shi, Wei; Xia, Jun

    2017-02-01

    Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.

  10. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  11. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  12. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  13. The dynamics of Orimulsion in water with varying energy, salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. Its unique composition causes it to behave differently from conventional fuel oils when spilled at sea. Earlier studies have shown that Orimulsion is driven by buoyancy to rise in salt water and sink in fresh water. This study conducted 11 experiments at lower temperature and salinity values to obtain new information on the behaviour of Orimulsion in salt, fresh and brackish water. The applied rotational field was adjusted to vary the energy. A time-series of samples of Orimulsion in a 300 litre tank of water were taken to determine depletion rates and characteristics. Oil on the surface was quantified and the concentration of bitumen and particle size distribution was determined. The study also measured changes in bitumen concentration and particle size distribution as a function of time. The data was used to develop simple equations that predict concentrations of bitumen resurfacing and remaining in the water column as a function of time. It was concluded that there is a complex interaction between salinity, time, energy and temperature. 9 refs., 5 tabs., 8 figs

  14. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  15. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  16. Invertebrate-Based Water Quality Impairments and Associated Stressors Identified through the US Clean Water Act

    Science.gov (United States)

    Govenor, Heather; Krometis, Leigh Anne H.; Hession, W. Cully

    2017-10-01

    Macroinvertebrate community assessment is used in most US states to evaluate stream health under the Clean Water Act. While water quality assessment and impairment determinations are reported to the US Environmental Protection Agency, there is no national summary of biological assessment findings. The objective of this work was to determine the national extent of invertebrate-based impairments and to identify pollutants primarily responsible for those impairments. Evaluation of state data in the US Environmental Protection Agency's Assessment and Total Maximum Daily Load Tracking and Implementation System database revealed considerable differences in reporting approaches and terminologies including differences in if and how states report specific biological assessment findings. Only 15% of waters impaired for aquatic life could be identified as having impairments determined by biological assessments (e.g., invertebrates, fish, periphyton); approximately one-third of these were associated with macroinvertebrate bioassessment. Nearly 650 invertebrate-impaired waters were identified nationwide, and sediment was the most common pollutant in bedded (63%) and suspended (9%) forms. This finding is not unexpected, given previous work on the negative impacts of sediment on aquatic life, and highlights the need to more specifically identify the mechanisms driving sediment impairments in order to design effective remediation plans. It also reinforces the importance of efforts to derive sediment-specific biological indices and numerical sediment quality guidelines. Standardization of state reporting approaches and terminology would significantly increase the potential application of water quality assessment data, reveal national trends, and encourage sharing of best practices to facilitate the attainment of water quality goals.

  17. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  18. Don't Cry over Spilled Water: Identifying Risks and Solutions for Produced Water Spills

    Science.gov (United States)

    Shores, Amanda Rose

    generation, no mitigation of spill volume would be obtained by utilizing larger producers. Regardless of which operator was responsible for the spill, the groundwater depth at a spill site significantly predicted when a spill would result in groundwater contamination. This result was also validated though modeling; shallow depths to groundwater as well as larger spill volumes and coarse soil textures contributed to higher concentrations of groundwater contamination. Previous research has shown that a large fraction of spills occur at well pads. Our results suggest that fracking-site selection should preclude areas where the groundwater is shallow and soil is coarsely textured. Additionally, precautions should be taken to reduce the volume of spilled produced water to reduce the risk of groundwater contamination. This research additionally sought to reduce contaminant migration in soils towards groundwater at produced-water spill sites. In a greenhouse study it was shown that foxtail barley (Hordeum jubatum) and perennial ryegrass (Lolium perenne), can tolerate high salt concentrations in produced water while taking up minute levels of BTEX. The presence of plants changed the concentration of BTEX and naphthalene in the soil, but the direction of the change depended upon the particular plant and varied across contaminants. Additionally, the roots of either species saw no decrease of biomass upon exposure to BTEX and salt but shoots biomass was significantly reduced for foxtail barley. These results suggest that these grasses would not be capable of addressing large concentrations of BTEX at spill sites; however, these plants would be useful near well pads that regularly experience smaller spills, thus being able to tolerate spills while continually removing small amounts of BTEX in the soil. In conclusion, this thesis sought to identify holistic tools for produced-water spill prevention, mitigation and remediation to lessen environmental and health concerns while creating

  19. Identifying Water Insecurity Hotspots in the Lake Victoria Basin of Eastern Africa

    Science.gov (United States)

    Pricope, N. G.; Shukla, S.; Linard, C.; Gaughan, A.

    2014-12-01

    The Lake Victoria Basin (LVB), one of Africa's most populated transboundary watersheds and home to more than 30 million inhabitants, is increasingly challenged by both water quality problems and water quantity shortages against a backdrop of climate variability and change; and other environmental challenges. As a result of pollution, droughts, more erratic rainfall, heightened demand for water for both consumption and agricultural needs as well as differences in water allocation among the riverine countries of Uganda, Tanzania, Kenya, Rwanda and Burundi, many parts of this region are already experiencing water scarcity on a recurrent basis. Furthermore, given projected annual population growth rates of 2.5 to 3.5% for the next 20 years, water shortages are likely to be exacerbated in the future. Analyzing historical changes in the water resources of this region is hence important to identify "hot spots" that might be most sensitive to future changes in climate and demography. In this presentation, we report the findings of a comprehensive analysis performed to (i) examine changes in water resources of LVB in recent decades and (ii) identify overlap between regions of significant changes in water resources with land cover changes and high population centers that are also projected to grow the fastest over the coming decades. We first utilize several satellite, stations and model(s) based climatic and hydrologic datasets to assess changes in water resources in this region. We then use a quality-controlled Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product to identify areas of significant land cover changes. Simultaneously we use projections of gridded population density based on differential growth rates for rural and urban population to estimate fastest projected human population growth for 2030 and 2050 relative to 2010 data. Using the outcomes of these change analysis we identify water insecurity hotspots in the LVB.

  20. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    Science.gov (United States)

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  1. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India

    Science.gov (United States)

    Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K. N.

    2009-08-01

    The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (>40%), moderate (20-40%) and low (<20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80-100%.

  2. Field manual for identifying and preserving high-water mark data

    Science.gov (United States)

    Feaster, Toby D.; Koenig, Todd A.

    2017-09-26

    This field manual provides general guidance for identifying and collecting high-water marks and is meant to be used by field personnel as a quick reference. The field manual describes purposes for collecting and documenting high-water marks along with the most common types of high-water marks. The manual provides a list of suggested field equipment, describes rules of thumb and best practices for finding high-water marks, and describes the importance of evaluating each high-water mark and assigning a numeric uncertainty value as part of the flagging process. The manual also includes an appendix of photographs of a variety of high-water marks obtained from various U.S. Geological Survey field investigations along with general comments about the logic for the assigned uncertainty values.

  3. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  4. A multimodal image sensor system for identifying water stress in grapevines

    Science.gov (United States)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  5. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    Science.gov (United States)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  6. Water-soluble carbohydrates and in vitro digestibility of annual ryegrass (Lolium ridigum Gaudin) sown at varying densities

    NARCIS (Netherlands)

    Smouter, H.; Simpson, R.J.; Pear, G.R.

    1995-01-01

    An experiment is described in which the tiller density of microswards of Lolium rigidum was varied by altering planting density. The treatments were expected to alter the interplant competition for light and thus affect the concentration of water-soluble carbohydrates (WSC) of the grass swards.

  7. Identifying water price and population criteria for meeting future urban water demand targets

    Science.gov (United States)

    Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.

    2017-12-01

    Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas

  8. Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece

    Science.gov (United States)

    Arampatzis, G.; Panagopoulos, A.; Pisinaras, V.; Tziritis, E.; Wendland, F.

    2018-05-01

    The aim of the present study is to assess the future spatial and temporal distribution of precipitation and temperature, and relate the corresponding change to water resources' quantitative status in Pinios River Basin (PRB), Thessaly, Greece. For this purpose, data from four Regional Climate Models (RCMs) for the periods 2021-2100 driven by several General Circulation Models (GCMs) were collected and bias-correction was performed based on linear scaling method. The bias-correction was made based on monthly precipitation and temperature data collected for the period 1981-2000 from 57 meteorological stations in total. The results indicate a general trend according to which precipitation is decreasing whilst temperature is increasing to an extent that varies depending on each particular RCM-GCM output. On the average, annual precipitation change for the period 2021-2100 was about - 80 mm, ranging between - 149 and + 35 mm, while the corresponding change for temperature was 2.81 °C, ranging between 1.48 and 3.72 °C. The investigation of potential impacts to the water resources demonstrates that water availability is expected to be significantly decreased in the already water-stressed PRB. The water stresses identified are related to the potential decreasing trend in groundwater recharge and the increasing trend in irrigation demand, which constitutes the major water consumer in PRB.

  9. Entrapment investigations of water-droplet behavior in a hot tin melt with varying discharge velocities and orifices

    International Nuclear Information System (INIS)

    Froehlich, G.; Mueller, K.

    1983-10-01

    Experiments were performed in which water was pressed through a thermally isolated tube into a clyindrical crucible (diameter 5 cm, height 7,5 cm both measured inside) filled with molten tin (600 K). The diameter of the circular water outlet was varied from 0.5 up to 10 mm and the discharge velocity of the water was in the range of 0.05 up to 20 m/s. In the tin melt the water divides into single drops, which emerged on the melt surface, if an interaction between water and tin melt did not occur. The probability for an interaction increased in experiments with higher discharge velocities of the water and smaller diameters of the water outlet. In experiments with discharge velocities ≥ 5 m/s and outlet diameters ≤ 2 mm one or more interactions occured in each case. At these interactions of water drops entrapped in the tin melt (called entrapment interactions) a portion of the melt was ejected from the crucible. The moment of the interaction and the pulse of the force toward the crucible bottom were recorded. (orig.) [de

  10. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  11. Datasets related to in-land water for limnology and remote sensing applications: distance-to-land, distance-to-water, water-body identifier and lake-centre co-ordinates.

    Science.gov (United States)

    Carrea, Laura; Embury, Owen; Merchant, Christopher J

    2015-11-01

    Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 ∘ ) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.

  12. SUNLIT AND SHADED MAIZE CANOPY WATER LOSS UNDER VARIED WATER STRESS

    Directory of Open Access Journals (Sweden)

    Antonio Odair Santos

    1999-12-01

    Full Text Available ABSTRACT The precise estimation of transpiration from plant canopies is important for the monitoring of crop water use and management of many agricultural operations related to water use planning. The aim of this study was to estimate transpiration from sunlit and shaded fractions of a maize ( Zea mays L. canopy, using the Penman-Monteith energy balance equation with modifications introduced by Fuchs et al. (1987 and Fuchs & Cohen (1989. Estimated values were validated by a heat pulse system, which was used to measure stem sap flow and by a weighing lysimeter. A relationship between incident radiation and leaf stomatal conductance for critical levels of leaf water potential was used to estimate transpiration. Results showed that computed transpiration of the shaded canopy ranged from 27 to 45% of the total transpiration when fluctuations in atmospheric demand and the level of water stress were taken in account. Hourly and daily estimates of transpiration showed agreement with lysimeter and heat pulse measurements on the well-watered plots. For the water-limited plots the precision of the estimate decreased due to difficulties in simulating the canopy stomatal conductance.

  13. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  14. Identifying future electricity-water tradeoffs in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Sovacool, Kelly E.

    2009-01-01

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs.

  15. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    International Nuclear Information System (INIS)

    Batt, Angela L.; Bruce, Ian B.; Aga, Diana S.

    2006-01-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 μg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 μg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 μg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants

  16. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  17. Identifying factors affecting optimal management of agricultural water

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2015-01-01

    In addition to quantitative methodology such as descriptive statistics and factor analysis a qualitative methodology was employed for dynamic simulation among variables through Vensim software. In this study, the factor analysis technique was used through the Kaiser-Meyer-Olkin (KMO and Bartlett tests. From the results, four key elements were identified as factors affecting the optimal management of agricultural water in Hamedan area. These factors were institutional and legal factors, technical and knowledge factors, economic factors and social factors.

  18. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Identifying future electricity-water tradeoffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Sovacool, Kelly E. [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2009-07-15

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs. (author)

  20. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.

    Science.gov (United States)

    Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan

    2015-07-01

    In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.

  1. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  2. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  3. Spatially varying dispersion to model breakthrough curves.

    Science.gov (United States)

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  4. Experimental study on Kd of 137Cs at varying suspended load conditions

    International Nuclear Information System (INIS)

    Jaison, T.J.; Jain, Abhishek; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    137 Cs is one of the radionuclide likely to be released through liquid effluents from a nuclear facility. It is soluble in water, but its mobility in aquatic environments is highly retarded by its strong interaction with suspended sediment. The 137 Cs + sorption by suspended load, especially in the subtropics and tropics are not fully understood. Besides, according to IAEA document in emergency situation 137 Cs and 131 I being marker radionuclides, are easier to identify and representative of all the other radionuclides present. Hence a laboratory study is carried out on sorption of 137 Cs with varying silt load, using the upstream lake water and sediments to estimate site specific distribution coefficient (K d )

  5. Confronting Oahu's Water Woes: Identifying Scenarios for a Robust Evaluation of Policy Alternatives

    Science.gov (United States)

    van Rees, C. B.; Garcia, M. E.; Alarcon, T.; Sixt, G.

    2013-12-01

    The Pearl Harbor aquifer is the most important freshwater resource on Oahu (Hawaii, U.S.A), providing water to nearly half a million people. Recent studies show that current water use is reaching or exceeding sustainable yield. Climate change and increasing resident and tourist populations are predicted to further stress the aquifer. The island has lost huge tracts of freshwater and estuarine wetlands since human settlement; the dependence of many endemic, endangered species on these wetlands, as well as ecosystem benefits from wetlands, link humans and wildlife through water management. After the collapse of the sugar industry on Oahu (mid-1990s), the Waiahole ditch--a massive stream diversion bringing water from the island's windward to the leeward side--became a hotly disputed resource. Commercial interests and traditional farmers have clashed over the water, which could also serve to support the Pearl Harbor aquifer. Considering competing interests, impending scarcity, and uncertain future conditions, how can groundwater be managed most effectively? Complex water networks like this are characterized by conflicts between stakeholders, coupled human-natural systems, and future uncertainty. The Water Diplomacy Framework offers a model for analyzing such complex issues by integrating multiple disciplinary perspectives, identifying intervention points, and proposing sustainable solutions. The Water Diplomacy Framework is a theory and practice of implementing adaptive water management for complex problems by shifting the discussion from 'allocation of water' to 'benefit from water resources'. This is accomplished through an interactive process that includes stakeholder input, joint fact finding, collaborative scenario development, and a negotiated approach to value creation. Presented here are the results of the initial steps in a long term project to resolve water limitations on Oahu. We developed a conceptual model of the Pearl Harbor Aquifer system and identified

  6. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  7. AcuI identifies water buffalo CSN3 genotypes by RFLP analysis

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Online resources. AcuI identifies water buffalo CSN3 genotypes by RFLP analysis. Soheir M. El Nahas Ahlam A. Abou Mossallam. Volume 93 Online resources 2014 pp e94-e96. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  9. Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas

    Science.gov (United States)

    Räsänen, Aleksi; Juhola, Sirkku; Monge Monge, Adrián; Käkönen, Mira; Kanninen, Markku; Nygren, Anja

    2017-07-01

    Water-related risks and vulnerabilities are driven by variety of stressors, including climate and land use change, as well as changes in socio-economic positions and political landscapes. Hence, water governance, which addresses risks and vulnerabilities, should target multiple stressors. We analyze the institutional perceptions of the drivers and strategies for managing water-related risks and vulnerabilities in three regionally important river basin areas located in Finland, Mexico, and Laos. Our analysis is based on data gathered through participatory workshops and complemented by qualitative content analysis of relevant policy documents. The identified drivers and proposed risk reduction strategies showed the multidimensionality and context-specificity of water-related risks and vulnerabilities across study areas. Most of the identified drivers were seen to increase risks, but some of the drivers were positive trends, and drivers also included also policy instruments that can both increase or decrease risks. Nevertheless, all perceived drivers were not addressed with suggested risk reduction strategies. In particular, most of the risk reduction strategies were incremental adjustments, although many of the drivers classified as most important were large-scale trends, such as climate change, land use changes and increase in foreign investments. We argue that there is a scale mismatch between the identified drivers and suggested strategies, which questions the opportunity to manage the drivers by single-scale incremental adjustments. Our study suggests that for more sustainable risk and vulnerability reduction, the root causes of water-related risks and vulnerabilities should be addressed through adaptive multi-scale governance that carefully considers the context-specificity and the multidimensionality of the associated drivers and stressors.

  10. Mediation analysis with time varying exposures and mediators.

    Science.gov (United States)

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J

    2017-06-01

    In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.

  11. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  12. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  13. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY HEPATITIS E VIRUS IN WATER

    Science.gov (United States)

    Hepatitis E virus (HEV) causes an infectious form of hepatitis associated with contaminated water. By analyzing the sequence of several HEV isolates, a reverse transciption-polymerase chain reaction method was developed and optimized that should be able to identify all of the kn...

  14. Application of isotopic and hydro-geochemical methods in identifying sources of mine inrushing water

    Institute of Scientific and Technical Information of China (English)

    Dou Huiping; Ma Zhiyuan; Cao Haidong; Liu Feng; Hu Weiwei; Li Ting

    2011-01-01

    Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine.Based on the analysis of isotopes and hydro-chemical features of surface water,groundwater from different levels and the inrushing water,a special relationship between water at the #73003 face and cretaceous water has been found.The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies,except for the cretaceous water.The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face,which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face.The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water,water from the cretaceous conglomerate is the main source,accounting for 67% of the inrushing water,while the Quaternary water accounts for 33%.The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushing-water plot on the #73003 face.

  15. Drought genetics have varying influence on corn water stress under differing water availability

    Science.gov (United States)

    Irrigated corn (Zea mays L.) in the Great Plains will be increasingly grown under limited irrigation management and greater water stress. Hybrids with drought genetics may decrease the impacts of water stress on yield. The objective of this experiment was to evaluate the effect of drought genetics o...

  16. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    Bazza, M.

    1996-01-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13 C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high ( ** ). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  17. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bazza, M [Rabat-Institus, Rabat (Morocco). Inst. Agronomique et Veterinaire Hassan II

    1996-07-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using {sup 13}C discrimination {Delta} as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as {Delta} were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in {Delta}. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with {Delta} although the correlation coefficient of grain yield versus {Delta} was not high (< 0.45{sup **}). The data suggest that while a high {Delta} value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in {Delta} and the yield of a cultivar. But, {Delta} of a genotype can also provide valuable information with respect to plant parameters responsible for the control of {Delta} and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs,2figs,2tabs.

  18. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  19. Identifying the origin of underground water in the Andean Cordillera

    International Nuclear Information System (INIS)

    Rodriguez, C.O.

    1979-01-01

    Two problems associated with groundwater flow were fully identified by the application of geochemical techniques. The first was related to the Palacio tunnel, where infiltration of 400 litres/min caused caving-in and other problems which held up construction for several months. To anticipate further problems and to plan the requisite engineering work, a study was carried out to locate the origin of the groundwater responsible for these difficulties. Water samples were taken from the four possible sources: a pool, a series of large fissures, superficial fluvioglacial deposits and the Guadalupe sandstone which crops out one kilometre from the cave-in site. After correlation of the results of chemical analyses with geological and hydrological information about the area, the conclusion was reached that the groundwater in question flows from the Guadalupe sandstone through fractures and secondary openings. The second problem studied was that of the immense Quebradablanca landslide caused by infiltration of water into and percolation through alluvial deposits. A drainage system had already been designed to intercept and collect direct infiltration water above the alluvium, thereby preventing the latter from becoming saturated. The present study was carried out to determine whether there was groundwater flow from the rocks adjacent to the alluvium. The results of the geochemical analysis indicate that most of the water does in fact come from the adjacent hard rock rather than from direct infiltration of rain-water above the alluvium. This shows that the drainage system designed is insufficient for preventing saturation of the rock and that a more extensive and costly system would be needed to control the groundwater flow. (author)

  20. Identifying the sources of produced water in the oil field by isotopic techniques

    International Nuclear Information System (INIS)

    Nguyen Minh Quy; Hoang Long; Le Thi Thu Huong; Luong Van Huan; Vo Thi Tuong Hanh

    2014-01-01

    The objective of this study is to identify the sources of the formation water in the Southwest Su-Tu-Den (STD SW) basement reservoir. To achieve the objective, isotopic techniques along with geochemical analysis for chloride, bromide, strontium dissolved in the water were applied. The isotopic techniques used in this study were the determination of water stable isotopes signatures (δ 2 H and (δ 18 O) and of the 87 Sr/ 86 Sr ratio of strontium in rock cutting sample and that dissolved in the formation water. The obtained results showed that the stable isotopes compositions of water in the Lower Miocene was -3‰ and -23‰ for (δ 18 O and (δ 2 H, respectively indicating the primeval nature of seawater in the reservoir. Meanwhile, the isotopic composition of water in the basement was clustered in a range of alternated freshwater with (δ 18 O and (δ 2 H being -(3-4)‰ and -(54-60)‰, respectively). The strontium isotopes ratio for water in the Lower Miocene reservoir was lower compared to that for water in the basement confirming the different natures of the water in the two reservoirs. The obtained results are assured for the techniques applicability, and it is recommended that studies on identification of the flow-path of the formation water in the STD SW basement reservoir should be continued. (author)

  1. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    Mohammed, M. E. A.

    2010-10-01

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  2. Application of classification-tree methods to identify nitrate sources in ground water

    Science.gov (United States)

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  3. Identifying the Physical Properties of Showers That Influence User Satisfaction to Aid in Developing Water-Saving Showers

    Directory of Open Access Journals (Sweden)

    Minami Okamoto

    2015-07-01

    Full Text Available This research was conducted with the goal of clarifying the required conditions of water-saving showerheads. In order to this, the research analyzes the mutual relationship between water usage flow, the level of satisfaction and the physical properties of spray of showerheads. The physical properties of spray were measured using physical properties test apparatus of standard or scheme for water-saving showerheads issued in several water-saving countries, and satisfaction evaluation data was acquired through bathing experiments. The evaluated showerheads were separated into three groups according to usage water flow and the level of satisfaction. The relationships between usage water flow, the level of satisfaction and physical properties were compared. The results identified that Spray Force and Spray Force-per-Hole were physical properties that influence usage water flow. Spray force-per-hole, water volume ratio in Spray Patterns within φ 100 and φ 150, Temperature Drop and Spray Angle were identified as physical properties that influenced the level of satisfaction. The level of satisfaction and usage water flow has a spurious correlation through the physical properties of Spray Force-per-Hole and Temperature Drop. It is possible to improve the level of satisfaction independent of amount of water usage through designs that set an appropriate value for water volume ratio and Spray Angle for Spray Patterns within φ 100 and φ 150.

  4. The dynamics of Orimulsion in water with varying salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  5. A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use.

    Science.gov (United States)

    Horner, Jennifer E; Castle, James W; Rodgers, John H

    2011-05-01

    A risk assessment approach incorporating exposure pathways and calculated risk quotients was applied to identifying constituents requiring treatment prior to beneficial use of oilfield produced water (OPW). In this study, risk quotients are ratios of constituent concentrations in soil or water to guideline concentrations for no adverse effects to receptors. The risk assessment approach is illustrated by an example of an oilfield water produced from non-marine geologic strata of a rift basin in sub-Saharan Africa. The OPW studied has the following characteristics: 704-1370 mg L(-1) total dissolved solids (TDS), 45-48 mg L(-1) chloride, and 103.8 mg L(-1) oil and grease. Exposure pathways of constituents in OPW used for irrigation include: ingestion of plant tissue, ingestion and direct contact of irrigated soil by livestock, inhalation of aerosols or volatilized constituents, and ingestion of OPW directly by livestock. Applying risk quotient methods for constituents in soil and water, constituents of concern (COCs) identified for irrigation and livestock watering using the OPW studied include: iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), and oil and grease. Approximately 165,000 barrels d(-1) (26,233 m(3) d(-1)) of OPW from the study site are available for use. Identification of COCs and consideration of water quantity allows for development of reliable treatment design criteria to ensure effective and consistent treatment is achieved to meet guideline levels required for irrigation, livestock watering, or other uses. This study illustrates the utility of risk assessment for identifying the COCs in OPW for treatment, the level of treatment required, and viable options for use of the treated water. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    Science.gov (United States)

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.

  7. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  8. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    Science.gov (United States)

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pHwaters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  9. Water-induced charge transport in tablets of microcrystalline cellulose of varying density: dielectric spectroscopy and transient current measurements

    International Nuclear Information System (INIS)

    Nilsson, Martin; Alderborn, Goeran; Stroemme, Maria

    2003-01-01

    Room temperature dielectric frequency response data taken over 13 decades in frequency on microcrystalline cellulose (MCC) tablets of varying density are presented. The frequency response shows on three different processes: the first one is a high-frequency relaxation process whose magnitude increases and reaches a plateau as the tablet density increases. This process is associated with orientational motions of local chain segments via glycosidic bonds. The second relaxation process, related to the presence of water in the MCC matrix, is insensitive to changes in tablet density. At lower frequencies, dc-like imperfect charge transport dominates the dielectric spectrum. The dc conductivity was found to decrease with increasing tablet density and increase exponentially with increasing humidity. Transient current measurements indicated that two different ionic species, protons and OH - ions, lied behind the observed conductivity. At ambient humidity of 22%, only one in a billion of the water molecules present in the tablet matrix participated in long range dc conduction. The diffusion coefficient of the protons and OH - ions were found to be of the order of 10 -9 cm 2 /s, which is the same as for small salt building ions in MCC. This shows that ionic drugs leaving a tablet matrix may diffuse in the same manner as the constituent ions of water and, thus, elucidates the necessity to understand the water transport properties of excipient materials to be able to tailor the drug release process from pharmaceutical tablets

  10. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  11. Endothelial extraction of tracer water varies with extravascular water in dog lungs

    International Nuclear Information System (INIS)

    Chinard, F.P.; Cua, W.O.

    1987-01-01

    In multiple indicator-dilution experiments, transvascular passage of a permeating indicator is conventionally derived from the up-slope separation of the curve of the permeating indicator from that of a vascular reference and is expressed as the extraction (Ec). Extraction may be limited by the barrier (barrier-limited distribution). It may be limited by the volume of distribution accessible to it; in the time domain of an indicator-dilution experiment, the passage to and distribution in the extravascular volume are rapid relative to the velocity of blood in the exchange vessels. We examine here the relations of the extraction of tracer water as tritium oxide (THO) [Ec(THO)] and of the extraction of tracer sodium as 22Na [Ec(22Na)] to extravascular lung water, delta V wev, by adding isotonic fluid to the gas phase of the lungs. The net convective transvascular passage of water is negligible relative to the transendothelial molecular exchange. In 10 experiments in vivo and in 10 experiments in isolated perfused lungs, Ec(THO) increases as delta V wev increases. Ec(22Na) and the permeability-surface area product (PS) for 22Na do not change as delta V wev increases. We conclude that the extraction of THO is determined mainly by the volume accessible to it (flow- or volume-limited distribution) and that the extraction of 22Na is determined mainly by the resistance of the endothelium (barrier-limited distribution). A diffusion limitation in the added alveolar fluid rather than a barrier limitation at the endothelium may moderate Ec

  12. Source Water Protection Planning for Ontario First Nations Communities: Case Studies Identifying Challenges and Outcomes

    Directory of Open Access Journals (Sweden)

    Leslie Collins

    2017-07-01

    Full Text Available After the Walkerton tragedy in 2000, where drinking water contamination left seven people dead and many suffering from chronic illness, the Province of Ontario, Canada implemented policies to develop Source Water Protection (SWP plans. Under the Clean Water Act (2006, thirty-six regional Conservation Authorities were mandated to develop watershed-based SWP plans under 19 Source Protection Regions. Most First Nations in Ontario are outside of these Source Protection Regions and reserve lands are under Federal jurisdiction. This paper explores how First Nations in Ontario are attempting to address SWP to improve drinking water quality in their communities even though these communities are not part of the Ontario SWP framework. The case studies highlight the gap between the regulatory requirements of the Federal and Provincial governments and the challenges for First Nations in Ontario from lack of funding to implement solutions to address the threats identified in SWP planning. This analysis of different approaches taken by Ontario First Nations shows that the Ontario framework for SWP planning is not an option for the majority of First Nations communities, and does not adequately address threats originating on reserve lands. First Nations attempting to address on-reserve threats to drinking water are using a variety of resources and approaches to develop community SWP plans. However, a common theme of all the cases surveyed is a lack of funding to support implementing solutions for the threats identified by the SWP planning process. Federal government initiatives to address the chronic problem of boil water advisories within Indigenous communities do not recognize SWP planning as a cost-effective tool for improving drinking water quality.

  13. Varying the exchange interaction between NiO nanoparticles

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Mørup, Steen

    2006-01-01

    We demonstrate that exchange interactions between antiferromagnetic nanoparticles of 57Fe-doped NiO can be varied by simple macroscopic treatments. Mössbauer spectroscopy studies of the superparamagnetic relaxation behaviour show that grinding or suspension in water of nanoparticles of NiO can...

  14. Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers

    Science.gov (United States)

    Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine

    2014-01-01

    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and

  15. Water Quality Drivers in 11 Gulf of Mexico Estuaries

    OpenAIRE

    Matthew J. McCarthy; Daniel B. Otis; Pablo Méndez-Lázaro; Frank E. Muller-Karger

    2018-01-01

    Coastal water-quality is both a primary driver and also a consequence of coastal ecosystem health. Turbidity, a measure of dissolved and particulate water-quality matter, is a proxy for water quality, and varies on daily to interannual periods. Turbidity is influenced by a variety of factors, including algal particles, colored dissolved organic matter, and suspended sediments. Identifying which factors drive trends and extreme events in turbidity in an estuary helps environmental managers and...

  16. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  17. Bioavailability of benzo(a)pyrene and dehydroabietic acid from a few lake waters containing varying dissolved organic carbon concentrations to Daphnia magna

    International Nuclear Information System (INIS)

    Oikari, A.; Kukkonen, J.

    1990-01-01

    Dissolved organic carbon (DOC) in natural waters consists of a great variety of organic molecules. Some of these molecules have been identified but most of them cannot be identified. This unidentified group of heterogeneous organic macromolecules is considered as humic substances. The role of humic substances in water chemistry and in aquatic toxicology is receiving increasing attention. The effects of DOC on the bioavailability of organic pollutants have been demonstrated in several studies. A decreased bioavailability has been demonstrated in most cases. Both the quantity and the quality of DOC are suggested determinants of this apparent ecotoxicological buffer of inland waters worldwide. In this study, the authors measured the bioaccumulation of benzo(a)pyrene (BaP) and dehydroabietic acid (DHAA) in Daphnia magna using a wide range of naturally occurring DOC levels. Another objective was to associate the reduced bioavailability with the chemical characteristics of water and DOC

  18. Identifying uncertainty of the mean of some water quality variables along water quality monitoring network of Bahr El Baqar drain

    Directory of Open Access Journals (Sweden)

    Hussein G. Karaman

    2013-10-01

    Full Text Available Assigning objectives to the environmental monitoring network is the pillar of the design to these kinds of networks. Conflicting network objectives may affect the adequacy of the design in terms of sampling frequency and the spatial distribution of the monitoring stations which in turn affect the accuracy of the data and the information extracted. The first step in resolving this problem is to identify the uncertainty inherent in the network as the result of the vagueness of the design objective. Entropy has been utilized and adopted over the past decades to identify uncertainty in similar water data sets. Therefore it is used to identify the uncertainties inherent in the water quality monitoring network of Bahr El-Baqar drain located in the Eastern Delta. Toward investigating the applicability of the Entropy methodology, comprehensive analysis at the selected drain as well as their data sets is carried out. Furthermore, the uncertainty calculated by the entropy function will be presented by the means of the geographical information system to give the decision maker a global view to these uncertainties and to open the door to other researchers to find out innovative approaches to lower these uncertainties reaching optimal monitoring network in terms of the spatial distribution of the monitoring stations.

  19. A New Time-varying Concept of Risk in a Changing Climate

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.

    2016-10-01

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  20. A New Time-varying Concept of Risk in a Changing Climate.

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  1. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    Science.gov (United States)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  2. Study on a technology to afforest water level varying part of a reservoir; Chosuichi suii hendobu ryokuka gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, O.; Matsubara, K.; Koyama, S. [Hokkaido Electric Power Co. Inc., Sapporo (Japan)

    1999-03-19

    Equisetum was noted as a plant adaptable to stringent environment referred to as the water level varying part of a reservoir, and was used for afforestation trials. The afforestation trials were performed at the reservoir of Uryuu Dam No. 1 and the regulating reservoir of Moiwa Dam of Hokkaido Electric Power Company. Although the rate of water level variation is small at Uryuu Dam No. 1, it is necessary for Equisetum to withstand submergence and drought for an extended period of time. Moiwa Dam has high water level variation rate, but its water depth is small, and the reservoir is free of long-term submergence and drought. As a result of long-term observation from 1993 through 1997, Equisetum was found having grown well at lower altitude part with higher submergence frequency. It has grown favorably even in parts where submergence rate reaches about 80%. However, at higher altitude with submergence rate of 10% or lower, decrement trend was seen. At Moiwa Dam, Equisetum was all buried in accumulated sand and earth, revealing that such an environment is unsuitable for Equisetum as the one subject to effect of sand and earth that flow in during freshet. (NEDO)

  3. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Science.gov (United States)

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  4. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Directory of Open Access Journals (Sweden)

    Barvkar Vitthal T

    2012-05-01

    Full Text Available Abstract Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L. is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N. Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST, microarray data and reverse transcription quantitative real time PCR (RT-qPCR. Seventy-three per cent of these genes (100 out of 137 showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot

  5. Identifying potential surface water sampling sites for emerging chemical pollutants in Gauteng Province, South Africa

    OpenAIRE

    Petersen, F; Dabrowski, JM; Forbes, PBC

    2017-01-01

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information sy...

  6. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    Science.gov (United States)

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  7. Methodology to explore interactions between the water system and society in order to identify adaptation strategies

    Science.gov (United States)

    Offermans, A. G. E.; Haasnoot, M.

    2009-04-01

    Development of sustainable water management strategies involves analysing current and future vulnerability, identification of adaptation possibilities, effect analysis and evaluation of the strategies under different possible futures. Recent studies on water management often followed the pressure-effect chain and compared the state of social, economic and ecological functions of the water systems in one or two future situations with the current situation. The future is, however, more complex and dynamic. Water management faces major challenges to cope with future uncertainties in both the water system as well as the social system. Uncertainties in our water system relate to (changes in) drivers and pressures and their effects on the state, like the effects of climate change on discharges. Uncertainties in the social world relate to changing of perceptions, objectives and demands concerning water (management), which are often related with the aforementioned changes in the physical environment. The methodology presented here comprises the 'Perspectives method', derived from the Cultural Theory, a method on analyzing and classifying social response to social and natural states and pressures. The method will be used for scenario analysis and to identify social responses including changes in perspectives and management strategies. The scenarios and responses will be integrated within a rapid assessment tool. The purpose of the tool is to provide users with insight about the interaction of the social and physical system and to identify robust water management strategies by analysing the effectiveness under different possible futures on the physical, social and socio-economic system. This method allows for a mutual interaction between the physical and social system. We will present the theoretical background of the perspectives method as well as a historical overview of perspective changes in the Dutch Meuse area to show how social and physical systems interrelate. We

  8. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  9. Automated Water Extraction Index

    DEFF Research Database (Denmark)

    Feyisa, Gudina Legese; Meilby, Henrik; Fensholt, Rasmus

    2014-01-01

    Classifying surface cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic classification tasks is to distinguish water bodies from dry land surfaces. Landsat imagery is among the most widely used sources of data in remote sensing of water...... resources; and although several techniques of surface water extraction using Landsat data are described in the literature, their application is constrained by low accuracy in various situations. Besides, with the use of techniques such as single band thresholding and two-band indices, identifying...... an appropriate threshold yielding the highest possible accuracy is a challenging and time consuming task, as threshold values vary with location and time of image acquisition. The purpose of this study was therefore to devise an index that consistently improves water extraction accuracy in the presence...

  10. Study of the method of water-injected meat identifying based on low-field nuclear magnetic resonance

    Science.gov (United States)

    Xu, Jianmei; Lin, Qing; Yang, Fang; Zheng, Zheng; Ai, Zhujun

    2018-01-01

    The aim of this study to apply low-field nuclear magnetic resonance technique was to study regular variation of the transverse relaxation spectral parameters of water-injected meat with the proportion of water injection. Based on this, the method of one-way ANOVA and discriminant analysis was used to analyse the differences between these parameters in the capacity of distinguishing water-injected proportion, and established a model for identifying water-injected meat. The results show that, except for T 21b, T 22e and T 23b, the other parameters of the T 2 relaxation spectrum changed regularly with the change of water-injected proportion. The ability of different parameters to distinguish water-injected proportion was different. Based on S, P 22 and T 23m as the prediction variable, the Fisher model and the Bayes model were established by discriminant analysis method, qualitative and quantitative classification of water-injected meat can be realized. The rate of correct discrimination of distinguished validation and cross validation were 88%, the model was stable.

  11. New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models

    Directory of Open Access Journals (Sweden)

    Yunbei Ma

    2014-01-01

    Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.

  12. Computation of gradually varied flow in compound open channel ...

    Indian Academy of Sciences (India)

    The flow of water in an open channel can be treated as steady, gradually varied flow for ... channel between two nodes is treated as a single reach to calculate the loss ... dition at control points and (iii) critical depth is also required to verify the ...

  13. Identifying the causes of water crises: A configurational frequency analysis of 22 basins world wide

    Science.gov (United States)

    Srinivasan, V.; Gorelick, S.; Lambin, E.; Rozelle, S.; Thompson, B.

    2010-12-01

    Freshwater "scarcity" has been identified as being a major problem world-wide, but it is surprisingly hard to assess if water is truly scarce at a global or even regional scale. Most empirical water research remains location specific. Characterizing water problems, transferring lessons across regions, to develop a synthesized global view of water issues remains a challenge. In this study we attempt a systematic understanding of water problems across regions. We compared case studies of basins across different regions of the world using configurational frequency analysis. Because water crises are multi-symptom and multi-causal, a major challenge was to categorize water problems so as to make comparisons across cases meaningful. In this study, we focused strictly on water unsustainability, viz. the inability to sustain current levels of the anthropogenic (drinking water, food, power, livelihood) and natural (aquatic species, wetlands) into the future. For each case, the causes of three outcome variables, groundwater declines, surface water declines and aquatic ecosystem declines, were classified and coded. We conducted a meta-analysis in which clusters of peer-reviewed papers by interdisciplinary teams were considered to ensure that the results were not biased towards factors privileged by any one discipline. Based on our final sample of 22 case study river basins, some clear patterns emerged. The meta-analysis suggests that water resources managers have long overemphasized the factors governing supply of water resources and while insufficient attention has been paid to the factors driving demand. Overall, uncontrolled increase in demand was twice as frequent as declines in availability due to climate change or decreased recharge. Moreover, groundwater and surface water declines showed distinct causal pathways. Uncontrolled increases in demand due to lack of credible enforcement were a key factor driving groundwater declines; while increased upstream abstractions

  14. Relieving Dry Mouth: Varying Levels of pH Found in Bottled Water.

    Science.gov (United States)

    Fisher, Bailey Jean; Spencer, Angela; Haywood, Van; Konchady, Gayathri

    2017-07-01

    It is estimated that 30% of people older than 60 years suffer from hyposalivation or dry mouth. Drinking water frequently has been recommended as a safe, non-pharmacologic way to combat hyposalivation. The saliva in patients with dry mouth is acidic. Beverages consumed daily may have an erosive potential on teeth. The pH and the mineral content of the beverage determine its erosive potential. An acidic beverage, therefore, may have harmful effects on mineralized tooth structures, causing erosion of enamel, dentin, and cementum. Because bottled water is both convenient and easily available, the authors tested the pH of eight common brands of bottled water. (One brand included two different bottle types, for a total of nine bottled waters tested.) To standardize the pH electrode, pH buffers of 4.7 and 10 were used. The pH was measured using the Denver Instruments basic pH meter. Six recordings were used for each brand and then averaged to report the pH. Two of the bottled water samples tested were below the critical level of 5.2 pH to 5.5 pH, the level at which erosion of enamel occurs. Six of the samples tested were below the critical pH of 6.8, at which erosion of root dentin occurs. The authors conclude that both patients and clinicians incorrectly presume bottled water to be innocuous. Clinicians should be cognizant of the erosive potential of different brands of bottled water to both educate patients and to recommend water with neutral or alkaline pH for patients with symptoms of dry mouth to prevent further deterioration and demineralization of tooth structure.

  15. EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITY

    OpenAIRE

    Носачова, Юлія Вікторівна; Макаренко, Ірина Миколаївна; Шаблій, Тетяна Олександрівна

    2015-01-01

    EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITYThe main reason for the growing problem of water quality in Ukraine is the increase of anthropogenic impacts on water resources caused by intense chemical, biological and radiation contamination of existing and potential sources for industrial and communal water supply. Especially polluted rivers in Donbass and Krivbas area, that turned into collectors of saline wastewater. Especially hard environment...

  16. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Science.gov (United States)

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    Half of the planet's population is severely impacted by severe water issues including absent or unreliable water supply, sanitation, poor water quality, unmitigated floods and droughts, and degraded water environments. In recent years, global water security has been highlighted not only by the science community but also by business leaders as one of the greatest threats to sustainable human development for different generations. How can we ensure the well-being of people and ecosystems with limited water, technology and financial resources? To evaluate this, IIASA's Water Futures and Solutions Initiative (WFaS) is identifying a portfolios of robust and cost-effective options across different economic sectors including agriculture, energy, manufacturing, households, and environment and ecosystems. Options to increase water supply and accessibility are evaluated together with water demand management and water governance options. To test these solution-portfolios in order to obtain a clear picture of the opportunities but also of the risks and the trade-offs we have developed the Community Water Model (CWATM) which joins IIASA's integrated assessment modeling framework, coupling hydrology with hydro-economics (ECHO model), energy (MESSAGE model) and land use (GLOBIOM model). CWATM has been developed to work flexibly with varying spatial resolutions from global to regional levels. The model is open source and community-driven to promote our work amongst the wider water and other science community worldwide, with flexibility to link to other models and integrate newly developed modules such as water quality. In order to identify the solution portfolios, we present a global hotspots assessment of water-related risks with the ability to zoom in at regional scale using the example of the Lake Victoria basin in E. Africa. We show how socio-economic and climate change will alter spatial patterns of the hydrological cycle and have regional impacts on water availability. At

  17. Global pattern for the effect of climate and land cover on water yield

    Science.gov (United States)

    Guoy Zhou; Xiaohua Wei; Xiuzhi Chen; Ping Zhou; Xiaodong Liu; Yin Xiao; Ge Sun; David F. Scott; Shuyidan Zhou; Liusheng Hano; Yongxian Su

    2015-01-01

    Research results on the effects of land cover change on water resources vary greatly and the topic remains controversial. Here we use published data worldwide to examine the validity of Fuh’s equation, which relates annual water yield (R) to a wetness index (precipitation/ potential evapotranspiration; P/PET) and watershed characteristics (m). We identify two critical...

  18. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters.

    Science.gov (United States)

    Bouvier-Capely, C; Bonthonneau, J P; Dadache, E; Rebière, F

    2014-01-01

    The general population is chronically exposed to uranium ((234)U, (235)U, and (238)U) and polonium ((210)Po) mainly through day-to-day food and beverage intake. The measurement of these naturally-occurring radionuclides in drinking water is important to assess their health impact. In this work the applicability of calix[6]arene-derivatives columns for uranium analysis in drinking water was investigated. A simple and effective method was proposed on a specific column called AQUALIX, for the separation and preconcentration of U from drinking water. This procedure is suitable for routine analysis and the analysis time is considerably shortened (around 4h) by combining the separation on AQUALIX with fast ICP-MS measurement. This new method was tested on different French bottled waters (still mineral water, sparkling mineral water, and spring water). Then, the case of simultaneous presence of uranium and polonium in water was considered due to interferences in alpha spectrometry measurement. A protocol was proposed using a first usual step of spontaneous deposition of polonium on silver disc in order to separate Po, followed by the uranium extraction on AQUALIX column before alpha spectrometry counting. © 2013 Published by Elsevier B.V.

  19. A review on environmental monitoring of water organic pollutants identified by EU guidelines.

    Science.gov (United States)

    Sousa, João C G; Ribeiro, Ana R; Barbosa, Marta O; Pereira, M Fernando R; Silva, Adrián M T

    2018-02-15

    The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earth's surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with

  20. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  1. Development of Optimal Water-Resources Management Strategies for Kaidu-Kongque Watershed under Multiple Uncertainties

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-01-01

    Full Text Available In this study, an interval-stochastic fractile optimization (ISFO model is advanced for developing optimal water-resources management strategies under multiple uncertainties. The ISFO model can not only handle uncertainties presented in terms of probability distributions and intervals with possibility distribution boundary, but also quantify subjective information (i.e., expected system benefit preference and risk-averse attitude from different decision makers. The ISFO model is then applied to a real case of water-resources systems planning in Kaidu-kongque watershed, China, and a number of scenarios with different ecological water-allocation policies under varied p-necessity fractiles are analyzed. Results indicate that different policies for ecological water allocation can lead to varied water supplies, economic penalties, and system benefits. The solutions obtained can help decision makers identify optimized water-allocation alternatives, alleviate the water supply-demand conflict, and achieve socioeconomic and ecological sustainability, particularly when limited water resources are available for multiple competing users.

  2. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  3. If Frisch is true - impacts of varying beam width, resolution, frequency combinations and beam overlap when retrieving liquid water content profiles

    Science.gov (United States)

    Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.

    2017-12-01

    Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.

  4. Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California

    Science.gov (United States)

    Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.

    2016-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.

  5. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content

    International Nuclear Information System (INIS)

    West, L. Jeanine A.; Li, Karen; Greenberg, Bruce M.; Mierle, Greg; Smith, Ralph E.H.

    2003-01-01

    Selenastrum capricornutum was grown in two lake waters of differing dissolved organic carbon content (1.8 vs. 9.1 mg DOC l -1 ) to determine the responses of population dynamics and photosynthesis to Cu, and to assess the modifying effects of varying ultraviolet radiation (UVR) exposure. In the absence of UVR, the mean EC 50 for Cu effect on population growth rate was 2.3-2.6 μg l -1 in the low DOC water and 17.4-26.2 μg l -1 in the high DOC water. The variable chlorophyll a fluorescence ratio, F v /F m , decreased approximately in parallel with the diminished growth rates. Exposure of the higher DOC lake water to full spectrum artificial radiation caused an increase of Cu 2+ concentration, compared to samples held in darkness or in photosynthetically active radiation (PAR) only. Full spectrum exposures also resulted in a lower (although not significantly so) EC 50 for Cu effect on growth rate, consistent with response to the moderately elevated Cu 2+ concentration. Cu 2+ concentration was unaffected by radiation exposure in the low DOC water, and EC 50 s for growth were also unaffected except in the most severe UVR treatment, which was >40% inhibited even in the absence of added Cu. Using F v /F m as an end-point, there was no evidence of interactions between UVR and Cu under the relatively low PAR exposures used here. Algal growth and photosynthesis was extremely sensitive to Cu in these soft lake waters, with EC 50 s close to current water quality standards in the low DOC water

  6. Increasing urban water self-sufficiency: New era, new challenges

    DEFF Research Database (Denmark)

    Rygaard, Martin; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2011-01-01

    and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional...... pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten...... amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We...

  7. Varying hydric conditions during incubation influence egg water exchange and hatchling phenotype in the red-eared slider turtle.

    Science.gov (United States)

    Delmas, Virginie; Bonnet, Xavier; Girondot, Marc; Prévot-Julliard, Anne-Caroline

    2008-01-01

    Environmental conditions within the nest, notably temperature and moisture of substrate, exert a powerful influence during embryogenesis in oviparous reptiles. The influence of fluctuating nest temperatures has been experimentally examined in different reptile species; however, similar experiments using moisture as the key variable are lacking. In this article, we examine the effect of various substrate moisture regimes during incubation on different traits (egg mass, incubation length, and hatchling mass) in a chelonian species with flexible-shelled eggs, the red-eared slider turtle (Trachemys scripta elegans). Our results show that the rate of water uptake by the eggs was higher in wet than in dry substrate and varied across development. More important, during the first third of development, the egg mass changes were relatively independent of the soil moisture level; they became very sensitive to moisture levels during the other two-thirds. Moreover, hydric conditions exerted a strong influence on the eggs' long-term sensitivity to the moisture of the substrate. Even short-term episodes of high or low levels of moisture modified permanently their water sensitivity, notably through modification of eggshell shape and volume, and in turn entailed significant effects on hatchling mass (and hence offspring quality). Such complex influences of fluctuating moisture levels at various incubation stages on hatchling phenotype better reflect the natural situation, compared to experiments based on stable, albeit different, moisture levels.

  8. Textural characteristics of ready-to-eat breakfast cereals produced from different types of cereal and with varying water addition during extrusion process

    Directory of Open Access Journals (Sweden)

    Žaneta Ugarčić-Hardi

    2010-01-01

    Full Text Available Textural characteristics of ready-to-eat breakfast cereals were evaluated in order to determine the influence of wheat, corn and rice flour, as well as a varying water addition during the extrusion process. Extruded breakfast cereal balls were made of wheat semolina in combination with wheat, corn or rice flour. Three different levels of water addition (21 %, 23 % and 27 % were used during the extrusion process. Samples were prepared with and without surface sugar coating. Sensory and instrumental assessments (TA.XT Plus were used to evaluate textural attributes of dry samples and samples during immersion in milk. Weibull equation was used for nonlinear estimation of experimental data obtained for milk absorption and crispiness as a function of time. Crispiness of dry extruded balls without coating was much higher than for samples with coating. The highest values for crispness were observed for wheat extruded balls and the lowest for samples with corn flour addition. Increasing water addition during the extrusion process significantly increased crispness of ready-to-eat breakfast cereals. The rate of milk absorption and loss of crispiness were significantly higher for samples without coating than for samples with coating.

  9. Army's drinking water surveillance program

    International Nuclear Information System (INIS)

    Sneeringer, P.V.; Belkin, F.; Straffon, N.; Costick, S.A.

    1977-01-01

    In 1976 a total of 827 water sources from Army installations throughout the world were sampled and analyzed for 53 chemical constituents and physical parameters. Medically significant contaminants included radiation measurements, heavy metals, fluoride, nitrate, and pesticides. Radiological activity appeared to vary with geographic location; a majority being from water sources in the western part of the U.S. No results for tritium were found to exceed the health-reference limit. Confirmatory analyses for radium-226 identified 3 groundwater sources as exceeding the limit; one was attributed to natural activity and the other sources are currently being investigated. Of the metals considered to be medically significant, mercury, chromium, lead, cadmium, silver, barium and arsenic were found in amounts within health level limits. Nitrate levels exceeding the health limit were confirmed for 2 drinking water sources

  10. TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water.

    Science.gov (United States)

    Plewa, Michael J; Wagner, Elizabeth D; Richardson, Susan D

    2017-08-01

    The disinfection of drinking water is a major public health achievement; however, an unintended consequence of disinfection is the generation of disinfection by-products (DBPs). Many of the identified DBPs exhibit in vitro and in vivo toxicity, generate a diversity of adverse biological effects, and may be hazards to the public health and the environment. Only a few DBPs are regulated by several national and international agencies and it is not clear if these regulated DBPs are the forcing agents that drive the observed toxicity and their associated health effects. In this study, we combine analytical chemical and biological data to resolve the forcing agents associated with mammalian cell cytotoxicity of drinking water samples from three cities. These data suggest that the trihalomethanes (THMs) and haloacetic acids may be a small component of the overall cytotoxicity of the organic material isolated from disinfected drinking water. Chemical classes of nitrogen-containing DBPs, such as the haloacetonitriles and haloacetamides, appear to be the major forcing agents of toxicity in these samples. These findings may have important implications for the design of epidemiological studies that primarily rely on the levels of THMs to define DBP exposure among populations. The TIC-Tox approach constitutes a beginning step in the process of identifying the forcing agents of toxicity in disinfected water. Copyright © 2017. Published by Elsevier B.V.

  11. Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient

    Science.gov (United States)

    Björklund, Sebastian; Ruzgas, Tautgirdas; Nowacka, Agnieszka; Dahi, Ihab; Topgaard, Daniel; Sparr, Emma; Engblom, Johan

    2013-01-01

    The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance 13C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability. PMID:23790372

  12. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Science.gov (United States)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  13. Muonium in sub- and supercritical water

    International Nuclear Information System (INIS)

    Percival, P.W.; Brodovitch, J.-C.; Ghandi, K.; Addison-Jones, B.; Schuth, J.; Bartels, D.M.

    1999-01-01

    Muonium has been studied in muon-irradiated water over a wide range of conditions, from standard temperature and pressure (STP) up to 350 bar and up to 420 o C, corresponding to water densities from 1.0 down to 0.1 g cm -3 . This is the first report of muonium in supercritical water. Muonium was unambiguously identified from its spin precession frequencies in small transverse magnetic fields. The hyperfine constant was determined and found to be similar to the published values for muonium in water at STP and in vacuum. Muonium was found to be long-lived over the whole range of conditions studied. The fraction of muons which form muonium was found to vary markedly over the density range studied. Correlation of the muonium fraction with the ionic product of water suggests a common cause, such as the rate of proton transfer between molecules involved in the radiolysis of water and the formation of MuOH, which competes with muonium formation

  14. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    many factors affecting water resources decision making, it is ubiquitous in that it permeates the planning, policy-making .... estimated that in many farming systems, more than 70% of the rain ..... Using correlation techniques, the relationship ...

  15. Study on the Variation of Groundwater Level under Time-varying Recharge

    Science.gov (United States)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  16. Identifying the Correlation between Water Quality Data and LOADEST Model Behavior in Annual Sediment Load Estimations

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2016-08-01

    Full Text Available Water quality samples are typically collected less frequently than flow since water quality sampling is costly. Load Estimator (LOADEST, provided by the United States Geological Survey, is used to predict water quality concentration (or load on days when flow data are measured so that the water quality data are sufficient for annual pollutant load estimation. However, there is a need to identify water quality data requirements for accurate pollutant load estimation. Measured daily sediment data were collected from 211 streams. Estimated annual sediment loads from LOADEST and subsampled data were compared to the measured annual sediment loads (true load. The means of flow for calibration data were correlated to model behavior. A regression equation was developed to compute the required mean of flow in calibration data to best calibrate the LOADEST regression model coefficients. LOADEST runs were performed to investigate the correlation between the mean flow in calibration data and model behaviors as daily water quality data were subsampled. LOADEST calibration data used sediment concentration data for flows suggested by the regression equation. Using the mean flow calibrated by the regression equation reduced errors in annual sediment load estimation from −39.7% to −10.8% compared to using all available data.

  17. Assessment of metal contamination in the biota of four rivers experiencing varying degrees of human impact.

    Science.gov (United States)

    Bielmyer-Fraser, Gretchen K; Waters, Matthew Neal; Duckworth, Christina G; Patel, Pratik P; Webster, Benjamin Cole; Blocker, Amber; Crummey, Cliff Hunter; Duncan, Aundrea Nicole; Nwokike, Somuayiro Nadia; Picariello, Codie Richard; Ragan, James T; Schumacher, Erika L; Tucker, Rebecca Lea; Tuttle, Elizabeth Ann; Wiggins, Charlie Rufus

    2017-01-01

    Urbanization, agriculture, and other land transformations can affect water quality, decrease species biodiversity, and increase metal and nutrient concentrations in aquatic systems. Metal pollution, in particular, is a reported consequence of elevated anthropogenic inputs, especially from urbanized areas. The objectives of this study were to quantify metal (Cu, Al, Cd, Ni, and Pb) concentrations in the waters and biota of four streams in South Georgia, USA, and relate metal concentrations to land use and abiotic and biotic stream processes. Additionally, macrophytes, invertebrates, and fish were identified to assess biodiversity at each site. Metal concentrations in the three trophic levels differed among sites and species, correlating to differences in land use surrounding the rivers. The highest metal concentrations (except Al) were found in the streams most impacted by urbanization and development. Al concentrations were highest in streams surrounded by land dominated by forested areas. Metal content in macrophytes reflected metal concentrations in the water and was at least three orders of magnitude higher than any other trophic level. Despite metal concentration differences, all four streams contained similar water quality and were healthy based on macroinvertebrate community structure. This study provides insight into the impact of urbanization and the fate and effects of metals in river ecosystems with varying degrees of anthropogenic impact.

  18. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    Science.gov (United States)

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Study of the properties of self-sustaining nuclear chain reaction in the fuel-containing masses of the "Ukryttya" object for the case of varying velocity of water inflow

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2018-03-01

    Full Text Available The main peculiarities of ignition and development of self-sustaining nuclear chain reaction (SCR in fuel-containing masses (FCM of Chernobyl "Ukryttya" were studied for the case of varying velocity of water incoming into the system or its outcoming. On the basis of analysis and numerical solution of the corresponding system of differential equations for the main characteristics of the system, it was shown that the variations of water inflow could lead to very sufficient and various changes in SCR development comparing to possible modes at constant velocities of water inflow. In particular, the calculations show that the neutron bursts with great amplitude could take place in the system under definite sufficiently reasonable physical conditions. It was also shown that the increase of velocity of water inflow into the FCM in the mode of constant oscillations can lead to transition into "beyond critical" state which is the subcritical state with big quantity of water.

  20. Identifying the source, transport path and sinks of sewage derived organic matter

    International Nuclear Information System (INIS)

    Mudge, Stephen M.; Duce, Caroline E.

    2005-01-01

    Since sewage discharges can significantly contribute to the contaminant loadings in coastal areas, it is important to identify sources, pathways and environmental sinks. Sterol and fatty alcohol biomarkers were quantified in source materials, suspended sediments and settling matter from the Ria Formosa Lagoon. Simple ratios between key biomarkers including 5β-coprostanol, cholesterol and epi-coprostanol were able to identify the sewage sources and effected deposition sites. Multivariate methods (PCA) were used to identify co-varying sites. PLS analysis using the sewage discharge as the signature indicated ∼ 25% of the variance in the sites could be predicted by the sewage signature. A new source of sewage derived organic matter was found with a high sewage predictable signature. The suspended sediments had relatively low sewage signatures as the material was diluted with other organic matter from in situ production. From a management viewpoint, PLS provides a useful tool in identifying the pathways and accumulation sites for such contaminants. - Multivariate statistical analysis was used to identify pathways and accumulation sites for contaminants in coastal waters

  1. Exploring the impact of co-varying water availability and energy price on productivity and profitability of Alpine hydropower

    Science.gov (United States)

    Anghileri, Daniela; Botter, Martina; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Alpine hydropower systems are experiencing dramatic changes both from the point of view of hydrological conditions, e.g., water availability and frequency of extremes events, and of energy market conditions, e.g., partial or total liberalization of the market and increasing share of renewable power sources. Scientific literature has, so far, mostly focused on the analysis of climate change impacts and associated uncertainty on hydropower operation, underlooking the consequences that socio-economic changes, e.g., energy demand and/or price changes, can have on hydropower productivity and profitability. In this work, we analyse how hydropower reservoir operation is affected by changes in both water availability and energy price. We consider stochastically downscaled climate change scenarios of precipitation and temperature to simulate reservoir inflows using a physically explicit hydrological model. We consider different scenarios of energy demand and generation mix to simulate energy prices using an electricity market model, which includes different generation sources, demand sinks, and features of the transmission lines. We then use Multi-Objective optimization techniques to design the operation of hydropower reservoirs for different purposes, e.g. maximization of revenue and/or energy production. The objective of the work is to assess how the tradeoffs between the multiple operating objectives evolve under different co-varying climate change and socio-economic scenarios and to assess the adaptive capacity of the system. The modeling framework is tested on the real-world case study of the Mattmark reservoir in Switzerland.

  2. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...... relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents...

  3. APPLICATION OF GIS AND GROUNDWATER MODELLING TECHNIQUES TO IDENTIFY THE PERCHED AQUIFERS TO DEMARKATE WATER LOGGING CONDITIONS IN PARTS OF MEHSANA

    Directory of Open Access Journals (Sweden)

    D. Rawal

    2016-06-01

    The study highlights the application of GIS in establishing the basic parameters of soil, land use and the distribution of water logging over a period of time and the groundwater modelling identifies the groundwater regime of the area and estimates the total recharge to the area due to surface water irrigation and rainfall and suggests suitable method to control water logging in the area.

  4. Use of strontium isotopes to identify buried water main leakage into groundwater in a highly urbanized coastal area.

    Science.gov (United States)

    Leung, Chi-Man; Jiao, Jiu Jimmy

    2006-11-01

    Previous studies indicate that the local aquifer systems in the Mid-Levels, a highly urbanized coastal area in Hong Kong, have commonly been affected by leakage from water mains. The identification of leakage locations was done by conventional water quality parameters including major and trace elements. However, these parameters may lead to ambiguous results and fail to identify leakage locations especially where the leakage is from drinking water mains because the chemical composition of drinking water is similar to that of natural groundwater. In this study, natural groundwater, seepage in the developed spaces, leakage from water mains, and parent aquifer materials were measured for strontium isotope (87Sr/86Sr) compositions to explore the feasibility of using these ratios to better constrain the seepage sources. The results show that the 87Sr/86Sr ratios of natural groundwater and leakage from water mains are distinctly different and thus, they can provide additional information on the sources of seepage in developed spaces. A classification system based on the aqueous 87Sr/86Sr ratio is proposed for seepage source identification.

  5. Comparative analysis of decision tree algorithms on quality of water contaminated with soil

    Directory of Open Access Journals (Sweden)

    Mara Andrea Dota

    2015-02-01

    Full Text Available Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes

  6. Water requirement and use by Jatropha curcas in a semi-arid tropical location

    International Nuclear Information System (INIS)

    Kesava Rao, A.V.R.; Wani, Suhas P.; Singh, Piara; Srinivas, K.; Srinivasa Rao, Ch.

    2012-01-01

    Increasing emphasis on biofuel to meet the growing energy demand while reducing emissions of greenhouse gases, Jatropha curcas has attracted the attention of researchers, policy makers and industries as a good candidate for biodiesel. It is a non-edible oil crop, drought tolerant and could be grown on degraded lands in the tropics without competing for lands currently used for food production. J. curcas being a wild plant, much about its water requirement and production potential of promising clones in different agroclimatic conditions is not known. Water use assessment of J. curcas plantations in the semi-arid tropical location at ICRISAT, Patancheru indicated that crop evapotranspiration of J. curcas under no moisture stress varied from 1410 to 1538 mm per year during 2006–2009. Under field conditions the crop evapotranspiration varied from 614 to 930 mm depending on the atmospheric demand, rainfall and crop phenological stage. Patterns of soil-water depletion indicated that with growing plant age from two to five years, depth of soil-water extraction increased from 100 to 150 cm by fifth year. Monthly water use of Jatropha varied from 10–20 (leaf shedding period) to 140 mm depending on water availability and environmental demand. This study indicated that J. curcas has a good drought tolerance mechanism, however under favorable soil moisture conditions Jatropha could use large amounts of water for luxurious growth and high yield. These findings highlight the need to carefully identify suitable niche areas for Jatropha cultivation and assess the implications of large J. curcas plantations on water availability and use under different agroecosystems, particularly so in water scarce regions such as semi-arid and arid regions in the tropics. -- Highlights: ► Jatropha ET varied from 1410 to 1538 mm in optimal and 614 to 930 mm in field conditions. ► Depth of soil-water extraction increased from 100 to 150 cm by fifth year of age. ► Jatropha yields varied

  7. Army Installations Water Sustainability Assessment: An Evaluation of Vulnerability to Water Supply

    Science.gov (United States)

    2009-09-01

    hogs and pigs, horses and poultry . These categories represent varying levels of consumptive water use. Not all of the water that is withdrawn... dressing issues of present or future water rights. Though Army installations retain rights to any required water through the Federal reserved water

  8. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  9. Identification of time-varying structural dynamic systems - An artificial intelligence approach

    Science.gov (United States)

    Glass, B. J.; Hanagud, S.

    1992-01-01

    An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.

  10. Identify alkylation hazards

    International Nuclear Information System (INIS)

    Scott, B.

    1992-01-01

    This paper reports that extensive experience shows that alkylation plants regardless of acid catalyst choice, can be operated safely, and with minimum process risk to employees or neighbors. Both types of plants require a comprehensive and fully supported hazard management program that accounts for differing physical properties of the acids involved. Control and mitigation cost to refiners will vary considerably from plant to plant and location to location. In the author's experience, the order of magnitude costs will be about $1 to $2 million for a sulfuric acid (SA) alkylation plant, and about $10 to $15 million for a hydrofluoric acid (HF) plant. These costs include water supply systems and impoundment facilities for contaminated runoff water. The alkylation process, which chemically reacts isobutane and light olefins in the presence of a strong acid catalyst into a premium gasoline component is described

  11. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    Science.gov (United States)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural

  12. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  13. Finding water scarcity amid abundance using human-natural system models.

    Science.gov (United States)

    Jaeger, William K; Amos, Adell; Bigelow, Daniel P; Chang, Heejun; Conklin, David R; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W; Nolin, Anne W; Plantinga, Andrew J; Schwartz, Cynthia L; Tullos, Desiree; Turner, David P

    2017-11-07

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water's indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water's spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human-natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society's institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. Published under the PNAS license.

  14. Cell and tissue dynamics of olive endocarp sclerification vary according to water availability.

    Science.gov (United States)

    Hammami, Sofiene B M; Costagli, Giacomo; Rapoport, Hava F

    2013-12-01

    Endocarp developmental timing in drupe-type fruits, involving tissue expansion and sclerification processes, is increasingly used as marker for biological studies and crop management. In spite of its wide application, however, little is known regarding how these morphogenetic processes unfold or the factors that modify it. This study evaluates endocarp expansion and sclerification of olive (Olea europaea) fruits, used as an example of drupe-type fruits, from trees growing under different water regimes: full irrigated, deficit irrigated (moderate reduction of water availability) and rainfed (severe reduction of water availability). Fruits were sampled weekly until pit hardening, and fruit and endocarp areas were evaluated in histological preparations. An image analysis process was tested and adjusted to quantify sclerified area and distribution within the endocarp. Individual stone cells differentiated independently but distribution and timing indicated the overall coordination of endocarp tissue sclerification. Increase in sclerified area was initially gradual, accelerated abruptly the week prior to the end of endocarp expansion and then continued at an intermediate rate. These results suggest that the end of the expansion period is driven by sclerification and the morphogenetic signals involved act first on sclerification rather than endocarp size. Intensification of sclerification and the end of expansive growth occurred first with lowest water supply. Moderate and severe reductions in water availability proportionately decreased endocarp expansion and prolonged the sclerification, delaying the date of physically perceived hardening but not affecting the final degree of endocarp sclerification. © 2013 Scandinavian Plant Physiology Society.

  15. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    Science.gov (United States)

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  16. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    Science.gov (United States)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  17. Water risk assessment in China based on the improved Water Risk Filter

    Science.gov (United States)

    Hong, G.; Yaqin, Q.; Qiong, L.; Cunwen, N.; Na, W.; Jiajia, L.; Jongde, G.; Na, Z.; Xiangyi, D.

    2014-09-01

    Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs). The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  18. Water risk assessment in China based on the improved Water Risk Filter

    Directory of Open Access Journals (Sweden)

    G. Hong

    2014-09-01

    Full Text Available Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs. The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  19. Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.

    Science.gov (United States)

    Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W

    2014-01-01

    One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.

  20. Time-Varying Value of Energy Efficiency in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.

    2018-04-02

    Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.

  1. Assessing Method to Identifying Water Resilience Against Natural and Climate Change Hazards.

    Science.gov (United States)

    Amril, Rofi; Maryono

    2018-02-01

    A geographic region may become vulnerable toward water resources in a variety of ways. Common issues arise when man-made infrastructure such as housing, industrial, agriculture and other spatial land use policy implementation exceeds more than desired level. Vulnerability of a region due to water resources could be interpreted as the inability of the region to sustaining economic and social activity associated to socio-economic water availability. This study assess four aspects of water resilience: water quantity, water distribution, water quality, and water requirements. Literature review then followed by interview with academic expert used as method of study. This study found that four aspect of water vulnerability mostly have been applied to asses water resource vulnerability. Each aspect have a specific characteristic and could be define more specific and detail indicator according to the local content.

  2. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  3. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  4. Time-varying causality between energy consumption, CO2 emissions, and economic growth: evidence from US states.

    Science.gov (United States)

    Tzeremes, Panayiotis

    2018-02-01

    This study is the first attempt to investigate the relationship between CO 2 emissions, energy consumption, and economic growth at a state level, for the 50 US states, through a time-varying causality approach using annual data over the periods 1960-2010. The time-varying causality test facilitates the better understanding of the causal relationship between the covariates owing to the fact that it might identify causalities when the time-constant hypothesis is rejected. Our findings indicate the existence of a time-varying causality at the state level. Specifically, the results probe eight bidirectional time-varying causalities between energy consumption and CO 2 emission, six cases of two-way time-varying causalities between economic growth and energy consumption, and five bidirectional time-varying causalities between economic growth and CO 2 emission. Moreover, we examine the traditional environmental Kuznets curve hypothesis for the states. Notably, our results do not endorse the validity of the EKC, albeit the majority of states support an inverted N-shaped relationship. Lastly, we can identify multiple policy implications based on the empirical results.

  5. Regional scenario building as a tool to support vulnerability assessment of food & water security and livelihood conditions under varying natural resources managements

    Science.gov (United States)

    Reinhardt, Julia; Liersch, Stefan; Dickens, Chris; Kabaseke, Clovis; Mulugeta Lemenih, Kassaye; Sghaier, Mongi; Hattermann, Fred

    2013-04-01

    Participatory regional scenario building was carried out with stakeholders and local researchers in four meso-scale case studies (CS) in Africa. In all CS the improvement of food and / or water security and livelihood conditions was identified as the focal issue. A major concern was to analyze the impacts of different plausible future developments on these issues. The process of scenario development is of special importance as it helps to identify main drivers, critical uncertainties and patterns of change. Opportunities and constraints of actors and actions become clearer and reveal adaptation capacities. Effective strategies must be furthermore reasonable and accepted by local stakeholders to be implemented. Hence, developing scenarios and generating strategies need the integration of local knowledge. The testing of strategies shows how they play out in different scenarios and how robust they are. Reasons and patterns of social and natural vulnerability can so be shown. The scenario building exercise applied in this study is inspired by the approach from Peter Schwartz. It aims at determining critical uncertainties and to identify the most important driving forces for a specific focal issue which are likely to shape future developments of a region. The most important and uncertain drivers were analyzed and systematized with ranking exercises during meetings with local researchers and stakeholders. Cause-effect relationships were drawn in the form of concept maps either during the meetings or by researchers based on available information. Past observations and the scenario building outcomes were used to conduct a trend analysis. Cross-comparisons were made to find similarities and differences between CS in terms of main driving forces, patterns of change, opportunities and constraints. Driving forces and trends which aroused consistently over scenarios and CS were identified. First results indicate that livelihood conditions of people rely often directly on the

  6. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    Science.gov (United States)

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  7. Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Mesfin M. Mekonnen

    2015-02-01

    Full Text Available This paper assesses the sustainability, efficiency and equity of water use in Latin America and the Caribbean (LAC by means of a geographic Water Footprint Assessment (WFA. It aims to provide understanding of water use from both a production and consumption point of view. The study identifies priority basins and areas from the perspectives of blue water scarcity, water pollution and deforestation. Wheat, fodder crops and sugarcane are identified as priority products related to blue water scarcity. The domestic sector is the priority sector regarding water pollution from nitrogen. Soybean and pasture are priority products related to deforestation. We estimate that consumptive water use in crop production could be reduced by 37% and nitrogen-related water pollution by 44% if water footprints were reduced to certain specified benchmark levels. The average WF per consumer in the region is 28% larger than the global average and varies greatly, from 912 m3/year per capita in Nicaragua to 3468 m3/year in Bolivia. Ironically, the LAC region shows significant levels of undernourishment, although there is abundant water and food production in the region and substantial use of land and water for producing export crops like soybean.

  8. Water to atmosphere fluxes of 131I in relation with alkyl-iodide compounds from the Seine Estuary (France)

    International Nuclear Information System (INIS)

    Connan, Olivier; Tessier, Emmanuel; Maro, Denis; Amouroux, David; Hebert, Didier; Rozet, Marianne; Voiseux, Claire; Solier, Luc

    2008-01-01

    This study presents an original work on measurements of stable and radioactive iodinated species in the Seine estuary (France), with estimates fluxes of volatile gaseous species from water to the atmosphere. Various iodinated compounds were identified in water and air in particular 131 I in water, what is unusual. Concentrations and behaviour of iodinated elements in the Seine estuary seem similar to what has been observed in other European estuaries. MeI (Methyl Iodide) and Total Volatile Iodine (TVI) fluxes from water to air vary between 392 and 13949 pmol m -2 d -1 and between 1279 and 16484 pmol m -2 d -1 , respectively. Water to air flux of TVI for the Seine river was estimated in the range 4-46 kg y -1 . Measurements of 131 I in water varying between 0.4 and 11.9 Bq m -3 . Fluxes of 131 I from water to atmosphere are in the range 2.4 x 10 5 -1.3 x 10 7 Bq y -1 , close to an annual discharge of 131 I by a nuclear reactor

  9. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Science.gov (United States)

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  10. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  11. Two statistics for evaluating parameter identifiability and error reduction

    Science.gov (United States)

    Doherty, John; Hunt, Randall J.

    2009-01-01

    Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.

  12. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  13. Identifying potential surface water sampling sites for emerging ...

    African Journals Online (AJOL)

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to ...

  14. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  15. Water Flow Experiments

    Indian Academy of Sciences (India)

    year undergraduate student at Ashoka University,. Sonipat, Haryana. This article studies how the height of water varies with time when water ... Experiment using a one-bottle system with a small bore tube at- tached to .... restricting free flow.

  16. Water Quality Drivers in 11 Gulf of Mexico Estuaries

    Directory of Open Access Journals (Sweden)

    Matthew J. McCarthy

    2018-02-01

    Full Text Available Coastal water-quality is both a primary driver and also a consequence of coastal ecosystem health. Turbidity, a measure of dissolved and particulate water-quality matter, is a proxy for water quality, and varies on daily to interannual periods. Turbidity is influenced by a variety of factors, including algal particles, colored dissolved organic matter, and suspended sediments. Identifying which factors drive trends and extreme events in turbidity in an estuary helps environmental managers and decision makers plan for and mitigate against water-quality issues. Efforts to do so on large spatial scales have been hampered due to limitations of turbidity data, including coarse and irregular temporal resolution and poor spatial coverage. We addressed these issues by deriving a proxy for turbidity using ocean color satellite products for 11 Gulf of Mexico estuaries from 2000 to 2014 on weekly, monthly, seasonal, and annual time-steps. Drivers were identified using Akaike’s Information Criterion and multiple regressions to model turbidity against precipitation, wind speed, U and V wind vectors, river discharge, water level, and El Nino Southern Oscillation and North Atlantic Oscillation climate indices. Turbidity variability was best explained by wind speed across estuaries for both time-series and extreme turbidity events, although more dynamic patterns were found between estuaries over various time steps.

  17. Free-living protozoa in two unchlorinated drinking water supplies identified by phylogenic analysis of 18S rRNA gene sequences

    NARCIS (Netherlands)

    Valster, R.M.; Wullings, B.A.; Bakker, G.; Smidt, H.; Kooij, van der D.

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria and also pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies using cultivation-independent molecular approaches. For

  18. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  19. The water quality and Cultivant enrichment potency of pond based on saprobic index at north coastal waters of Central Java, Indonesia

    Science.gov (United States)

    Hidayat, Jafron W.

    2018-05-01

    Central Java is one of many areas which has long coastline, especially in the Northern Coast of Java Island. Intertidal activities occurred at this area may affect the transport of material and energy from surroundings. Cultivation activity supplies many inputs, i.e. feeds, chemicals (vitamin and mineral), including pollutants from feces and unconsumed feeds that affects the environment. One of water management is done through bioremediation by using vegetative agents (soft rehabilitation), such as seaweed and mangrove stands. The implementation of soft rehabilitation is highly depend on the existing environmental conditions of the ponds and surrounding waters. Therefore, it is very important to identify the condition of those waters first. The purpose of this study is to identify the quality of waters in the north coast of Central Java. Besides, it is also to analyze the potency of enriching cultivated commodity (cultivant), as well as a soft remediation mechanism using seaweed. The study was conducted in the coastal areas of Central Java, mainly to the locations commonly practicing cultivation in the pond waters; namely Brebes, Pemalang, Semarang, Demak, Pati and Jepara. Data were taken by sampling at least at 3 different sites as repetition, included ponds, public irrigations and coastline waters. The water sample was taken as much as 30 lt and filtered using plankton net no 25. Biodiversity of Shannon-Wiener Index (H'), evenness index (e) and Saprobic Index were used to analyze the plankton data. Result showed that plankton diversity in Central Java coasts were varied generally between 10 – 28 species. The most widely found species were Oscillatoria sp, Rhizosolenia styliformes, Surirella sp and Lyngbia conferoides. The diversity index varied from 1.83 to 2.9 with the stability status were between small to medium. The saprobic index showed a value between 0.33 up to 2.27; which indicated very small up to lightly contaminated status. The biggest stability

  20. Water flux in animals: analysis of potential errors in the tritiated water method

    International Nuclear Information System (INIS)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations

  1. Water flux in animals: analysis of potential errors in the tritiated water method

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations.

  2. Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-09-01

    This document provides specific guidance to agencies on the implementation and follow-up of energy and water efficiency measures identified and undertaken per Section 432 of the Energy Independence and Security Act of 2007 (EISA) (42 U.S.C. 8253(f)(4) and (5)) This guidance also provides context for how these activities fit into the comprehensive approach to facility energy and water management outlined by the statute and incorporates by reference previous DOE guidance released for Section 432 of EISA and other related documents. 42 U.S.C. 8253(f)(7)(A) specifies that facility energy managers shall certify compliance for each covered facility with the 42 U.S.C. 8253(f)(2)-(5) requirements via a web-based tracking system and make it publicly available. This document also describes the role of the tracking system that has been developed for the collection and reporting of data needed for the demonstration of compliance and progress toward meeting all energy and water efficiency requirements outlined in the statute.

  3. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  4. In-situ burning of emulsions: The effects of varying water content and degree of evaporation

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1992-01-01

    In-situ burning of oil is considered to be one of the most promising techniques for rapid removal of large quantities of oil at sea, particularly in ice-infested waters. A series of field experiments was conducted in Spitsbergen, circular basins cut in sea ice, to study the effect of water content, evaporation, thickness of the emulsion layer, and environmental factors on the burn efficiency of Statfjord crude oil and emulsions. Results from the experiments are presented along with preliminary results concerning the dynamics of burning emulsions and the efficiency of conventional and novel igniters. Water-in-oil emulsions with 40% water content could be burned. However, for oils evaporated more than 18% and with a water content of over 20%, conventional gelled gasoline was not a very effective igniter. Ignition success was improved when gelled crude oil was used as the igniter. The results imply that for practical in-situ burning, the igniter technology needs to be improved. 5 refs., 11 figs., 3 tabs

  5. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    Science.gov (United States)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    greatest climate change risk to water supply. Identifying the key climate vulnerability will inform effective adaptation and water management policies, which may include increasing the watersheds capacity to capture and divert wet season precipitation. It will also inform future research, which may involve age dating water, developing local adaptation plans, and improving climate and streamflow monitoring.

  6. Determination of Water Quality Parameters in Sivas - Kurugöl Lake

    Directory of Open Access Journals (Sweden)

    Ekrem Mutlu

    2013-12-01

    Full Text Available Kurugöl Lake; Sivas province Hafik county Kurugöl village located within the boundaries of Sivas province, 54 km, Hafik the town 24 miles away, an area of 8.9 ha altitude of 1362 m, an average depth of 3.4 - 4 m with gypsum plateau on the bottom of the boiling water along with rainfall and snowmelt with the lake is fed naturally. Kurugöl (Hafik - Sivas waters of Lake of the physical and chemical properties during the year changes occurring determining water quality characteristics to reveal the pollution levels are determined, living life in terms of the availability of the detection, water pollution and control regulations by the lake water classification and fishing activities, compliance with were identified. The inland lake in Kurugöl (SKKY according to the classification of water resources in accordance with the parameters measured I-III water quality varies from class.

  7. Identifying the Relationships between Water Quality and Land Cover Changes in the Tseng-Wen Reservoir Watershed of Taiwan

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2013-01-01

    Full Text Available The effects on water quality of land use and land cover changes, which are associated with human activities and natural factors, are poorly identified. Fine resolution satellite imagery provides opportunities for land cover monitoring and assessment. The multiple satellite images after typhoon events collected from 2001 to 2010 covering land areas and land cover conditions are evaluated by the Normalized Difference Vegetation Index (NDVI. The relationship between land cover and observed water quality, such as suspended solids (SS and nitrate-nitrogens (NO3-N, are explored in the study area. Results show that the long-term variations in water quality are explained by NDVI data in the reservoir buffer zones. Suspended solid and nitrate concentrations are related to average NDVI values on multiple spatial scales. Annual NO3-N concentrations are positively correlated with an average NDVI with a 1 km reservoir buffer area, and the SS after typhoon events associated with landslides are negatively correlated with the average NDVI in the entire watershed. This study provides an approach for assessing the influences of land cover on variations in water quality.

  8. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    Science.gov (United States)

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  10. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  11. Water supply facility damage and water resource operation at disaster base hospitals in miyagi prefecture in the wake of the Great East Japan Earthquake.

    Science.gov (United States)

    Matsumura, Takashi; Osaki, Shizuka; Kudo, Daisuke; Furukawa, Hajime; Nakagawa, Atsuhiro; Abe, Yoshiko; Yamanouchi, Satoshi; Egawa, Shinichi; Tominaga, Teiji; Kushimoto, Shigeki

    2015-04-01

    The aim of this study was to shed light on damage to water supply facilities and the state of water resource operation at disaster base hospitals in Miyagi Prefecture (Japan) in the wake of the Great East Japan Earthquake (2011), in order to identify issues concerning the operational continuity of hospitals in the event of a disaster. In addition to interview and written questionnaire surveys to 14 disaster base hospitals in Miyagi Prefecture, a number of key elements relating to the damage done to water supply facilities and the operation of water resources were identified from the chronological record of events following the Great East Japan Earthquake. Nine of the 14 hospitals experienced cuts to their water supplies, with a median value of three days (range=one to 20 days) for service recovery time. The hospitals that could utilize well water during the time that water supply was interrupted were able to obtain water in quantities similar to their normal volumes. Hospitals that could not use well water during the period of interruption, and hospitals whose water supply facilities were damaged, experienced significant disruption to dialysis, sterilization equipment, meal services, sanitation, and outpatient care services, though the extent of disruption varied considerably among hospitals. None of the hospitals had determined the amount of water used for different purposes during normal service or formulated a plan for allocation of limited water in the event of a disaster. The present survey showed that it is possible to minimize the disruption and reduction of hospital functions in the event of a disaster by proper maintenance of water supply facilities and by ensuring alternative water resources, such as well water. It is also clear that it is desirable to conclude water supply agreements and formulate strategic water allocation plans in preparation for the eventuality of a long-term interruption to water services.

  12. Physical, chemical and microbial analysis of bottled drinking water.

    Science.gov (United States)

    Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V

    2012-09-01

    People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.

  13. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  14. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    Science.gov (United States)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  15. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  16. Application of Satellite Remote Sensing to Identify Climatic and Anthropogenic Changes Related to Water and Health Conditions in Emerging Megacities

    Science.gov (United States)

    Akanda, A. S.; Serman, E. A.; Jutla, A.

    2014-12-01

    By 2050, more than 70% of the world's population is expected to be living in a city. In many of the urbanizing regions in Asia and Africa, most new development is taking place without adequate urban or regional planning, and a majority population is crowded into densely populated unplanned settlements, also known as slums. During the same period, precipitation and temperature patterns are likely to see significant changes in many of these regions while coastal megacities will have to accommodate sea-level rise in their ecosystems. The rapid increase in population is usually observed in fringes of the urban sprawl without adequate water or sanitation facilities or access to other municipal amenities (such as utilities, healthcare, and education). Collectively, these issues make the ever increasing slum dwellers in emerging megacities significantly vulnerable to a combination of climatic and anthropogenic threats. However, how the growth of unplanned urban and peri-urban sprawl and simultaneous change in climatic patterns have impacted public health in the emerging megacities remain largely unexplored due to lack of readily available and usable data. We employ a number of Remote Sensing products (GRACE, LANDSAT, MODIS) to bridge above knowledge gaps and to identify relevant hydrologic and anthropogenic changes in emerging megacities that are most vulnerable due to the climate-water-health nexus. We explore one of the largest and the fastest growing megacities in the world - Dhaka, Bangladesh - on identifying and investigating the changes in the water environment and growth of slum areas, and impact on water services and health outcomes. The hydroclimatology of South Asia is highly seasonal and the asymmetric availability of water affects vast areas of Bangladesh differently in space and time, exposing the population of Dhaka region to both droughts and floods and periodic spring-fall outbreaks of diarrheal diseases, such as cholera and rotavirus. This research

  17. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  18. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  19. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    Science.gov (United States)

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick

    2014-05-01

    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (δ18O, δ2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. δ18O and δ2H allowed to differentiate the BRL canal water, depleted in heavy isotopes (δ2H = -71.5o vs V-SMOW), and the more enriched local rainwater (δ2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited

  20. AcuI identifies water buffalo CSN3 genotypes by RFLP analysis

    Indian Academy of Sciences (India)

    Water buffalo population amounts to 185 million heads. (http://www.fao.org). They are mainly present in Southeast. Asia. Casein genes among other genes control the milk traits in water buffalo. The role of casein genotypes on composi- tion and coagulation of milk, quality and yield traits has been investigated (Lien et al.

  1. Understanding Transitions Toward Sustainable Urban Water Management: Miami, Las Vegas, Los Angeles

    Science.gov (United States)

    Garcia, M. E.; Manago, K. F.; Treuer, G.; Deslatte, A.; Koebele, E.; Ernst, K.

    2016-12-01

    Cities in the United States face numerous threats to their long-term water supplies including preserving ecosystems, competing uses, and climate change. Yet, it is unclear why only some cities have transitioned toward more sustainable water management. These transitions include strategies such as water conservation, water supply portfolio diversification, long-term planning, and integrated resource management. While the circumstances that motivate or moderate transition may vary greatly across cities' physical and institutional contexts, identifying common factors associated with transition can help resource managers capitalize on windows of opportunity for change. To begin the process of identifying such factors, we ask two questions: 1) what combinations of conditions are associated with water management transitions?, and 2) what are the outcomes of these transitions? We examine three cases of utility-level water management in Miami, Las Vegas, and Los Angeles to create data-driven narratives detailing each city's transition. These narratives systematically synthesize multiple data sources to enable cross-case comparison and provide insights into how and why cities transition. Using the foundational concepts from the exposure-based theory of urban change, we focus our analysis on three broad categories of variables that influence urban water management transition: biophysical, political, and regulatory exposures. First, we compare these factors across time and across cities using metrics that standardize diverse data sources. Next, we incorporate qualitative factors that capture a city's unique conditions by integrating these metrics with salient contextual information. Then, through cross-city comparison, we identify factors associated with transition.

  2. Emergency material allocation with time-varying supply-demand based on dynamic optimization method for river chemical spills.

    Science.gov (United States)

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng

    2018-04-13

    Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.

  3. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  4. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.

    Science.gov (United States)

    Thomas, J A; McGaughey, A J H

    2008-02-28

    The behavior of water molecules inside and outside 1.1, 2.8, 6.9, and 10.4 nm diameter armchair carbon nanotubes (CNTs) is predicted using molecular dynamics simulations. The effects of CNT diameter on mass density, molecular distribution, and molecular orientation are identified for both the confined and unconfined fluids. Within 1 nm of the CNT surface, unconfined water molecules assume a spatially varying density profile. The molecules distribute nonuniformly around the carbon surface and have preferred orientations. The behavior of the unconfined water molecules is invariant with CNT diameter. The behavior of the confined water, however, can be correlated to tube diameter. Inside the 10.4 nm CNT, the molecular behavior is indistinguishable from that of the unconfined fluid. Within the smaller CNTs, surface curvature effects reduce the equilibrium water density and force water molecules away from the surface. This effect changes both the molecular distribution and preferred molecular orientations.

  5. Differentiation of Volatile Profiles from Stockpiled Almonds at Varying Relative Humidity Levels Using Benchtop and Portable GC-MS.

    Science.gov (United States)

    Beck, John J; Willett, Denis S; Gee, Wai S; Mahoney, Noreen E; Higbee, Bradley S

    2016-12-14

    Contamination by aflatoxin, a toxic metabolite produced by Aspergillus fungi ubiquitous in California almond and pistachio orchards, results in millions of dollars of lost product annually. Current detection of aflatoxin relies on destructive, expensive, and time-intensive laboratory-based methods. To explore an alternative method for the detection of general fungal growth, volatile emission profiles of almonds at varying humidities were sampled using both static SPME and dynamic needle-trap SPE followed by benchtop and portable GC-MS analysis. Despite the portable SPE/GC-MS system detecting fewer volatiles than the benchtop system, both systems resolved humidity treatments and identified potential fungal biomarkers at extremely low water activity levels. This ability to resolve humidity levels suggests that volatile profiles from germinating fungal spores could be used to create an early warning, nondestructive, portable detection system of fungal growth.

  6. On the impact of topography and building mask on time varying gravity due to local hydrology

    Science.gov (United States)

    Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.

    2013-01-01

    We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.

  7. Adsorption mechanism of alkyl polyglucoside (APG) on calcite nanoparticles in aqueous medium at varying pH

    Science.gov (United States)

    Suh, Seokjin; Choi, Kyeong-Ok; Yang, Seung-Chul; Kim, Yeong Eun; Ko, Sanghoon

    2017-07-01

    In this study, adsorption mechanism of alkyl polyglucoside (APG) on calcium carbonate (CaCO3) nanoparticles (CCNPs) in aqueous medium at varying pH was identified. An initial adsorption of APG on CCNP surface seemed to be occurred due to the van der Waals force. An initial surface charge influenced determination of a major driving force, which resulted in hydrogen bonds (pH 7) and the hydrophobic interaction (pH 10) as a main sources of adsorption of APG on the CCNP surface. Even if the initial surface charge of CCNPs had little effect on a quantitative adsorption of APG on CCNPs, eventually, it influence on the definitive adsorption structure between APG and CCNPs and improvement of dispersion stability of CCNPs in water. In conclusion, it was revealed that 0.39% APG aqueous solution was most appropriate to improve the dispersion stability of CCNPs, which is postulated to be used effectively in food and pharmaceutical fields.

  8. Ichthyoplankton gut analysis with relevance to prey availability in the waters of Lamon Bay, northeastern Luzon, Philippines

    Science.gov (United States)

    Bollozos, I.; Yniguez, A. T.; Palermo, J. H.; Cabrera, O. C.; Villanoy, C. L.

    2013-12-01

    The waters in the eastern part of Luzon are highly influenced by the western boundary current system of the western Pacific brought about by the bifurcation of the North Equatorial Current into the Kuroshio and Mindanao Current. Eddies are formed with varying intensities as an effect of the ENSO cycle. Three spatial zones were identified according to prominent current movements and circulations observed during the summer 2011 and 2012 oceanographic cruises. These events also affect the productivity in the surrounding waters. Plankton samples were collected to determine the relative abundances of major groups representing three trophic levels. The abundance and composition of phyto- and zooplankton major groups slightly varied among the zones. Gut analysis of fish larvae was then conducted to determine potential prey preference and linked to the phyto- and zooplankton densities.

  9. Analysis of the importance for the doses of varying parameters in the BIOPATH-program

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1981-01-01

    The doses to individuals and populations from water-borne nuclides leaked from a repository have been calculated earlier using the computer program BIOPATH. The turnover of nuclides in the biosphere is thereby simulated by the application of compartment theory. For the dominant nuclides in the disposal an analysis of the importance of varying parameters has been done, to decide how strongly uncertainties in data will affect resulting doses. The essential part has been the transfer coefficients but also the uptake in the food-chains has been studied. The purpose of the study has also been to make proposals for forthcoming efforts to improve the basis for such calculations. The study shows the great importance of the surface water-soil-groundwater-drinking water system for the dose. Thereby the most important question is the solubility of the nuclides in the different water reservoirs. (Auth.)

  10. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  11. Seismic Characterization of Oceanic Water Masses, Water Mass Boundaries, and Mesoscale Eddies SE of New Zealand

    Science.gov (United States)

    Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell

    2018-02-01

    The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.

  12. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  13. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  14. Adaptive observer-based control for an IPMC actuator under varying humidity conditions

    Science.gov (United States)

    Bernat, Jakub; Kolota, Jakub

    2018-05-01

    As ionic polymer metal composites (IPMC) are increasingly applied to mechatronic systems, many new IPMC modeling efforts have been reported in the literature. The demands of rapidly growing technology has generated interest in advancing the intrinsic actuation and sensing capabilities of IPMC. Classical IPMC applications need constant hydration to operate. On the other hand, for IPMCs operating in air, the water content of the polymer varies with the humidity level of the ambient environment, which leads to its strong humidity-dependent behavior. Furthermore, decreasing water content over time plays a crucial role in the effectiveness of IPMC. Therefore, the primary challenge of this work is to accurately model this phenomenon. The principal contribution of the paper is a new IPMC model, which considers the change of moisture content. A novel nonlinear adaptive observer is designed to determine the unknown electric potential and humidity level in the polymer membrane. This approach effectively determines the moisture content of the IPMC during long-term continuous operation in air. This subsequently allows us to develop an effective back-stepping control algorithm that considers varying moisture content. Data from experiments are presented to support the effectiveness of the observation process, which is shown in illustrative examples.

  15. Identifying and classifying water hyacinth (Eichhornia crassipes) using the HyMap sensor

    Science.gov (United States)

    Rajapakse, Sepalika S.; Khanna, Shruti; Andrew, Margaret E.; Ustin, Susan L.; Lay, Mui

    2006-08-01

    In recent years, the impact of aquatic invasive species on biodiversity has become a major global concern. In the Sacramento-San Joaquin Delta region in the Central Valley of California, USA, dense infestations of the invasive aquatic emergent weed, water hyacinth (Eichhornia crassipes) interfere with ecosystem functioning. This silent invader constantly encroaches into waterways, eventually making them unusable by people and uninhabitable to aquatic fauna. Quantifying and mapping invasive plant species in aquatic ecosystems is important for efficient management and implementation of mitigation measures. This paper evaluates the ability of hyperspectral imagery, acquired using the HyMap sensor, for mapping water hyacinth in the Sacramento-San Joaquin Delta region. Classification was performed on sixty-four flightlines acquired over the study site using a decision tree which incorporated Spectral Angle Mapper (SAM) algorithm, absorption feature parameters in the spectral region between 0.4 and 2.5μm, and spectral endmembers. The total image dataset was 130GB. Spectral signatures of other emergent aquatic species like pennywort (Hydrocotyle ranunculoides) and water primrose (Ludwigia peploides) showed close similarity with the water hyacinth spectrum, however, the decision tree successfully discriminated water hyacinth from other emergent aquatic vegetation species. The classification algorithm showed high accuracy (κ value = 0.8) in discriminating water hyacinth.

  16. The effect of varying duration of water restriction on drinking behaviour, welfare and production of lactating sows.

    Science.gov (United States)

    Jensen, M B; Schild, S-L A; Theil, P K; Andersen, H M-L; Pedersen, L J

    2016-06-01

    Access to drinking water is essential for animal welfare, but it is unclear if temporary water restriction during the night represents a welfare problem. The aim of the present study was to investigate the effect of various durations of nightly restriction of water on thirst in loose housed lactating sows from day 10 to 28 of lactation. A total of 48 sows were deprived of water for either 0 h (n=12; control), 3 h (n=12; 0500 to 0800 h), 6 h (n=12; 0200 to 0800 h) or 12 h (n=12; 2000 to 0800 h). Control sows consumed 22% of their water intake during the night (2000 to 0800 h), whereas water consumption during this time was reduced to 13%, 7% and 0% in sows restricted for 3, 6 and 12 h. With increased duration of nightly water restriction a reduced latency to drink (26.8, 18.0, 5.3 and 6.7 min for 0, 3, 6 and 12 h sows; Pbehaviour or performance. In conclusion, behavioural indicators of thirst increased with increasing duration of nightly water restriction in lactating sows.

  17. Identifying Hotspots in Land and Water Resource Uses on the Way towards Achieving the Sustainable Development Goals

    Science.gov (United States)

    Palazzo, A.; Havlik, P.; Van Dijk, M.; Leclere, D.

    2017-12-01

    Agriculture plays a key role in achieving adequate food, water, and energy security (as summarized in the Sustainable Development Goals SDGs) as populations grow and incomes rise. Yet, agriculture is confronted with an enormous challenge to produce more using less. Land and water resources are projected to be strongly affected by climate change demand and agriculture faces growing competition in the demand for these resources. To formulate policies that contribute to achieving the SDGs, policy makers need assessments that can anticipate and navigate the trade-offs within the water/land/energy domain. Assessments that identify locations or hotspots where trade-offs between the multiple, competing users of resources may exist must consider both the local scale impacts of resource use as well as regional scale socioeconomic trends, policies, and international markets that further contribute to or mitigate the impacts of resource trade-offs. In this study, we quantify impacts of increased pressure on the land system to provide agricultural and bioenergy products under increasingly scarce water resources using a global economic and land use model, GLOBIOM. We model the supply and demand of agricultural products at a high spatial resolution in an integrated approach that considers the impacts of global change (socioeconomic and climatic) on the biophysical availability and the growing competition of land and water. We also developed a biodiversity module that relates changes in land uses to changes in local species richness and global species extinction risk. We find that water available for agriculture and freshwater ecosystems decreases due to climate change and growing demand from other sectors (domestic, energy and industry) (Fig 1). Climate change impacts will limit areas suitable for irrigation and may lead to an expansion of rainfed areas in biodiverse areas. Impacts on food security from climate change are significant in some regions (SSA and SA) and policies

  18. Water consumption in Iron Age, Roman, and Early Medieval Croatia.

    Science.gov (United States)

    Lightfoot, E; Slaus, M; O'Connell, T C

    2014-08-01

    Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. © 2014 Wiley Periodicals, Inc.

  19. A Microbial Signature Approach to Identify Fecal Pollution in the Waters Off an Urbanized Coast of Lake Michigan

    Science.gov (United States)

    Newton, Ryan J.; Bootsma, Melinda J.; Morrison, Hilary G.; Sogin, Mitchell L.

    2014-01-01

    Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in

  20. Identifying The Effective Factors for Cost Overrun and Time Delay in Water Construction Projects

    Directory of Open Access Journals (Sweden)

    D. Mirzai Matin

    2016-08-01

    Full Text Available Water construction projects in Iran frequently face problems which cause cost overrun and time delay, the two most common issues in construction projects in general. The objective of this survey is to identify and quantify these problems and thus help in avoiding them. This survey represents a collection of the most significant problems found in the literature, classified into 11 groups according to their source. The questionnaire form used contains 84 questions which were answered by random engineers who work in water construction projects. The Relative Importance Weight (RIW method is used to weight the importance of each one of the 84 problems. The focus of this survey is on overall top ten issues which are: bureaucracy in bidding method, inflation, economical condition of the government, not enough information gathered and surveys done before design, monthly payment difficulties, material cost changes, law changes by the government, financial difficulties, mode of financing and payment for completed work and changes made by the owner. A section for each of these issues provides additional information about them. In the full text of this survey the same weighting method is used to classify the main groups, and the results show that issues related to the groups of government, owner and consultant has the most significant impact. The last part of this survey describes the point of view of the engineers who took part in this survey and the recommendations they made.

  1. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  2. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  3. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  4. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  5. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Description of children identified as suffering from MAM in Bangladesh: Varying results based on case definitions

    International Nuclear Information System (INIS)

    Waid, Jillian

    2014-01-01

    Full text: Background: There is a wide discrepancy between the proportion of children classified as acutely malnourished when MUAC criteria are used compared to weight for height. This has greatly complicated setting targets for the coverage of SAM and MAM programs in Bangladesh. This difference is much larger for children identified with MAM than for those with SAM, largely because identification as MAM can overlap both with SAM and with children not identified as acutely malnourished. Objective: To review existing data sets in order to determine the relationship between MUAC and other anthropometric measures, helping to provide a better understanding of the implications of different admission criteria to therapeutic and supplementary feeding programs. Methodology: This study uses data collected through national nutritional surveillance projects over multiple seasons in Bangladesh. For the years 1990 to 2006, sub-samples of data from the Nutritional Surveillance Project were pulled from areas of the country that remained constant over a set period. Data from 2010 to 2012 was pulled from the Food Security and Nutrition Surveillance Project. Case definition: Cases of moderate acute malnutrition were identified using MUAC- for-age z-scores (-3>z-score>-2), MUAC cut-offs (115mm>MUAC>125mm), and weight-for-height z-scores (-3>z-score>-2). Results: In all years more than 50% of all children identified as moderately malnourished were classified as such by only one measure (1990 selected sub-districts: 52%, 2012 national sample: 69%) In 1990 a higher proportion of children were categorized as moderately malnourished based on MUAC-for-age z-scores than by weight for height z-scores, but since 2000 the opposite has been true. This change is closely tied to the increasing height of children sampled, due to the declining rates of stunting in the country. After controlling for age and weight-for-height z-scores, an increase in height of one cm was associated with an increase

  7. Computing and visualizing time-varying merge trees for high-dimensional data

    Energy Technology Data Exchange (ETDEWEB)

    Oesterling, Patrick [Univ. of Leipzig (Germany); Heine, Christian [Univ. of Kaiserslautern (Germany); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheuermann, Gerik [Univ. of Leipzig (Germany)

    2017-06-03

    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

  8. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng; Perry, Robert J.; Wood, Benjamin R.; Spiry, Irina; Freeman, Charles J.; Heldebrant, David J.

    2017-04-12

    This paper investigates the CO2 and N2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO2 and N2 O at representative lean (0.04 mol CO2/mol alkalinity), middle (0.13 mol CO2 /mol alkalinity) and rich (0.46 mol CO2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N2 O at (0.08-0.09 mol CO2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO2 and N2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO2 in GAP-1/TEG is linked to the physical solubility of CO2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO2 capture in water-lean solvents.

  9. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  10. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  11. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  12. Holographic cinematography of time-varying reflecting and time-varying phase objects using a Nd:YAG laser

    Science.gov (United States)

    Decker, A. J.

    1982-01-01

    The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.

  13. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  14. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  15. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  16. Computational issues of solving the 1D steady gradually varied flow equation

    Directory of Open Access Journals (Sweden)

    Artichowicz Wojciech

    2014-09-01

    Full Text Available In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the wellknown standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.

  17. Identifying the principal driving factors of water ecosystem dependence and the corresponding indicator species in a pilot City, China

    Science.gov (United States)

    Zhao, C. S.; Shao, N. F.; Yang, S. T.; Xiang, H.; Lou, H. Z.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Zhang, C. B.; Yu, Q.

    2018-01-01

    The world's aquatic ecosystems yield numerous vital services, which are essential to human existence but have deteriorated seriously in recent years. By studying the mechanisms of interaction between ecosystems and habitat processes, the constraining factors can be identified, and this knowledge can be used to improve the success rate of ecological restoration initiatives. At present, there is insufficient data on the link between hydrological, water quality factors and the changes in the structure of aquatic communities to allow any meaningful study of driving factors of aquatic ecosystems. In this study, the typical monitoring stations were selected by fuzzy clustering analysis based on the spatial and temporal distribution characteristics of water ecology in Jinan City, the first pilot city for the construction of civilized aquatic ecosystems in China. The dominant species identification model was used to identify the dominant species of the aquatic community. The driving effect of hydrological and water quality factors on dominant species was analyzed by Canonical Correspondence Analysis. Then, the principal factors of aquatic ecosystem dependence were selected. The results showed that there were 10 typical monitoring stations out of 59 monitoring sites, which were representative of aquatic ecosystems, 9 dominant fish species, and 20 dominant invertebrate species. The selection of factors for aquatic ecosystem dependence in Jinan were highly influenced by its regional conditions. Chemical environmental parameters influence the temporal and spatial variation of invertebrate much more than that of fish in Jinan City. However, the methodologies coupling typical monitoring stations selection, dominant species determination and driving factors identification were certified to be a cost-effective way, which can provide in-deep theoretical and technical directions for the restoration of aquatic ecosystems elsewhere.

  18. Water-hammer in the feed-water pipes for PWR steam generators

    International Nuclear Information System (INIS)

    Gonnet, Bernard; Leroy, Claude; Oullion, Jean; Yazidjian, J.-C.

    1979-01-01

    PWR boiler water feed pipes have been known for several years to be affected by violent water-hammer during start-ups and operation of the plant. In view of the varying results of corrective design modifications in America and Europe, FRAMATOME undertook an experimental research programme which resulted in the adoption of cruciform tubes on the feed-water distributor as the most reliable solution. Subsequent tests at Fessenheim I confirmed the effectiveness of this device [fr

  19. Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate

    Science.gov (United States)

    Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.

    2017-12-01

    Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.

  20. A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2013-07-01

    Full Text Available A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs, which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment, and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr−1, and municipal water between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  1. Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft

    Science.gov (United States)

    Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,

    2011-01-01

    Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.

  2. Time-varying Capital Requirements and Disclosure Rules

    DEFF Research Database (Denmark)

    Kragh, Jonas; Rangvid, Jesper

    , implying that resilience in the banking system is also increased. The increase in capital ratios is partly due to a modest reduction in lending. Using a policy changes, we show that banks react stronger to changes in capital requirements when these are public. Our results further suggest that the impact......Unique and confidential Danish data allow us to identify how changes in disclosure requirements and bank-specific time-varying capital requirements affect banks' lending and capital accumu-lation decisions. We find that banks increase their capital ratios after capital requirements are increased...... of capital requirements differ for small and large banks. Large banks raise their capital ratios more, reduce lending less, and accumulate more new capital compared to small banks....

  3. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    Science.gov (United States)

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  4. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  5. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  6. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  7. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  8. Excess water dynamics in hydrotalcite: QENS study

    Indian Academy of Sciences (India)

    dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random transla- tional jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the ...

  9. SCS-CN and GIS-based approach for identifying potential water ...

    Indian Academy of Sciences (India)

    economic and social development. Human popu- lation of the ... or by making changes in land management. Micro- ... and socio-economic conditions. However ... tial Global Position System (DGPS). A second ..... soil moisture accounting procedure; Water Resources ... ISPRS Journal of Photogrammetry & Remote Sensing.

  10. The role of periodically varying discharge on river plume structure and transport

    Science.gov (United States)

    Yuan, Yeping; Horner-Devine, Alexander R.; Avener, Margaret; Bevan, Shaun

    2018-04-01

    We present results from laboratory experiments that simulate the effects of periodically varying discharge on buoyant coastal plumes. Freshwater is discharged into a two meter diameter tank filled with saltwater on a rotating table. The mean inflow rate, tank rotation period and density of the ambient salt water are varied to simulate a range of inflow Froude and Rossby numbers. The amplitude and the period of the inflow modulation are varied across a range that simulates variability due to tides and storms. Using the optical thickness method, we measure the width and depth of the plume, plume volume and freshwater retention rate in the plume. With constant discharge, freshwater is retained in a growing anticyclonic bulge circulation near the river mouth, as observed in previous studies. When the discharge is varied, the bulge geometry oscillates between a circular plume structure that extends mainly in the offshore direction, and a compressed plume structure that extends mainly in the alongshore direction. The oscillations result in periodic variations in the width and depth of the bulge and the incidence angle formed where the bulge flow re-attaches with the coastal wall. The oscillations are more pronounced for longer modulation periods, but are relatively insensitive to the modulation amplitude. A phase difference between the time varying transport within the bulge and bulge geometry determines the fraction of the bulge flow discharged into the coastal current. As a result, the modulation period determines the variations in amount of freshwater that returns to the bulge. Freshwater retention in the bulge is increased in longer modulation periods and more pronounced for larger modulation amplitudes.

  11. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  12. Caries status in 16 year-olds with varying exposure to water fluoridation in Ireland.

    LENUS (Irish Health Repository)

    Mullen, J

    2012-12-01

    Most of the Republic of Ireland\\'s public water supplies have been fluoridated since the mid-1960s while Northern Ireland has never been fluoridated, apart from some small short-lived schemes in east Ulster.

  13. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  14. A varying-α brane world cosmology

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-08-01

    We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)

  15. A categorization of water system breakdowns: Evidence from Liberia, Nigeria, Tanzania, and Uganda.

    Science.gov (United States)

    Klug, Tori; Cronk, Ryan; Shields, Katherine F; Bartram, Jamie

    2018-04-01

    In rural sub-Saharan Africa, one in three handpumps are non-functional at any time. While there is some evidence describing factors associated with non-functional water systems, there is little evidence describing the categories of water system breakdowns that commonly occur. Insufficient water availability from broken down systems can force people to use unimproved water sources, which undermines the health benefits of an improved water source. We categorized common water system breakdowns using quantitative and qualitative monitoring data from Liberia, Nigeria, Tanzania, and Uganda (each N>3600 water systems) and examined how breakdown category varies by water system type and management characteristics. Specific broken parts were mentioned more frequently than all other reasons for breakdown; hardware parts frequently found at fault for breakdown were aprons (Liberia), pipes (Tanzania and Uganda), taps/spouts (Tanzania and Uganda), and lift mechanisms (Nigeria). Statistically significant differences in breakdown category were identified based on system type, age, management type, and fee collection type. Categorization can help to identify common reasons for water system breakdown. The analysis of these data can be used to develop improved monitoring instruments to inform actors of different breakdown types and provide reasons for system non-functionality. Improved monitoring instruments would enable actors to target appropriate resources to address specific breakdowns likely to arise based on system type and management characteristics in order to inform improved implementation of and post-construction support for water systems in sub-Saharan Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  17. Water quality in six sequentially disposed fishponds with continuous water flow - DOI: 10.4025/actascibiolsci.v32i1.3436 Water quality in six sequentially disposed fishponds with continuous water flow - DOI: 10.4025/actascibiolsci.v32i1.3436

    Directory of Open Access Journals (Sweden)

    Elaine Mirela Lourenço

    2009-12-01

    Full Text Available This study evaluated selected limnological variables in inlet water in six sequentially distributed semi-intensive fishponds. Data were collected during 15 consecutive days in three distinct grow-out periods (May, October and January. Only phosphorus and pH varied among sites and periods (p 0.05 occurred in the cases of nitrite and dissolved oxygen. No variation was reported with regard to dissolved oxygen, conductivity, alkalinity, free CO2, bicarbonate, chlorophyll-α, nitrite and ammonia did not vary throughout the period (p > 0.05. In May, or rather, the final grow-out period, the fishponds displayed high concentrations, mainly in nitrogen compounds. As from fishpond 3, the inlet water contained high levels of nutrients. The water is passed from pond to pond, evidencing the need for management practices adequate to the specific conditions of each pond. Water quality should be monitored more frequently during high grow-out period when food addition is more intense. Thereafter, more care should be taken, as highest phosphorus concentrations occurred in May.This study evaluated selected limnological variables in inlet water in six sequentially distributed semi-intensive fishponds. Data were collected during 15 consecutive days in three distinct grow-out periods (May, October and January. Only phosphorus and pH varied among sites and periods (p 0.05 occurred in the cases of nitrite and dissolved oxygen. No variation was reported with regard to dissolved oxygen, conductivity, alkalinity, free CO2, bicarbonate, chlorophyll-a, nitrite and ammonia did not vary throughout the period (p > 0.05. In May, or rather, the final grow-out period, the fishponds displayed high concentrations, mainly in nitrogen compounds. As from fishpond 3, the inlet water contained high levels of nutrients. The water is passed from pond to pond, evidencing the need for management practices adequate to the specific conditions of each pond. Water quality should be monitored

  18. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances.

    Science.gov (United States)

    Kaboré, Hermann A; Vo Duy, Sung; Munoz, Gabriel; Méité, Ladji; Desrosiers, Mélanie; Liu, Jinxia; Sory, Traoré Karim; Sauvé, Sébastien

    2018-03-01

    In the last decade or so, concerns have arisen with respect to the widespread occurrence of perfluoroalkyl acids (PFAAs) in the environment, food, drinking water, and humans. In this study, the occurrence and levels of a large range of perfluoroalkyl and polyfluoroalkyl substances (PFASs) were investigated in drinking water (bottled and tap water samples) from various locations around the world. Automated off-line solid phase extraction followed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was used to analyze PFASs of various chain lengths and functional groups. In total, 29 target and 104 suspect-target PFASs were screened in drinking water samples (n=97) from Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the USA) in 2015-2016. Out of the 29 PFASs quantitatively analyzed, perfluorocarboxylates (PFCAs: C 4/14 ), perfluoroalkane sulfonates (PFSAs: C 4 , C 6 , C 8 ), and perfluoroalkyl acid precursors (e.g., 5:3 fluorotelomer carboxylate (5:3 FTCA)) were recurrently detected in drinking water samples (concentration range: water samples from Canada showed noteworthy differences depending on their source; for instance, ∑ 29 PFASwas significantly greater in those produced from the Great Lakes/St. Lawrence River ecosystem than those produced from other types of sources (14 versus 5.3ngL -1 , respectively). A suspect-target screening approach indicated that other perfluoroalkane sulfonamides (FBSA, FHxSA), perfluoroethyl cyclohexane sulfonate (PFECHS), ultrashort chain (C 2 -C 3 ) PFSAs (PFEtS, PFPrS), and two additional PFSAs (PFPeS (C 5 ) and PFHpS (C 7 )) were repeatedly present in tap water samples (concentration ranges: water. According to the newly updated US EPA health advisory for PFOS and PFOA (70ngL -1 ), the drinking water samples collected in the present monitoring would not pose a health risk to consumers as regards PFAA levels. Copyright © 2017 Elsevier B

  19. The effect of spatially varying velocity field on the transport of radioactivity in a porous medium.

    Science.gov (United States)

    Sen, Soubhadra; Srinivas, C V; Baskaran, R; Venkatraman, B

    2016-10-01

    In the event of an accidental leak of the immobilized nuclear waste from an underground repository, it may come in contact of the flow of underground water and start migrating. Depending on the nature of the geological medium, the flow velocity of water may vary spatially. Here, we report a numerical study on the migration of radioactivity due to a space dependent flow field. For a detailed analysis, seven different types of velocity profiles are considered and the corresponding concentrations are compared. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Consumer responses to time varying prices for electricity

    International Nuclear Information System (INIS)

    Thorsnes, Paul; Williams, John; Lawson, Rob

    2012-01-01

    We report new experimental evidence of the household response to weekday differentials in peak and off-peak electricity prices. The data come from Auckland, New Zealand, where peak residential electricity consumption occurs in winter for heating. Peak/off-peak price differentials ranged over four randomly selected groups from 1.0 to 3.5. On average, there was no response except in winter. In winter, participant households reduced electricity consumption by at least 10%, took advantage of lower off-peak prices but did not respond to the peak price differentials. Response varied with house and household size, time spent away from home, and whether water was heated with electricity. - Highlights: ► Seasonal effects in winter. ► High conservation effect from information. ► Higher peak prices no effect on peak use. ► Low off-peak prices encourage less conservation off-peak.

  1. Varying occurrence of extended-spectrum beta-lactamase bacteria among three produce types

    KAUST Repository

    Toh, Benjamin E. W.; Bokhari, Osama Mohammed; Kutbi, Abdullah; Haroon, Mohamed; Mantilla-Calderon, David; Zowawi, Hosam; Hong, Pei-Ying

    2017-01-01

    Three types of vegetables were sampled and evaluated over 1.5 years to determine differences in their associated bacterial isolates. Particular emphasis was placed on identifying pathogenic strains that were positive for extended spectrum beta-lactamase (ESBL). Quantitative estimates of the microbial risk associated with the ESBL-positive pathogens showed that different produce types may incur varying levels of ingestion risk. Most of the currently reported ESBL-positive bacterial isolates have been identified in nosocomial environments. However, the carriage of such drug-resistant bacteria in vegetables suggests a possible connection between our daily diet and human health.

  2. A national look at water quality

    Science.gov (United States)

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  3. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  4. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  5. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals

    Science.gov (United States)

    Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.

    2014-01-01

    This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437

  6. Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Warish Ahmed

    2016-05-01

    Full Text Available Microbial source tracking (MST endeavors to determine sources of fecal pollution in environmental waters by capitalizing on the association of certain microorganisms with the gastrointestinal tract and feces of specific animal groups. Several decades of research have shown that bacteria belonging to the gut-associated order Bacteroidales, and particularly the genus Bacteroides, tend to co-evolve with the host, and are, therefore, particularly suitable candidates for MST applications. This review summarizes the current research on MST methods that employ genes belonging to Bacteroidales/Bacteroides as tracers or “markers” of sewage pollution, including known advantages and deficiencies of the many polymerase chain reaction (PCR-based methods that have been published since 2000. Host specificity is a paramount criterion for confidence that detection of a marker is a true indicator of the target host. Host sensitivity, or the prevalence of the marker in feces/waste from the target host, is necessary for confidence that absence of the marker is indicative of the absence of the pollution source. Each of these parameters can vary widely depending on the type of waste assessed and the geographic location. Differential decay characteristics of bacterial targets and their associated DNA contribute to challenges in interpreting MST results in the context of human health risks. The HF183 marker, derived from the 16S rRNA gene of Bacteroides dorei and closely related taxa, has been used for almost two decades in MST studies, and is well characterized regarding host sensitivity and specificity, and in prevalence and concentration in sewage in many countries. Other markers such as HumM2 and HumM3 show promise, but require further performance testing to demonstrate their widespread utility. An important limitation of the one-marker-one-assay approach commonly used for MST is that given the complexities of microbial persistence in environmental waters, and

  7. Identifying water mass depletion in northern Iraq observed by GRACE

    NARCIS (Netherlands)

    Mulder, G.; Olsthoorn, T.N.; Al-manmi, D.A.M.A.; Schrama, E.J.O.; Smidt, E.H.

    2015-01-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 146 ± 6 mm equivalent water height (EWH) in northern Iraq between 2007 and 2009. These data are used as an independent validation of lake mass variations and a rainfall-runoff model, which is

  8. Water Footprint and Virtual Water Trade of Brazil

    Directory of Open Access Journals (Sweden)

    Vicente de Paulo R. da Silva

    2016-11-01

    Full Text Available Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual water trade focused on virtual water importers or water-scarce countries, this is the first study to concentrate on a water-abundant virtual water-exporting country. Besides, it is the first study establishing international virtual water trade balances per state, which is relevant given the fact that water scarcity varies across states within the country, so the origin of virtual water exports matters. The results show that the average water footprint of Brazilian food consumption is 1619 m3/person/year. Beef contributes most (21% to this total. We find a net virtual water export of 54.8 billion m3/year, mainly to Europe, which imports 41% of the gross amount of the virtual water exported from Brazil. The northeast, the region with the highest water scarcity, has a net import of virtual water. The southeast, next in terms of water scarcity, shows large virtual water exports, mainly related to the export of sugar. The north, which has the most water, does not show a high virtual water export rate.

  9. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. RESULTS: Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained....... The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water...

  10. Tolerable Time-Varying Overflow on Grass-Covered Slopes

    Directory of Open Access Journals (Sweden)

    Steven A. Hughes

    2015-03-01

    Full Text Available Engineers require estimates of tolerable overtopping limits for grass-covered levees, dikes, and embankments that might experience steady overflow. Realistic tolerance estimates can be used for both resilient design and risk assessment. A simple framework is developed for estimating tolerable overtopping on grass-covered slopes caused by slowly-varying (in time overtopping discharge (e.g., events like storm surges or river flood waves. The framework adapts the well-known Hewlett curves of tolerable limiting velocity as a function of overflow duration. It has been hypothesized that the form of the Hewlett curves suggests that the grass erosion process is governed by the flow work on the slope above a critical threshold velocity (referred to as excess work, and the tolerable erosional limit is reached when the cumulative excess work exceeds a given value determined from the time-dependent Hewlett curves. The cumulative excess work is expressed in terms of overflow discharge above a critical discharge that slowly varies in time, similar to a discharge hydrograph. The methodology is easily applied using forecast storm surge hydrographs at specific locations where wave action is minimal. For preliminary planning purposes, when storm surge hydrographs are unavailable, hypothetical equations for the water level and overflow discharge hydrographs are proposed in terms of the values at maximum overflow and the total duration of overflow. An example application is given to illustrate use of the methodology.

  11. Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication

    Directory of Open Access Journals (Sweden)

    Suelen Cristina Alves da Silva

    2014-06-01

    Full Text Available AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i through two‑way ANOVAs considering the stand extent (m and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand; and ii through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.

  12. The joint effects of water and sanitation on diarrhoeal disease: a multicountry analysis of the Demographic and Health Surveys.

    Science.gov (United States)

    Fuller, James A; Westphal, Joslyn A; Kenney, Brooke; Eisenberg, Joseph N S

    2015-03-01

    To assess whether the joint effects of water and sanitation infrastructure, are acting antagonistically (redundant services preventing the same cases of diarrhoeal disease), independently, or synergistically; and to assess how these effects vary by country and over time. We used data from 217 Demographic and Health Surveys conducted in 74 countries between 1986 and 2013. We used modified Poisson regression to assess the impact of water and sanitation infrastructure on the prevalence of diarrhoea among children under 5. The impact of water and sanitation varied across surveys, and adjusting for socio-economic status drove these estimates towards the null. Sanitation had a greater effect than water infrastructure when all 217 surveys were pooled; however, the impact of sanitation diminished over time. Based on survey data from the past 10 years, we saw no evidence for benefits in improving drinking water or sanitation alone, but we estimated a 6% reduction of both combined (prevalence ratio = 0.94, 95% confidence limit 0.91-0.98). Water and sanitation interventions should be combined to maximise the number of cases of diarrhoeal disease prevented in children under 5. Further research should identify the sources of variability seen between countries and across time. These national surveys likely include substantial measurement error in the categorisation of water and sanitation, making it difficult to interpret the roles of other pathways. © 2014 John Wiley & Sons Ltd.

  13. Coastal upwelling ecosystems are often identified as regions ...

    African Journals Online (AJOL)

    spamer

    ... are often identified as regions susceptible to seasonal blooms of harmful ... that the bay acts as a net importer of bottom water and net exporter of surface waters over a synoptic cycle. This ... waves or wind stress on the surface friction layer.

  14. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    Science.gov (United States)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  15. Volatility spillover and time-varying conditional correlation between DDGS, corn, and soybean meal markets

    NARCIS (Netherlands)

    Etienne, Xiaoli L.; Trujillo-Barrera, Andrés; Hoffman, Linwood A.

    2017-01-01

    We find distiller's dried grains with solubles (DDGS) prices to be positively correlated with both corn and soybean meal prices in the long run. However, neither corn nor soybean meal prices respond to deviations from this long-run relationship. We also identify strong time-varying dynamic

  16. Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages

    Science.gov (United States)

    ... Food Resources for You Consumers FDA Regulates the Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages ... addition, the flavorings and nutrients added to these beverages must comply with all applicable FDA safety requirements and they must be identified in the ...

  17. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  18. Elasticity and electrical resistivity of chalk and greensand during water flooding with selective ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Alexeev, Artem

    2018-01-01

    is water-wet after flooding. Greensand remained mixed wet throughout the experiments. Electrical resistivity data are in agreement with this interpretation. The electrical resistivity data during flooding revealed that the formation brine is not fully replaced by the injected water in both chalk......Water flooding with selective ions has in some cases lead to increased oil recovery. We investigate the physical processes on a pore scale that are responsible for changes in petrophysical and mechanical properties of four oil-bearing chalk and four oil-bearing greensand samples caused by flooding...... with brines containing varying amounts of dissolved NaCl, Na2SO4, MgCl2 and MgSO4. Ultrasonic P-wave velocity and AC resistivity measurements were performed prior to, during and after flow through experiments in order to identify and quantify the processes related to water flooding with selective ions. Low...

  19. Identifying Energy Savings in Water and Wastewater Plants - West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  20. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria

    Science.gov (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  1. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  2. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    International Nuclear Information System (INIS)

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-01-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H 2 O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in 2 H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D 2 O was used instead of H 2 O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles

  3. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions.

    Science.gov (United States)

    Xu, Bingcheng; Xu, Weizhou; Wang, Zhi; Chen, Zhifei; Palta, Jairo A; Chen, Yinglong

    2018-01-01

    Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C 3 legume), were examined when intercropped with Bothriochloa ischaemum (C 4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica , but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica . The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating

  4. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions

    Directory of Open Access Journals (Sweden)

    Bingcheng Xu

    2018-02-01

    Full Text Available Water and fertilizers affect the nitrogen (N and phosphorus (P acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root and plant level of Lespedeza davurica (C3 legume, were examined when intercropped with Bothriochloa ischaemum (C4 grass. The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC, -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1–17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering

  5. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

    International Nuclear Information System (INIS)

    Zhang Yunong; Li Zhan

    2009-01-01

    In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

  6. Measuring sporadic gastrointestinal illness associated with drinking water - an overview of methodologies.

    Science.gov (United States)

    Bylund, John; Toljander, Jonas; Lysén, Maria; Rasti, Niloofar; Engqvist, Jannes; Simonsson, Magnus

    2017-06-01

    There is an increasing awareness that drinking water contributes to sporadic gastrointestinal illness (GI) in high income countries of the northern hemisphere. A literature search was conducted in order to review: (1) methods used for investigating the effects of public drinking water on GI; (2) evidence of possible dose-response relationship between sporadic GI and drinking water consumption; and (3) association between sporadic GI and factors affecting drinking water quality. Seventy-four articles were selected, key findings and information gaps were identified. In-home intervention studies have only been conducted in areas using surface water sources and intervention studies in communities supplied by ground water are therefore needed. Community-wide intervention studies may constitute a cost-effective alternative to in-home intervention studies. Proxy data that correlate with GI in the community can be used for detecting changes in the incidence of GI. Proxy data can, however, not be used for measuring the prevalence of illness. Local conditions affecting water safety may vary greatly, making direct comparisons between studies difficult unless sufficient knowledge about these conditions is acquired. Drinking water in high-income countries contributes to endemic levels of GI and there are public health benefits for further improvements of drinking water safety.

  7. Vision in water.

    Science.gov (United States)

    Atchison, David A; Valentine, Emma L; Gibson, Georgina; Thomas, Hannah R; Oh, Sera; Pyo, Young Ah; Lacherez, Philippe; Mathur, Ankit

    2013-09-06

    The purpose of this study is to determine visual performance in water, including the influence of pupil size. The water environment was simulated by placing goggles filled with saline in front of the eyes with apertures placed at the front of the goggles. Correction factors were determined for the different magnification under this condition in order to estimate vision in water. Experiments were conducted on letter visual acuity (seven participants), grating resolution (eight participants), and grating contrast sensitivity (one participant). For letter acuity, mean loss of vision in water, compared to corrected vision in air, varied between 1.1 log min of arc resolution (logMAR) for a 1 mm aperture to 2.2 logMAR for a 7 mm aperture. The vision in min of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2 mm aperture to 1.2 logMAR for a 6 mm aperture. Contrast sensitivity for a 2 mm aperture deteriorated as spatial frequency increased with a 2 log unit loss by 3 c/°. Superimposed on this deterioration were depressions (notches) in sensitivity with the first three notches occurring at 0.45, 0.8, and 1.3 c/° with estimates for water of 0.39, 0.70, and 1.13 c/°. In conclusion, vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.

  8. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  9. An Excel Macro to Plot the HFE-Diagram to Identify Sea Water Intrusion Phases.

    Science.gov (United States)

    Giménez-Forcada, Elena; Sánchez San Román, F Javier

    2015-01-01

    A hydrochemical facies evolution diagram (HFE-D) is a multirectangular diagram, which is a useful tool in the interpretation of sea water intrusion processes. This method note describes a simple method for generating an HFE-D plot using the spreadsheet software package, Microsoft Excel. The code was applied to groundwater from the alluvial coastal plain of Grosseto (Tuscany, Italy), which is characterized by a complex salinization process in which sea water mixes with sulfate or bicarbonate recharge water. © 2014, National GroundWater Association.

  10. Exposure to Fluoride in Drinking Water and Hip Fracture Risk: A Meta-Analysis of Observational Studies

    OpenAIRE

    Yin, Xin-Hai; Huang, Guang-Lei; Lin, Du-Ren; Wan, Cheng-Cheng; Wang, Ya-Dong; Song, Ju-Kun; Xu, Ping

    2015-01-01

    Background Many observational studies have shown that exposure to fluoride in drinking water is associated with hip fracture risk. However, the findings are varied or even contradictory. In this work, we performed a meta-analysis to assess the relationship between fluoride exposure and hip fracture risk. Methods PubMed and EMBASE databases were searched to identify relevant observational studies from the time of inception until March 2014 without restrictions. Data from the included studies w...

  11. Magnetohydrodynamic Stability of Streaming Jet Pervaded Internally by Varying Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Alfaisal A. Hasan

    2012-01-01

    Full Text Available The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying transverse magnetic field has been discussed. The problem is formulated, the basic equations are solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed analytically, and the results are verified numerically. The capillary force is destabilizing in a small axisymmetric domain 0<<1 and stabilizing otherwise. The streaming has a strong destabilizing effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing effect on the model. The effect of all acting forces altogether could be identified via the numerical analysis of the stability theory of the present model.

  12. Sensitivity of Ocean Reflectance Inversion Models for Identifying and Discriminating Between Phytoplankton Functional Groups

    Science.gov (United States)

    Werdell, P. Jeremy; Ooesler, Collin S.

    2012-01-01

    The daily, synoptic images provided by satellite ocean color instruments provide viable data streams for observing changes in the biogeochemistrY of marine ecosystems. Ocean reflectance inversion models (ORMs) provide a common mechanism for inverting the "color" of the water observed a satellite into marine inherent optical properties (lOPs) through a combination of empiricism and radiative transfer theory. lOPs, namely the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents, describe the contents of the upper ocean, information critical for furthering scientific understanding of biogeochemical oceanic processes. Many recent studies inferred marine particle sizes and discriminated between phytoplankton functional groups using remotely-sensed lOPs. While all demonstrated the viability of their approaches, few described the vertical distributions of the water column constituents under consideration and, thus, failed to report the biophysical conditions under which their model performed (e.g., the depth and thickness of the phytoplankton bloom(s)). We developed an ORM to remotely identifY Noctiluca miliaris and other phytoplankton functional types using satellite ocean color data records collected in the northern Arabian Sea. Here, we present results from analyses designed to evaluate the applicability and sensitivity of the ORM to varied biophysical conditions. Specifically, we: (1) synthesized a series of vertical profiles of spectral inherent optical properties that represent a wide variety of bio-optical conditions for the northern Arabian Sea under aN Miliaris bloom; (2) generated spectral remote-sensing reflectances from these profiles using Hydrolight; and, (3) applied the ORM to the synthesized reflectances to estimate the relative concentrations of diatoms and N Miliaris for each example. By comparing the estimates from the inversion model to those from synthesized vertical profiles, we were able to

  13. Spacetime-varying couplings and Lorentz violation

    International Nuclear Information System (INIS)

    Kostelecky, V. Alan; Lehnert, Ralf; Perry, Malcolm J.

    2003-01-01

    Spacetime-varying coupling constants can be associated with violations of local Lorentz invariance and CPT symmetry. An analytical supergravity cosmology with a time-varying fine-structure constant provides an explicit example. Estimates are made for some experimental constraints

  14. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  15. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    Science.gov (United States)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  16. Oxygen isotopic composition of sulphates from some mineral waters and mine waters in western Bohemia

    International Nuclear Information System (INIS)

    Smejkal, V.

    1979-01-01

    Two main genetic types of sulphate can be distinguished according to the delta 18 O(SO 4 2- ) measurements in sulphate-rich mineral and mine waters of western Bohemia - sulphates in descending mine waters and in weathered outcrops of graphitic pyrite slates from areas outside Tertiary basins, which originated in recent time by the oxidation of sulphides in the presence of atmospheric oxygen, have delta 18 O values from -2.1 to -6.1 per mille SMOW; and sulphates from springs of mineral waters of the renowned spas of Karlovy Vary, Frantiskovy Lazne and Marianske Lazne show distinctly heavier delta 18 O values - from +4.0 to +6.4 per mille, with maximum of values between +5.0 and +6.0 per mille. Similar delta 18 O values have been established in thenardites and in gypsum in Miocene claystones and in sulphates of some mine waters in the nearby Tertiary Cheb and Sokolov Basins. The presented results indicate that sulphates in mineral waters of the Karlovy Vary type originate mainly by leaching of Miocene sulphates and not by present-day oxidation of sulphidic sulphur. (author)

  17. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  18. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Science.gov (United States)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  19. Correlação de pearson e análise de trilha identificando variáveis para caracterizar porta-enxerto de Pyrus communis L Pearson correlation and path analysis identifying variables for the characterization of Pyrus communis L. rootstock

    Directory of Open Access Journals (Sweden)

    Simone Padilha Galarça

    2010-08-01

    Full Text Available Objetivou-se, no presente trabalho, através de correlação de Pearson e análise de trilha, identificar variáveis para caracterizar porta-enxertos ananizantes para a cultura da pereira (Pyrus communis L.. Neste experimento foram utilizadas 49 plantas de pereira, plantadas nos canteiros do Departamento de Fitotecnia da FAEM/UFPel. As plantas foram avaliadas na época do seu crescimento vegetativo, segundo parâmetros descritos em instruções do Ministério da Agricultura, Pecuária e Abastecimento. Pela correlação de Pearson, as variáveis VP, NRP, HCP e FCNPRCL se destacaram. Na análise de trilha, a variável número de lenticelas obteve maior efeito positivo sobre VP, NRP e FCNPRCL, a variável ramificação do ramo demonstrou-se com efeito positivo sobre HCP, sendo essas duas variáveis consideradas eficazes no processo de seleção de porta-enxerto juntamente com as variáveis básicas.The objective of this work was to identify, through the Pearson correlation and path analysis, variables to characterize rootstocks suitable for the cultivation of the pear (Pyrus communis L.. In this experiment 49 pear specimens were used, planted in flowerbeds at the Phytotechny Department. The plants were evaluated at the time of growth, according to parameters described in the instructions of the Ministério da Agricultura, Pecuária e Abastecimento. According to the Pearson correlation, the variables VP, NRP, ETA and FCNPRCL stood out. In path analysis, the variable number of lenticels had a more positive effect on VP, NRP and FCNPRCL, variable branch of the industry had a more positive effect on ETA. Both variables were considered effective in the process of selection of rootstock together with the basic variables.

  20. A determination of discharge head of the Cherepnov water lifter with siphon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Soo; Rhee, Kyoung Hoon [Chonnam National Univ., Kwangju (Korea, Republic of); Park, Sung Chun [Dongshin University, Naju (Korea, Republic of); Jeong, Byoung Kyen [Sunchon Technical Junior College, Sunchon (Korea, Republic of)

    1996-02-29

    This paper presents an experimental study on the discharge head of Cherepnov water lifter that was continuously operated with the aid of the siphon. The energy used by the Cherepnov water lifter is derived from the potential energy of the water itself. The lifter consists of three interconnected tanks and five pipes, one of which is open and two others are hermetically sealed. The effects of varying operating parameters such as the tank and pipe size, the ratio between head of discharge and drop height were analyzed. As a result, factors that can maximize the efficiency and increase the average delivery rate were identified. When the ratio between head of discharge and drop height is about 0.5, the efficiency of Cherepnov water lifter is maximized. In order to design the efficient Cherepnov water lifter, the discharge head of the Cherepnov water lifter should be assigned to be twice as much as the drop height. The effect of tank size on the efficiency is less than 5%, while the effect of the pipe size is not negligible. The larger the pipe size is, the more the efficiency increases. (author). 13 refs., 4 tabs., 8 figs.

  1. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    Science.gov (United States)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  2. A holistic water depth simulation model for small ponds

    Science.gov (United States)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  3. Uranium concentrations in natural waters, South Park, Colorado

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration

  4. Fluctuating interaction network and time-varying stability of a natural fish community

    Science.gov (United States)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  5. Uranium and coexisting element behaviour in surface waters and associated sediments with varied sampling techniques used for uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    Optimum sampling methods in surface water and associated sediments for use in uranium exploration are being studied at thirty sites in Colorado, New Mexico, Arizona and Utah. For water samples, filtering is recommended to increase sample homogeneity and reproducibility because for most elements studied water samples which were allowed to remain unfiltered until time of analysis contained higher concentrations than field-filtered samples of the same waters. Acidification of unfiltered samples resulted in still higher concentrations. This is predominantly because of leaching of the elements from the suspended fraction. U in water correslates directly with Ca, Mg, Na, K, Ba, B, Li and As. In stream sediments, U and other trace elements are concentrated in the finer size fractions. Accordingly, in prospecting, grain size fractions less than 90 μm (170 mesh) should be analyzed for U. A greater number of elements (21) show a significant positive correlation with U in stream sediments than in water. Results have revealed that anomalous concentrations of U found in water may not be detected in associated sediments and vice versa. Hence, sampling of both surface water and coexisting sediment is strongly recommended

  6. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat

    Science.gov (United States)

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian

    2015-01-01

    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  7. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  8. Gastrointestinal and renal responses to variable water intake in whitebellied sunbirds and New Holland honeyeaters.

    Science.gov (United States)

    Purchase, Cromwell; Napier, Kathryn R; Nicolson, Susan W; McWhorter, Todd J; Fleming, Patricia A

    2013-05-01

    Nectarivores face a constant challenge in terms of water balance, experiencing water loading or dehydration when switching between food plants or between feeding and fasting. To understand how whitebellied sunbirds and New Holland honeyeaters meet the challenges of varying preformed water load, we used the elimination of intramuscular-injected [(14)C]-l-glucose and (3)H2O to quantify intestinal and renal water handling on diets varying in sugar concentration. Both sunbirds and honeyeaters showed significant modulation of intestinal water absorption, allowing excess water to be shunted through the intestine when on dilute diets. Despite reducing their fractional water absorption, both species showed linear increases in water flux and fractional body water turnover as water intake increased (both afternoon and morning), suggesting that the modulation of fractional water absorption was not sufficient to completely offset dietary water loads. In both species, glomerular filtration rate was independent of water gain (but was higher for the afternoon), as was renal fractional water reabsorption (measured in the afternoon). During the natural overnight fast, both sunbirds and honeyeaters arrested whole kidney function. Evaporative water loss in sunbirds was variable but correlated with water gain. Both sunbirds and honeyeaters appear to modulate intestinal water absorption as an important component of water regulation to help deal with massive preformed water loads. Shutting down glomerular filtration rate during the overnight fast is another way of saving energy for osmoregulatory function. Birds maintain osmotic balance on diets varying markedly in preformed water load by varying both intestinal water absorption and excretion through the intestine and kidneys.

  9. Decadal stream water quality trends under varying climate, land use, and hydrogeochemical setting in, Iowa, USA

    Science.gov (United States)

    Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central

  10. Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems

    Science.gov (United States)

    Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.

    2018-04-01

    Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.

  11. Water resources of the Kodiak-Shelikof subregion, south-central Alaska

    Science.gov (United States)

    Jones, Stanley H.; Madison, R.J.; Zenone, Chester

    1978-01-01

    Hydrologic data for the Kodiak-Shelikof subregion of south-central Alaska are summarized to provide a basis for planning water resources development, identifying water problems and evaluating existing water quality and availability. Average annual precipitation, measured at a few coastal locations in this maritime climatic zone, ranges from 23 to 127 inches. Mean annual runoff for the Kodiak Island group ranges from 4 to 8 cfs/sq mi. A maximum instantaneous runoff of 457 cfs/sq mi has been determined from a small basin on Kodiak Island. Lowest measured stream discharges range from no flow to 0.91 cfs/sq mi. Surface water is the primary source of water supplies for the city of Kodiak and other communities. The geology of the subregion is characterized by metamorphosed sedimentary and volcanic rocks with only a thin mantle of unconsolidated material. A few small, alluvium-filled coastal valleys offer the most favorable conditions for ground-water development, but moderate yields (50-100 gal/min) have been obtained from wells in fractured bedrock. Water in streams and lakes generally has a dissolved-solids concentration less than 60 mg/L, and the water varies from a calcium-bicarbonate type to a sodium-chloride type. The chemical composition of ground waters has a dilute calcium-bicarbonate type in unconsolidated materials and a sodium-bicarbonate type in bedrock. The dissolved solids in the groundwater ranges from 170 to 250 mg/L. (Woodard-USGS)

  12. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts

    Directory of Open Access Journals (Sweden)

    Hung-Ju Shih

    2018-02-01

    Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast.

  13. (Virtual) Water Flows Uphill toward Money.

    Science.gov (United States)

    Wang, Ranran; Hertwich, Edgar; Zimmerman, Julie B

    2016-11-15

    This study provides a more precise understanding of the main driving forces of anthropogenic water use across countries. The anthropogenic water use was distinguished as blue water (i.e., fresh surface and groundwater) and total water (i.e. blue + green water; green water is rainwater insofar as it does not become runoff) used for producing, consuming, exporting, and importing of primary and manufactured goods and services, measured on a per country and per capita basis. The population effect on national blue water consumption associated with producing and consuming was found to be bigger than what the commonly assumed unitary population elasticity indicates. Distinct from the homogeneous affluence-water relationships conventionally assumed, this study revealed varying and potentially opposite effects affluence can have depending on the water use account of interest (e.g., production-based or consumption-based, blue or green) and the income level. Affluence, not the availability of freshwater resources, was found to be the most critical driver of virtual water imports. And a more affluent lifestyle in high-income countries was still associated with greater blue water consumption. With each doubling of income, blue water embedded in the goods and services a nation consumed and imported on a per capita basis increased by 82% and 86%, respectively, across the 110 countries analyzed for 2007. In comparison to affluence, the varying per capita water consumption accounts across the nations were much less sensitive to food consumption patterns. Given its critical role for water, land, and energy use shown by this and previous studies, affluence should be taken as a critical factor in future studies to better understand and leverage the water-energy-food-land nexus.

  14. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  15. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  16. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    Science.gov (United States)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil

  17. Lunchtime School Water Availability and Water Consumption Among California Adolescents.

    Science.gov (United States)

    Bogart, Laura M; Babey, Susan H; Patel, Anisha I; Wang, Pan; Schuster, Mark A

    2016-01-01

    To examine the potential impact of California SB 1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 years were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, body mass index, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, bivariate (standard error) = .67 (.28), p = .02. School water access did not significantly vary across the 2 years. Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  18. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, NorEddine; Missimer, Thomas M.; Amy, Gary L.

    2013-01-01

    it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high

  19. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    Science.gov (United States)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  1. Identifying subassemblies by ultrasound to prevent fuel handling error in sodium fast reactors: First test performed in water

    International Nuclear Information System (INIS)

    Paumel, Kevin; Lhuillier, Christian

    2015-01-01

    Identifying subassemblies by ultrasound is a method that is being considered to prevent handling errors in sodium fast reactors. It is based on the reading of a code (aligned notches) engraved on the subassembly head by an emitting/receiving ultrasonic sensor. This reading is carried out in sodium with high temperature transducers. The resulting one-dimensional C-scan can be likened to a binary code expressing the subassembly type and number. The first test performed in water investigated two parameters: width and depth of the notches. The code remained legible for notches as thin as 1.6 mm wide. The impact of the depth seems minor in the range under investigation. (authors)

  2. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  3. Endogenous time-varying risk aversion and asset returns.

    Science.gov (United States)

    Berardi, Michele

    2016-01-01

    Stylized facts about statistical properties for short horizon returns in financial markets have been identified in the literature, but a satisfactory understanding for their manifestation is yet to be achieved. In this work, we show that a simple asset pricing model with representative agent is able to generate time series of returns that replicate such stylized facts if the risk aversion coefficient is allowed to change endogenously over time in response to unexpected excess returns under evolutionary forces. The same model, under constant risk aversion, would instead generate returns that are essentially Gaussian. We conclude that an endogenous time-varying risk aversion represents a very parsimonious way to make the model match real data on key statistical properties, and therefore deserves careful consideration from economists and practitioners alike.

  4. Consumers' Perspectives on Water Issues: Directions for Educational Campaigns.

    Science.gov (United States)

    DeLorme, Denise E.; Hagen, Scott C.; Stout, I. Jack

    2003-01-01

    Explores the relationship between population growth, development, and water resources to glean insight for environmental education campaigns. Reports high awareness and moderate concern about rapid growth and development, dissatisfaction with water resource quantity and quality, and varied water management strategies among consumers. (Contains 37…

  5. Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River

    Science.gov (United States)

    Odume, O. N.; Muller, W. J.

    The Swartkops River is an important freshwater ecosystem in South Africa. But owing to its location, it suffers varying degrees of human induced impacts which include industrial and domestic effluent discharges, deforestation as well as agricultural land use which have negatively impacted on the water quality. Diversity and community composition of aquatic insects are frequently used to assess environmental water quality status. Chironomids occupy extremely varied biotopes. Their extraordinary ecological range and environmental sensitivity make them particularly useful for assessing and interpreting changes in water quality of aquatic ecosystems. The community structure of chironomid larvae was investigated at four sites in the Swartkops River and effects of different chemical and physical variables on their distribution were explored. Chironomid larvae were collected using the South African Scoring System version 5 (SASS5) protocol. A total of 26 taxa from four sampling sites in the Swartkops River were identified. Margalef’s species richness index, equitability, Shannon and Simpson diversity indices were highest at site 1 (reference site). The downstream sites contained 6-20 taxa compared to the 25 taxa at site 1. Site 1 was characterised by the subfamilies Orthocladiinae, Tanypodinae and the tribe Tanytarsini while the impacted sites were characterised by Orthocladiinae and Chironomini. Chironomus spp., Dirotendipes sp., Kiefferulus sp. and Tanypus sp. seemed to be tolerant to pollution, occurring in high abundance at sites 2, 3 and 4. In contrast, Polypedilum sp., Tanytarsus sp., Orthocladius sp., Cricotopus spp. and Ablabesmyia sp. appeared to be more sensitive taxa, being less common at the impacted sites (sites 2, 3 and 4). Five days biochemical oxygen demand, dissolved oxygen, electrical conductivity, orthophosphate-phosphorus and total inorganic nitrogen were among the important variables that determine the observed chironomid community structure

  6. Behavioral tactics of male sockeye salmon (Oncorhynchus nerka) under varying operating sex ratios

    Science.gov (United States)

    Quinn, Thomas P.; Adkison, Milo D.; Ward, Michael B.

    1996-01-01

    Previous studies have demonstrated several reproductive-behavior patterns in male salmon, including competitive and sneaking tactics, the formation of hierarchies, and non-hierarchical aggregations around ripe females. Through behavioral observations at varying spatial and temporal scales, we examined the hypothesis that operational sex ratio (OSR) determines male sockeye salmon (Oncorhynchus nerka) distribution and breeding tactics. Patterns of male distribution and behavior varied over both coarse and fine scales, associated with apparent shifts in reproductive opportunities, the physical characteristics of the breeding sites, and the deterioration of the fish as they approached death. Females spawned completely within a few days of arriving on the spawning grounds, whereas males courted the available ripe females from the date of their arrival on the spawning ground until their death. This difference in reproductive lifespans tended to elevate late-season OSRs but was partially counterbalanced by male departures and the arrival of other ripe females. The proportion of males able to dominate access to ripe females decreased and the number of large courting groups increased over the course of the season, apparently related to both increasing OSR and the deteriorating physical condition of males. However, great variation in OSR was observed within the spawning sites on a given day. OSRs were generally higher in shallow than in deep water, perhaps because larger females or more desirable breeding sites were concentrated in shallow water. The aggregations of males courting females were not stable (i.e. many arrivals and departures took place) and male aggression varied with group size. Aggression was most frequent at low OSRs and in groups of intermediate size (2–4 males per female), and much less frequent in larger groups, consistent with the needs of maximizing reproductive opportunities while minimizing unproductive energy expenditure. These results indicate

  7. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull

    Science.gov (United States)

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  8. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    International Nuclear Information System (INIS)

    Choi, Sooseok; Watanabe, Takayuki; Li Tianming

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process. (plasma technology)

  9. Identifying the Dynamic Catchment Storage That Does Not Drive Runoff

    Science.gov (United States)

    Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.

    2017-12-01

    The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of

  10. Health status of the coastal waters of Mumbai and regions around

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Govindan, K.

    in the drainage zones also contribute to pollution loads. These inputs have affected the water quality, sediment quality and biological characteristics of receiving waters to varying degrees. BOD in coastal water is often high and water is enriched in dissolved...

  11. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  12. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  13. Advancing Water Science through Improved Cyberinfrastructure

    Science.gov (United States)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI

  14. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  15. Quantifying the role of vegetation in controlling the time-variant age of evapotranspiration, soil water and stream flow

    Science.gov (United States)

    Smith, A.; Tetzlaff, D.; Soulsby, C.

    2017-12-01

    Identifying the sources of water which sustain plant water uptake is an essential prerequisite to understanding the interactions of vegetation and water within the critical zone. Estimating the sources of root-water uptake is complicated by ecohydrological separation, or the notion of "two-water worlds" which distinguishes more mobile and immobile water sources which respectively sustain streamflow and evapotranspiration. Water mobility within the soil determines both the transit time/residence time of water through/in soils and the subsequent age of root-uptake and xylem water. We used time-variant StorAge Selection (SAS) functions to conceptualise the transit/residence times in the critical zone using a dual-storage soil column differentiating gravity (mobile) and tension dependent (immobile) water, calibrated to measured stable isotope signatures of soil water. Storage-discharge relationships [Brutsaert and Nieber, 1977] were used to identify gravity and tension dependent storages. A temporally variable distribution for root water uptake was identified using simulated stable isotopes in xylem and soil water. Composition of δ2H and δ18O was measured in soil water at 4 depths (5, 10, 15, and 20 cm) on 10 occasions, and 5 times for xylem water within the dominant heather (Calluna sp. and Erica sp.) vegetation in a Scottish Highland catchment over a two-year period. Within a 50 cm soil column, we found that more than 53% of the total stored water was water that was present before the start of the simulation. Mean residence times of the mobile water in the upper 20 cm of the soil were 16, 25, 36, and 44 days, respectively. Mean evaporation transit time varied between 9 and 40 days, driven by seasonal changes and precipitation events. Lastly, mean transit times of xylem water ranged between 95-205 days, driven by changes in soil moisture. During low soil moisture (i.e. lower than mean soil moisture), root-uptake was from lower depths, while higher than mean soil

  16. Chemical modelling of pore water composition from PFBC residues

    International Nuclear Information System (INIS)

    Karlsson, L.G.

    1991-01-01

    The concentration of trace elements varies depending on the source of the coal and also due to the combustion process used. Mercury is one important element among the trace elements in the coal residues, generally recognised as potentially harmful to the biological system. To predict the pore water concentrations of mercury and other important constituents leached from coal combustion residues disposal sites, mechanistic data on chemical reactions are required. The present study is an application of a basially thermodynamical approach using the geochemical code EQ3NR. The presence of discrete solid phases that control the aqueous concentrations of major elements such as aluminium, calcium and silicon are identified. Solid phases are modelled in equilibrium with a hypothetical pore water at a pH range of 7-11. In this study the thermodynamic database of EQ3NR has been complemented with data for cadmium, mercury and lead taken from the OECD/NEA Thermodynamic Database and from a compilation made by Lindsay. Possible solubility limiting phases for the important trace elements arsenic, cadmium, chromium, copper, mercury, nickel and lead have been identified. Concentrations of these trace elements as a function of pH in the hypothetical pore water were calculated using mechanistic thermodynamial data. The thermodynamical approach in this study seems justified because most solid residues that are either present or expected to form during weathering have relatively fast precipitation/dissolution kinetics. (21 refs., 18 figs., 5 tabs.)

  17. (e,3e) and (e,3-1e) differential cross sections for the double ionization of water molecule

    International Nuclear Information System (INIS)

    Mansouri, A.; Dal Cappello, C.; Kada, I.; Champion, C.; Roy, A.C.

    2009-01-01

    We report new results for differential cross sections for the double ionization of water molecule by 1 keV electron impact. The present calculation is based on the first Born approximation. We describe the water molecule by a single centre wave function of Moccia. For the final state, an approximation of the well-known 3C wave function is used. An extensive study has been made by varying the angles of detection and the energies of each ejected electron. We have investigated the double ionization of each molecular state (1b 1 , 3a 1 , 1b 2 and 2a 1 ) and identified the mechanisms of this process.

  18. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  19. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  20. Cyanobacteria species identified in the Weija and Kpong reservoirs ...

    African Journals Online (AJOL)

    The Kpong and Weija reservoirs supply drinking water to Accra, Ghana. This study was conducted to identify the cyanobacteria present in these reservoirs and to ascertain whether current treatment processes remove whole cyanobacteria cells from the drinking water produced. Cyanotoxins are mostly cell bound and could ...

  1. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV

    Directory of Open Access Journals (Sweden)

    Sarawut Ninsawat

    2016-10-01

    Full Text Available In an urban area, the roof is the only available surface that can be utilized for installing solar photovoltaics (PV, and the active surface area depends on the type of roof. Shadows on a solar panel can be caused by nearby tall buildings, construction materials such as water tanks, or the roof configuration itself. The azimuth angle of the sun varies, based on the season and the time of day. Therefore, the simulation of shadow for one or two days or using the rule of thumb may not be sufficient to evaluate shadow effects on solar panels throughout the year. In this paper, a methodology for estimating the solar potential of solar PV on rooftops is presented, which is particularly applicable to urban areas. The objective of this method is to assess how roof type and shadow play a role in potentiality and financial benefit. The method starts with roof type extraction from high-resolution satellite imagery, using Object Base Image Analysis (OBIA, the generation of a 3D structure from height data and roof type, the simulation of shadow throughout the year, and the identification of potential and financial prospects. Based on the results obtained, the system seems to be adequate for calculating the financial benefits of solar PV to a very fine scale. The payback period varied from 7–13 years depending on the roof type, direction, and shadow impact. Based on the potentiality, a homeowner can make a profit of up to 200%. This method could help homeowners to identify potential roof area and economic interest.

  2. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  3. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  4. Evaluation of high yielding soybean germplasm under water limitation.

    Science.gov (United States)

    Prince, Silvas J; Murphy, Mackensie; Mutava, Raymond N; Zhang, Zhengzhi; Nguyen, Na; Kim, Yoon Ha; Pathan, Safiullah M; Shannon, Grover J; Valliyodan, Babu; Nguyen, Henry T

    2016-05-01

    Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germplasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments. © 2015 Institute of Botany, Chinese Academy of Sciences.

  5. Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data

    Science.gov (United States)

    Liu, Wanjun; Liang, Xuejian; Qu, Haicheng

    2017-11-01

    Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.

  6. Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia

    Science.gov (United States)

    Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.

    2018-02-01

    The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.

  7. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Science.gov (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  8. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream.

    Science.gov (United States)

    Byrne, Patrick; Runkel, Robert L; Walton-Day, Katherine

    2017-07-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  9. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  10. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  11. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    Science.gov (United States)

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  12. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  13. Modeling of water erosion by seagis model. Case Watershed Dam Siliana

    International Nuclear Information System (INIS)

    Chabaan, Chayma

    2016-01-01

    water erosion is a complicated phenomenon, largely obvious in north Africa, especially in the watershed of Siliana, where natural factors and the aggressiveness of the environment do affect the loss of soil there, which characterized by a form so uneven with attitudes that vary from 700 to 1350 m rigid going from 5 to 10 pour cent and sometimes more. Moreover, it has drained with a thick hydrographic network. Generally, water erosion depends of the importance and the frequent agent factor of this erosion ( rain and streaming), soil type, the topography and the occupation of soil. The usage of mathematic models has to take on consideration of these parameters. The main objective of this work consist in developing put into affect a geomatic approach of stimulation which aims at estimate in time and space, the impact of the climate, and the soil occupation on the water erosion and the transportation of the sediments diversions into sliding of a small watershed. Locally, this approach allows evaluating the parameters of water erosion of SEAGIS model (USLE/RUSLE) to an extent that is identifies and drowing the emergency areas of intervention in the watershed of Siliana.

  14. Evaluation of infiltration for the determination of palms water needs

    Science.gov (United States)

    Benlarbi, Dalila; Boutaoutaou, Djamel; Saggaï, Sofiane

    2018-05-01

    In arid climate conditions, irrigation water requirements increase, but available water resources are limited. And therefore the Saharan regions, large consumers of water can be seriously threatened if they do not make the necessary to become as parsimonious as allow the irrigation techniques whose technological aspect on their improvement has been privileged until now but all the problems are not solved. The objective of this work is to know the process of infiltration of water in the soil, i.e.: to try to determine exactly its value with obtaining the best combination (flow of entry, board length and irrigation time) in order to have a more or less uniform distribution in the soil and especially by avoiding significant water losses that would cause rise in the water table. The infiltration will allow us to calculate at any point the dose of water received that we will compare with the needs of the date palm. For this purpose; we varied the input flow for a constant board length. Then we varied the board length for a constant input rate. In both cases we varied the irrigation time according to the water requirements of the date palm. The flow remains of course constant during the entire feeding period. This study is primarily experimental and aims to meet practical applications but not immediately because it is necessary to continue the experiments with several other combinations to achieve practical results.

  15. Ensemble Kalman Filter Inference of Spatially-varying Manning’s n coefficients in the Coastal Ocean

    KAUST Repository

    Siripatana, Adil

    2018-05-16

    Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called “Joint-EnKF” approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning’s n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model.Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning’s n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O(10)), the filter’s estimate converges to the reference Manning’s field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.

  16. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  17. Matching Value Propositions with Varied Customer Needs

    DEFF Research Database (Denmark)

    Heikka, Eija-Liisa; Frandsen, Thomas; Hsuan, Juliana

    2018-01-01

    Organizations seek to manage varied customer segments using varied value propositions. The ability of a knowledge-intensive business service (KIBS) provider to formulate value propositions into attractive offerings to varied customers becomes a competitive advantage. In this specific business based...... on often highly abstract service offerings, this requires the provider to have a clear overview of its knowledge and resources and how these can be configured to obtain the desired customization of services. Hence, the purpose of this paper is to investigate how a KIBS provider can match value propositions...... with varied customer needs utilizing service modularity. To accomplish this purpose, a qualitative multiple case study is organized around 5 projects allowing within-case and cross-case comparisons. Our findings describe how through the configuration of knowledge and resources a sustainable competitive...

  18. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C

    Science.gov (United States)

    Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.

    2013-01-01

    Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.

  19. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels

    Directory of Open Access Journals (Sweden)

    Kanokwan Mukkata

    2016-07-01

    Full Text Available This research aimed to study the diversity of purple nonsulfur bacteria (PNSB and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB were also observed; purple sulfur bacteria (PSB and aerobic anoxygenic phototrophic bacteria (AAPB although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB was the most dominant species followed by Halorhodospira halophila (PSB. In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum. The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT concentrations in the water and sediment samples used (<0.002–0.03 μg/L and 35.40–391.60 μg/kg dry weight for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.

  20. Systems analysis approach to the design of efficient water pricing policies under the EU water framework directive

    DEFF Research Database (Denmark)

    Riegels, Niels; Pulido-Velazquez, Manuel; Doulgeris, Charalampos

    2013-01-01

    management objectives. However, the design and implementation of economic instruments for water management, including water pricing, has emerged as a challenging aspect of WFD implementation. This study demonstrates the use of a systems analysis approach to designing and comparing two economic approaches......Economic theory suggests that water pricing can contribute to efficient management of water scarcity. The European Union (EU) Water Framework Directive (WFD) is a major legislative effort to introduce the use of economic instruments to encourage efficient water use and achieve environmental...... to efficient management of groundwater and surface water given EU WFD ecological flow requirements. Under the first approach, all wholesale water users in a river basin face the same volumetric price for water. This water price does not vary in space or in time, and surface water and groundwater are priced...

  1. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  2. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  3. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  4. Life cycle water use for electricity generation: a review and harmonization of literature estimates

    International Nuclear Information System (INIS)

    Meldrum, J; Nettles-Anderson, S; Heath, G; Macknick, J

    2013-01-01

    This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research. (letter)

  5. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  6. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-06-01

    Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.

  7. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.

    Directory of Open Access Journals (Sweden)

    Sebastian M Cruz

    Full Text Available Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  8. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples

    NARCIS (Netherlands)

    Hoeven-Hangoor, van der E.; Rademaker, C.; Paton, N.D.; Verstegen, M.W.A.; Hendriks, W.H.

    2014-01-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter

  9. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  10. Accuracy of the tritium water dilution method for determining water flux in reindeer (Rangifer tarandus)

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R D; White, R G; Luick, J R

    1976-06-01

    The accuracy of the tritium water dilution method in estimating water flux was evaluated in reindeer under various conditions of temperature and diet. Two non-pregnant female reindeer were restrained in metabolism stalls, within controlled-environment chambers, at temperatures of +10, -5, and -20/sup 0/C; varying amounts of a commercial pelleted ration (crude protein, 13 percent) or mixed lichens (crude protein, 3 percent) were offered, and water was provided ad libitum either as snow or in liquid form. Total body water volume and water turnover were estimated using tritiated water, and the daily outputs of feces and urine were measured for each of 12 different combinations of diet and temperature. Statistical analysis of the data showed that the tritium water dilution technique gives accurate determinations of total body water flux over a wide range of environmental and nutritional conditions.

  11. Balanço hídrico e da salinidade do solo na bananeira irrigada com água de diferentes salinidades = Soil water and salinity balance on banana irrigated with water of varied salinity

    Directory of Open Access Journals (Sweden)

    Ancélio Ricardo de Oliveira Gondim

    2009-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de diferentes níveis de salinidade de água de irrigação no uso consultivo na fase reprodutiva da bananeira e evolução da salinidade do solo. Adotou-se o delineamento inteiramente casualizado em parcelas subdivididas, totalizando oito tratamentos com quatro repetições por tratamento. Os níveis de salinidade foram obtidos a partir de águas naturais de poços dos aquíferos arenito e calcário e foram misturadas em tanques de alvenaria para a obtenção das concentrações de salinidade desejada. Verificou-se que a área do bulbo com umidade superior a 8% representa aproximadamente 50% do volume do solo. A evapotranspiração da cultura diminuiu com o aumento da salinidade entre os tratamentos, o kc médio no período variou de 1,01 a 1,09 em águas de salinidade extremas. Comparando os perfis da salinidade do solo, verificou-se quea concentração de sais foi superior na camada superficial aos 440 dias após plantio.The objective this work was to evaluate the advisory use of two cultivars banana and the salinity of the soil in different water salinity levels (0.55; 1.70; 2.85; and 4.00 dS m-1 during the reproductive phase. The experimental design chosen was randomizedcomplete blocks in subdivided plots, totaling eight treatments with four repetitions per treatment. The salinity levels were obtained from natural waters of wells from sandstone and calcareous aquifers and were mixed in masonry tanks in order to obtain the desiredsalinity concentrations. It was verified that the area of the bulb with moisture greater than 8% represents approximately 50% of the volume of the soil. The evapotranspiration of the culture decreased with the increase in the salinity among the treatments; the average kc in the period varied from 1.01 to 1.09 in waters of extreme salinity. Comparing the salinity profiles of the soil, it was verified that the concentration of salts was highest on the surfacelayer at 440

  12. Evaluation of ground water quality of Mubi town in Adamawa State ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... ... resultant of all the processes and reactions that act on the water from the ... chemical parameters and heavy metals' levels in the boreholes and .... for drinking water. Potassium concentration in the ground water varied from.

  13. Identifying and characterizing transboundary aquifers along the Mexico-US border: An initial assessment

    Science.gov (United States)

    Sanchez, Rosario; Lopez, Victoria; Eckstein, Gabriel

    2016-04-01

    The transboundary nature of water dividing Mexico and the United States (U.S.) transforms the entire border region into an instrument of cooperation, a source of conflict, a national security issue, and an environmental concern. Reasonable data collection and research analysis have been conducted for surface waters by joint governmental institutions and non-governmental bodies. However, with the exception of the U.S. Transboundary Assessment Act Program (TAAP) (focusing on the Hueco Bolson, Mesilla Bolson, San Pedro and Santa Cruz aquifers), there is no comparable research, institutional development, or assessment of transboundary groundwater issues on the frontier. Moreover, data collection and methodologies vary between the two countries, there is no broadly accepted definition of the transboundary nature of an aquifer, and available legal and policy frameworks are constrained by non-hydrological considerations. Hence, there is a conceptual and institutional void regarding transboundary groundwater resources between Mexico and the U.S. The purpose of this paper is to bridge this void and characterize transboundary aquifers on the Mexico-US border. It reviews existing international frameworks for identifying hydrological and social criteria that characterize an aquifer as transboundary. It then assesses data from both countries to propose where and which aquifers could be considered transboundary. Finally, the paper proposes an agenda for assessing Mexico-US transboundary aquifers as a means for improving groundwater management in the border region.

  14. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  15. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  16. Water use efficiency of tomatoes - in greenhouses and hydroponics

    NARCIS (Netherlands)

    Nederhoff, E.M.; Stanghellini, C.

    2010-01-01

    Massive amounts of water are required for the production of our food, varying from several cubic metres per kilogram of beef to as low as 4 litres per kilogram for tomatoes grown in high-tech glasshouses. This article presents data on Product Water Use (PWU) of some foods and discusses how the water

  17. Quantitative separation of the influence of hydrogen bonding of ethanol/water mixture on the shape recovery behavior of polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Min Huang, Wei; Fu, Y Q

    2014-01-01

    A thermally responsive polyurethane shape memory polymer (SMP) can be actuated in water through a hydrogen bonding interaction between water and the SMP. In this work, we present a comprehensive approach to quantify the hydrogen bonding on the shape recovery behavior of a polyurethane SMP. The stimuli response to the hydrogen bonding of the polyurethane SMP was investigated in ethanol/water mixtures by varying the water content. It was found that depending on the water content, the SMP features a critical hydrogen bonding strength associated with its shape recovery behavior. The Hildebrand solubility parameter theory was employed to quantitatively identify and separate the hydrogen bonding effect of the ethanol/water mixture on the shape recovery ratio and the time. Furthermore, a phenomenological model was developed to predict the glass transition temperature and the shape recovery time of a polyurethane SMP and was verified by the available experimental results. (paper)

  18. Water quality and non-point sources of risk: the Jiulong River Watershed, P. R. of China.

    Science.gov (United States)

    Zhang, Jingjing; Zhang, Luoping; Ricci, Paolo F

    2012-01-01

    Retrospective water quality assessment plays an essential role in identifying trends and causal associations between exposures and risks, thus it can be a guide for water resources management. We have developed empirical relationships between several time-varying social and economic factors of economic development, water quality variables such as nitrate-nitrogen, COD(Mn), BOD(5), and DO, in the Jiulong River Watershed and its main tributary, the West River. Our analyses used alternative statistical methods to reduce the dimensionality of the analysis first and then strengthen the study's causal associations. The statistical methods included: factor analysis (FA), trend analysis, Monte Carlo/bootstrap simulations, robust regressions and a coupled equations model, integrated into a framework that allows an investigation and resolution of the issues that may affect the estimated results. After resolving these, we found that the concentrations of nitrogen compounds increased over time in the West River region, and that fertilizer used in agricultural fruit crops was the main risk with regard to nitrogen pollution. The relationships we developed can identify hazards and explain the impact of sources of different types of pollution, such as urbanization, and agriculture.

  19. Frequency of legionella contamination in conditional & water distribution systems of Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Davod Esmaieli

    2008-09-01

    Full Text Available Background: Legionella species are ubiquitous in natural aquatic environments, capable of existing in waters with varied temperatures, PH levels, and nutrient and oxygen contents. Of 49 known legionella species, 20 species have been linked to pneumonia in humans. Contamination by legionella has occurred in the distribution systems of many hospitals. Aerosol-generating systems such as faucets, showerheads, cooling towers, and nebulizers are responsible for their transmission from water to air. Methods: A total of 113 water samples were gathered from different wards of 32 hospitals in different geographical regions of Tehran city. These samples were concentrated by filtration, treated with the acid and temperature buffers, and isolated on a BCYE agar culture medium. Results: A total of 22 hospitals out of 33 (26.5% were contaminated by legionella species, and 30 samples (26.5% out of 113 were positive. Chlorine concentration and pH level of the water samples were 0.18-2.2 mg/l and 6.6-7.6, respectively. Conclusion: The high rate of waste water contamination in Tehran hospitals with Legionella indicates the resistance of this microorganism to chlorine and other disinfectants, or inadequate disinfection process, representing the insufficiency of the current decontamination of hospital water distribution system. Thus identifying legionella species and their controlling in water distribution system of hospitals is of great importance.

  20. A Complete Analytical Screening Identifies the Real Pesticide Contamination of Surface Waters

    Science.gov (United States)

    Moschet, Christoph; Wittmer, Irene; Simovic, Jelena; Junghans, Marion; Singer, Heinz; Stamm, Christian; Leu, Christian; Hollender, Juliane

    2014-05-01

    A comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. In Switzerland for example, roughly 500 active ingredients are registered as either plant protection agent (PPA) or as biocide. In addition, an unlimited number of transformations products (TPs) can enter or be formed in surfaced waters. Most scientific publications or regulatory monitoring authorities have implemented 15-40 pesticides in their analytics. Only a few TPs are normally included. Interpretations of the surface water quality based on these subsets remains error prone. In the presented study, we carried out a nearly complete analytical screening covering 86% of all polar organic pesticides (from agricultural and urban sources) in Switzerland (300 substances) and 134 TPs with limits of quantification in the low ng/L range. The comprehensive pesticide screening was conducted by liquid-chromatography coupled to high-resolution tandem mass spectrometry. Five medium-sized rivers (Strahler stream order 3-4, catchment size 35-105 km2), containing high percentiles of diverse crops, orchards and urban settlements in their catchments, were sampled from March till July 2012. Nine subsequent time-proportional bi-weekly composite samples were taken in order to quantify average concentrations. In total, 104 different active ingredients could be detected in at least one of the five rivers. Thereby, 82 substances were only registered as PPA, 20 were registered as PPA and as biocide and 2 were only registered as biocide. Within the PPAs, herbicides had the most frequent detections and the highest concentrations, followed by fungicides and insecticides. Most concentrations were found between 1 and 50 ng/L; however 31 substances (mainly herbicides) had concentrations above 100 ng/L and 3 herbicides above 1000 ng/L. It has to be noted that the measured concentrations are average concentrations over two weeks in medium sized streams and that maximum

  1. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature

    International Nuclear Information System (INIS)

    Macknick, J; Newmark, R; Heath, G; Hallett, K C

    2012-01-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available. Major findings of the report include: water withdrawal and consumption factors vary greatly across and within fuel technologies, and water factors show greater agreement when organized according to cooling technologies as opposed to fuel technologies; a transition to a less carbon-intensive electricity sector could result in either an increase or a decrease in water use, depending on the choice of technologies and cooling systems employed; concentrating solar power technologies and coal facilities with carbon capture and sequestration capabilities have the highest water consumption values when using a recirculating cooling system; and non-thermal renewables, such as photovoltaics and wind, have the lowest water consumption factors. Improved power plant data and further studies into the water requirements of energy technologies in different climatic regions would facilitate greater resolution in analyses of water impacts of future energy and economic scenarios. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research. (letter)

  2. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  3. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  4. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream

    Science.gov (United States)

    Byrne, Patrick; Runkel, Robert L.; Walton-Day, Katie

    2017-01-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  5. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  6. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  7. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...

  8. Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae

    2011-07-01

    In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.

  9. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Time varying voltage combustion control and diagnostics sensor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  11. Carbon dioxide and water transport through plant aquaporins.

    Science.gov (United States)

    Groszmann, Michael; Osborn, Hannah L; Evans, John R

    2017-06-01

    Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.

  12. Varying occurrence of extended-spectrum beta-lactamase bacteria among three produce types

    KAUST Repository

    Toh, Benjamin E. W.

    2017-07-07

    A monitoring effort that spanned across 1.5 years was conducted to examine three types of produce-associated microbiota. The average amount of antibiotic-resistant bacteria recovered from lettuce, tomato, and cucumber was 1.02 × 1010, 2.05 × 107, and 4.78 × 109 cells per 50 g of each produce, respectively. A total of 480 bacterial isolates were obtained and identified from their 16S rRNA genes, revealing isolates that were ubiquitously recovered from all three types of produce. However, sporadic presence of Klebsiella pneumoniae and Acinetobacter baumannii was detected on lettuce and cucumbers but not tomatoes. End-point PCR revealed that the K. pneumoniae and A. baumannii isolates were positive for genes encoding extended spectrum beta-lactamase. Whole genome sequencing of two of the K. pneumoniae isolates further suggested the presence of the blaCTX-M-15 gene in a conjugative plasmid, as well as other antibiotic resistance genes and virulence-associated traits in either conjugative plasmids or the chromosomal genome. Quantitative microbial risk assessment indicated varying levels of ingestion risk associated with different types of produce. In particular, the risk arising from ESBL-positive K. pneumoniae in lettuce, but not in cucumbers or tomatoes, was higher than the acceptable annual risk of 10−4. Practical applications Three types of vegetables were sampled and evaluated over 1.5 years to determine differences in their associated bacterial isolates. Particular emphasis was placed on identifying pathogenic strains that were positive for extended spectrum beta-lactamase (ESBL). Quantitative estimates of the microbial risk associated with the ESBL-positive pathogens showed that different produce types may incur varying levels of ingestion risk. Most of the currently reported ESBL-positive bacterial isolates have been identified in nosocomial environments. However, the carriage of such drug-resistant bacteria in vegetables suggests a possible connection

  13. 40 CFR 255.10 - Criteria for identifying regions.

    Science.gov (United States)

    2010-07-01

    ... institutional gaps or inadequacies are found, regions should be identified keeping in mind which agencies would... section 208 of the Federal Water Pollution Control Act, with underground injection control agencies...

  14. Pilot program to identify valve failures which impact the safety and operation of light water nuclear power plants

    International Nuclear Information System (INIS)

    Tsacoyeanes, J.C.; Raju, P.P.

    1980-04-01

    The pilot program described has been initiated under the Department of Energy Light Water Reactor Safety Research and Development Program and has the following specific objectives: to identify the principal types and causes of failures in valves, valve operators and their controls and associated hardware, which lead to, or could lead to plant trip; and to suggest possible remedies for the prevention of these failures and recommend future research and development programs which could lead to minimizing these valve failures or mitigating their effect on plant operation. The data surveyed cover incidents reported over the six-year period, beginning 1973 through the end of 1978. Three sources of information on valve failures have been consulted: failure data centers, participating organizations in the nuclear power industry, and technical documents

  15. Literature Review of Associations among Attributes of Reported Drinking Water Disease Outbreaks

    Directory of Open Access Journals (Sweden)

    Grant Ligon

    2016-05-01

    Full Text Available Waterborne disease outbreaks attributed to various pathogens and drinking water system characteristics have adversely affected public health worldwide throughout recorded history. Data from drinking water disease outbreak (DWDO reports of widely varying breadth and depth were synthesized to investigate associations between outbreak attributes and human health impacts. Among 1519 outbreaks described in 475 sources identified during review of the primarily peer-reviewed, English language literature, most occurred in the U.S., the U.K. and Canada (in descending order. The outbreaks are most frequently associated with pathogens of unknown etiology, groundwater and untreated systems, and catchment realm-associated deficiencies (i.e., contamination events. Relative frequencies of outbreaks by various attributes are comparable with those within other DWDO reviews, with water system size and treatment type likely driving most of the (often statistically-significant at p < 0.05 differences in outbreak frequency, case count and attack rate. Temporal analysis suggests that while implementation of surface (drinking water management policies is associated with decreased disease burden, further strengthening of related policies is needed to address the remaining burden attributed to catchment and distribution realm-associated deficiencies and to groundwater viral and disinfection-only system outbreaks.

  16. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  17. Physical and virtual water transfers for regional water stress alleviation in China.

    Science.gov (United States)

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  18. Detection of dynamically varying interaural time differences

    DEFF Research Database (Denmark)

    Kohlrausch, Armin; Le Goff, Nicolas; Breebaart, Jeroen

    2010-01-01

    of fringes surrounding the probe is equal to the addition of the effects of the individual fringes. In this contribution, we present behavioral data for the same experimental condition, called dynamically varying ITD detection, but for a wider range of probe and fringe durations. Probe durations varied...

  19. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  20. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Directory of Open Access Journals (Sweden)

    Angela J Dean

    Full Text Available Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172. Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15. Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  1. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Science.gov (United States)

    Dean, Angela J; Fielding, Kelly S; Newton, Fiona J

    2016-01-01

    Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172). Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15). Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  2. Energy and water budgets of larks in a life history perspective : Parental effort varies with aridity

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Visser, GH

    We compared physiological, demographic, and ecological variables of larks to gain insights into life history variation along an aridity gradient, incorporating phylogenetic relationships in analyses when appropriate. Quantifying field metabolic rate (FMR). and water influx rate (WIR) of parents

  3. Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior

    Science.gov (United States)

    Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.

    2017-01-01

    A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.

  4. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  5. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  6. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change

    Science.gov (United States)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.

    2013-12-01

    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  7. Operational Principle of Water Level Detector for Agricultural and ...

    African Journals Online (AJOL)

    This paper proposes a design to automatically detect the level of water in a reservoir (storage tank) at a preset level and initializes an information to the users in case of low water level. The functionality of this sensor depends basically on the electrical conductivity of water (probes) which varies, depending on the level of its ...

  8. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  9. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  10. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  11. Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, U.S.A

    International Nuclear Information System (INIS)

    Rhodes, Amy L.; Horton, Nicholas J.

    2015-01-01

    Highlights: • Laws do not specify how baseline tests are conducted prior to hydraulic fracturing. • Study estimates variability of groundwater chemistry for repeated measurements. • Water chemistry varies more geographically than at a single, household well. • A single, certified test can characterize baseline geochemistry of groundwater. • Multiple measurements better estimate upper limits of regional baseline values. - Abstract: Flowback fluids associated with hydraulic fracturing shale gas extraction are a potential source of contamination for shallow aquifers. In the Marcellus Shale region of northeastern Pennsylvania, certified water tests have been used to establish baseline water chemistry of private drinking water wells. This study investigates whether a single, certified multiparameter water test is sufficient for establishing baseline water chemistry from which possible future contamination by flowback waters could be reliably recognized. We analyzed the water chemistry (major and minor inorganic elements and stable isotopic composition) of multiple samples collected from lake, spring, and well water from 35 houses around Fiddle Lake, Susquehanna County, PA that were collected over approximately a two-year period. Statistical models estimated variance of results within and between households and tested for significant differences between means of our repeated measurements and prior certified water tests. Overall, groundwater chemistry varies more spatially due to heterogeneity of minerals within the bedrock aquifer and due to varying inputs of road salt runoff from paved roads than it does temporally at a single location. For wells located within road salt-runoff zones, Na + and Cl − concentrations, although elevated, are generally consistent through repeated measurements. High acid neutralizing capacity (ANC) and base cation concentrations in well water sourced from mineral weathering reactions, and a uniform stable isotopic composition for

  12. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  13. A Hydrological Tomography Collocated with Time-varying Gravimetry for Hydrogeology -An Example in Yun-Lin Alluvial Plain and Ming-Ju Basin in Taiwan

    Science.gov (United States)

    Chen, K. H.; Cheng, C. C.; Hwang, C.

    2016-12-01

    A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.

  14. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  15. Economic evaluation of water loss saving due to the biological ...

    African Journals Online (AJOL)

    This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year's Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, ...

  16. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  17. New varying speed of light theories

    CERN Document Server

    Magueijo, J

    2003-01-01

    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying $c$, dispelling the myth that the constancy of $c$ is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying $c$ induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space...

  18. Assessed Clean Water Act 305(b) Water Sources of Impairment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Identifies the sources of impairment for assessed waters under the Clean Water Act 305(b) program. This view can be used for viewing the details at the assessment...

  19. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  20. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  1. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  2. Using Cluster Ensemble and Validation to Identify Subtypes of Pervasive Developmental Disorders

    OpenAIRE

    Shen, Jess J.; Lee, Phil Hyoun; Holden, Jeanette J.A.; Shatkay, Hagit

    2007-01-01

    Pervasive Developmental Disorders (PDD) are neurodevelopmental disorders characterized by impairments in social interaction, communication and behavior.1 Given the diversity and varying severity of PDD, diagnostic tools attempt to identify homogeneous subtypes within PDD. Identifying subtypes can lead to targeted etiology studies and to effective type-specific intervention. Cluster analysis can suggest coherent subsets in data; however, different methods and assumptions lead to different resu...

  3. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels

    Directory of Open Access Journals (Sweden)

    Titilayo D. O. Falade

    2018-05-01

    Full Text Available Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk, R4 (dough, and R5 (dent stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48 and turanose and (R = −0.53, respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.

  4. Removal of bromates from water

    Science.gov (United States)

    Barlokova, D.; Ilavsky, J.; Marko, I.; Tkacova, J.

    2017-10-01

    Bromates are substances that are usually not present in drinking water. They are obtained by ozone disinfection in the presence of bromine ions in water, as an impurity of sodium hypochlorite, respectively. Because of their specific properties, bromates are classified as vary dangers substances, that can cause serious illnesses in humans. There are several technological processes that have been used to the removal of bromates from water at present. In this article, the removal of the bromates from water by the adsorption using various sorbent materials (activated carbon, zeolite, Klinopur-Mn, Bayoxide E33, GEH, Read-As and Activated alumina) are presented. The effectiveness of selected sorbent materials in the removal of bromates from drinking water moves in the interval from 10 to 40%. Based on laboratory results, the zeolite can be used to reduce the concentration of bromates in water.

  5. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment...... (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment...

  6. Experiences of female partners of masculine-identifying trans persons.

    Science.gov (United States)

    Theron, Liesl; Collier, Kate L

    2013-01-01

    This paper explores the intimate relationship experiences of the cisgender (i.e., not transgender) female partners of masculine-identifying transgender persons, with a particular focus on these partners' self-understanding of their sexual orientation. Limited research about this topic has been conducted to date. Semi-structured interviews were conducted with eight South African women who are or have been cisgender female partners of masculine-identifying trans persons. Although the interviews showed that the relationship experiences of female partners of masculine-identifying trans persons are diverse, several common themes emerged in the narratives. The way that participants labelled their sexual orientation did not change from before to after their relationship with a transgender partner. The participants reported varied family and community responses to their relationships. Specific emotional and informational support needs for women with transgender partners were identified.

  7. Subject Matter Expert Workshop to Identify Cybersecurity ...

    Science.gov (United States)

    Report In recognition of the growing need to better address cyber risk and cyber management, the U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center (NHSRC) held a Subject Matter Expert Workshop to Identify Cybersecurity Research Gaps and Needs of the Nation’s Water and Wastewater Systems Sector on March 30th and 31st, 2016, at the Ronald Reagan Building in Washington, D.C. The workshop was designed to create a forum for subject matter experts (SMEs) to exchange ideas and address important cybersecurity challenges facing the water sector.

  8. How do farmers react to varying water allocations? An assessment of how the attitude to risk affects farm incomes

    NARCIS (Netherlands)

    Schenk, J.; Hellegers, P.; Asseldonk, van Marcel; Davidson, B.

    2014-01-01

    A risk farmers have to cope with is annual changes in the availability of irrigation water. In this paper the relationship between irrigation water allocated to farmers and the incomes they derive in the Coleambally Irrigation Areas (CIA) in Australia is quantified. It is shown empirically that

  9. THE STUDY OF WATER QUALITY USING BENTHIC MACROINVERTEBRATES AS BIOINDICATORS IN THE CATCHMENT AREAS OF THE RIVERS JIU, OLT AND IALOMIŢA

    Directory of Open Access Journals (Sweden)

    Elena Daniela MITITELU

    2012-01-01

    Full Text Available The wide distribution of benthic invertebrates and their different sensitivity shown upon modifying the qualitative parameters of aquatic ecosystems led to a frequent use of these group as bioindicators in different studies. The present study aims at presenting a list concerning the different macroinvertebrates identified in the larva stage in three watersheds (Jiu, Olt, Ialomiţa and establishing the water quality of the monitored sections using this benthic macroinvertebrates. The sample collecting points were represented by 23 stations. The abundance and frequency values recorded for benthic communities varied according to the physical-chemical conditions specific to each sample collecting station. There were identified 15 groups in total. The most frequent were Ephemeroptera, Plecoptera, Trichoptera, Diptera (Chironomidae and others. The deterioration of water quality is marked by the decrease in the biotic index EPT/Ch value.

  10. A Hilbert transform method for parameter identification of time-varying structures with observer techniques

    International Nuclear Information System (INIS)

    Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da

    2012-01-01

    This paper presents a recursive Hilbert transform method for the time-varying property identification of large-scale shear-type buildings with limited sensor deployments. An observer technique is introduced to estimate the building responses from limited available measurements. For an n-story shear-type building with l measurements (l ≤ n), the responses of other stories without measurements can be estimated based on the first r mode shapes (r ≤ l) as-built conditions and l measurements. Both the measured responses and evaluated responses and their Hilbert transforms are then used to track any variation of structural parameters of a multi-story building over time. Given floor masses, both the stiffness and damping coefficients of the building are identified one-by-one from the top to the bottom story. When variations of parameters are detected, a new developed branch-and-bound technique can be used to update the first r mode shapes with the identified parameters. A 60-story shear building with abruptly varying stiffness at different floors is simulated as an example. The numerical results indicate that the proposed method can detect variations of the parameters of large-scale shear-type buildings with limited sensor deployments at appropriate locations. (paper)

  11. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  12. Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data.

    Science.gov (United States)

    McMurry, Julie A; Juty, Nick; Blomberg, Niklas; Burdett, Tony; Conlin, Tom; Conte, Nathalie; Courtot, Mélanie; Deck, John; Dumontier, Michel; Fellows, Donal K; Gonzalez-Beltran, Alejandra; Gormanns, Philipp; Grethe, Jeffrey; Hastings, Janna; Hériché, Jean-Karim; Hermjakob, Henning; Ison, Jon C; Jimenez, Rafael C; Jupp, Simon; Kunze, John; Laibe, Camille; Le Novère, Nicolas; Malone, James; Martin, Maria Jesus; McEntyre, Johanna R; Morris, Chris; Muilu, Juha; Müller, Wolfgang; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Sariyar, Murat; Snoep, Jacky L; Soiland-Reyes, Stian; Stanford, Natalie J; Swainston, Neil; Washington, Nicole; Williams, Alan R; Wimalaratne, Sarala M; Winfree, Lilly M; Wolstencroft, Katherine; Goble, Carole; Mungall, Christopher J; Haendel, Melissa A; Parkinson, Helen

    2017-06-01

    In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.

  13. Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data.

    Directory of Open Access Journals (Sweden)

    Julie A McMurry

    2017-06-01

    Full Text Available In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases. Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.

  14. Conservation of Campomanesia adamantium (CAMB. O. berg seeds in different packaging and at varied temperatures

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2013-03-01

    Full Text Available This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.

  15. Penumbral measurements in water for high-energy x rays

    International Nuclear Information System (INIS)

    Dawson, D.J.; Schroeder, N.J.; Hoya, J.D.

    1986-01-01

    Ionization chambers of varying inside diameter have been used to investigate the penumbral region of 60 Co, 6-MV, and 31-MV x-ray beams. Measurements were made in water at varying depths up to 25 cm for a square field of side length 10 cm. The dependence of the penumbral widths on both the inside diameter of the ionization chamber and the depth in water is established along with the asymmetry of the penumbral distributions about the 50% level. A standard correction is indicated to eliminate the dependence of the measured penumbral widths on the inside diameter of the ionization chamber

  16. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  17. Nitrogen and Organics Removal during Riverbank Filtration along a Reclaimed Water Restored River in Beijing, China

    Directory of Open Access Journals (Sweden)

    Weiyan Pan

    2018-04-01

    Full Text Available Reclaimed water has been widely used to restore rivers and lakes in water scarce areas as well as in Beijing municipality, China. However, refilling the rivers with reclaimed water may result in groundwater pollution. A three-year field monitoring program was conducted to assess the effect of a riverbank filtration (RBF system on the removal of nitrogen and organics from the Qingyang River of Beijing, which is replenished with reclaimed water. Water samples from the river, sediment, and groundwater were collected for NO3-N, NH4-N, and chemical oxygen demand (COD was measured. The results indicate that about 85% of NO3-N was removed from the riverbed sediments. Approximate 92% of NH4-N was removed during the infiltration of water from river to aquifer. On average, 54% of COD was removed by RBF. The attenuation of NO3-N through RBF to the groundwater varied among seasons and was strongly related to water temperature. On the other hand, no obvious temporal variability was identified in the removal of COD. These results suggest that the RBF system is an effective barrier against NO3-N, NH4-N and COD in the Qingyang River, as well as those rivers with similar geological and climatic conditions refilled with reclaimed water.

  18. Spatial organization and drivers of the virtual water trade: a community-structure analysis

    International Nuclear Information System (INIS)

    D’Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca

    2012-01-01

    The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986–2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified. (letter)

  19. Mapping of Cold-Water Coral Carbonate Mounds Based on Geomorphometric Features: An Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Markus Diesing

    2018-01-01

    Full Text Available Cold-water coral reefs are rich, yet fragile ecosystems found in colder oceanic waters. Knowledge of their spatial distribution on continental shelves, slopes, seamounts and ridge systems is vital for marine spatial planning and conservation. Cold-water corals frequently form conspicuous carbonate mounds of varying sizes, which are identifiable from multibeam echosounder bathymetry and derived geomorphometric attributes. However, the often-large number of mounds makes manual interpretation and mapping a tedious process. We present a methodology that combines image segmentation and random forest spatial prediction with the aim to derive maps of carbonate mounds and an associated measure of confidence. We demonstrate our method based on multibeam echosounder data from Iverryggen on the mid-Norwegian shelf. We identified the image-object mean planar curvature as the most important predictor. The presence and absence of carbonate mounds is mapped with high accuracy. Spatially-explicit confidence in the predictions is derived from the predicted probability and whether the predictions are within or outside the modelled range of values and is generally high. We plan to apply the showcased method to other areas of the Norwegian continental shelf and slope where multibeam echosounder data have been collected with the aim to provide crucial information for marine spatial planning.

  20. Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties

    Science.gov (United States)

    Martelli, Fausto; Vuilleumier, Rodolphe; Simonin, Jean-Pierre; Spezia, Riccardo

    2012-10-01

    In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.

  1. Controls on Surface Water Chemistry in the Upper Merced River Basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, David W.; Alisa Mast, M.; Campbell, Donald H.

    1996-05-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 equiv. l-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 equiv. l-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 equiv. l-1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 equiv. l-1, which was five times higher than in atmospheric deposition (4-5 equiv. l-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 equiv. l-1. Concentrations of sulphate in quarterly samples

  2. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  3. Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya, India

    Science.gov (United States)

    Sharma, Ramesh C.; Kumar, Rahul

    2017-12-01

    Satopanth Lake is a glacial lake, located at an altitude of 4600 m above sea level in Garhwal Himalaya of Uttarakhand state in India where an attempt was made to assess the water quality. A total of sixteen physico-chemical parameters including temperature, hardness, alkalinity, dissolved oxygen, conductivity, pH, calcium, magnesium, chlorides, nitrates, sulphates and phosphates were recorded during 2014 and 2015 between June and August in ice-free period. The mean values of pH ranged from 6.85 to 7.10; water temperature fluctuated from 0.1 to 0.3 °C; dissolved oxygen varied from 5.90 to 6.0 mg.L-1; free CO2 varied from 8.40 to 8.60 mg.L-1; total dissolved solids varied from 88.0 to 89.5 mg.L-1; calcium from 7.88 to 7.95 mg.L-1; magnesium from 0.53 to 0.66 mg.L-1. All the physico-chemical values were within the prescribed WHO/BIS limit for drinking water. Water Quality Index (WQI) calculated based on these parameters also revealed the excellent quality of lake water.

  4. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.

    Directory of Open Access Journals (Sweden)

    Dörte Bachmann

    Full Text Available Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O and 28 cm depth (with ²H three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species and functional group number and composition (legumes, grasses, tall herbs, small herbs. Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species.

  5. Flow in curved ducts of varying cross-section

    Science.gov (United States)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  6. The performance of an infiltration gallery used as a simple water ...

    African Journals Online (AJOL)

    driniev

    water treatment option for a small rural community ... protection from human contact and a simple iron removal system was installed to remove ... a reliable supply of potable water because of the seasonal drying up .... The pH varied between 6.17 and 7.8 for the pond water with a mean .... The effect of cement on the water.

  7. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    Science.gov (United States)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of nutrients) impact carbon fluxes in the Arctic at the landscape-scale.

  8. Water Sustainability Assessments for Four Net Zero Water Installations

    Science.gov (United States)

    2013-12-01

    average daily water use, in six leaks. While the cost of the lost water might seem insignificant using current valuation methods, the financial impacts...One function of GFEBS is to identify facility maintenance requirements through integrated asset valuation and depreciation. The desired outcome is...considers tapping groundwater reservoirs as an additional water source. The most feasible groundwater source would likely originate in an alluvial valley

  9. Water pollution by non-radioactive materials

    International Nuclear Information System (INIS)

    Dickenbrok, G.

    1974-01-01

    Water is in constant circulation from the ocean to the earth's atmosphere and back to the ocean. In the course of this cycle, the composition of the water is altered by natural and human influences. Depending on the prevailing conditions, the water may contain solute gases, undissolved substances, inorganic salts, organic compounds, and microorganisms of varying types and concentrations. Many of these substances are known to pollute the water and thus to threaten its various uses. Emitting sources of water pollutants are: waste waters, seepings from open dumpings, mineral fertilizers and biocides washed out from agricultural areas, water pollutants emitted during storage and transport, air pollutants, and erosions from roads. The thermal load is an additional factor. Technical and legal steps are necessary in order to prevent water pollution and to maintain the quality of water required for its various uses. These measures are treated in detail. (orig./AK) [de

  10. Water structuring and hydroxide ion binding at the interface between water and hydrophobic walls of varying rigidity and van der waals interactions

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Zangi, R.; Engberts, J. B. F. N.; Jungwirth, Pavel

    2008-01-01

    Roč. 112, č. 20 (2008), s. 7689-7692 ISSN 1932-7447 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * hydroxide * water interfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  11. Predictors of Drinking Water Boiling and Bottled Water Consumption in Rural China: A Hierarchical Modeling Approach.

    Science.gov (United States)

    Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha

    2017-06-20

    Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.

  12. Variation in benthic long-term data of transitional waters: Is interpretation more than speculation?

    Directory of Open Access Journals (Sweden)

    Michael Lothar Zettler

    Full Text Available Biological long-term data series in marine habitats are often used to identify anthropogenic impacts on the environment or climate induced regime shifts. However, particularly in transitional waters, environmental properties like water mass dynamics, salinity variability and the occurrence of oxygen minima not necessarily caused by either human activities or climate change can attenuate or mask apparent signals. At first glance it very often seems impossible to interpret the strong fluctuations of e.g. abundances or species richness, since abiotic variables like salinity and oxygen content vary simultaneously as well as in apparently erratic ways. The long-term development of major macrozoobenthic parameters (abundance, biomass, species numbers and derivative macrozoobenthic indices (Shannon diversity, Margalef, Pilou's evenness and Hurlbert has been successfully interpreted and related to the long-term fluctuations of salinity and oxygen, incorporation of the North Atlantic Oscillation index (NAO index, relying on the statistical analysis of modelled and measured data during 35 years of observation at three stations in the south-western Baltic Sea. Our results suggest that even at a restricted spatial scale the benthic system does not appear to be tightly controlled by any single environmental driver and highlight the complexity of spatially varying temporal response.

  13. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  14. An Investigation of Potable Water Supply Problems in Akinima ...

    African Journals Online (AJOL)

    The major sources of drinking water are harvested rainwater, water from boreholes, and rivers. These sources are indentified to have varied problems of contamination and pollution, which range from high levels of chemical and microbiological contamination of harvested rainwater and rivers respectively, to saline intrusion ...

  15. The role of water in slip casting

    Science.gov (United States)

    Mccauley, R. A.; Phelps, G. W.

    1984-01-01

    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.

  16. Fathoms Below: Propagation of Deep Water-driven Fractures and Implications for Surface Expression and Temporally-varying Activity at Europa

    Science.gov (United States)

    Walker, C. C.; Craft, K.; Schmidt, B. E.

    2015-12-01

    The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.

  17. Studies on 13C isotope discrimination for identifying tree provenances efficient in water use under water deficit conditions in Kenya

    International Nuclear Information System (INIS)

    Nyamai, D.O.; Juma, P.O.

    1996-01-01

    Screening for drought resistance traits was conducted in a semi-arid site in Machakos using 11 provenances of Acacia tortilis, 6 provenances of Prosopis juliflora and 4 provenances of Casuarina equisetifolia. Tolerance to drought was assessed by the 13 C isotope discrimination (Δ) technique as well as by determining the waster use efficiency (WUE). Measurements of dry matter and early growth performance were also taken as indicators of drought resistance. The results showed significant differences in the 13 C Isotope discrimination, water use efficiency and dry matter yields by the different provenances tested. Generally, the results indicated that there were significant linear negative relationships between 13 C discrimination with water use efficiency as well as dry matter yield. The results further showed highly significant positive relationship between dry matter yield and water use efficiency. Acacia tortilis provenances from middle East and neighbouring North Eastern Africa region appear to possess the greatest abilities for drought resistance in comparison with those from sub-saharan Africa as indicated by their 13 C Isotope discrimination levels, dry matter yield and water use efficiency. However, Acacia provenance from Israel had the highest drought resistance trail. Prosopis provenance from Costa Rica and Casuarina from Dakar region in Senegal also emerged as the best provenances in terms of drought tolerance as shown by the 13 C isotope discrimination and dry matter traits. (author). 8 refs, 4 figs, 3 tabs

  18. Spall Strength Measurements of Concrete for Varying Aggregate Sizes

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Kipp, Marlin E.; Reinhart, William D.; Wilson, Leonard T.

    1999-01-01

    Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, 'SAC-5, CSPC', (''3/4'') large, and (''3/8'') small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study

  19. Interocean exchange of thermocline water

    Science.gov (United States)

    Gordon, Arnold L.

    1986-04-01

    the northern North Atlantic varies but also as the larger-scale wind-driven circulation factors vary. The interocean links within the Indonesian seas and at the Agulhas retroflection may be particularly responsive to such variability. Changes in the warm water route continuity may in turn influence formation characteristics of NADW.

  20. Varying constants, black holes, and quantum gravity

    International Nuclear Information System (INIS)

    Carlip, S.

    2003-01-01

    Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models

  1. Seismic data collection from water gun and industrial background sources in the Chicago Sanitary and Ship Canal area, Illinois, 2011

    Science.gov (United States)

    Morrow, William S.; Carpenter, Phillip J.; Adams, Ryan F.

    2015-01-01

    The water gun is a tool adapted from deep marine geophysical surveys that is being evaluated for use as an acoustic fish deterrent to control the movement of invasive marine species. The water gun creates a seismic signal by using a compressed air discharge to move a piston rapidly within the water, resulting in an implosion. This energy pulse may be able to modify fish behavior or destroy marine life, such as the Asian carp, at some distance. The effects of this energy pulse on structures in the Chicago Sanitary and Ship Canal (CSSC), such as canal walls, shore lines, and lock structures, are not known. The potential effects of the use of a water gun on structures was identified as a concern in the CSSC and was assessed relative to existing background sources during this study. During September 2011, two water guns with piston sizes of 80 and 343 cubic inches, respectively, were tested in the CSSC at varying pressures and distances from a canal wall consisting of dolomite and dolomite setblock. Seismic data were collected during these water gun firings using geophones on land, in boreholes, and at the canal wall interface. Data were collected at varying depths in the canal water using hydrophones. Seismic data were also collected during the occurrences of barge traffic, railroad traffic located near the electric fish barrier in Lemont, and coal-loading operations at a coal power plant near the electric fish barrier. In general, energy produced by barge and railroad sources was less than energy created by the water gun. Energy levels produced by coal-loading operations at least 200 feet from geophones were approximately four times lower than energy levels measured during water gun operations.

  2. Spatiotemporal Distribution and Assemblages of Planktonic Fungi in the Coastal Waters of the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Yaqiong Wang

    2018-03-01

    Full Text Available Fungi play a critical role in the nutrient cycling and ecological function in terrestrial and freshwater ecosystems. Yet, many ecological aspects of their counterparts in coastal ecosystems remain largely elusive. Using high-throughput sequencing, quantitative PCR, and environmental data analyses, we studied the spatiotemporal changes in the abundance and diversity of planktonic fungi and their abiotic and biotic interactions in the coastal waters of three transects along the Bohai Sea. A total of 4362 ITS OTUs were identified and more than 60% of which were unclassified Fungi. Of the classified OTUs three major fungal phyla, Ascomycota, Basidiomycota, and Chytridiomycota were predominant with episodic low dominance phyla Cryptomycota and Mucoromycota (Mortierellales. The estimated average Fungi-specific 18S rRNA gene qPCR abundances varied within 4.28 × 106 and 1.13 × 107copies/L with significantly (P < 0.05 different abundances among the transects suggesting potential influence of the different riverine inputs. The spatiotemporal changes in the OTU abundance of Ascomycota and Basidiomycota phyla coincided significantly (P < 0.05 with nutrients traced to riverine inputs and phytoplankton detritus. Among the eight major fungal orders, the abundance of Hypocreales varied significantly (P < 0.01 across months while Capnodiales, Pleosporales, Eurotiales, and Sporidiobolales varied significantly (P < 0.05 across transects. In addition, our results likely suggest a tripartite interaction model for the association within members of Cryptomycota (hyperparasites, Chytridiomycota (both parasites and saprotrophs, and phytoplankton in the coastal waters. The fungal network featured several hubs and keystone OTUs besides the display of cooperative and competitive relationship within OTUs. These results support the notion that planktonic fungi, hitherto mostly undescribed, play diverse ecological roles in marine habitats and further outline niche processes

  3. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  4. Orthoptic parameters and asthenopic symptoms analysis after 3D viewing at varying distances

    Directory of Open Access Journals (Sweden)

    Oleeviya Joseph

    2018-05-01

    Full Text Available AIM: To analyse visual modifications such as amplitude of accommodation, near point of convergence(NPCreopsis and near phoria associated with asthenopic symptoms after 3D viewing at varying distances.METHODS: A prospective study. Thirty young adults were randomly selected. Each individual was exposed to 3D viewing thrice in a day for a fixed distance and the distance was varied on three consecutive days. Same video of equal duration and different screen sizes were used for every distance. Cyclic 3D mode of K-multimedia(KMplayer was used for projecting the 3D video. Different variables like stereopsis, amplitude of accommodation, near point of accommodation, near phoria and asthenopic symptoms were recorded immediately after 3D video viewing. Stereopsis was measured with “Toegepast Natuurwetenschappelijk Onderzoek” or “Netherlands Organisation for Applied Scientific Research”(TNO test, amplitude of accommodation and NPC were measured using RAF ruler, near phoria was measured using prism bar and a closed ended sample questionnaire was used to know the occurrence of asthenopic symptoms. Statistical analyses were performed using descriptive statistics, paired t-test etc. Qualitative data was analyzed using Chi-square test.RESULTS: For every distance of 40 cm, 3 m and 6 m, amplitude of accommodation was significantly reduced by 0.66 D, 1.12 D and 1.44 D. NPC got significantly receded by 0.63 cm, 0.93 cm and 1.23 cm, and the near phoria was significantly increased by 0.87, and 2.2 prism dioptres(PDbase-in respectively. It was found that most of the subjects got pain around the eyes, headache and irritation for each viewing distance. This study also revealed that 3D video viewing in theaters may increase the symptoms of headache, watering and irritation. Symptoms like headache, watering, fatigue, irritation and nausea may increase considerably at home environment and symptoms such as headache and watering may cause significant discomfort by 3D

  5. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  6. Characterization of CDOM from urban waters in Northern-Northeastern China using excitation-emission matrix fluorescence and parallel factor analysis.

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Li, Sijia; Ma, Jianhang; Wen, Zhidan

    2016-08-01

    Chromophoric dissolved organic matter (CDOM) plays an important role in aquatic systems, but high concentrations of organic materials are considered pollutants. The fluorescent component characteristics of CDOM in urban waters sampled from Northern and Northeastern China were examined by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) to investigate the source and compositional changes of CDOM on both space and pollution levels. One humic-like (C1), one tryptophan-like component (C2), and one tyrosine-like component (C3) were identified by PARAFAC. Mean fluorescence intensities of the three CDOM components varied spatially and by pollution level in cities of Northern and Northeastern China during July-August, 2013 and 2014. Principal components analysis (PCA) was conducted to identify the relative distribution of all water samples. Cluster analysis (CA) was also used to categorize the samples into groups of similar pollution levels within a study area. Strong positive linear relationships were revealed between the CDOM absorption coefficients a(254) (R (2) = 0.89, p CDOM components can be applied to monitor water quality in real time compared to that of traditional approaches. These results demonstrate that EEM-PARAFAC is useful to evaluate the dynamics of CDOM fluorescent components in urban waters from Northern and Northeastern China and this method has potential applications for monitoring urban water quality in different regions with various hydrological conditions and pollution levels.

  7. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  8. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights

    Science.gov (United States)

    Han, B.; Flores, A. N.; Benner, S. G.

    2017-12-01

    In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of

  9. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure.

    Science.gov (United States)

    Knipfer, Thorsten; Eustis, Ashley; Brodersen, Craig; Walker, Andrew M; McElrone, Andrew J

    2015-08-01

    Drought induces xylem embolism formation, but grapevines can refill non-functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x-ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re-watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re-watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought-induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re-watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses. © 2014 John Wiley & Sons Ltd.

  10. Identification of hotspots and trends of fecal surface water pollution in developing countries

    Science.gov (United States)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal

  11. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  12. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya

    International Nuclear Information System (INIS)

    Sahin, L.; Cetinkaya, H.; Murat Sac, M.; Ichedef, M.

    2013-01-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l -1 , while the radium concentration varies from a minimum detectable activity of -1 in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y -1 ; the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y -1 ; the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y -1 . The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y -1 , assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6μmSv y -1 . (authors)

  13. Growth Performance, Mineral Digestibility, and Blood Characteristics of Ostriches Receiving Drinking Water Supplemented with Varying Levels of Chelated Trace Mineral Complex.

    Science.gov (United States)

    Seyfori, Hossein; Ghasemi, Hossein Ali; Hajkhodadadi, Iman; Nazaran, Mohammad Hassan; Hafizi, Maryam

    2018-05-01

    The effects of water supplementation of chelated trace minerals (CTM, which is named Bonzaplex designed with chelate compounds technology) on growth performance, apparent total tract digestibility (ATTD) of minerals, and some blood metabolites, TM, and antioxidant enzyme values in African ostriches were investigated from 8 to 12 months of age. A total of 20 8-month-old ostriches (five birds in five replicate pens) was randomly allocated into one of the following four treatments: (1) control (basal diet + tap water), (2) low CTM (basal diet +100 mg/bird/day CTM powder in tap water), (3) medium CTM (basal diet +1 g/bird/day CTM powder in tap water), and (4) high CTM (basal diet +2 g/bird/day CTM powder in tap water). Compared with control, medium CTM improved (P water can be recommended for improving growth performance, mineral absorption, and antioxidant status of ostriches fed diets containing the recommended levels of inorganic TM.

  14. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  15. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  16. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  17. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    Science.gov (United States)

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  18. Apparent losses due to domestic water meter under-registration in ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... water in terms of volume, but 69% in terms of financial loss to the utility ... trative errors to vary between 2% and 10% of billed metered consumption. ... important from a water management perspective, but fell out- side the ...

  19. Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed.

    Science.gov (United States)

    Kirs, Marek; Kisand, Veljo; Wong, Mayee; Caffaro-Filho, Roberto A; Moravcik, Philip; Harwood, Valerie J; Yoneyama, Bunnie; Fujioka, Roger S

    2017-06-01

    Indicator bacteria, which are conventionally used to evaluate recreational water quality, can originate from various non-human enteric and extra-enteric sources, hence they may not be indicative of human health risk nor do they provide information on the sources of contamination. In this study we utilized traditional (enterococci and Escherichia coli) and alternative (Clostridium perfringens) indicator bacteria, F + -specific coliphage, molecular markers for microorganisms associated with human sewage (human-associated Bacteroides and polyomaviruses), and microbial community analysis tools (16S rRNA gene fragment amplicon sequencing), to identify and evaluate human sewage-related impact in the Manoa watershed in Honolulu, Hawaii. Elevated concentrations of enterococci (geometric mean ranging from 1604 to 2575 CFU 100 mL -1 ) and C. perfringens (45-77 CFU 100 mL -1 ) indicated impairment of the urbanized section of the stream, while indicator bacteria concentrations decreased downstream in the tidally influenced Ala Wai Canal. The threshold values triggering water quality violation notifications in Hawaii were exceeded in 33.3-75.0% of samples collected at sites in the urbanized section of Manoa Stream, but were not exceeded in any of the samples collected at an upstream site located in a forested area. Correlation between indicator bacteria concentrations and rainfall amounts was weak to moderate but significant (E. coli R = 0.251, P = 0.009; enterococci R = 0.369, P watershed, it was lower in the impaired section. Leaking sewer systems and illegal cross-connections are implicated in the impairment of the watershed, hence both the sewer and the storm water lines should be routinely inspected. Collectively, our data suggest that information derived from the analysis of microbial communities complements current marker-based microbial source tracking techniques and environmental monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Age-dependent radiation dose due to intake of uranium through drinking water in India

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Mohapatra, S.; Chakrabarty, A.; Sumesh, C.G.; Tripathi, R.M.; Puranik, V.D.

    2009-01-01

    In the present study, an attempt has been made to estimate the content of uranium in drinking water in various states of India by laser fluorimetry. Depending upon the rate of water intake for the different age groups, the associated radiation dose was calculated. The concentration of uranium varied between 0.1 ± 0.01 and 19.6 ± 1.8 ppb which is much lower than the drinking water guideline value of 60 ppb. The total radiation dose due to ingestion of uranium through drinking water for various age groups is found to vary from 0.14 μSv/y to 48 μSv/y. (author)

  1. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  2. Eestlased Karlovy Varys / J. R.

    Index Scriptorium Estoniae

    J. R.

    2007-01-01

    Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"

  3. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius

  4. Water-contact patterns and risk factors for Schistosoma mansoni infection in a rural village of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    SILVA Antônio Augusto Moura da

    1997-01-01

    Full Text Available Schistosomiasis mansoni in the Serrano village, municipality of Cururupu, state of Maranhão, Brazil, is a widely spread disease. The PECE (Program for the Control of Schistosomiasis, undertaken since 1979 has reduced the prevalence of S. mansoni infection and the hepatosplenic form of the disease. Nevertheless piped water is available in 84% of the households, prevalence remains above 20%. In order to identify other risk factors responsible for the persistence of high prevalence levels, a cross-sectional survey was carried out in a systematic sample of 294 people of varying ages. Socioeconomic, environmental and demographic variables, and water contact patterns were investigated. Fecal samples were collected and analyzed by the Kato-Katz technique. Prevalence of S. mansoni infection was 24.1%, higher among males (35.5% and between 10-19 years of age (36.6%. The risk factors identified in the univariable analysis were water contacts for vegetable extraction (Risk Ratio - RR = 2.92, crossing streams (RR = 2.55, bathing (RR = 2.35, fishing (RR = 2.19, hunting (RR = 2.17, cattle breeding (RR = 2.04, manioc culture (RR = 1.90 and leisure (RR = 1.56. After controlling for confounding variables by proportional hazards model the risks remained higher for males, vegetable extraction, bathing in rivers and water contact in rivers or in periodically inundated parts of riverine woodland (swamplands

  5. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China.

    Science.gov (United States)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Spectrum of small-bowel mucosal abnormalities identified by capsule endoscopy in patients with portal hypertension of varied etiology.

    Science.gov (United States)

    Chandrasekar, T S; Janakan, Gokul Bollu; Chandrasekar, Viveksandeep Thoguluva; Kalamegam, Raja Yogesh; Suriyanarayanan, Sathiamoorthy; Sanjeevaraya, Prasad Menta

    2017-01-01

    Bleeding from small intestinal ectopic varices and persistent anemia caused by portal hypertensive enteropathy (PHE) can be very challenging. Capsule endoscopy (CE) is one of the best noninvasive modalities in identifying such lesions. The aims of this study are to study the prevalence of small-bowel changes related to portal hypertension (PHT) and to correlate them with the observations related to the effects of portal hypertension in the esophagus, stomach, and colon. Thirty-two patients with various etiologies of PHT with either anemia or gastrointestinal bleed were included along with age- and sex-matched controls without PHT. All patients underwent blood tests, gastroscopy, colonoscopy, and CE. The small-bowel findings by CE were categorized as inflammatory-like and vascular lesions. The small-bowel changes were analyzed to find out any association with various demographic, clinical, and endoscopic variables. Thirty-one out of 32 patients with PHT (96.8%) had PHE identified by CE. Of them, 31 (96.8%) had inflammatory-like appearance, 11 (34.4%) had vascular lesions, and 2 (6.2%) had small-bowel varices. Inflammatory-like appearance was noted in eight (25%) and angiodysplastic lesions in two (6.2%) controls. Findings compatible with PHE were detected in 96.8% of the patients and 25% of the controls (X 2 =34.72, p=0.000).The presence of PHE was not associated with any of the above-mentioned variables. Small-bowel mucosal changes were seen in significantly higher number of patients with PHT with anemia.

  7. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  8. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  9. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Science.gov (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  10. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  11. Comparison of Linear Microinstability Calculations of Varying Input Realism

    International Nuclear Information System (INIS)

    Rewoldt, G.

    2003-01-01

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  12. Comparison of linear microinstability calculations of varying input realism

    International Nuclear Information System (INIS)

    Rewoldt, G.; Kinsey, J.E.

    2004-01-01

    The effect of varying 'input realism' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  13. Water cut measurement of oil–water flow in vertical well by combining total flow rate and the response of a conductance probe

    International Nuclear Information System (INIS)

    Chen, Jianjun; Xu, Lijun; Cao, Zhang; Zhang, Wen; Liu, Xingbin; Hu, Jinhai

    2015-01-01

    In this paper, a conductance probe-based well logging instrument was developed and the total flow rate is combined with the response of the conductance probe to estimate the water cut of the oil–water flow in a vertical well. The conductance probe records the time-varying electrical characteristics of the oil–water flow. Linear least squares regression (LSR) and nonlinear support vector regression (SVR) were used to establish models to map the total flow rate and features extracted from the probe response onto the water cut, respectively. Principal component analysis (PCA) and partial least squares analysis (PLSA) techniques were employed to reduce data redundancy within the extracted features. An experiment was carried out in a vertical pipe with an inner diameter of 125 mm and a height of 24 m in an experimental multi-phase flow setup, Daqing Oilfield, China. In the experiment, oil–water flow was used and the total flow rate varied from 10 to 200 m 3 per day and the water cut varied from 0% to 100%. As a direct comparison, the cases were also studied when the total flow rate was not used as an independent input to the models. The results obtained demonstrate that: (1) the addition of the total flow rate as an input to the regression models can greatly improve the accuracy of water cut prediction, (2) the nonlinear SVR model performs much better than the linear LSR model, and (3) for the SVR model with the total flow rate as an input, the adoption of PCA or PLSA not only decreases the dimensions of inputs, but also increases prediction accuracy. The SVR model with five PCA-treated features plus the total flow rate achieves the best performance in water cut prediction, with a coefficient of determination (R 2 ) as high as 0.9970. The corresponding root mean squared error (RMSE) and mean quoted error (MQE) are 0.0312% and 1.99%, respectively. (paper)

  14. On-line method to identify control rod drops in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Souza, T.J.; Martinez, A.S.; Medeiros, J.A.C.C.; Palma, D.A.P.; Gonçalves, A.C.

    2014-01-01

    Highlights: • On-line method to identify control rod drops in PWR reactors. • Identification method based on the readings of the ex-core detector. • Recognition of the patterns in the ex-core detector responses. - Abstract: A control rod drop event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimise undesirable effects in such a scenario. The goal of this work is to develop an online method to identify control rod drops in PWR reactors. The method entails the construction of a tool based on ex-core detector responses. It proposes to recognize patterns in the neutron ex-core detectors responses and thus to make an online identification of a control rod drop in the core during the reactor operation. The results of the study, as well as the behaviour of the detector responses demonstrated the feasibility of this method

  15. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    Science.gov (United States)

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  16. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    Science.gov (United States)

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  17. Ballast Water Self Monitoring

    Science.gov (United States)

    2011-11-01

    Hydrogen peroxide  Menadione /Vitamin K The efficacy of these processes varies by water conditions such as pH, temperature and, most significantly...Hydrocyclone power consumption, voltage and current Hydrocyclone power consumption, voltage and current Menadione /Vitamin K Menadione Chemical analysis...and treatment monitoring - Menadione /Vitamin K concentration at injection - Menadione /Vitamin K dosage and usage - Menadione /Vitamin K

  18. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  19. Stochastic model and method of zoning water networks

    OpenAIRE

    Тевяшев, Андрей Дмитриевич; Матвиенко, Ольга Ивановна

    2014-01-01

    Water consumption at different time of the day is uneven. The model of steady flow distribution in water-supply networks is calculated for maximum consumption and effectively used in the network design and reconstruction. Quasi-stationary modes, in which the parameters are random variables and vary relative to their mean values are more suitable for operational management and planning of rational network operation modes.Leaks, which sometimes exceed 50 % of the volume of water supplied, are o...

  20. Boron exposure assessment using drinking water and urine in the North of Chile.

    Science.gov (United States)

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  2. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  3. The control of potential health risks related to drinking water in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Dick, T A

    1981-04-01

    In the United Kingdom, potable water put into supply is required to be 'wholesome'. The term 'wholesome' is interpreted as clear, palatable and safe to drink. About 99% of potable supplies are provided by Regional Water Authorities and Water Companies (for England and Wales), Regional Councils and Island Councils (for Scotland) and the Department of the Environment (NI) (for Northern Ireland). These water authorities draw their raw water from upland surface waters, lowland surface waters (including lakes and rivers) and underground waters. Although each source provides approximately one-third of supply, the proportion varies considerably in different parts of the UK. Consequently the control of potential health risks related to drinking water also varies according to the source of supply. The paper describes briefly the treatment practice for the various sources, including disinfection practice. More specifically the paper describes current UK practice or developments in the control or investigation of plumbosolvency, fluoridation, nitrate, trihalomethanes, other organic micropollutants, sodium, asbestos and tar linings in pipes. The possibilities for the surveillance of the 1% of private supplies are also discussed.

  4. Marketingový mix HC Enegie Karlovy Vary

    OpenAIRE

    Štrobl, Adam

    2016-01-01

    Title: Marketing mix of HC Energie Karlovy Vary Objectives: This thesis is based on a questionnaire responses obtained from HC Energie Karlovy Vary fans. Its objective is focused on evaluation of their opinions on the marketing mix, their subsequent interpretation, and finally even development of recommendations for improvement based on previous analysis. Methods: Two methods are used to analyse the marketing mix. The first method is qualitative participant observation. The second method is a...

  5. Understanding Kendal aquifer system: a baseline analysis for sustainable water management proposal

    Science.gov (United States)

    Lukman, A.; Aryanto, M. D.; Pramudito, A.; Andhika, A.; Irawan, D. E.

    2017-07-01

    North coast of Java has been grown as the center of economic activities and major connectivity hub for Sumatra and Bali. Sustainable water management must support such role. One of the basis is to understand the baseline of groundwater occurrences and potential. However the complex alluvium aquiver system has not been well-understood. A geoelectric measurements were performed to determine which rock layer has a good potential as groundwater aquifers in the northern coast of Kaliwungu Regency, Kendal District, Central Java province. Total of 10 vertical electrical sounding (VES) points has been performed, using a Schlumberger configuration with the current electrode spacing (AB/2) varies between 200 - 300 m and the potential difference electrode spacing (MN/2) varies between 0.5 to 20 m with depths target ranging between 150 - 200 m. Geoelectrical data processing is done using Ip2win software which generates resistivity value, thickness and depth of subsurface rock layers. Based on the correlation between resistivity value with regional geology, hydrogeology and local well data, we identify three aquifer layers. The first layer is silty clay with resistivity values vary between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m. Both layers serve as impermeable layer. The third layer is sandy tuff with resistivity value between 60 - 100 ohm.m which serves as a confined aquifer layer located at 70 - 100 m below surface. Its thickness is vary between 70 to 110 m. The aquifer layer is a mixing of volcanic and alluvium sediment, which is a member of Damar Formation. The stratification of the aquifer system may change in short distance and depth. This natural setting prevent us to make a long continuous correlation between layers. Aquifer discharge is estimated between 5 - 71 L/s with the potential deep well locations lies in the west and southeast part of the study area. These hydrogeological settings should be used

  6. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  7. Site 300 City Water Master Plan

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jeff [Stantec Consulting Services Inc., Irvine, CA (United States)

    2017-03-13

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varying from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.

  8. Õunpuu Karlovy Varys edukas

    Index Scriptorium Estoniae

    2010-01-01

    45. Karlovy Vary filmifestivali võistlusprogrammis "East of the West" märgiti ära Veiko Õunpuu film "Püha Tõnu kiusamine". Peaauhind läks rumeenlase Cristi Puiu filmile "Aurora". Grand prix´sai Augustĺ Vila film "La mosquitera". Teisi preemiasaajaid

  9. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  10. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  11. The impact of reorienting cone-beam computed tomographic images in varied head positions on the coordinates of anatomical landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Jeong, Ho Gul; Hwang, Jae Joon; Lee, Jung Hee; Han, Sang Sun [Dept. of Oral and Maxillofacial Radiology, Yonsei University, College of Dentistry, Seoul (Korea, Republic of)

    2016-06-15

    The aim of this study was to compare the coordinates of anatomical landmarks on cone-beam computed tomographic (CBCT) images in varied head positions before and after reorientation using image analysis software. CBCT images were taken in a normal position and four varied head positions using a dry skull marked with 3 points where gutta percha was fixed. In each of the five radiographic images, reference points were set, 20 anatomical landmarks were identified, and each set of coordinates was calculated. Coordinates in the images from the normally positioned head were compared with those in the images obtained from varied head positions using statistical methods. Post-reorientation coordinates calculated using a three-dimensional image analysis program were also compared to the reference coordinates. In the original images, statistically significant differences were found between coordinates in the normal-position and varied-position images. However, post-reorientation, no statistically significant differences were found between coordinates in the normal-position and varied-position images. The changes in head position impacted the coordinates of the anatomical landmarks in three-dimensional images. However, reorientation using image analysis software allowed accurate superimposition onto the reference positions.

  12. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  13. Abrasive water jet: a complementary tool

    OpenAIRE

    Duarte, J. P.; Peças, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial ...

  14. Nonequilibrium Phase Transitions in Supercooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  15. Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2010-01-01

    Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.

  16. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  17. Local Water Conflict and Cooperation

    DEFF Research Database (Denmark)

    Hermann, Roberto Rivas; Hooper, Catherine; Munk Ravnborg, Helle

    2011-01-01

    in the five countries and discuss its implications. The present paper synthesizes possible ‘blind spots’ in the national policy, legal or administrative water governance frameworks with reference to the identified types of water-related conflictive and cooperative situations identified during the inventories.......In 2007 the Danish Institute for International Studies (DIIS) launched the research programme “Competing for Water: Understanding conflict and cooperation in local water governance”. Along with partners in five developing countries (Bolivia, Mali, Nicaragua, Vietnam and Zambia), the programme aims...... to contribute to “sustainable local water governance in support of the rural poor and otherwise disadvantaged groups in developing countries by improving the knowledge among researchers and practitioners of the nature, extent and intensity of local water conflict and cooperation and their social, economic...

  18. Identifying factors linked to the occurrence of alien gastropods in isolated woodland water bodies

    Science.gov (United States)

    Spyra, Aneta; Strzelec, Małgorzata

    2014-03-01

    Biological invasions are a significant component of human-caused global change and is widely regarded as one of the main threats to natural biodiversity. Isolated anthropogenic water bodies created in the areas that are deprived of natural freshwater habitats allow the survival and reproduction of alien species on newly settled sites. They are often small with water level fluctuations causing frequent environmental disturbances. The colonisation success may be the result of the rate of their degradation. The aims of the study were to determine the environmental conditions that affect the existence of alien species of gastropods in this type of aquatic environment and to examine whether the occurrence of non-native species affects the community structure of the native species. This study made it possible to group woodland ponds according to the occurrence of the three invasive species in snail communities and discuss the environmental conditions present in these pond types. Analysis of water properties emphasised the distinctiveness of the selected pond types. In ponds of the Potamopyrgus antipodarum type, we found the highest values of some parameters mainly hardness, conductivity, and content of calcium and chlorides, in contrast with the Physella acuta type, which were characterised by the lowest values except for phosphates and nitrites. In the Ferrissia fragilis type, we found the highest nitrate content. Data on the occurrence of alien species in different water environments play an important role in actions which are taken to prevent new invasions and spread of non-native species as well as to reduce future impacts of invaders.

  19. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  20. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.