WorldWideScience

Sample records for identifying system transfer

  1. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  2. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  3. Data transfer in on-line systems

    International Nuclear Information System (INIS)

    Zacharov, V.

    1978-01-01

    The problem of transfer of data in both directions between experimental equipment and process systems on the one hand, and hardware processors on the other, is an important one. This fundamental question is discussed in the coxtent of contemporary practice, where the principal processing element is the minicomputer. Although several interface conventions are considered, practice is dominated by the CAMAC system, and the main emphasis is to review recent developments in that system, particularly in the area of distributed configurations. The impact of new microcircuit technology on the way in which data transfers are performed is only beginning. The present discussion trys to assess this impact and to identify the main changes that are expected to occur. (Auth.)

  4. Identification of MIMO systems with sparse transfer function coefficients

    Science.gov (United States)

    Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios

    2012-12-01

    We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.

  5. Railcar waste transfer system hydrostatic test

    International Nuclear Information System (INIS)

    Ellingson, S.D.

    1997-01-01

    Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test

  6. A pneumatic transfer system for special form 252Cf

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form 252 Cf. It was developed to reduce the exposure to personnel handling sources of 252 Cf with masses up to 150 microg by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the 252 Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those 252 Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole

  7. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  8. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  9. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    B. Gorpani

    2000-01-01

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist,; DC--loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the; DC--is fully loaded, the Disposal Container Transport System moves the; DC--to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister

  10. Canister Transfer System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling

  11. Design considerations for on-site spent-fuel transfer systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Jones, C.R.

    1989-06-01

    Studies on spent fuel shipping logistics and operation make it clear that the use of large casks, i.e., 100--125 tons, is superior to smaller casks of similar construction. This superiority manifests itself in both transportation and/or shipping economics and safety as well as reduced personnel exposure in the processing of the casks. An on-site system for the transfer of spent fuel from the storage pool to a large shipping or storage cask, as well as the transfer of spent fuel directly from a storage cask to a shipping cask, could bring the large cask benefits to those restricted reactors. Sensing the need to look more closely at this opportunity, EPRI contracted with S. Levy, Incorporated of Campbell, CA to develop a set of design considerations for such transfer systems. Rather then embark on another design study, EPRI decided to first identify the system considerations that must be factored into any design. The format for this effort presents both the Consideration and the Rationale for the consideration. The resulting work identified thirty-six General Considerations and two Special Considerations. The Considerations are in the form of mandatory requirements and desirable but nonmandatory requirements. Additionally, a brief economic study was performed to get a feel for the cost considerations of on-site transfers. The study results suggest a relatively narrow set of scenarios where on-site transfers are economically superior to alternatives. These scenarios generally involve the use of concrete casks as on-site storage devices

  12. Classification of the MGR Assembly Transfer System

    International Nuclear Information System (INIS)

    S.E. Salzman

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) assembly transfer system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  13. Pneumatic transfer systems

    International Nuclear Information System (INIS)

    Bichler, H.; Boeck, H.; Hammer, J.; Buchtela, K.

    1988-11-01

    A pneumatic transfer system for research reactors, including a sample changer system and to be used for neutron activation analysis, is described. The system can be obtained commercially from the Atominstitut. 2 figs. (qui)

  14. The CANDU 9 fuel transfer system

    International Nuclear Information System (INIS)

    Keszthelyi, Z.G.; Morikawa, D.T.

    1996-01-01

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs

  15. The CANDU 9 fuel transfer system

    Energy Technology Data Exchange (ETDEWEB)

    Keszthelyi, Z G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada); Morikawa, D T [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs.

  16. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  17. TRANSFER PRICING AS A SYSTEM-FACTOR

    Directory of Open Access Journals (Sweden)

    L. M. Guisin

    2011-01-01

    Full Text Available It is proposed that transfer pricing plays a system-building role for multi-profile commercial banks of today. Bank transfer pricing system properties are outlined. Examples of practical implementation of the transfer pricing to bank activities are brought about. Impact of transferprices on key aspects of the bank management and control system is discussed.

  18. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  19. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  20. Transferences of Purkinje systems

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2011-12-01

    Full Text Available The transferences of heterocentric astigmatic Purkinje systems are special: submatrices B and C, that is, the disjugacy and the divergence of the system, are symmetric and submatrix D (the divarication is the transpose of submatrix A (the dilation.  It is the primary purpose of this paper to provide a proof.  The paper also derives other relationships among the fundamental properties and compact expressions for the transference and optical axis locator of a Purkinje system. (S Afr Optom 2011 70(2 57-60

  1. Saturn facility oil transfer automation system

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector Ricardo.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  2. Transfer function analysis of radiographic imaging systems

    International Nuclear Information System (INIS)

    Metz, C.E.; Doi, K.

    1979-01-01

    The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)

  3. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Gorpani, B.

    2000-01-01

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  4. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  5. CURRENT TRANSFER SYSTEMS

    Science.gov (United States)

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  6. Trustworthy persistent identifier systems of the future

    Science.gov (United States)

    Golodoniuc, Pavel; Klump, Jens; Car, Nicholas

    2016-04-01

    as a highly distributed system of independent nodes that provides registration and first-degree resolution facilities for persistent identifiers, and (b) the PID Service tool to enable fine-grained resolution of object representations in dynamic datasets using parameterized requests. The PID Service, deployed in close proximity to data services and managed by individual organisations, gives great flexibility and control over multiple representations and versions of information objects in data stores while allowing basic resolution via the Handle system. Through the assessment proposals and implementation example we give, we highlight a critical aspect of PID system design and implementation that we believe is often neglected - the protocols and procedures required for PID system decommissioning. These protocols and procedures are needed in order for PID systems' core data to be able to be transferred to successor systems when current systems need replacing, as we indicate they inevitably will. Not knowing what successor systems may be, we strongly believe in using open standard formats as this gives future system implementers the best possible chance of being able to work with the data export. Smooth system handover will ensure that identifiers minted today will actually persist into the future.

  7. Fusion and particle transfer around the Coulomb-Barrier in intermediate systems

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1989-01-01

    The most important characteristics of fusion reactions below and around the Coulomb-barrier are summarized. Experimental fusion cross sections for typical systems are discussed and compared with current formulae obtained from semi-classical and quantum tunneling approaches. The influence of nucleons transfer in the enhancement of the fusion cross section below the Coulomb-barrier is also shown. Sub-barrier fusion cross sections for the systems 35,37 Cl + 58,64 Ni and 33 S + 90,91,92 Zr, and near-barrier cross sections of all important transfer channels have been measured using the XTU-TANDEM at Legnaro, Italy. In 35,37 Cl + 58,64 Ni systems, the motivation further investigated was the influence of the valence proton in the enhancement of the sub-barrier fusion cross section. The data are discussed in comparison with the similar data of 34,36 S + 58,64 Ni with the aim of revealing the influence of coupled proton transfer channels. Calculations were performed using the simplified coupled channel code CCFUS including ''pick-up'' of one and two neutrons and ''stripping'' of two neutrons channels. Signatures of positive Q-values transfer channels coupled to fusion were clearly identified. For the 33 S + 90,91,92 Zr systems taking into account the coupling effects between transfer and fusion and using the semi-classical approach, transfer form-factors were extracted and succesfully employed to described the isotopic effects in fusion enhancement. (Author) [es

  8. Design Criteria for Bagless Transfer System (BTS) Packaging System

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    This document provides the criteria for the design and installation of a Bagless Transfer System (BTS); Blend, Sieve and Balance Equipment; and Supercritical Fluid Extraction System (SFE). The project consists of 3 major modules: (1) Bagless Transfer System (BTS) Module; (2) Blend, Sieve and Balance Equipment; and (3) Supercritical Fluid Extraction (SFE) Module

  9. SNF/HLW Transfer System Description Document

    International Nuclear Information System (INIS)

    W. Holt

    2005-01-01

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the spent nuclear fuel (SNF)/high-level radioactive waste (HLW) transfer system and associated bases, which will allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control. Accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD follows the design with regard to the description of the system. The description provided in this SDD reflects the current results of the design process

  10. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.

    Science.gov (United States)

    Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J

    2017-05-01

    To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.

  11. Based on enterprise data bus realizing data transfer of engineering management information system in the nuclear power plant

    International Nuclear Information System (INIS)

    Shen Lin

    2014-01-01

    The data transfer of the system in the plant does not simply package the data by category, but analyze systematically the data in project management, identify basic data of the system for operations, group the data, and analyze their types, so as to ensure accuracy and quality of data transfer. the data transfer of engineering management information systems in the plant is the key of efficient operations of information systems. Its data quality will directly affect. equipment material management efficiency and maintenance. Therefore based on the nature of enterprise data bus, it can standardize data transfer. by developing reasonable transfer strategy by stage, it can decompose the heavy task of transferring calibration into the full process of engineering construction. combined with the quality assurance system of data transfer, transfer quality can be guaranteed in the whole process, so as to achieve a smooth transition from information systems in engineering construction to those in operation. (author)

  12. Numerical study on identification of transfer functions in a feedback system and model reduction

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1997-01-01

    Identification of transfer function matrices in a feedback system is discussed by using the singular value decomposition of Hankel matrix from the viewpoint of inverse problems. A method of model reduction is considered, and selection criteria are proposed for identification of them. Transformation formula between open loop and closed loop transfer function matrices are determined from the feedback loop structure, and they are needed for identification of open loop transfer function matrices under such a condition where the feedback system is in a minimum phase. Though the identifiability of open loop transfer function matrices can be examined in the framework of innovation model equivalent to the feedback system, there are pole-zero cancellations in the identification of them. The method to reduce a model order of an open loop transfer function is discussed by using the singular value decomposition of a gramian given by the open loop transfer function with higher degree. To check reliability of the present algorithm, a simulation study is performed for an example. (author)

  13. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  14. Transfer Innovations Fund Updating Project. BC Council on Admissions and Transfer. Tourism Management Articulation

    Science.gov (United States)

    British Columbia Council on Admissions and Transfer, 2010

    2010-01-01

    In 2008, a number of changes were identified that expanded the scope of the updating required for Block Transfer for tourism management as follows: a new core curriculum for diploma programs; the need for expanded information on diploma to diploma transfer; and, a growing need for an expanded system of transfer identified in Campus 2020…

  15. TRANSFER RESERVOIR AS A RAINWATER DRAINAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Robert Malmur

    2016-06-01

    Full Text Available Intensive rainfalls and snow melting often cause floods in protected areas and overflow the existing sewage systems. Such cases are particularly burdensome for the inhabitants and cause considerable physical losses. One of the possible constructional solutions to ensure the effective outflow of stormwater are transfer reservoirs located between the draining system and a receiver set discussed in this paper. If gravity outflow of sewage is impossible, the initial part of sewage volume is accumulated in the transfer reservoir and then it is transferred into the water receiver set. However, gravity discharge of sewage to the water receiver set occurs through transfer chambers in the transfer reservoir.

  16. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  17. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  18. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  19. Oxygen transfer rate identifies priming compounds in parsley cells.

    Science.gov (United States)

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  20. Modelling of complex heat transfer systems by the coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Bacot, P.; Bonfils, R.; Neveu, A.; Ribuot, J. (Centre d' Energetique de l' Ecole des Mines de Paris, 75 (France))

    1985-04-01

    The coupling method proposed here is designed to reduce the size of matrices which appear in the modelling of heat transfer systems. It consists in isolating the elements that can be modelled separately, and among the input variables of a component, identifying those which will couple it to another component. By grouping these types of variable, one can thus identify a so-called coupling matrix of reduced size, and relate it to the overall system. This matrix allows the calculation of the coupling temperatures as a function of external stresses, and of the state of the overall system at the previous instant. The internal temperatures of the components are determined from for previous ones. Two examples of applications are presented, one concerning a dwelling unit, and the second a solar water heater.

  1. Ex-vessel nuclear fuel transfer system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a fuel transfer area and a fuel storage area while the fuel assemblies remain completely submerged in a continuous body of coolant is described. A fuel transfer area filled with reactor coolant communicating with the reactor vessel below the reactor coolant level provides a transfer area for fuel assemblies in transit to and from the reactor vessel. A positioning mechanism comprising at least one rotatable plug disposed on a fuel transfer tank located outside the reactor vessel cooperates with either the fuel transfer area or the fuel storage area to position a fuel assembly in transit. When in position, a transporting mechanism cooperating with the positioning mechanism lifts or lowers a chosen fuel assembly. The transporting mechanism together with the positioning mechanism are capable of transferring a fuel assembly between the fuel transfer area and the fuel storage area

  2. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  3. Design Review Closure Report for the SY-101 Rapid Transfer System

    International Nuclear Information System (INIS)

    POWELL, W.J.

    1999-01-01

    The purpose of this report, is to document closure of design review open items, resulting from design reviews conducted for the SY-101 Respond And Pump In Days (RAPID) Transfer System. Results of the various design reviews were documented in the Design Review Report for The SY-101 Rapid Mitigation System, HNF-4519. In that report, twenty-three open items were identified. In this report the 23 items are reviewed and statused

  4. Design Review Closure Report for the SY-101 Rapid Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    POWELL, W.J.

    1999-11-29

    The purpose of this report, is to document closure of design review open items, resulting from design reviews conducted for the SY-101 Respond And Pump In Days (RAPID) Transfer System. Results of the various design reviews were documented in the Design Review Report for The SY-101 Rapid Mitigation System, HNF-4519. In that report, twenty-three open items were identified. In this report the 23 items are reviewed and statused.

  5. Ex-vessel nuclear fuel transfer system

    International Nuclear Information System (INIS)

    1977-01-01

    A system is described for transferring reactor fuel assemblies between a fuel storage area and a fuel transfer area while the fuel assemblies remain completely submerged in a continuous body of coolant. The invention relates particularly to sodium cooled fast breeder reactors. (UK)

  6. Investigating potential transferability of place-based research in land system science

    Science.gov (United States)

    Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf

    2016-09-01

    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other

  7. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  8. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  9. Entanglement transfer between bipartite systems

    International Nuclear Information System (INIS)

    Bougouffa, Smail; Ficek, Zbigniew

    2012-01-01

    The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four-qubit system and we demonstrate the conditions under which the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of non-zero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. Complete transfer of the entanglement is restricted to the cavity modes, with transfer to the other pairs being limited to 50%. We find that complete transfer of an initial entanglement to other pairs of qubits may take place if the initial state is not the maximally entangled state and the atoms couple to the cavity modes with unequal strengths. Depending on the ratio between the coupling strengths, optimal entanglement can be created between the atoms and one of the cavity modes.

  10. Evolution of PHWR fuel transfer system based on operating experience

    International Nuclear Information System (INIS)

    Parvatikar, R.S.; Singh, Jaipal; Chaturvedi, P.C.; Bhambra, H.S.

    2006-01-01

    Fuel Transfer System facilitates loading of new fuel into Fuelling Machine, receipt of spent fuel from Fuelling Machine and its further transportation to Storage Bay. To overcome the limitations of transferring a pair of bundles in the single tube Airlock and Transfer Arm in RAPS-1 and 2/MAPS, a new concept of six tube Transfer Magazine was introduced in NAPS. This resulted in simultaneous loading of new fuel from Transfer Magazine into the Fuelling Machine and unloading of spent fuel from the Fuelling Machine through the exchange mode. It further facilitated the parallel/simultaneous operation of refuelling by Fuelling Machines on the reactor and transferring of spent fuel bundles from the Transfer Magazine to the bay. This new design of Fuel Transfer System was adopted for all standardised 220 MWe PHWRs. Based on the experience gained in 220 MWe PHWRs in the area of operation and maintenance, a number of improvements have been carried out over the years. These aspects have been further strengthened and refined in the Fuel Transfer System of 540 MWe units. The operating experience of the system indicates that the presence of heavy water in the Transfer Magazine poses limitations in its maintenance in the Fuel Transfer room. Further, Surveillance and maintenance of large number of under water equipment and associated valves, rams and underwater sensors is putting extra burden on the O and M efforts. A new concept of mobile light water filled Transfer Machine has been evolved for proposed 700 MWe PHWR units to simplify Fuel Transfer System. This has been made possible by adopting snout level control in the Fuelling Machine, elimination of Shuttle Transport System and locating the Storage Bay adjacent to the Reactor Building. This paper describes the evolution of Fuel Transfer System concepts and various improvements based on the experience gained in the operation and maintenance of the system. (author)

  11. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  12. Validation of the learning transfer system inventory in the South African context (Part 1

    Directory of Open Access Journals (Sweden)

    W J Coetsee

    2006-10-01

    Full Text Available The purpose of this study was to validate the Learning Transfer System Inventory (LTSI in the South African context. The sample used in this study was a convenience sample of 240 employees working for a Banking group. Exploratory factor analysis of the LTSI was used to determine if an interpretable factor structure of latent transfer system constructs when applied in the South African context could be identified. From the results it appears that the factor structure of the LTSI, as revealed by means of the exploratory approach, appears differently in the South African context.

  13. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  14. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  15. Corrosion control for the Hanford site waste transfer system

    International Nuclear Information System (INIS)

    Haberman, J.H.

    1995-01-01

    Processing large volumes of spent reactor fuel and other related waste management activities produced radioactive wastes which have been stored in underground high-level waste storage tanks since the 1940s. The effluent waste streams from the processing facilities were stored underground in high-level waste storage tanks. The waste was transferred between storage tanks and from the tanks to waste processing facilities in a complex network of underground piping. The underground waste transfer system consists of process piping, catch tanks, lift tanks, diversion boxes, pump pits, valves, and jumpers. Corrosion of the process piping from contact with the soil is a primary concern. The other transfer system components are made of corrosion-resistant alloys or they are isolated from the underground environment and experience little degradation. Corrosion control of the underground transfer system is necessary to ensure that transfer routes will be available for future waste retrieval, processing,a nd disposal. Today, most waste transfer lines are protected by an active impressed-current cathodic protection (CP) system. The original system has been updated. Energization surveys and a recent base-line survey demonstrate that system operational goals are met

  16. QuickCash: Secure Transfer Payment Systems

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alhothaily

    2017-06-01

    Full Text Available Payment systems play a significant role in our daily lives. They are an important driver of economic activities and a vital part of the banking infrastructure of any country. Several current payment systems focus on security and reliability but pay less attention to users’ needs and behaviors. For example, people may share their bankcards with friends or relatives to withdraw money for various reasons. This behavior can lead to a variety of privacy and security issues since the cardholder has to share a bankcard and other sensitive information such as a personal identification number (PIN. In addition, it is commonplace that cardholders may lose their cards, and may not be able to access their accounts due to various reasons. Furthermore, transferring money to an individual who has lost their bankcard and identification information is not a straightforward task. A user-friendly person-to-person payment system is urgently needed to perform secure and reliable transactions that benefit from current technological advancements. In this paper, we propose two secure fund transfer methods termed QuickCash Online and QuickCash Offline to transfer money from peer to peer using the existing banking infrastructure. Our methods provide a convenient way to transfer money quickly, and they do not require using bank cards or any identification card. Unlike other person-to-person payment systems, the proposed methods do not require the receiving entity to have a bank account, or to perform any registration procedure. We implement our QuickCash payment systems and analyze their security strengths and properties.

  17. QuickCash: Secure Transfer Payment Systems

    Science.gov (United States)

    Alhothaily, Abdulrahman; Alrawais, Arwa; Song, Tianyi; Lin, Bin; Cheng, Xiuzhen

    2017-01-01

    Payment systems play a significant role in our daily lives. They are an important driver of economic activities and a vital part of the banking infrastructure of any country. Several current payment systems focus on security and reliability but pay less attention to users’ needs and behaviors. For example, people may share their bankcards with friends or relatives to withdraw money for various reasons. This behavior can lead to a variety of privacy and security issues since the cardholder has to share a bankcard and other sensitive information such as a personal identification number (PIN). In addition, it is commonplace that cardholders may lose their cards, and may not be able to access their accounts due to various reasons. Furthermore, transferring money to an individual who has lost their bankcard and identification information is not a straightforward task. A user-friendly person-to-person payment system is urgently needed to perform secure and reliable transactions that benefit from current technological advancements. In this paper, we propose two secure fund transfer methods termed QuickCash Online and QuickCash Offline to transfer money from peer to peer using the existing banking infrastructure. Our methods provide a convenient way to transfer money quickly, and they do not require using bank cards or any identification card. Unlike other person-to-person payment systems, the proposed methods do not require the receiving entity to have a bank account, or to perform any registration procedure. We implement our QuickCash payment systems and analyze their security strengths and properties. PMID:28608846

  18. QuickCash: Secure Transfer Payment Systems.

    Science.gov (United States)

    Alhothaily, Abdulrahman; Alrawais, Arwa; Song, Tianyi; Lin, Bin; Cheng, Xiuzhen

    2017-06-13

    Payment systems play a significant role in our daily lives. They are an important driver of economic activities and a vital part of the banking infrastructure of any country. Several current payment systems focus on security and reliability but pay less attention to users' needs and behaviors. For example, people may share their bankcards with friends or relatives to withdraw money for various reasons. This behavior can lead to a variety of privacy and security issues since the cardholder has to share a bankcard and other sensitive information such as a personal identification number (PIN). In addition, it is commonplace that cardholders may lose their cards, and may not be able to access their accounts due to various reasons. Furthermore, transferring money to an individual who has lost their bankcard and identification information is not a straightforward task. A user-friendly person-to-person payment system is urgently needed to perform secure and reliable transactions that benefit from current technological advancements. In this paper, we propose two secure fund transfer methods termed QuickCash Online and QuickCash Offline to transfer money from peer to peer using the existing banking infrastructure. Our methods provide a convenient way to transfer money quickly, and they do not require using bank cards or any identification card. Unlike other person-to-person payment systems, the proposed methods do not require the receiving entity to have a bank account, or to perform any registration procedure. We implement our QuickCash payment systems and analyze their security strengths and properties.

  19. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    Science.gov (United States)

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  20. W-314, waste transfer alternative piping system description

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation

  1. W-314, waste transfer alternative piping system description

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.G.

    1998-04-30

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation.

  2. Scaling CMS data transfer system for LHC start-up

    International Nuclear Information System (INIS)

    Tuura, L; Bockelman, B; Bonacorsi, D; Egeland, R; Feichtinger, D; Metson, S; Rehn, J

    2008-01-01

    The CMS experiment will need to sustain uninterrupted high reliability, high throughput and very diverse data transfer activities as the LHC operations start. PhEDEx, the CMS data transfer system, will be responsible for the full range of the transfer needs of the experiment. Covering the entire spectrum is a demanding task: from the critical high-throughput transfers between CERN and the Tier-1 centres, to high-scale production transfers among the Tier-1 and Tier-2 centres, to managing the 24/7 transfers among all the 170 institutions in CMS and to providing straightforward access to handful of files to individual physicists. In order to produce the system with confirmed capability to meet the objectives, the PhEDEx data transfer system has undergone rigourous development and numerous demanding scale tests. We have sustained production transfers exceeding 1 PB/month for several months and have demonstrated core system capacity several orders of magnitude above expected LHC levels. We describe the level of scalability reached, and how we got there, with focus on the main insights into developing a robust, lock-free and scalable distributed database application, the validation stress test methods we have used, and the development and testing tools we found practically useful

  3. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    Science.gov (United States)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  4. Study on Evaluation Indicators System of Crowd Management for Transfer Stations Based on Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Guanghou Zhang

    2011-12-01

    Full Text Available Improving safety and convenience of transfer is one of the most vital tasks in subway system planning, design and operation management. Because of complicated space layout and crowded pedestrian, crowd control is a big challenge for management of transfer stations. Thus, a quantitative evaluation should be done before improvement measures are carried out. Literature review showed that present evaluation indicators about crowd management in subway system were all based on fixed value or experience. Dynamic effect caused by pedestrian congestion and various facility combination cannot be represented based on these indicators. Thus, in this paper, based on the pedestrian simulation tool, dynamic evaluation indicators system of crowd management was established from the point of safety, cost-effectiveness and comfort. In order to aid decision makers to identify the most appropriate scenario to improve the effectiveness of crowd management, Matter-Element Analysis (MEA was used to rate different scenarios. A pedestrian simulation model of a designing intermodal transfer station was built and four different scenarios were tested to demonstrate how to use this indicators system. Simulation results were evaluated based on the dynamic indicators system and MEA. The application results show that the dynamic evaluation indicators system is operational and can reflect level of the crowd management in transfer station comprehensively and precisely.

  5. Measurements of Critical Heat Flux using Mass Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.

  6. GaN-Based Laser Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Carlo De Santi

    2018-01-01

    Full Text Available The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.

  7. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  8. I sup(123) target transfer system

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Rautenberg, F.A.

    1986-01-01

    The construction of target transfer system using a robot into hot cell of IEN cyclotron (Brazilian-CNEN) for sup(123)I production is presented. The system operation is described, and the advantages are shown. (M.C.K.)

  9. Embedded system file transfer USB

    International Nuclear Information System (INIS)

    Jaoua, Mehdi

    2008-01-01

    The development of the communication series A emphasized new aspects of data exchange. The transfer of data, subject of my project of end of studies, consists in transferring from the files of a support of mass towards another via port USB. In first phase, I had like stain the realization of an embarked system allowing the communication between a key USB and final of communication such as a Pc. For this fact, I had to include/understand the operation of protocol USB and thus I could programmed a Peak to manage this communication. The second phase, will consist in extending this project towards a transmission de< donnees between two keys USB without intervention of a powerful machine equipped with an operating system pour rant to manage this transaction. (Author)

  10. Management control as basis for a transfer pricing system

    NARCIS (Netherlands)

    Steens, H.B.A.; Van Dam, Harmen; Casna, Richard

    2003-01-01

    The chapter documents the contribution to a international seminar on transfer pricing. The chapter describes how key management concepts can contribute to shaping transfer pricing systems and defining transfer pricing methods.

  11. Liquid hydrogen transfer pipes and level regulation systems

    International Nuclear Information System (INIS)

    Marquet, M.; Prugne, P.; Roubeau, P.

    1961-01-01

    Describes: 1) Transfer pipes - Plunging rods in liquid hydrogen Dewars; transfer pipes: knee-joint system for quick and accurate positioning of plunging Dewar rods; system's rods: combined valve and rod; valves are activated either by a bulb pressure or by a solenoid automatically or hand controlled. The latter allows intermittent filling. 2) Level regulating systems: Level bulbs: accurate to 1 or 4 m; maximum and minimum level bulbs: automatic control of the liquid hydrogen valve. (author) [fr

  12. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  13. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  14. Self-Oscillating Wireless Power Transfer Systems

    OpenAIRE

    Tretyakov, Sergei A.; Simovski, Constantin R.; Valagiannopoulos, Constantinos A.; Ra'di, Younes

    2017-01-01

    Conventional wireless power transfer systems consist of a microwave power generator and transmitter located at one place and a microwave power receiver located at a distance. Here we show that wireless power transfer can be realized as a single distributed microwave generator with an over-the-air feedback, so that the microwave power is generated directly at the place where the energy needs to be delivered. We demonstrate that the use of this paradigm increases efficiency and dramatically red...

  15. On the sample transport time of a pneumatic transfer system

    International Nuclear Information System (INIS)

    Kondo, Yoshihide

    1983-01-01

    The counts accumulated in measuring system are affected by the variations in transport time of the sample on cyclic activation experiments with a mechanical sample transfer system. In use of the pneumatic transfer system, which has been set up, the transport time is variable according to the differences as follows: The form, size and weight of samples, the pneumatic pressure and so on. Comprehending the relationships between the transpot time and these variable factors is essentially important to make experiments with this transfer system. (author)

  16. Studies on antigenic competition. Efforts to identify the cellular basis of competition using a cell transfer system

    International Nuclear Information System (INIS)

    McArthur, W.P.; Siskind, G.W.; Thorbecke, G.J.

    1974-01-01

    Antigenic competition was studied in a cell transfer system. The effect of reconstituting lethally irradiated mice with various numbers of thymus or bone marrow cells on the extent of antigenic competition was evaluated. Brucella or burro erythrocytes both caused inhibition of the immune response (Plaque-forming cell) to sheep erythrocytes when given two days prior to the test antigen. Varying the dose of thymus cells, or of bone marrow cells did not alter the degree of competition. Competition was observed even when the competing antigen was injected with bone marrow cells alone two days before the test antigen and thymus cells. The results suggest that mechanisms other than T-cell activation alone must be considered as operative in some models of antigenic competition

  17. Approaches to modelling radionuclide transfer in agricultural systems

    International Nuclear Information System (INIS)

    Mitchell, N. G.

    1995-01-01

    Radiological dose assessment requires information describing the concentration and distribution of radionuclides in the environment. This information can be obtained from monitoring but is also evaluated with the aid of mathematical models. In such models the pathways of radionuclides from the release point to man are described in terms of transfer between compartments. The main pathways to be considered include: deposition to vegetation and soils; transfer from soil-to-plant; uptake and turnover in domestic animals; and, intake by man. The development of mathematical models for simulating transfer via these pathways depends on: an understanding of the system under study, in particular for those processes that are most important in the overall transfer to man; the availability of data to determine the structure and parameters for the model; the computing systems available; the knowledge of the user of the model; and, the application of the model. (author)

  18. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  19. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  20. Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift

    DEFF Research Database (Denmark)

    Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan

    2015-01-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...

  1. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  2. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    Heugel, J.

    1991-10-01

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  3. Operational Readiness Review Final Report for K Basin Fuel Transfer System

    International Nuclear Information System (INIS)

    DAVIES, T.H.

    2002-01-01

    An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR

  4. THE CONCEPT OF TRANSFER PRICING SYSTEM IN RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    Alexey S. Besfamilnyy

    2016-01-01

    Full Text Available The article presents the author's denition of transfer prices and transfer pricing based on the analysis of the current legislation in Russia as well as on current economic practice. Considered state regulation of transfer pricing for the purpose of harmonization of relationship between government and business. Given the denition of the transfer pricing system in Russian Federation and the description of its main parts and connections between them, necessary for effective functioning.

  5. Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review.

    Science.gov (United States)

    Dougherty, Warwick J; Fleming, Nigel K; Cox, Jim W; Chittleborough, David J

    2004-01-01

    Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.

  6. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  7. Identifying the key processes for technology transfer through spin-offs in academic institutions : a case study in Flanders and The Netherlands

    OpenAIRE

    Meysman, Jasmine; Cleyn, De, Sven H.; Braet, Johan

    2017-01-01

    Abstract: The position and role of technology transfer offices within universities and academic institutions have changed under influence of todays society, with diminishing government subsidies and technology transfer related policies having their impact on the technology transfer processes. In order to find out what the effect of this impact is, we performed a multiple-case study on six technology transfer offices in Flanders and The Netherlands. As a result of the study, we identified two ...

  8. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  9. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  10. Ray transference of a system with radial gradi- ent index

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available The ray transference is central to the understanding of the first-order optical character of an optical system including the visual optical system of the eye.  It can be calculated for dioptric and catadioptric systems from a knowledge of curvatures, tilts and spacing of surfaces in the system provided the material between successive surfaces has a uniform index of refraction.  However the index of the natural lens of the eye is not uniform but varies with position.  There is a need, therefore, for a method of calculating the transference of systems containing such gradient-index elements.  As a first step this paper shows that the transference of elements in which the index varies radially can be obtained directly from published formulae.  The transferences of radial-gradient systems are examined.  Expressions are derived for several properties including the power, the front- and back-surface powers and the locations of the cardinal points.  Equations are obtained for rays through such systems and for the locations of images of object points through them.  Numerical examples are presented in the appen-dix. (S Afr Optom 2012 71(2 57-63

  11. Transfer Function Control for Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)

    2015-01-01

    A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.

  12. The block transfer system

    International Nuclear Information System (INIS)

    Bradish, G.J. III; Reid, A.E.

    1986-01-01

    The central instrumentation control and data acquisition (CICADA) computer system is comprised of a functionally distributed hierarchical network of thirteen (13) 32-bit mini-computers that are the heart of the control, monitoring, data collection and data analysis for the tokamak fusion test reactor (TFTR). The CICADA system was designed with the goal of providing complete control, monitoring, and data acquisition for TFTR, which includes the acquisition and storage of 20M points of data within a five-minute shot cycle. It was realized early in the system design that in order to meet this goal an ancillary system would have to be provided to supplement the subsystem CAMAC systems that, due to the relatively slow throughput of the serial highways and the overhead of relaying data to the central facilities within a star network, would not provide the necessary throughput. The authors discuss how the block transfer system provided a means of moving data directly from the CAMAC crate to the application running on the central facility computers

  13. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  14. System Transfer, Education, and Development in Mozambique

    Directory of Open Access Journals (Sweden)

    Jose Cossa

    2011-03-01

    Full Text Available In this study the author used conceptual historical method to assess the phenomenon of system transfer and the association between education and development in Mozambique. The assessment was administered through critical analysis of documents pertaining to the Salazar (1924-1966, Machel (1975-1986, and Chissano (1986-2005 administrations. The findings were that (a the colonial government created economic and educational systems for colonizing Mozambique, whereas the Machel and Chissano administrations adapted foreign systems of government and education (i.e., Socialism, Soviet, Democracy, Portuguese, etc., to their particular context without altering the inherent theoretical basis of the systems transferred; (b the Machel and Chissano administrations, implicitly or explicitly, perceived the relationship between education and development as circular causality rather than a unidirectional linear causality, while the Salazar administration perceived it as unidirectional linear causality; and (c while the Machel and Chissano administrations focused on primary education, literacy campaigns, and education of women and girls, they differed in the reasons for such focus.

  15. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  16. An rf communications system for the West Valley transfer cart

    International Nuclear Information System (INIS)

    Crutcher, R.I.; Moore, M.R.

    1993-01-01

    A prototype radio frequency communications system for digital data was designed and built by Oak Ridge National Laboratory for use in controlling the vitrification facility transfer cart at the West Valley Nuclear Services facility in New York. The communications system provides bidirectional wireless data transfer between the operator control station and the material transfer cart. The system was designed to operate in radiation fields of 10 4 R/h while withstanding a total integrated dose of 10 7 R of gamma radiation. Implementation of antenna spatial diversity, automatic gain control, and spectral processing improves operation in the reflective environment of the metal-lined reprocessing cells

  17. Overview of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Bradley, E.C.; Rupple, F.R.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) has designed the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system will operate the cart under battery power by wireless control. The equipment includes cart mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas

  18. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  19. A tracking system for groundwater sampling and data transfer schedules

    International Nuclear Information System (INIS)

    Mercier, T.M.

    1990-12-01

    Since groundwater monitoring programs at the Oak Ridge Y-12 Plant have become more complex and varied and as the occasions to respond to internal and external reporting requirements have become more frequent and time constrained, the need to track groundwater sampling activities and data transfer from the analytical laboratories has become imperative. If backlogs can be caught early, resources can be added or reallocated in the field and in the laboratory in a timely manner to ensure reporting deadlines are met. The tracking system discussed in this paper starts with clear definition of the groundwater monitoring program at the facility. This information is input into base datasets at the beginning of the sampling cycle. As the sampling program progresses, information about well sampling dates and data transfer dates is input into the base datasets. From the base program data and the update data, a status report is periodically generated by a computer program which identifies the type and nature of bottle necks encountered during the implementation of the groundwater monitoring program

  20. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  1. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  2. Applying Toyota Production System principles to a psychiatric hospital: making transfers safer and more timely.

    Science.gov (United States)

    Young, John Q; Wachter, Robert M

    2009-09-01

    Health care organizations have increasingly embraced industrial methods, such as the Toyota Production System (TPS), to improve quality, safety, timeliness, and efficiency. However, the use of such methods in psychiatric hospitals has been limited. A psychiatric hospital applied TPS principles to patient transfers to the outpatient medication management clinics (MMCs) from all other inpatient and outpatient services within the hospital's system. Sources of error and delay were identified, and a new process was designed to improve timely access (measured by elapsed time from request for transfer to scheduling of an appointment and to the actual visit) and patient safety by decreasing communication errors (measured by number of failed transfers). Complexity was substantially reduced, with one streamlined pathway replacing five distinct and more complicated pathways. To assess sustainability, the postintervention period was divided into Period 1 (first 12 months) and Period 2 (next 24 months). Time required to process the transfer and schedule the first appointment was reduced by 74.1% in Period 1 (p < .001) and by an additional 52.7% in Period 2 (p < .0001) for an overall reduction of 87% (p < .0001). Similarly, time to the actual appointment was reduced 31.2% in Period 1 (p < .0001), but was stable in Period 2 (p = .48). The number of transfers per month successfully processed and scheduled increased 95% in the postintervention period compared with the pre-implementation period (p = .015). Finally, data for failed transfers were only available for the postintervention period, and the rate decreased 89% in Period 2 compared with Period 1 (p = .017). The application of TPS principles enhanced access and safety through marked and sustained improvements in the transfer process's timeliness and reliability. Almost all transfer processes have now been standardized.

  3. Simulation analysis on miniature wireless power transfer system

    Science.gov (United States)

    Liu, Tao; Wei, Zhiqiang; Yin, Bo; Chi, Haokun; Du, Panpan

    2018-03-01

    In recent years, the research on implantable medical devices has become a hot scientific topic, and the power supply of these devices are especially concerned. Generally, these devices are usually powered by disposable batteries. However, for some of the long-term human implant devices, such as pacemakers, once the battery has been exhausted after several years, the patient has to replace the battery by surgery, which increases the patient’s economic burden and pain. Wireless power transfer technology, using non-contact way for power transfer, can be a good solution to this problem. In this paper, a micro induction coil was designed, and the transfer efficiency in the air and human tissue model of two-layers were simulated by Ansoft HFSS. The results showed that the system could achieve the energy transfer in both cases, meanwhile, it indicated that the transfer efficiency was lower in a relative larger permittivity of transmission medium.

  4. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  5. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  6. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  7. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  8. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  9. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  10. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  11. Mass transfer with chemical reaction in multiphase systems

    International Nuclear Information System (INIS)

    Alper, E.

    1983-01-01

    These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system

  12. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers.

    Science.gov (United States)

    Koontz, Alicia M; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L; Cooper, Rory A

    2011-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 nondisabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers.We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies.

  13. Replacement of Cross-Site Transfer System Startup Plan

    International Nuclear Information System (INIS)

    Gerken, M.D.

    1996-01-01

    This Startup Plan provides a discussion of organizational responsibilities, work planning, quality assurance (QA), personnel qualifications, and testing requirements for the Cross-Site Transfer System

  14. Saponification reaction system: a detailed mass transfer coefficient determination.

    Science.gov (United States)

    Pečar, Darja; Goršek, Andreja

    2015-01-01

    The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.

  15. Effect of metal shielding on a wireless power transfer system

    Science.gov (United States)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  16. KNOWLEDGE TRANSFER AND LEARNING: PROBLEMS OF KNOWLEDGE TRANSFER ASSOCIATED WITH TRYING TO SHORT-CIRCUIT THE LEARNING CYCLE

    Directory of Open Access Journals (Sweden)

    Sue Newell

    2006-11-01

    Full Text Available Knowledge is considered to be a key organizational resource in the 21st century and the knowledge management ‘movement’ has alerted organizations to the fact that they should more strategically exploit their knowledge assets. Companies are thus lured by the suggestion that they can gain competitive advantage by the more astute management of their knowledge base and in particular, by the transfer of knowledge across individuals, groups and organizational units, using IT to accomplish this. In this paper, we reflect on this common view of knowledge transfer. More specifically, we question an implication of this view - essentially the possibility of short-circuiting the learning cycle, so that individuals do not have to rely on their personal or shared experiences to identify better practices, but can learn from the codified lessons of others in IT systems. More importantly, we consider the characteristics of knowledge – that knowledge is distributed, ambiguous and disruptive – that makes its transfer highly problematic. Drawing on case research, we relate this to the learning cycle (Kolb 1984 and thereby identify barriers to knowledge transfer. We conclude by considering ways of overcoming these barriers by emphasizing the importance of social systems alongside technical systems.

  17. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    Science.gov (United States)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  18. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  19. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    Science.gov (United States)

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  20. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

  1. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  2. Distributed design approach in persistent identifiers systems

    Science.gov (United States)

    Golodoniuc, Pavel; Car, Nicholas; Klump, Jens

    2017-04-01

    The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementations, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have catered for identifier uniqueness, integrity, persistence, and trustworthiness, regardless of the identifier's application domain, the scope of which has expanded significantly in the past two decades. Since many PID systems have been largely conceived and developed by small communities, or even a single organisation, they have faced challenges in gaining widespread adoption and, most importantly, the ability to survive change of technology. This has left a legacy of identifiers that still exist and are being used but which have lost their resolution service. We believe that one of the causes of once successful PID systems fading is their reliance on a centralised technical infrastructure or a governing authority. Golodoniuc et al. (2016) proposed an approach to the development of PID systems that combines the use of (a) the Handle system, as a distributed system for the registration and first-degree resolution of persistent identifiers, and (b) the PID Service (Golodoniuc et al., 2015), to enable fine-grained resolution to different information object representations. The proposed approach solved the problem of guaranteed first-degree resolution of identifiers, but left fine-grained resolution and information delivery under the control of a single authoritative source, posing risk to the long-term availability of information resources. Herein, we develop these approaches further and explore the potential of large-scale decentralisation at all levels: (i) persistent identifiers and information resources registration; (ii) identifier resolution; and (iii) data delivery. To achieve large-scale decentralisation

  3. Preoperational test report, cross-site transfer water flush system (POTP-001)

    International Nuclear Information System (INIS)

    Parsons, G.L.

    1998-01-01

    This report documents the results of the testing performed per POTP-001, for the Cross-Site Transfer Water Flush System. (HNF-1552, Rev. 0) The Flush System consists of a 47,000 gallon tank (302C), a 20 hp pump, two 498kW heaters, a caustic addition pump, various valves, instruments, and piping. The purpose of this system is to provide flush water at 140 F, 140gpm, and pH 11-12 for the Cross-Site Transfer System operation

  4. Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2010-01-01

    Uranium oxide powder is a commonly handled ceramic powder in nuclear industries. Design of the powder transfer system is an important aspect because of some of its typical characteristics. Pneumatic transport system has been widely used in transferring powder from one place to another. A pneumatic transport system using vacuum has been presented in the paper. This is used for bulk transfer of UO 3 powder. The system consists of a cyclone separator and filter cloth at the top of the cyclone separator. The pneumatic transfer system provides high efficiency with sustainable performance and it is a compact, robust, handy and moveable unit. No degradation of the powder quality has been observed during transfer. The system provides highly efficient, easy and safe transfer of radioactive powder, better working environment for the operator. (author)

  5. Long range inductive power transfer system

    International Nuclear Information System (INIS)

    Lawson, James; Pinuela, Manuel; Yates, David C; Lucyszyn, Stepan; Mitcheson, Paul D

    2013-01-01

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver

  6. Learning in context: identifying gaps in research on the transfer of medical communication skills to the clinical workplace.

    NARCIS (Netherlands)

    Eertwegh, V. van den; Dulmen, S. van; Dalen, J. van; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der

    2013-01-01

    Objective: In order to reduce the inconsistencies of findings and the apparent low transfer of communication skills from training to medical practice, this narrative review identifies some main gaps in research on medical communication skills training and presents insights from theories on learning

  7. Learning in context: identifying gaps in research on the transfer of medical communication skills to the clinical workplace

    NARCIS (Netherlands)

    Eertwegh, V. van den; Dulmen, S. van; Dalen, J. Van; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der

    2013-01-01

    OBJECTIVE: In order to reduce the inconsistencies of findings and the apparent low transfer of communication skills from training to medical practice, this narrative review identifies some main gaps in research on medical communication skills training and presents insights from theories on learning

  8. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  9. Effect of metal shielding on a wireless power transfer system

    Directory of Open Access Journals (Sweden)

    Jiacheng Li

    2017-05-01

    Full Text Available In this paper, the effect of non-ferromagnetic metal shielding (NFMS material on the resonator of wireless power transfer (WPT is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  10. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    Energy Technology Data Exchange (ETDEWEB)

    Pacquet, E.A.

    1998-04-02

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station.

  11. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    International Nuclear Information System (INIS)

    Pacquet, E.A.

    1998-01-01

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station

  12. Overvoltage protection system for wireless power transfer systems

    Science.gov (United States)

    Chambon, Paul H.; Jones, Perry T.; Miller, John M.; Onar, Omer C.; Tang, Lixin; White, Clifford P.

    2017-05-02

    A wireless power transfer overvoltage protection system is provided. The system includes a resonant receiving circuit. The resonant receiving circuit includes an inductor, a resonant capacitor and a first switching device. The first switching device is connected the ends of the inductor. The first switching device has a first state in which the ends of the inductor are electrically coupled to each other through the first switching device, and a second state in which the inductor and resonant capacitor are capable of resonating. The system further includes a control module configured to control the first switching device to switching between the first state and the second state when the resonant receiving circuit is charging a load and a preset condition is satisfied and otherwise, the first switching device is maintained in the first state.

  13. Using business intelligence for efficient inter-facility patient transfer.

    Science.gov (United States)

    Haque, Waqar; Derksen, Beth Ann; Calado, Devin; Foster, Lee

    2015-01-01

    In the context of inter-facility patient transfer, a transfer operator must be able to objectively identify a destination which meets the needs of a patient, while keeping in mind each facility's limitations. We propose a solution which uses Business Intelligence (BI) techniques to analyze data related to healthcare infrastructure and services, and provides a web based system to identify optimal destination(s). The proposed inter-facility transfer system uses a single data warehouse with an Online Analytical Processing (OLAP) cube built on top that supplies analytical data to multiple reports embedded in web pages. The data visualization tool includes map based navigation of the health authority as well as an interactive filtering mechanism which finds facilities meeting the selected criteria. The data visualization is backed by an intuitive data entry web form which safely constrains the data, ensuring consistency and a single version of truth. The overall time required to identify the destination for inter-facility transfers is reduced from hours to a few minutes with this interactive solution.

  14. Railcar waste transfer system hydrostatic test report

    International Nuclear Information System (INIS)

    Ellingson, S.D.

    1997-01-01

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per HNF-SD-W417-ATP-001, ''Rail car Waste Transfer System Hydrostatic Test''. The test was completed and approved without any problems or exceptions

  15. Near Identifiability of Dynamical Systems

    Science.gov (United States)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  16. Omnidirectional Wireless Power Transfer System Based on Rotary Transmitting Coil for Household Appliances

    Directory of Open Access Journals (Sweden)

    Gongjun Liu

    2018-04-01

    Full Text Available An omnidirectional magnetically coupled resonant wireless power transfer (WPT system based on rotary transmitting coil is presented. The proposed scheme can ease the variations of the transfer efficiency and output power caused by the deviation of transfer direction, and improve the unbalanced power distribution phenomenon between the receivers, which are still not fully achieved in current WPT systems. The modified coupled-mode model is built first to describe the non-rotary multi-receiver WPT system. The analysis indicates that the transfer efficiency and output power of the system can be expressed as functions of the deviation angle between the transmitting coil and receiving coil, which has a non-negligible influence on the system performances. Then, the modified high order coupled-mode model containing time-varying parameters about the deviation angle is derived for the proposed omnidirectional WPT system. Theoretical analysis and simulated results indicate that this system can transfer power to multiple receivers around the transmitter synchronously and evenly, which is very suitable for wireless charging for household appliances indoors. The scheme feasibility and theoretical analysis are verified by experimental results.

  17. Production and transfer of energy and information in Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Chris G Antonopoulos

    Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  18. Transfer tunnel transporter system for the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Petty, J.A.; Miller, S.C.; Richards, J.T.

    1981-01-01

    The detail design is complete and fabrication is approximately 75% complete on the Transfer Tunnel Transporter System. This system provides material handling capability for large, bulky equipment between two hot cells in a new Breeder Reactor Program support facility, the Fuels and Materials Examination Facility. One hot cell has an air atmosphere, the other a high purity inert gas atmosphere which must be maintained during transfer operations. System design features, operational capabilities and remote recovery provisions are described

  19. The evolution of the mass-transfer functions in liquid Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-09-15

    The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.

  20. Conduction mechanism studies on electron transfer of disordered system

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞; 李新梅

    2002-01-01

    Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.

  1. Fuel transfer system upender using translation drive

    International Nuclear Information System (INIS)

    Hardin, R.T.

    1985-01-01

    A transfer system for a nuclear fuel container within a nuclear reactor facility includes a transport car for transporting the fuel container through a transfer tube between a reactor containment handling pool and a spent storage pool. The system includes mechanisms for automatically pivoting the fuel container from its horizontal transport mode to its vertical, fuel loading-unloading mode when the fuel container enters one of the pools. The pivot mechanisms include slotted brackets mounted upon the fuel container, and pivotable pick-up bars for engaging the brackets of the fuel container. As the transport car moves past the pick-up bars, the brackets of the fuel container engage the bars whereby the latter pivot so as to in turn cause pivoting of the fuel container through means of trunnions. Reverse movement of the transport car causes reverse pivoting of the container from the vertical to the horizontal mode and ultimate disengagement of the brackets from the pick-up bars. (author)

  2. Can we observe open loop transfer functions in a stochastic feedback system ?

    International Nuclear Information System (INIS)

    Kishida, Kuniharu; Suda, Nobuhide.

    1991-01-01

    There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)

  3. SAR in human head model due to resonant wireless power transfer system.

    Science.gov (United States)

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  4. Seismic analysis with FEM for fuel transfer system of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jia Xiaofeng; Liu Pengliang; Bi Xiangjun; Ji Shunying

    2012-01-01

    In the PWR nuclear power plant, the function of the fuel transfer system (FTS) is to transfer the fuel assembly between the reactor building and the fuel building. The seismic analysis of the transfer system structure should be carried out to ensure the safety under OBE and SSE. Therefore, the ANASYS 12.0 software is adopted to construct the finite element analysis model for the fuel transfer system in a million kilowatt nuclear power plant. For the various configurations of FTS in the operating process, the stresses of the main structures, such as the transfer tube, fuel assembly container, fuel conveyor car, lifting frame in the reactor building, lifting frame in the fuel building, support and guide structure of conveyor car and the lifting frame in both buildings, are computed. The stresses are combined with the method of square root of square sum (SRSS) and assessed under various seismic conditions based on RCCM code, the results of the assessment satisfy the code. The results show that the stresses of the fuel transfer system structure meet the strength requirement, meanwhile, it can withstand the earthquake well. (authors)

  5. Applicability of transfer tensor method for open quantum system dynamics.

    Science.gov (United States)

    Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas

    2017-12-21

    Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.

  6. Identifying and Applying the Communicative and the Constructivist Approaches To Facilitate Transfer of Knowledge in the Bilingual Classroom.

    Science.gov (United States)

    Olivares, Rafael A.; Lemberger, Nancy

    2002-01-01

    Provides recommendations for the implementation of the communication, constructivism, and transference of knowledge (CCT) model in the education of English language learners (ELLS). Describes how the CCT model is identified in research studies and suggests specific recommendations to facilitate the implementation of the model in the education of…

  7. Spent Fuel Transfer to Dry Storage Using Unattended Monitoring System

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Park, Soo Jin

    2009-01-01

    There are 4 CANDU reactors at Wolsung site together with a spent fuel dry storage associated with unit 1. These CANDU reactors, classified as On-Load Reactor (OLR) for Safeguards application, change 16- 24 fuel bundles with fresh fuel in everyday. Especially, the spent fuel bundles are transferred from spent fuel bays to dry storage throughout a year because of the insufficient capacity of spent fuel pond. Safeguards inspectors verify the spent fuel transfer to meet safeguards purposes according to the safeguards criteria by means of inspector's presence during the transfer campaign. For the verification, 60-80 person-days of inspection (PDIs) are needed during approximately 3 months for each unit. In order to reduce the inspection effort and operators' burden, an Unattended Monitoring System (UMS) was designed and developed by the IAEA for the verification of spent fuel bundles transfers from wet storage to dry storage. Based on the enhanced cooperation of CANDU reactors between the ROK and the IAEA, the IAEA installed the UMS at Wolsung unit 2 in January 2005 at first. After some field trials during the transfer campaign, this system is being replaced the traditional human inspection since September 1, 2006 combined with a Short Notice Inspection (SNI) and a near-real time Mailbox Declaration

  8. Testing of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Halliwell, J.W.; Bradley, E.C.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor's facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility

  9. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  10. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  11. Application of New Electrolyte Model to Phase Transfer Catalyst (PTC) Systems

    DEFF Research Database (Denmark)

    Hyung Kim, Sun; Anantpinijwatna, Amata; Kang, Jeong Won

    2015-01-01

    Abstract Phase transfer catalyst (PTC) is used to transfer the desirable active form of an anion from the aqueous phase to organic phase where the reaction occurs. One of major challenges for process design of the PTC system is to establish a reliable thermodynamic model capable of describing pha...... in PTC systems, thereby, extending the application range of the PTC-system model. The solubility of PTC in organic solvents, which is a key factor for strategy of PTC and solvent selection, has been calculated using the e-NRTL-SAC model....

  12. The Regional Test Center Data Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Dept.; Stein, Joshua S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Dept.

    2016-09-01

    The Regional Test Centers are a group of several sites around the US for testing photovoltaic systems and components related to photovoltaic systems. The RTCs are managed by Sandia National Laboratories. The data collected by the RTCs must be transmitted to Sandia for storage, analysis, and reporting. This document describes the methods that transfer the data between remote sites and Sandia as well as data movement within Sandia’s network. The methods described are in force as of September, 2016.

  13. A new transfer system for solid targets

    Science.gov (United States)

    Klug, J.; Buckley, K. R.; Zeisler, S. K.; Dodd, M.; Tsao, P.; Hoehr, C.; Economou, C.; Corsaut, J.; Appiah, J. P.; Kovacs, M. S.; Valliant, J. F.; Benard, F.; Ruth, T. J.; Schaffer, P.

    2012-12-01

    As part of a collaborative research project funded by Natural Resources Canada, TRIUMF has designed and manufactured solid target and solid target processing systems for the production of technetium-99m using small medical cyclotrons. The system described herein is capable of transporting the target from a hotcell, where the target is loaded and processed, to the cyclotron and back again. The versatility of the transfer system was demonstrated through the successful installation and operation on the ACSI TR 19 at the BC Cancer Agency, the GE PETtrace cyclotrons at Lawson Health Research (LHRI) and the Centre for Probe Development and Commercialization (CDPC).

  14. Fuel transfer system ALARA design review - Project A.15

    International Nuclear Information System (INIS)

    KUEBERTH, L.R.

    2001-01-01

    One mission of the Spent Nuclear Fuel (SNF) Project is to move the SNF from the K Basins in the Hanford 100K Area to an interim dry storage at the Canister Storage Building (CSB) in the Hanford 200 East Area. The Fuel Transfer System (FTS) is a subproject that will move the SNF from the 105K East (KE) Facility to the 105K West (KW) Facility. The SNF will be treated for shipment to the Cold Vacuum Drying (CVD) facility at the KW Basin. The SNF canisters will be loaded underwater into a Shielded Transfer Cask (STC) in the KE Basin. The fully loaded STC will be brought out of the water and placed into a Cask Transfer Overpack (CTO) by the STC Straddle Carrier. As the STC is removed from the water, it will be washed down with demineralized water by an manual rinse system. The CTO with the STC inside will be placed on a transport trailer and transferred to the KW Basin as an intra-facility transfer. The CTO will be unloaded from the shipping trailer at the KW Basin and the STC will be removed from the CTO. The STC will then be lowered into the KW Basin water and the fuel will be removed. The SNF will then be processed for shipment to the CVD. As soon as all of the fuel has been removed from the STC, the cask will be removed from the KW Basin water and placed into the CTO. The CTO will again be placed on the trailer for transport back to the KE Basin where the entire cycle will be repeated approximately 400 times. This document records the As Low As Reasonably Achievable (ALARA) findings and design recommendations/requirements by the SNF Project noted during the Final Design Review of the STC, CTO, STC Transfer System, Annexes and Roadways for support of FTS. This document is structured so that all statements that include the word ''shall'' represent design features that have been or will be implemented within the project scope. Statements that include the words ''should'' or ''recommend'' represent ALARA design features to be evaluated for future implementation

  15. E-Beam - a new transfer system for isolator technology

    International Nuclear Information System (INIS)

    Sadat, Theo; Huber, Thomas

    2002-01-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2 O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2 O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  16. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Fan, Yiqiang; Foulds, Ian G.

    2013-01-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  17. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying

    2013-05-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  18. Control Transfer in Operating System Kernels

    Science.gov (United States)

    1994-05-13

    microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating

  19. Development of platform to compare different wall heat transfer packages for system analysis codes

    International Nuclear Information System (INIS)

    Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik; Shin, Sung Gil

    2016-01-01

    System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future

  20. Characteristics simulation of wireless power transfer system considering shielding distance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Choi, Hyo Sang; Jung, Byung Ik; Jeong, In Sung [Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness.

  1. Characteristics simulation of wireless power transfer system considering shielding distance

    International Nuclear Information System (INIS)

    Lee, Yu Kyeong; Choi, Hyo Sang; Jung, Byung Ik; Jeong, In Sung

    2015-01-01

    Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness

  2. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review

    Directory of Open Access Journals (Sweden)

    J.-T. Cornelis

    2011-01-01

    Full Text Available Silicon (Si released as H4SiO4 by weathering of Si-containing solid phases is partly recycled through vegetation before its land-to-rivers transfer. By accumulating in terrestrial plants to a similar extent as some major macronutrients (0.1–10% Si dry weight, Si becomes largely mobile in the soil-plant system. Litter-fall leads to a substantial reactive biogenic silica pool in soil, which contributes to the release of dissolved Si (DSi in soil solution. Understanding the biogeochemical cycle of silicon in surface environments and the DSi export from soils into rivers is crucial given that the marine primary bio-productivity depends on the availability of H4SiO4 for phytoplankton that requires Si. Continental fluxes of DSi seem to be deeply influenced by climate (temperature and runoff as well as soil-vegetation systems. Therefore, continental areas can be characterized by various abilities to transfer DSi from soil-plant systems towards rivers. Here we pay special attention to those processes taking place in soil-plant systems and controlling the Si transfer towards rivers. We aim at identifying relevant geochemical tracers of Si pathways within the soil-plant system to obtain a better understanding of the origin of DSi exported towards rivers. In this review, we compare different soil-plant systems (weathering-unlimited and weathering-limited environments and the variations of the geochemical tracers (Ge/Si ratios and δ30Si in DSi outputs. We recommend the use of biogeochemical tracers in combination with Si mass-balances and detailed physico-chemical characterization of soil-plant systems to allow better insight in the sources and fate of Si in these biogeochemical systems.

  3. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  4. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  5. Cost Savings Associated with the Adoption of a Cloud Computing Data Transfer System for Trauma Patients.

    Science.gov (United States)

    Feeney, James M; Montgomery, Stephanie C; Wolf, Laura; Jayaraman, Vijay; Twohig, Michael

    2016-09-01

    Among transferred trauma patients, challenges with the transfer of radiographic studies include problems loading or viewing the studies at the receiving hospitals, and problems manipulating, reconstructing, or evalu- ating the transferred images. Cloud-based image transfer systems may address some ofthese problems. We reviewed the charts of patients trans- ferred during one year surrounding the adoption of a cloud computing data transfer system. We compared the rates of repeat imaging before (precloud) and af- ter (postcloud) the adoption of the cloud-based data transfer system. During the precloud period, 28 out of 100 patients required 90 repeat studies. With the cloud computing transfer system in place, three out of 134 patients required seven repeat films. There was a statistically significant decrease in the proportion of patients requiring repeat films (28% to 2.2%, P < .0001). Based on an annualized volume of 200 trauma patient transfers, the cost savings estimated using three methods of cost analysis, is between $30,272 and $192,453.

  6. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun

    2016-01-01

    Phase-transfer catalyst systems contain two liquid phases, with a catalyst (PTC) that transfers between the phases, driving product formation in one phase and being regenerated in the other phase. Typically the reaction involves neutral species in an organic phase and regeneration involves ions i....... The application of the framework is made to two cases in order to highlight the performance and issues of activity coefficient models for predicting design and operation and the effects when different organic solvents are employed....

  7. Postings and transfers in the Ghanaian health system: a study of health workforce governance.

    Science.gov (United States)

    Kwamie, Aku; Asiamah, Miriam; Schaaf, Marta; Agyepong, Irene Akua

    2017-09-15

    Decision-making on postings and transfers - that is, the geographic deployment of the health workforce - is a key element of health workforce governance. When poorly managed, postings and transfers result in maldistribution, absenteeism, and low morale. At stake is managing the balance between organisational (i.e., health system) and individual (i.e., staff preference) needs. The negotiation of this potential convergence or divergence of interests provides a window on practices of postings and transfers, and on the micro-practices of governance in health systems more generally. This article explores the policies and processes, and the interplay between formal and informal rules and norms which underpin postings and transfers practice in two rural districts in the Greater Accra Region of Ghana. Semi-structured interviews were conducted with eight district managers and 87 frontline staff from the district health administration, district hospital, polyclinic, health centres and community outreach compounds across two districts. Interviews sought to understand how the postings and transfers process works in practice, factors in frontline staff and district manager decision-making, personal experiences in being posted, and study leave as a common strategy for obtaining transfers. Differential negotiation-spaces at regional and district level exist and inform postings and transfers in practice. This is in contrast to the formal cascaded rules set to govern decision-making authority for postings and transfers. Many frontline staff lack policy clarity of postings and transfers processes and thus 'test' the system through informal staff lobbying, compounding staff perception of the postings and transfers process as being unfair. District managers are also challenged with limited decision-space embedded in broader policy contexts of systemic hierarchy and resource dependence. This underscores the negotiation process as ongoing, rather than static. These findings point to

  8. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  9. A study of the transferability of influenza case detection systems between two large healthcare systems.

    Science.gov (United States)

    Ye, Ye; Wagner, Michael M; Cooper, Gregory F; Ferraro, Jeffrey P; Su, Howard; Gesteland, Per H; Haug, Peter J; Millett, Nicholas E; Aronis, John M; Nowalk, Andrew J; Ruiz, Victor M; López Pineda, Arturo; Shi, Lingyun; Van Bree, Rudy; Ginter, Thomas; Tsui, Fuchiang

    2017-01-01

    This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD) that use clinical notes from emergency department (ED) to detect influenza cases. A BCD uses natural language processing (NLP) to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN) to infer patients' diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC) and Intermountain Healthcare in Utah (BCDIH). At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source) institution, development parser, application (target) institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance. Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92). When tested for transferability using the other institution's cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, pdetection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the accuracy of the NLP parser.

  10. Telemedicine using an image transfer system in the treatment of neurosurgical emergent cases

    International Nuclear Information System (INIS)

    Saito, Atsushi; Numagami, Yoshihiro; Kamiyama, Hironaga; Furuno, Yuuichi; Nishimura, Shinjitsu; Nishijima, Michiharu

    2007-01-01

    Our department is located in the Tsugaru district, which is famous for heavy snow fall, and the small number of neurosurgeon centers in the urban areas leads to an inadequate distribution of neurosurgeons for patients in this region. Such geographical and social constraints have made it difficult to offer sufficient neurosurgical care to all patients in the region. We describe the usefulness of a telemedicine triage system using an image transfer system in the treatment of neurosurgical emergent cases. Image transfer systems have been installed at our hospital and 11 regional hospitals in the Tsugaru district, and have been utilized for teleconsultation regarding neurosurgical patients via transferred computed tomography images since 1989. Consultations regarding 2,858 cases were directed to our department between 1989 and 2006, including 1,615 cases of stroke, 869 cases of head trauma, 97 cases of brain tumor, and 277 cases with other disorders. 84% of subarachnoid hemorrhage cases and 22% of head trauma cases needed emergent transfer. The state of consciousness in intracerebral hemorrhage, and the state of consciousness and time of consultation in head trauma were statistically significant factors for emergent transfer. The presert telemedicine triage system was useful for ensuring correct diagnosis and appropriate primary neurosurgical care in the regional hospitals without neurosurgical units, resulting in a reinforcement of the relationships among the regional hospitals and the efficient transfer of emergent neurosurgical patients. (author)

  11. Efficient Power-Transfer Capability Analysis of the TET System Using the Equivalent Small Parameter Method.

    Science.gov (United States)

    Yanzhen Wu; Hu, A P; Budgett, D; Malpas, S C; Dissanayake, T

    2011-06-01

    Transcutaneous energy transfer (TET) enables the transfer of power across the skin without direct electrical connection. It is a mechanism for powering implantable devices for the lifetime of a patient. For maximum power transfer, it is essential that TET systems be resonant on both the primary and secondary sides, which requires considerable design effort. Consequently, a strong need exists for an efficient method to aid the design process. This paper presents an analytical technique appropriate to analyze complex TET systems. The system's steady-state solution in closed form with sufficient accuracy is obtained by employing the proposed equivalent small parameter method. It is shown that power-transfer capability can be correctly predicted without tedious iterative simulations or practical measurements. Furthermore, for TET systems utilizing a current-fed push-pull soft switching resonant converter, it is found that the maximum energy transfer does not occur when the primary and secondary resonant tanks are "tuned" to the nominal resonant frequency. An optimal turning point exists, corresponding to the system's maximum power-transfer capability when optimal tuning capacitors are applied.

  12. THE IMPACT OF TRUST ON KNOWLEDGE TRANSFER IN INTERNATIONAL BUSINESS SYSTEMS

    Directory of Open Access Journals (Sweden)

    Konstantinos P. ROTSIOS

    2012-12-01

    Full Text Available Over the last decade, international business alliances have emerged as one of the most important strategies for firms to expand in international markets. In addition, knowledge transfer has been determined as one of the key factors that lead to the creation of sustainable competitive advantage for firms and to the success of learning alliances. Furthermore, trust enhances the effectiveness of this process. The growing volume of published research in recent years has indubitably revealed the significant role of trust on knowledge transfer in International Business (IB Systems and in particular in International Strategic Alliances (ISAs and International Joint Ventures (IJVs. This paper consists of an in depth review of the most recent literature about the impact of trust on transfer of various types of knowledge in IB Systems with reference to the relevant theoretical models and the applications in the international context. The first section contains the theoretical background of the concept of trust, the different types of knowledge and the process of knowledge transfer. The main section refers to a few contemporary and distinguished scientific articles about the impact of trust as a determinant factor of knowledge transfer from the most recent international literature. The conclusions of the literature review and testable propositions related to the creation of trust among IJV partners and their impact on knowledge transfer are presented at the final section of the paper.

  13. A Microcontroller-Based Automatic Transfer Switching System for a ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... Most industries still employ the manual method of power supply changeover, ... This paper presents a Microcontroller-Based Automatic Transfer Switching System ..... and currently has special research interest in Wireless.

  14. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  15. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  16. Core Knowledge Preservation and Transfer System Establishment and Utilization for NPP

    International Nuclear Information System (INIS)

    Kim, Bae-Joo; Kim, Gwang-Bong

    2008-01-01

    Knowledge is the most important factor in the safe and reliable operation of NPP. One generation has passed since we began to operate NPP in Korea. And then it became time to retire much experienced personnel in NPP. Although we have many kinds of knowledge sharing systems inside KHNP, we don't have any systematic experience knowledge preservation and transfer systems that are important for the operation of NPP. So we have lost important experience knowledge since we started operating. Especially, KHNP has adopted an internal promotion system as the human resource management policy, which induced frequent job position changes of staff members because there were job positions for a good promotion. Additionally, KHNP doesn't overlap jobs for long enough periods between previous staff and new staff when staff changes occur. With these reasons KHNP could not accumulate experience knowledge inside the company system. Therefore, KHNP could not preserve and transfer to the next generation the experience related to NPP operations systematically. To resolve these issues KNPEI performed a research project from March 2006 to September 2007. The purpose of this report is to introduce the experience knowledge preservation and transfer system that KNPEI has established and the utilization of the system

  17. Enhacements to the TTS-502 time transfer system

    Science.gov (United States)

    Vandierendonck, A. J.; Hua, Q. D.

    1985-04-01

    Two years ago STI introduced an affordable, relatively compact time transfer system on the market -- the TTS-502, and described that system at the 1981 PTTI conference. Over the past few months, that system has been improved, and new features have been added. In addition, new options have been made available to further enhance the capabilities of the system. These enhancements include the addition of a positioning algorithm and new options providing a corrected 5 MHz output that is phase coherent with the 1 pps output, and providing an internal Rubidium Oscillator. The Positioning Algorithm was developed because not all time transfer users had the luxury of the Defense Mapping Agency's (DMA) services for determining their position in WGS-72 coordinates. The enhanced TTS-502 determines the GPS position anywhere in the world, independent of how many GPS satellites are concurrently visible. However, convergence time to a solution is inversely proportional to the number of satellites concurrently visible and the quality of frequency standard used in conjunction with the TTS-502. Real World solution results will be presented for a variety of cases and satellite scheduling scenarios. Typically, positioning accuracies were achieved better than 5 to 10 meters r.s.s. using the C/A code only at Sunnyvale, California.

  18. New magnet transport system for the LHC beam transfer lines

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system (pictured here in one of the tunnels) is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The lead vehicle is powered by an electric rail set into the roof of the tunnel. The system is backed up by electrical batteries that enable it to operate in the absence of an outside power source or in the event of power failure. Last but not least, for the long-distance transport of magnets, it can be optically guided by a line traced on the tunnel floor. The convoy moves through the particularly narr...

  19. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  20. IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A M BENALI

    2003-06-01

    Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T  whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi  ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.

  1. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.; Shaw, D.

    1990-05-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controller processor, in conjunction with DPMs, renders bus arbitration unnecessary leading to very simple interfacing logic and operating software. The four high speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (author)

  2. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.; Shaw, D.

    1990-01-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controlling processor, in conjunction with DPMs, renders bus arbitration unnecessary, leading to very simple interfacing logic and operating software. The four high-speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (orig.)

  3. Design of Measurement and Control System of Composite Fast Transfer Switch Based on PLC

    Directory of Open Access Journals (Sweden)

    ZHANG Hong-yi

    2017-06-01

    Full Text Available The fast transfer switch gets more extensive application in the power supply system along with the raising of power supply requirement for continuity and reliability in the sensitivity loads such as in airport,military place,hospital and large scale industrial production line. Therefore it is important that how to make fast transfer switch run safely and reliably. The paper expatiated the structure and principle of a fast transfer switch based on mechanical and electronic compound technology,and,according to the basic requirement and the characteristic of the fast transfer switch,a PLC mastered measuring and controlling system has been designed to raise the operation reliability of the fast transfer switch.

  4. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  5. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  6. Transfer of chemicals in PWR systems: secondary side

    International Nuclear Information System (INIS)

    Jonas, O.

    1978-01-01

    Transfer of chemicals in the secondary side of pressurized water reactor systems with recirculating and once-through steam generators is considered. Chemical data on water, steam and deposit chemistry of twenty-six operating units are given and major physical-chemical processes and differences between the two systems and between fossil and PWR systems are discussed. It is concluded that the limited available data show the average water and steam chemistry to be within recommended limits, but large variations of impurity concentrations and corrosion problems encountered indicate that our knowledge of the system chemistry and chemical thermodynamics, system design, sampling, analysis and operation need improvement. (author)

  7. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  8. Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2015-03-01

    Full Text Available In the current research, the unsteady two dimensional Graphene Oxide water based nanofluid heat transfer between two moving parallel plates is analyzed using an intelligent black-box identifier. The developed intelligent tool is known as evolvable evolutionary fuzzy inference system (EE-FIS which is based on the integration of low-level fuzzy programming and hyper-level evolutionary computing concepts. Here, the authors propose the use of a modified evolutionary algorithm (EA which is called hybrid genetic mutable smart bee algorithm (HGMSBA. The proposed HGMSBA is used to evolve both antecedent and consequent parts of fuzzy rule base. Besides, it tries to prune the rule base of fuzzy inference system (FIS to decrease its computational complexity and increase its interpretability. By considering the prediction error of the fuzzy identifier as the objective function of HGMSBA, an automatic soft interpolation machine is developed which can intuitively increase the robustness and accuracy of the final model. Here, HGMSBA-FIS is used to provide a nonlinear map between inputs, i.e. nanoparticles solid volume fraction (ϕ, Eckert number (Ec and a moving parameter which describes the movements of plates (S, and output, i.e. Nusselt number (Nu. Prior to proceeding with the modeling process, a comprehensive numerical comparative study is performed to investigate the potentials of the proposed model for nonlinear system identification. After demonstrating the efficacy of HGMSBA for training the FIS, the system is applied to the considered problem. Based on the obtained results, it can be inferred that the developed HGMSBA-FIS black-box identifier can be used as a very authentic tool with respect to accuracy and robustness. Besides, as the proposed black-box is not a physics-based identifier, it frees experts from the cumbersome mathematical formulations, and can be used for advanced real-time applications such as model-based control. The simulations

  9. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  10. A phenomenological model for collisional coherence transfer in an optically pumped atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, K; Bevilaqua, G; Mariotti, E; Moi, L [Universita degli Studi di Siena, Siena, 53100 (Italy); Khanbekyan, A; Papoyan, A, E-mail: karen.khanbekyan@gmail.com [Institute for Physical Research, National Academy of Sciences, Ashtarak 2 (Armenia)

    2011-03-14

    We consider a dual {Lambda}-system under double laser excitation to investigate the possibility of indirect coherence transfer between atomic ground states through an excited state. The atomic system is excited by a frequency modulated pump laser and probed by a low-power cw laser. All the decoherence mechanisms are discussed and taken into account. Adjustment of parameters of the two radiations aimed at maximization of coherence transfer is addressed. The study can help to understand the phenomena as collisional transfer of coherence and can find application in the experimental realization of atomic sensors.

  11. A study of the transferability of influenza case detection systems between two large healthcare systems.

    Directory of Open Access Journals (Sweden)

    Ye Ye

    Full Text Available This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD that use clinical notes from emergency department (ED to detect influenza cases.A BCD uses natural language processing (NLP to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN to infer patients' diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC and Intermountain Healthcare in Utah (BCDIH. At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source institution, development parser, application (target institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance.Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92. When tested for transferability using the other institution's cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, p<0.01, and BCDIH discriminations declined more (from 0.93 to 0.87, p<0.0001. We attributed the BCDIH decline to the lower recall of the IH parser on UPMC notes. The ANOVA analysis showed five significant factors: development parser, application institution, application parser, BN transfer, and classification task.We demonstrated high influenza case detection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the

  12. Development of a VME and CAMAC based data acquisition and transfer system for JT-60 control

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki

    1993-08-01

    Development of a VME and CAMAC based data acquisition and transfer system for JT-60 Control is reported. The present data acquisition and transfer system in JT-60 control is basically composed of CAMAC devices. Since the system equipped with 16-bit microcomputers was manufactured more than ten years ago, the performance and program development environment of the system are apparently worse than those of modern 32-bit microcomputers. To improve these disadvantages, a new data acquisition and transfer system using VME-based 32-bit microcomputers and CAMAC drivers is under design. Corresponding to this design, a CAMAC handler, which runs on the microcomputer, for the VME based CAMAC driver was newly developed. Moreover, the functions of the driver and data transfer performance of the VME and CAMAC complex system were tested. The test results shown that the VME based microcomputer and CAMAC serial driver can be applied for the fast and reliable acquisition and transfer system for JT-60 control. (author)

  13. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    Directory of Open Access Journals (Sweden)

    Zúñiga Manuel

    2008-05-01

    Full Text Available Abstract Background The phosphoenolpyruvate phosphotransferase system (PTS plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria

  14. Hyphal formation of Candida albicans is controlled by electron transfer system

    International Nuclear Information System (INIS)

    Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2006-01-01

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growth of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition

  15. Operational test report for 2706-T complex liquid transfer system

    International Nuclear Information System (INIS)

    BENZEL, H.R.

    1999-01-01

    This document is the Operational Test Report (OTR). It enters the Record Copy of the W-259 Operational Test Procedure (HNF-3610) into the document retrieval system. Additionally, the OTR summarizes significant issues associated with testing the 2706-T waste liquid transfer and storage system

  16. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system

    International Nuclear Information System (INIS)

    Ota, Yoshifumi; Higurashi, Akiko; Nakajima, Teruyuki; Yokota, Tatsuya

    2010-01-01

    A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.

  17. Experimental Analysis of File Transfer Rates over Wide-Area Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Hinkel, Gregory Carl [ORNL; Imam, Neena [ORNL; Foster, Ian [University of Chicago; Kettimuthu, R. [Argonne National Laboratory (ANL); Settlemyer, Bradley [Los Alamos National Laboratory (LANL); Wu, Qishi [University of Memphis; Yun, Daqing [Harrisburg University

    2016-12-01

    File transfers over dedicated connections, supported by large parallel file systems, have become increasingly important in high-performance computing and big data workflows. It remains a challenge to achieve peak rates for such transfers due to the complexities of file I/O, host, and network transport subsystems, and equally importantly, their interactions. We present extensive measurements of disk-to-disk file transfers using Lustre and XFS file systems mounted on multi-core servers over a suite of 10 Gbps emulated connections with 0-366 ms round trip times. Our results indicate that large buffer sizes and many parallel flows do not always guarantee high transfer rates. Furthermore, large variations in the measured rates necessitate repeated measurements to ensure confidence in inferences based on them. We propose a new method to efficiently identify the optimal joint file I/O and network transport parameters using a small number of measurements. We show that for XFS and Lustre with direct I/O, this method identifies configurations achieving 97% of the peak transfer rate while probing only 12% of the parameter space.

  18. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    International Nuclear Information System (INIS)

    Hollstein, André; Fischer, Jürgen

    2012-01-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  19. Experiments on multi-nucleon transfer reactions with the systems {sup 58,64}Ni+{sup 207}Pb at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Fernandovich Comas Lijachev, Victor

    2012-07-01

    This work presents experimental results on multi-nucleon transfer reactions in the collision systems {sup 58}Ni+{sup 207}Pb and {sup 64}Ni+{sup 207}Pb which were measured at the velocity filter SHIP at GSI. The reactions were performed at beam energies below and up to 10% above the Coulomb barrier. The work was motivated by theoretical predictions to apply multi-nucleon transfer reactions in heavy systems to synthesize new neutron-rich isotopes in the region of superheavy nuclei with Z>100 and in the region of the closed neutron shell N=126. The expected cross-sections for the production of these nuclei in transfer reactions are small and reach typically nanobarn and below. Therefore, efficient separation techniques have to be applied and the detection system must allow for the identification of single nuclei. A dedicated experimental setup to study such rare transfer products does not exist presently. But already existing facilities which are used for the synthesis of superheavy fusion products meet the requirements for the detection of rare reaction products. In this context, the velocity filter SHIP offers the possibility to separate heavy target-like transfer products from projectiles and projectile-like reaction products before they reach the detection system where the particles are identified by their alpha-decay properties. At SHIP, a cross-section limit of 10 pb can be reached at usual beam intensities. In the present work on collisions of {sup 58,64}Ni+{sup 207}Pb the influence of the projectile neutron number on the cross-sections, isotopic distributions and excitation energies of the transfer products was studied. Especially with the more neutron-rich {sup 64}Ni projectiles a transfer of up to seven protons and eight neutrons to the target nucleus was observed. The largest cross-sections for the most neutron-rich isotopes were reached at the beam energies around the Coulomb barrier. The transfer was accompanied by the full dissipation of the available

  20. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  1. Dual winch nuclear fuel transfer system providing more reliable fuel transfer during refueling operations

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Harper, M.J.; Stefko, D.J.

    1991-01-01

    This paper describes a nuclear power plant having an auxiliary building, a containment building having the wall, a track extending through a transfer tube within the containment wall, and a fuel transfer system for moving fuel assemblies along the track between the auxiliary building side and the containment building side of the containment wall. It comprises: a car having wheels for movement along spaced rails of the track and further having a carrying basket for one or more fuel assemblies; winch means located on the auxiliary building side of the containment wall and above the water level existing over the track during refueling operations to drive the car along the track; first cable means and second cable means extending substantially vertically downward from the winch means to the tack level; first sheave means for directing the first and the second cable means substantially in the horizontal direction along the track; means for securing the first cable means to the car so that winch pulling force on the first cable means drives the car away from the containment building; second sheave means located near the containment end of the transfer tube

  2. Power transfer capability assessment of transmission interfaces with SVC and load shedding systems

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovsky, V. [DMCC-Engineering, Kiev (Ukraine). Inst. of Electrodynamics; Dolzhenitsa, Y. [DMCC Engineering, Kiev (Ukraine); Ushapovskiy, K. [National Power Co. Ukrenergo, Kiev (Ukraine)

    2009-07-01

    As a result of deregulation in the power industry, energy trade and markets are pushing transmission system operators to operate their systems closer to the edge of the power transfer capability. Voltage instability and inadequate reactive power support of generators is a key factor in most major outages around the world. The ideal way to control power systems is to avoid emergencies by reliable planning and secure operation of power systems. Therefore, the accurate calculation of the power transfer capability of transmission interfaces is an important task on the planning and operation stages. This paper discussed the issue of transfer capability assessment and monitoring for interfaces with static var compensator (SVC) and load shedding schemes. It also proposed a special measure, a distance to voltage instability point, to monitor transfer capability on-line. The distance may be observed by measurement of SVC output. The paper considered the problem of optimal SVC size selection and a new approach was proposed based on P-V curves analysis. The paper discussed the problem formulation and proposed approach. A case was also presented in order to demonstrate the proposed approach on the IPS Ukraine-Crimea interface. It was concluded that the proposed approach allows the optimal rating of SVC for increasing transfers capability of transmission corridors. 12 refs., 9 figs.

  3. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  4. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  5. Interfacility transfers in a non-trauma system setting: an assessment of the Greek reality

    Directory of Open Access Journals (Sweden)

    Larentzakis Andreas

    2010-03-01

    Full Text Available Abstract Background Quality assessment of any trauma system involves the evaluation of the transferring patterns. This study aims to assess interfacility transfers in the absence of a formal trauma system setting and to estimate the benefits from implementing a more organized structure. Methods The 'Report of the Epidemiology and Management of Trauma in Greece' is a one year project of trauma patient reporting throughout the country. It provided data concerning the patterns of interfacility transfers. We compared the transferred patient group to the non transferred patient group. Information reviewed included patient and injury characteristics, need for an operation, Intensive Care Unit (ICU admittance and mortality. Analysis employed descriptive statistics and Chi-square test. Interfacility transfers were then assessed according to each health care facility's availability of five requirements; Computed Tomography scanner, ICU, neurosurgeon, orthopedic and vascular surgeon. Results Data on 8,524 patients were analyzed; 86.3% were treated at the same facility, whereas 13.7% were transferred. Transferred patients tended to be younger, male, and more severely injured than non transferred patients. Moreover, they were admitted to ICU more often, had a higher mortality rate but were less operated on compared to non transferred patients. The 34.3% of transfers was from facilities with none of the five requirements, whereas the 12.4% was from those with one requirement. Low level facilities, with up to three requirements transferred 43.2% of their transfer volume to units of equal resources. Conclusion Trauma management in Greece results in a high number of transfers. Patients are frequently transferred between low level facilities. Better coordination could lead to improved outcomes and less cost.

  6. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  7. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  8. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  9. A STRUCTURAL INTEGRITY EVALUATION OF THE TANK FARM WASTE TRANSFER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2006-03-09

    Radioactive supernate, salt, and/or sludge wastes (i.e., high level wastes) are confined in 49 underground storage tanks at the Savannah River Site (SRS). The waste is transported between tanks within and between the F and H area tank farms and other facilities on site via underground and a limited number of aboveground transfer lines. The Department of Energy - Savannah River Operations Office (DOE-SR) performed a comprehensive assessment of the structural integrity program for the Tank Farm waste transfer system at the SRS. This document addresses the following issues raised during the DOE assessment: (1) Inspections of failed or replaced transfer lines indicated that the wall thickness of some core and jacket piping is less than nominal; (2) No corrosion allowance is utilized in the transfer line structural qualification calculations. No basis for neglecting corrosion was provided in the calculations; (3) Wall loss due to erosion is not addressed in the transfer line structural qualification calculations; and (4) No basis is provided for neglecting intergranular stress corrosion cracking in the transfer line structural qualification calculations. The common theme in most of these issues is the need to assess the potential for occurrence of material degradation of the transfer line piping. The approach used to resolve these issues involved: (1) Review the design and specifications utilized to construct and fabricate the piping system; (2) Review degradation mechanisms for stainless steel and carbon steel and determine their relevance to the transfer line piping; (3) Review the transfer piping inspection data; (4) Life estimation calculations for the transfer lines; and (5) A Fitness-For-Service evaluation for one of the transfer line jackets. The evaluation concluded that the transfer line system piping has performed well for over fifty years. Although there have been instances of failures of the stainless steel core pipe during off-normal service, no significant

  10. A Wireless Magnetic Resonance Energy Transfer System for Micro Implantable Medical Sensors

    Directory of Open Access Journals (Sweden)

    Tianyang Yang

    2012-07-01

    Full Text Available Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm3.

  11. Virtual design software for mechanical system dynamics using transfer matrix method of multibody system and its application

    Directory of Open Access Journals (Sweden)

    Hai-gen Yang

    2015-09-01

    Full Text Available The complex mechanical systems such as high-speed trains, multiple launch rocket system, self-propelled artillery, and industrial robots are becoming increasingly larger in scale and more complicated in structure. Designing these products often requires complex model design, multibody system dynamics calculation, and analysis of large amounts of data repeatedly. In recent 20 years, the transfer matrix method of multibody system has been widely applied in engineering fields and welcomed at home and in abroad for the following features: without global dynamic equations of the system, low orders of involved system matrices, high computational efficiency, and high programming. In order to realize the rapid and visual simulation for complex mechanical system virtual design using transfer matrix method of multibody system, a virtual design software named MSTMMSim is designed and implemented. In the MSTMMSim, the transfer matrix method of multibody system is used as the solver for dynamic modeling and calculation; the Open CASCADE is used for solid geometry modeling. Various auxiliary analytical tools such as curve plot and animation display are provided in the post-processor to analyze and process the simulation results. Two numerical examples are given to verify the validity and accuracy of the software, and a multiple launch rocket system engineering example is given at the end of this article to show that the software provides a powerful platform for complex mechanical systems simulation and virtual design.

  12. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    Science.gov (United States)

    2013-11-01

    example for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. 15. SUBJECT TERMS Radiative transfer...detector m-out-of-n detector Potassium chlorate Probability theory System performance Probability of detection and false alarm iii...for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. Subject Terms Radiative transfer, contaminated

  13. Dynamic modeling system for the transfer of radioactivity in terrestrial food chains

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Linsley, G.S.

    1981-01-01

    A dynamic modeling system is described for the transfer of radionuclides in terrestrial food chains. The main features of the system are its ability to predict the time dependence of the major transfer processes and its flexibility and applicability to a range of contamination scenarios. The modeling system is regarded as a basic framework on which more realistic models can be based, given the availability of reliable environmental transfer data. An example of such a development is included for 90 Sr in the pasture-cow-milk pathway. The model predicts annual average concentrations of 90 Sr in milk caused by fallout in the United Kingdom to within 15% of measured values for over most of the 20-y period for which data exist. It makes possible the evaluation of the time dependence of the contributions of various transfer processes. Following acute releases to the atmosphere or releases in any other contamination scenario where direct deposition is absent, certain pathways often not considered in food-chain models, such as the external contamination of plants caused by resuspension processes or the ingestion of contaminants together with soil by grazing animals, are shown to be potentially important in the transfer of activity to man. The main application of dynamic food-chain models is the prediction of the consequences of accidental releases to the terrestrial environment. The predictions can be used in planning countermeasures and in assessing the health, economic, and social impacts of accidental release

  14. Analytical transmissibility based transfer path analysis for multi-energy-domain systems using four-pole parameter theory

    Science.gov (United States)

    Mashayekhi, Mohammad Jalali; Behdinan, Kamran

    2017-10-01

    The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.

  15. Modulation transfer function cascade model for a sampled IR imaging system.

    Science.gov (United States)

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  16. Analysis and Optimization of Three-Resonator Wireless Power Transfer System for Predetermined-Goals Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-04-01

    Full Text Available Three-resonator wireless power transfer (WPT systems have been proposed to improve the power transfer efficiency (PTE and power delivered to the load (PDL in recent years. However, analysis formulas of a three-resonator WPT system are complicated, and the parameters for clarifying the transfer characteristics of this system are difficult to extract. In this paper, concise formulas for analyzing PTE and PDL of the three-resonator system are derived by introducing three factors. Diagram discriminance based on the derived formulas is proposed to obtain the frequency splitting criterions of PTE and PDL in this system. Further, at the transfer distances, where the PTE and PDL are low at original frequency due to frequency splitting phenomenon, the two predetermined-goals of maximizing PTE and PDL are achieved by optimizing coupling strength between the three resonators. The third predetermined-goal of obtaining a constant amount of PDL transfer at maximum PTE is also implemented based on basic algorithms in numerical software. Finally, Simulation and measurement results verify the correctness of analyzing the transfer characteristics of three-resonator WPT system using the presented concise formulas and discriminance. Moreover, effectiveness of realizing the three predetermined-goals via the proposed optimization method is confirmed with experiments.

  17. Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants

    KAUST Repository

    Yi, Ying

    2014-09-01

    This paper presents a resonance-based wireless power transfer system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. We theoretically analyzed the system and characterized it by measuring its inductance, self-resonant frequency, and quality factor Q. In our resonance-based wireless power transfer prototype, we proposed a 3-coil system, using two 15-mm radius implantable coils, with a resonance frequency of 6.76MHz. This system can effectively transfer power for a distance of up to 50mm. Moreover, our proposed 3-coil system can achieve a high Q-factor and has a comparable power transfer efficiency (PTE) to previously reported works about 3-coil and 4-coil systems. The experimental PTE can achieve 82.4% at a separation distance of 20mm and more than 10% PTE at a distance of 40mm.

  18. Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Fan, Yiqiang; Foulds, Ian G.

    2014-01-01

    This paper presents a resonance-based wireless power transfer system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. We theoretically analyzed the system and characterized it by measuring its inductance, self-resonant frequency, and quality factor Q. In our resonance-based wireless power transfer prototype, we proposed a 3-coil system, using two 15-mm radius implantable coils, with a resonance frequency of 6.76MHz. This system can effectively transfer power for a distance of up to 50mm. Moreover, our proposed 3-coil system can achieve a high Q-factor and has a comparable power transfer efficiency (PTE) to previously reported works about 3-coil and 4-coil systems. The experimental PTE can achieve 82.4% at a separation distance of 20mm and more than 10% PTE at a distance of 40mm.

  19. Acute Care Referral Systems in Liberia: Transfer and Referral Capabilities in a Low-Income Country.

    Science.gov (United States)

    Kim, Jimin; Barreix, Maria; Babcock, Christine; Bills, Corey B

    2017-12-01

    Introduction Following two decades of armed conflict in Liberia, over 95% of health care facilities were partially or completely destroyed. Although the Liberian health system has undergone significant rehabilitation, one particular weakness is the lack of organized systems for referral and prehospital care. Acute care referral systems are a critical component of effective health care delivery and have led to improved quality of care and patient outcomes. Problem This study aimed to characterize the referral and transfer systems in the largest county of Liberia. A cross-sectional, health referral survey of a representative sample of health facilities in Montserrado County, Liberia was performed. A systematic random sample of all primary health care (PHC) clinics, fraction proportional to district population size, and all secondary and tertiary health facilities were included in the study sample. Collected data included baseline information about the health facility, patient flow, and qualitative and quantitative data regarding referral practices. A total of 62 health facilities-41 PHC clinics, 11 health centers (HCs), and 10 referral hospitals (RHs)-were surveyed during the 6-week study period. In sum, three percent of patients were referred to a higher-level of care. Communication between health facilities was largely unsystematic, with lack of specific protocols (n=3; 5.0%) and standardized documentation (n=26; 44.0%) for referral. While most health facilities reported walking as the primary means by which patients presented to initial health facilities (n=50; 81.0%), private vehicles, including commercial taxis (n=37; 60.0%), were the primary transport mechanism for referral of patients between health facilities. This study identified several weaknesses in acute care referral systems in Liberia, including lack of systematic care protocols for transfer, documentation, communication, and transport. However, several informal, well-functioning mechanisms for

  20. Learning in context: identifying gaps in research on the transfer of medical communication skills to the clinical workplace.

    Science.gov (United States)

    van den Eertwegh, Valerie; van Dulmen, Sandra; van Dalen, Jan; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2013-02-01

    In order to reduce the inconsistencies of findings and the apparent low transfer of communication skills from training to medical practice, this narrative review identifies some main gaps in research on medical communication skills training and presents insights from theories on learning and transfer to broaden the view for future research. Relevant literature was identified using Pubmed, GoogleScholar, Cochrane database, and Web of Science; and analyzed using an iterative procedure. Research findings on the effectiveness of medical communication training still show inconsistencies and variability. Contemporary theories on learning based on a constructivist paradigm offer the following insights: acquisition of knowledge and skills should be viewed as an ongoing process of exchange between the learner and his environment, so called lifelong learning. This process can neither be atomized nor separated from the context in which it occurs. Four contemporary approaches are presented as examples. The following shift in focus for future research is proposed: beyond isolated single factor effectiveness studies toward constructivist, non-reductionistic studies integrating the context. Future research should investigate how constructivist approaches can be used in the medical context to increase effective learning and transition of communication skills. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Structural identifiability analysis of a cardiovascular system model.

    Science.gov (United States)

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. The droplet injection system used in the rod bundle heat transfer facility

    International Nuclear Information System (INIS)

    Frepoli, C.; Andrew, A.J.; Hochreiter, L.E.; Cheung, F.B.

    2001-01-01

    The full text follows. The US Nuclear Regulatory Commission (NRC) and the Pennsylvania State University are currently funding a research program entitled ''Rod Bundle Heat Transfer'' (RBHT). The main objective of the program is to investigate heat transfer during the core reflood period of a hypothetical Large Break Loss of Coolant Accident in a typical nuclear power plant. The RBHT test facility consists of a full-length 7 x 7 rod bundle. Information gathered by the RBHT test facility will be used for improvement of the reflood heat transfer models in the NRC's thermal hydraulic codes. In particular the RBHT data will be used to improve the understanding of individual heat transfer effects to the total rod heat transfer such that compensating errors present in current Best Estimate codes can be significantly reduced. The strategy in developing the test matrix is to use a ''building block'' approach in which simpler experiments are performed first to quantify a particular heat transfer mechanism alone and then the additional complications of the full two-phase flow, reflood film boiling behavior of the test facility are added in later experiments. One of these ''simpler'' experiments will be the injection of known size and velocity liquid droplets into the main stream of superheated steam. The droplet injection system consists of small diameter tubes inserted across the bundle at a given elevation. A number of equal size holes are drilled perpendicular to the surface in a triangular pitch. Water is forced into opposite ends of the tube and ejected from the holes. The injection system was tested using a digital imaging system known as VisiSizer. This system is capable of determining the diameter and velocity of small water droplets using a laser-illuminated digital camera system (LIDCS). Imaging software analyzes the digital images in real time to determine the distributions of droplet size and velocity. Pre-test analysis using COBRA-TF have been conducted to

  3. Calibration transfer between electronic nose systems for rapid In situ measurement of pulp and paper industry emissions

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Sharvari [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata (India); Kamde, Kalyani [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Jana, Arun [Center for Development of Advance Computing, Kolkata (India); Korde, Sanjivani [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Bandyopadhyay, Rajib [Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata (India); Sankar, Ravi [Center for Development of Advance Computing, Kolkata (India); Bhattacharyya, Nabarun, E-mail: nabarun.bhattacharya@cdac.in [Center for Development of Advance Computing, Kolkata (India); Pandey, R.A., E-mail: ra_pandey@neeri.res.in [CSIR-National Environmental Engineering and Research Institute, Nagpur (India)

    2014-09-02

    Highlights: • E-nose developed for obnoxious emissions measurement at pulp and paper industrial site. • ANN model developed for prediction of (CH{sub 3}){sub 2}S, (CH{sub 3}){sub 2}S{sub 2}, CH{sub 3}SH and H{sub 2}S concentration. • Calibration transfer methodology developed for transfer between two e-nose instruments. • Box–Behnken design and robust regression used for calibration transfer. • Results show effective transfer of training model from one e-nose system to other. - Abstract: Electronic nose systems when deployed in network mesh can effectively provide a low budget and onsite solution for the industrial obnoxious gaseous measurement. For accurate and identical prediction capability by all the electronic nose systems, a reliable calibration transfer model needs to be implemented in order to overcome the inherent sensor array variability. In this work, robust regression (RR) is used for calibration transfer between two electronic nose systems using a Box–Behnken (BB) design. Out of the two electronic nose systems, one was trained using industrial gas samples by four artificial neural network models, for the measurement of obnoxious odours emitted from pulp and paper industries. The emissions constitute mainly of hydrogen sulphide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) in different proportions. A Box–Behnken design consisting of 27 experiment sets based on synthetic gas combinations of H{sub 2}S, MM, DMS and DMDS, were conducted for calibration transfer between two identical electronic nose systems. Identical sensors on both the systems were mapped and the prediction models developed using ANN were then transferred to the second system using BB–RR methodology. The results showed successful transmission of prediction models developed for one system to other system, with the mean absolute error between the actual and predicted concentration of analytes in mg L{sup −1} after calibration

  4. Calibration transfer between electronic nose systems for rapid In situ measurement of pulp and paper industry emissions

    International Nuclear Information System (INIS)

    Deshmukh, Sharvari; Kamde, Kalyani; Jana, Arun; Korde, Sanjivani; Bandyopadhyay, Rajib; Sankar, Ravi; Bhattacharyya, Nabarun; Pandey, R.A.

    2014-01-01

    Highlights: • E-nose developed for obnoxious emissions measurement at pulp and paper industrial site. • ANN model developed for prediction of (CH 3 ) 2 S, (CH 3 ) 2 S 2 , CH 3 SH and H 2 S concentration. • Calibration transfer methodology developed for transfer between two e-nose instruments. • Box–Behnken design and robust regression used for calibration transfer. • Results show effective transfer of training model from one e-nose system to other. - Abstract: Electronic nose systems when deployed in network mesh can effectively provide a low budget and onsite solution for the industrial obnoxious gaseous measurement. For accurate and identical prediction capability by all the electronic nose systems, a reliable calibration transfer model needs to be implemented in order to overcome the inherent sensor array variability. In this work, robust regression (RR) is used for calibration transfer between two electronic nose systems using a Box–Behnken (BB) design. Out of the two electronic nose systems, one was trained using industrial gas samples by four artificial neural network models, for the measurement of obnoxious odours emitted from pulp and paper industries. The emissions constitute mainly of hydrogen sulphide (H 2 S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) in different proportions. A Box–Behnken design consisting of 27 experiment sets based on synthetic gas combinations of H 2 S, MM, DMS and DMDS, were conducted for calibration transfer between two identical electronic nose systems. Identical sensors on both the systems were mapped and the prediction models developed using ANN were then transferred to the second system using BB–RR methodology. The results showed successful transmission of prediction models developed for one system to other system, with the mean absolute error between the actual and predicted concentration of analytes in mg L −1 after calibration transfer (on second system) being 0.076, 0

  5. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    Science.gov (United States)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  6. Energy transfer in contact binary systems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1980-01-01

    A simple model for the transfer of energy by steady circulation within the envelope of a contact binary system is presented. The model describes the fully compressible, two-dimensional flow of a perfect gas within a rectangular region in a uniform gravitational field. The region is heated non-uniformly from below. Coriolis forces are neglected but the interaction of the circulation with convection is discussed briefly. Numerical solutions of the linearized equations of the problem are discussed in detail, and the results of some non-linear calculations are also presented. The influence of alternative boundary conditions is examined. (author)

  7. Quartz microbalance device for transfer into ultrahigh vacuum systems

    International Nuclear Information System (INIS)

    Stavale, F.; Achete, C. A.; Niehus, H.

    2008-01-01

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  8. An efficient wireless power transfer system with security considerations for electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Chau, K. T., E-mail: ktchau@eee.hku.hk; Liu, Chunhua; Qiu, Chun; Lin, Fei [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  9. An efficient wireless power transfer system with security considerations for electric vehicle applications

    International Nuclear Information System (INIS)

    Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-01-01

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption

  10. An efficient wireless power transfer system with security considerations for electric vehicle applications

    Science.gov (United States)

    Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-05-01

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  11. The new transfer line collimation system for the LHC high luminosity era

    CERN Document Server

    Kain, V; Goddard, B; Maciariello, F; Meddahi, M; Mereghetti, A; Steele, G; Velotti, F; Gianfelice-Wendt, E

    2014-01-01

    A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or in the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfill with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity era. A possible solution for the new transfer line collimation system is presented.

  12. Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhenshi Wang

    2015-12-01

    Full Text Available This paper aims to study a 3 kW wireless power transfer system for electric vehicles. First, the LCL-LCL topology and LC-LC series topology are analyzed, and their transfer efficiencies under the same transfer power are compared. The LC-LC series topology is validated to be more efficient than the LCL-LCL topology and thus is more suitable for the system design. Then a novel q-Zsource-based online power regulation method which employs a unique impedance network (two pairs of inductors and capacitors to couple the cascaded H Bridge to the power source is proposed. By controlling the shoot-through state of the H Bridge, the charging current can be adjusted, and hence, transfer power. Finally, a prototype is implemented, which can transfer 3 kW wirelessly with ~95% efficiency over a 20 cm transfer distance.

  13. Theoretical perspectives on electron transfer and charge separation events in photochemical water cleavage systems

    International Nuclear Information System (INIS)

    Kozak, J.J.; Lenoir, P.M.; Musho, M.K.; Tembe, B.L.

    1984-01-01

    We study in this paper the dynamics induced by models for photochemical water cleavage systems, focusing on the spatial and temporal factors influencing electron transfer and charge separation processes in such systems. The reaction-diffusion theory is formulated in full generality and the consequences explored in a number of spatio-temporal regimes, viz. the spatially homogeneous system in the long-time limit (i.e. the steady state for a well-stirred system), the spatially homogeneous system in evolution, and the spatially inhomogeneous system in evolution (where, in the latter study, we consider electron transfer at the cluster surface to be governed by a rate constant that reflects the localized nature of such processes). The results of numerical simulations are presented for all three cases and used to highlight the importance of heterogeneous environments in enhancing the cage escape yield of charge separated species, and to demonstrate the dependence of the hydrogen yield on the localization of electron-transfer processes in the vicinity of the microcatalyst surface

  14. A new version of transfer matrix method for multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Rui, Xiaoting, E-mail: ruixt@163.net [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Bestle, Dieter, E-mail: bestle@b-tu.de [Brandenburg University of Technology, Engineering Mechanics and Vehicle Dynamics (Germany); Zhang, Jianshu, E-mail: zhangdracpa@sina.com; Zhou, Qinbo, E-mail: zqb912-new@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China)

    2016-10-15

    In order to avoid the global dynamics equations and increase the computational efficiency for multibody system dynamics (MSD), the transfer matrix method of multibody system (MSTMM) has been developed and applied very widely in research and engineering in recent 20 years. It differs from ordinary methods in multibody system dynamics with respect to the feature that there is no need for a global dynamics equation, and it uses low-order matrices for high computational efficiency. For linear systems, MSTMM is exact even if continuous elements like beams are involved. The discrete time MSTMM, however, has to use local linearization. In order to release the method from such approximations, a new version of MSTMM is presented in this paper where translational and angular accelerations, on the one hand, and internal forces and moments, on the other hand, are used as state variables. Already linear relationships among these quantities are utilized, which results in new element transfer matrices and algorithms making the study of multibody systems as simple as the study of single bodies. The proposed approach also allows combining MSTMM with any general numerical integration procedure. Some numerical examples of MSD are given to demonstrate the proposed method.

  15. Comparisons of power transfer functions and flow transfer functions

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system-quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described

  16. Design and construction of OGL-1 Specimen Transfer System

    International Nuclear Information System (INIS)

    Nakamura, Kunio; Saruta, Tohru; Nabeya, Hideaki; Nakagaki, Shogo; Nishizaki, Tadashi.

    1977-11-01

    OGL-1 is the first high temperature gas in-pile loop in Japan, which is installed in JMTR of Oarai Research Establishment, JAERI. As the JMTR is the PWR type, specimens must be set in the loop with a remote control system ''OGL-1 Specimen Transfer System'' because of the needs for moisture prevention and radiation shielding. Described in this report are design philosophy, loop development, problems in construction, inspection and operation. (auth.)

  17. Application of flexibility model in modeling of flow boiling heat transfer

    International Nuclear Information System (INIS)

    Peng Jinfeng; Zhao Fuyu

    2009-01-01

    The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.

  18. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    Science.gov (United States)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  19. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  20. An impurity-induced gap system as a quantum data bus for quantum state transfer

    International Nuclear Information System (INIS)

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-01-01

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer

  1. Predictive Modelling of Phase-Transfer Catalyst Systems for Improved and Innovative Design

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Hyung Kim, Sun; Sales-Cruz, Mauricio

    2016-01-01

    Phase-transfer catalyst (PTC) systems contain two immiscible liquid phases with a heterogeneous PTC transferring active ion from one phase to the other for converting the reactant to the desired product, and in the process generating the inactive ion. This type of reacting systems is receiving...... increasing attention as a novel organic synthesis option due to its flexible and easier operation, higher production yield, and ability to eliminate expensive solvents, although, not eliminating the use of solvents. New mathematical models of the PTC system, which includes physical and chemical equilibrium......, reaction mechanism and unit operation has been developed. In the developed model, the PTC system is divided into four sub-systems of aqueous-organic solvent partition, inorganic salt in aqueous phase, PTC in aqueous phase, and PTC in aqueous phase. Each subsystem requires an appropriate thermodynamic model...

  2. Hours and Miles: Patient and Health System Implications of Transfer for Psychiatric Bed Capacity.

    Science.gov (United States)

    O'Neil, Amy M; Sadosty, Annie T; Pasupathy, Kalyan S; Russi, Christopher; Lohse, Christine M; Campbell, Ronna L

    2016-11-01

    An increasing number of behavioral health (BH) patients are presenting to the emergency department (ED) while BH resources continue to decline. This situation-may lead to more external transfers to find care. This is a retrospective cohort study of consecutive patients presenting to a tertiary care academic ED from February 1, 2013, through January 31, 2014. Patients were identified through electronic health record documentation of psychiatric consultation during ED evaluation. We reviewed electronic health records for demographic characteristics, diagnoses, payer source, ED length of stay, ED disposition, arrival method, and distance traveled to an external facility for inpatient admission. Univariable and multivariable associations with transfer to an external facility in comparison with patients admitted internally were evaluated with logistic regression models and summarized with odds ratios (OR). We identified 2,585 BH visits, of which 1,083 (41.9%) resulted in discharge. A total of 1,502 patient visits required inpatient psychiatric admission, and of these cases, 177 patients (11.8%; 95% CI = [10.2-13.5]) required transfer to an external facility. The median ED length of stay for transferred patients was 13.9 hours (interquartile range [IQR], 9.3-20.2 hours; range, 3.0-243.0 hours). The median distance for transport was 83 miles (IQR, 42-111 miles; range, 42-237 miles). In multivariable analysis, patients with suicidal or homicidal ideation had increased risk of transfer (odds ratio [OR] [95% CI], 1.93 [1.22-3.06]; P =0.005). Children younger than 18 years (OR [95% CI], 2.34 [1.60-3.40]; P< 0.001) and adults older than 65 years (OR [95% CI], 3.46 [1.93-6.19]; P <0.001) were more likely to require transfer and travel farther to access care. Patients requiring external transfer for inpatient psychiatric care were found to have prolonged ED lengths of stay. Patients with suicidal and homicidal ideation as well as children and adults older than 65 years are more

  3. Hours and Miles: Patient and Health System Implications of Transfer for Psychiatric Bed Capacity

    Directory of Open Access Journals (Sweden)

    Amy M. O’Neil

    2016-11-01

    Full Text Available Introduction: An increasing number of behavioral health (BH patients are presenting to the emergency department (ED while BH resources continue to decline. This situation may lead to more external transfers to find care. Methods: This is a retrospective cohort study of consecutive patients presenting to a tertiary care academic ED from February 1, 2013, through January 31, 2014. Patients were identified through electronic health record documentation of psychiatric consultation during ED evaluation. We reviewed electronic health records for demographic characteristics, diagnoses, payer source, ED length of stay, ED disposition, arrival method, and distance traveled to an external facility for inpatient admission. Univariable and multivariable associations with transfer to an external facility in comparison with patients admitted internally were evaluated with logistic regression models and summarized with odds ratios (OR. Results: We identified 2,585 BH visits, of which 1,083 (41.9% resulted in discharge. A total of 1,502 patient visits required inpatient psychiatric admission, and of these cases, 177 patients (11.8%; 95% CI = [10.2-13.5] required transfer to an external facility. The median ED length of stay for transferred patients was 13.9 hours (interquartile range [IQR], 9.3-20.2 hours; range, 3.0-243.0 hours. The median distance for transport was 83 miles (IQR, 42-111 miles; range, 42-237 miles. In multivariable analysis, patients with suicidal or homicidal ideation had increased risk of transfer (odds ratio [OR] [95% CI], 1.93 [1.22-3.06]; P=0.005. Children younger than 18 years (OR [95% CI], 2.34 [1.60- 3.40]; P<0.001 and adults older than 65 years (OR [95% CI], 3.46 [1.93-6.19]; P<0.001 were more likely to require transfer and travel farther to access care. Conclusion: Patients requiring external transfer for inpatient psychiatric care were found to have prolonged ED lengths of stay. Patients with suicidal and homicidal ideation as well

  4. Charge transfer in quasi-one-electron systems at 'high' energy

    Energy Technology Data Exchange (ETDEWEB)

    Gay, T.J.; Redd, E.; Blankenship, D.M.; Park, J.T.; Peacher, J.L.; Seeley, D.G.

    1988-08-14

    We have made absolute and relative measurements of differential cross sections for single-electron transfer in collisions between Mg/sup +/ (30-150 keV) and Be/sup +/ (56.25 keV) ions and He atoms. The behaviour of transfer probability as a function of impact parameter can be understood qualitatively from recent molecular orbital calculations of quasi-one-electron systems.

  5. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  6. Examining the motivators of training transfer in an enterprise systems context

    Science.gov (United States)

    Arasanmi, Chris Niyi; Wang, William Yu Chung; Singh, Harminder

    2017-09-01

    Enterprise systems (ES) are large software packages that have been widely adopted, but are complex to deploy. One way to obtain more value from them is to train end-users. However, little is known about the effectiveness of ES training. This study examines post-training behaviour in the ES environment through the concept of training transfer and the theoretical framework of self-determination theory. It proposes that end-users' computer self-efficacy (CSE) and mastery orientation (MO), as well as the perceived ease-of-use (PEOU) of a system, influence their motivation to transfer the skills they have gained during training to their work environment and to use the system. Data was collected from 170 ES end-users, who had previously attended ES training, through a survey. Partial least squares modelling was used to analyse the data, and all of the hypotheses were supported. This study is among the first few studies that investigate the more distal impact of information systems training.

  7. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    M. A. Adeeb

    2012-01-01

    Full Text Available A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.

  8. Replacement cross-site transfer system project W-058 safety class upgrade summary report

    International Nuclear Information System (INIS)

    Schlosser, R.L.

    1998-01-01

    This report evaluates the design of the replacement cross-site transfer system structures, systems, and components for safety related applications as defined in the Tank Waste Remediation Systems Basis for Interim Operations

  9. FEATURES OF TECHNOLOGIES TRANSFER SYSTEMS IN EURASIAN ECONOMIC UNION MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yu.V. Solovieva

    2017-12-01

    Full Text Available In article forms and conditions of interaction of participants of innovative process, feature of creation and development of organizational system of a transfer of technologies in member countries of the Eurasian Economic Union are considered. On the basis of a transfer systems analysis functioning in the EEU countries, the author allocates the key and most perspective directions of development of integration of scientific and educational, production spheres and the state for the purpose of formation of special mechanisms of the organization of the innovative processes providing effective interaction between all its participants. The conclusion about need of creation of the organizational system based on integration of institutes of the state, science, business and education in the EEU countries for formation of competitive hi-tech production, increase in the status of the countries in the world market of technologies is drawn.

  10. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs

    Directory of Open Access Journals (Sweden)

    Sergio eLópez-Madrigal

    2014-08-01

    Full Text Available Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae, Candidatus Tremblaya princeps and Candidatus Moranella endobia cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae this function is performed by its single endosymbiont Candidatus Tremblaya phenacola. However, little is known regarding the evolution of essential amino acid supplementation strategies in other mealybug systems. To address this knowledge gap, we screened for the presence of six selected loci involved in essential amino acid biosynthesis in five additional mealybug species. We found evidence of ongoing complementarity among endosymbionts from insects of subfamily Pseudococcinae, as well as horizontal gene transfer affecting endosymbionts from insects of family Phenacoccinae, providing a more comprehensive picture of the evolutionary history of these endosymbiotic systems. Additionally, we report two diagnostic motifs to help identify invasive mealybug species.

  11. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  12. Evaluation in practice: identifying factors for improving transfer of training in technical domains

    NARCIS (Netherlands)

    Barnard, Y.F.; Veldhuis, G.J.; Rooij, J.C.G.M. van

    2001-01-01

    The main goal of training is to prepare trainees for the tasks they are going to perform on their jobs. In other words, training aims at transfer from the classroom to the work floor. Transfer of training can be defined as the extent to which trainees are able to use effectively in their work

  13. Rapid transfer of short-lived radioisotopes via a 2. 4 km rabbit system

    Energy Technology Data Exchange (ETDEWEB)

    Burgerjon, J J; Gelbart, Z; Lau, V; Lehnart, D; Lenz, J; Pate, B D; Ruth, T J; Sprenger, H P; van Oers, N S.C.

    1984-09-01

    A 2.4 km long pipeline between a cyclotron and a hospital is used for the rapid transfer of short-lived radiopharmaceuticals. The vials containing the pharmaceuticals are placed inside capsules (rabbits) that are blown through a tube by means of compressed air. Travel times as short as 2 min are achieved, which makes the system suitable for the transfer of /sup 15/O, which has a 2 min half-life. The construction and test results of the system are described along with a computer model, developed to explain some properties of the system. 7 references, 15 figures, 2 tables.

  14. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  15. Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel

    2001-01-01

    Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001

  16. High performance passive solar heating system with heat pipe energy transfer

    NARCIS (Netherlands)

    Wit, de M.H.; Hensen, J.L.M.; Dijk, van H.A.L.; Brink, van den G.J.; Galen, van E; Ouden, den C.

    1984-01-01

    The aim of the project is to develop a passive solar heating system with a higher efficiency (regarding accumulation and transfer of solar heat into dwellings) than convential concrete thermal storage walls and with restricted extra costs for manufacturing the system. This is to be achieved by the

  17. The effect of the development of an emergency transfer system on the travel time to tertiary care centres in Japan

    Directory of Open Access Journals (Sweden)

    Arima Hideaki

    2006-06-01

    Full Text Available Abstract Background In Japan, the emergency medical system is categorized into three levels: primary, secondary, and tertiary, depending on the severity of the condition of the patient. Tertiary care centres accept patients who require 24-h monitoring. In this research, the average travel times (minutes from the centroids of all municipalities in Japan to the nearest tertiary care centre were estimated, using the geographic information system. The systems affecting travel time to tertiary care centres were also examined. Regression analysis was performed to determine the factors affecting the travel time to tertiary care centres, using selected variables representing road conditions and the emergency transfer system. Linear regression analysis was performed to identify specific benchmarks that would be effective in reducing the average travel time to tertiary care centres in prefectures with travel times longer than the average 57 min. Results The mean travel time was 57 min, the range was 83 min, and the standard deviation was 20.4. As a result of multiple regression analysis, average coverage area per tertiary care centre, kilometres of highway road per square kilometre, and population were selected as variables with impact on the average travel time. Based on results from linear regression analysis, benchmarks for the emergency transfer system that would effectively reduce travel time to the mean value of 57 min were identified: 26% pavement ratio of roads (percentage of paved road to general roads, and three tertiary care centres and 108 ambulances. Conclusion Regional gaps in the travel time to tertiary care centres were identified in Japan. The systems we should focus on to reducing travel time were identified. Further reduction of travel time to tertiary care centres can be effectively achieved by improving these specific systems. Linear regression analysis showed that a 26% pavement ratio and three tertiary care centres are beneficial to

  18. Improved power transfer to wearable systems through stretchable magnetic composites

    Science.gov (United States)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  19. Available transfer capability evaluation and enhancement using various FACTS controllers: Special focus on system security

    Directory of Open Access Journals (Sweden)

    M. Venkateswara Rao

    2016-03-01

    Full Text Available Nowadays, because of the deregulation of the power industry the continuous increase of the load increases the necessity of calculation of available transfer capability (ATC of a system to analyze the system security. With this calculation, the scheduling of generator can be decided to decrease the system severity. Further, constructing new transmission lines, new substations are very cost effective to meet the increasing load and to increase the transfer capability. Hence, an alternative way to increase the transfer capability is use of flexible ac transmission system (FACTS controllers. In this paper, SSSC, STACOM and UPFC are considered to show the effect of these controllers in enhancing system ATC. For this, a novel current based modeling and optimal location strategy of these controllers are presented. The proposed methodology is tested on standard IEEE-30 bus and IEEE-57 bus test systems with supporting numerical and graphical results.

  20. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  1. Heat transfer performance of multilayer insulation system under roof slab of pool-type LMFBR

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Naohara, Nobuyuki; Uotani, Masaki

    1986-01-01

    To cope with thermal expansion of stainless steel plate, about 90 insulation structures are installed under the roof-slab of pool-type LMFBR. The objective of this study is to evaluate from heat transfer experiment and visualized experiment, the effect of distance between each thermal insulation structure on heat transfer characteristics of insulation system under roof-slab. Two types of insulation structures are selected, one is open type and the other is closed type. Distance between each thermal insulation structure and hot surface temperatures are varied as a parameter. Furthermore, heat flux of the roof-slab insulation system of reactor are estimated from the results of heat transfer experiment. (author)

  2. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  3. Transfer of accidentally released radionuclides in agricultural systems (TARRAS)

    International Nuclear Information System (INIS)

    Cancio, D.; Maubert, Colle; Rauret, G.; Grandison, A.S.

    1993-01-01

    The aim of this project is to contribute to the reliability of radiological assessment methods and establish a scientific base for the design of post-accident countermeasures. Three main aspects are considered in this project: A simulated accidental source term is used and the behaviour of aerosol deposits containing Sr, Cs and Ag isotopes are followed in some European soil-crop systems; the modification of radionuclide transfer rates through the food chain by well established food processing techniques is studied for Sr, Cs, Co and Ru; the project includes a study on the specific mediterranean diet and transfer data that are compared with currently used generic parameters. Seven contributions of the project for the reporting period are presented. (R.P.) 11 figs., 12 tabs

  4. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  5. Dynamics of Mass Transfer in Wide Symbiotic Systems

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  6. ISI system for MONJU primary heat transfer system (PHTS)

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Narisawa, Masataka; Ueda, Masashi; Yamashita, Takuya

    2007-01-01

    This paper describes the development of a new inspection robot for the in-service inspection (ISI) of the heat transfer system of the FBR MONJU. The inspection is carried out using a tire type for volumetric tests at elevated temperature (Atmosphere 55 degree C, Piping Surface 80 degree C) and irradiation dose condition (Dose Rate 10mSv/h, Piping Surface Dose Rate 15mSv/h). The inspection robot which took in a new tire type ultrasonic testing sensor and a new control method was developed. Detection goals that signal to noise ratio by over 2 for 50% thickness defect of wall were attained as a result of the functional test. (author)

  7. Heat transfer in neuron composite laminated phase-change drywall

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; Kim, J.S. [Nottingham Trent University (United Kingdom). School of Property and Construction

    2004-04-01

    Inadequate heat transfer and overall reduction in thermal conductivities during energy recovery are identified as the main barriers affecting the performance of a phase-change material (PCM) wallboard system. Two integrated PCM drywall systems have been evaluated numerically, and the results showed a great advantage of the laminated PCM wallboard system over the randomly mixed PCM type in terms of enhanced thermal performance and rapid heat transfer rates under a narrow temperature swing. For instance, the maximum instantaneous enhancement in heat flux obtained was between 20 and 50 per cent higher during the phase change process, with up to about 18 per cent more heat storage and release capacity. However, experimental evaluation is required for validation and development. (author)

  8. HVDC interrupter experiments for large Magnetic Energy Transfer and Storage (METS) systems

    International Nuclear Information System (INIS)

    Swannack, C.E.; Haarman, R.A.; Lindsay, J.D.G.; Weldon, D.M.

    1975-01-01

    Proposed fusion-test reactors will require energy storage systems of hundreds of megajoules with transfer times of the order of one millisecond. The size of the energy storage submodule (and hence, the overall system cost and complexity) is directly determined by the voltage and current limits of the switch used for the energy transfer. Experiments are being conducted on high voltage dc circuit breakers as a major part of the energy storage, pulsed power program. DC circuit interruption characteristics of a commercially available ac power vacuum interrupter are discussed. Preliminary data of interruption characteristics are reported for an interrupter developed specifically to match a present METS circuit requirement

  9. Sustainable technology transfer

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2006-01-01

    In this position paper we address the issue of transferring a technology from research into an industrial organization by presenting a refined process for technology transfer. Based on over two decades of industrial experience, we identified the need for a dedicated technology engineering phase for

  10. A new passive system for contamination-free long-distance cryo-transfer of biological tissues

    Science.gov (United States)

    Cheng, Tian; Plane, Florent; Søgaard Jensen, Louise Helene; van den Brandt, Ben; Comment, Arnaud; Meibom, Anders

    2017-12-01

    Several new analytical techniques require long-distance cryogenic transfer of samples that need to be kept at stable temperatures for long time periods, but also to be additionally contamination-free. In this study we developed a passive transfer system to fulfil those requirements. With 125mL of liquid nitrogen stored, one cryo-sectioned sample was maintained around 120±1 K and a pressure of about 3x10-7 mbar for at least 2 hours. With a total transfer weight of 5 Kg this system can be easily handled and carried by any transportation means so that the same sample can be used for different imaging centres located remotely permitting correlative studies.

  11. Identifying intelligent Building Management Systems (BMS) in ...

    African Journals Online (AJOL)

    Identifying intelligent Building Management Systems (BMS) in sustainable housing. ... Journal of Fundamental and Applied Sciences ... attention to the principles of sustainability of energy and organized approach to sustainable development.

  12. Data capture and communication during transfers to definitive care in an inclusive trauma system.

    Science.gov (United States)

    Bradley, Nori L; Garraway, Naisan; Bell, Nathaniel; Lakha, Nasira; Hameed, S Morad

    2017-05-01

    Background trauma survivors in rural areas transferred to urban centers have higher mortality than trauma patients admitted directly to urban centers. Transfer data in trauma registries is important for injury control. Prehospital and early physiologic data may reflect processes of pre-hospital care. British Columbia currently has no standardized process for trauma patient data transfer. We performed a retrospective data analysis for major trauma patients (ISS>15) transferred to a Level I trauma center over a 1year period (n=243). Completion rates of paramedic form and ATLS primary survey variables were extracted. Nominal and interval descriptives were calculated. Documentation rates were considered deficient at system-wide information transfer. Copyright © 2016. Published by Elsevier Ltd.

  13. Development of a system for transferring images via a network: supporting a regional liaison.

    Science.gov (United States)

    Mihara, Naoki; Manabe, Shiro; Takeda, Toshihiro; Shinichirou, Kitamura; Junichi, Murakami; Kouji, Kiso; Matsumura, Yasushi

    2013-01-01

    We developed a system that transfers images via network and started using them in our hospital's PACS (Picture Archiving and Communication Systems) in 2006. We are pleased to report that the system has been re-developed and has been running so that there will be a regional liaison in the future. It has become possible to automatically transfer images simply by selecting the destination hospital that is registered in advance at the relay server. The gateway of this system can send images to a multi-center, relay management server, which receives the images and resends them. This system has the potential to be useful for image exchange, and to serve as a regional medical liaison.

  14. Transfer effects in learning a second language grammatical gender system

    NARCIS (Netherlands)

    Sabourin, Laura; Stowe, Laurie A; de Haan, Ger J

    In this article second language (L2) knowledge of Dutch grammatical gender is investigated. Adult speakers of German, English and a Romance language (French, Italian or Spanish) were investigated to explore the role of transfer in learning the Dutch grammatical gender system. In the first language

  15. The control system for the CERN proton synchrotron continuous transfer ejection

    International Nuclear Information System (INIS)

    Bloess, D.; Boucheron, J.; Flander, D.; Grier, D.; Krusche, A.; Ollenhauer, F.; Pearce, P.; Riege, H.; Schneider, G.C.

    1978-01-01

    This report describes the hardware and the software structure of a stand-alone control system for the continuous transfer ejection from the CERN Proton Synchrotron to the Super Proton Synchrotron. The process control system is built around a PDP 11/40 mini-computer interfaced to the ejection elements via CAMAC. It features automatic failure recovery and real-time process optimization. Performance, flexibility, and reliability of the system is evaluated. (Auth.)

  16. Laboratory transferability of optimally shaped laser pulses for quantum control

    International Nuclear Information System (INIS)

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel

    2014-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed

  17. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  18. Development of a pneumatic transfer system for HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Mack, J.E.; Johnson, D.R.

    1978-02-01

    In support of the High-Temperature Gas-Cooled Reactor (HTGR) Fuel Refabrication Development Program, an experimental pneumatic transfer system was constructed to determine the feasibility of pneumatically conveying pyrocarbon-coated fuel particles of Triso and Biso designs. Tests were conducted with these particles in each of their nonpyrophoric forms to determine pressure drops, particle velocities, and gas flow requirements during pneumatic transfer as well as to evaluate particle wear and breakage. Results indicated that the material can be pneumatically conveyed at low pressures without excessive damage to the particles or their coatings

  19. Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system

    Science.gov (United States)

    Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2018-02-01

    In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.

  20. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  1. Eigenvalues of the Transferences of Gaussian Optical Systems

    Directory of Open Access Journals (Sweden)

    W.F. Harris

    2005-12-01

    Full Text Available The  problem  of  how  to  define  an  average eye leads to the question of what eigenvalues are  possible  for  ray  transferences.  This  paper examines the set of possible eigenvalues in the simplest possible case, that of optical systems consisting  of  elements  that  are  stigmatic  and centred on a common axis.

  2. Dynamic Mechanism of Population Transfer and its Effect on Food Industries Credit Systems

    Directory of Open Access Journals (Sweden)

    Zhang Yanli

    2016-12-01

    Full Text Available Population transfer is a complicated social phenomenon which concerns the development of national welfare and people's livelihood and the credit system of the food production and processing industry. This study investigated the dynamic mechanism of population transfer and its effect on the food processing industry, applying theories like urbanization theory, regional imbalanced development theory, regional balanced development theory, comprehensive and coordinated development of urban and rural areas theory. Based on the practical situation of Henan province, the study offered some countermeasure suggestions for the existing problems in the credit systems of the food industry in Henan and discussed how to establish appropriate credit systems, thus to help food security and sustainable development of Henan.

  3. Experimental Demonstration of Coexistence of Microwave Wireless Communication and Power Transfer Technologies for Battery-Free Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshida

    2013-01-01

    Full Text Available This paper describes experimental demonstrations of a wireless power transfer system equipped with a microwave band communication function. Battery charging using the system is described to evaluate the possibility of the coexistence of both wireless power transfer and communication functions in the C-band. A battery-free wireless sensor network system is demonstrated, and a high-power rectifier for the system is also designed and evaluated in the S-band. We have confirmed that microwave wireless power transfer can coexist with communication function.

  4. Social Support at the Workplace, Motivation to Transfer and Training Transfer: A Multilevel Indirect Effects Model

    Science.gov (United States)

    Massenberg, Ann-Christine; Spurk, Daniel; Kauffeld, Simone

    2015-01-01

    Supervisor support, peer support and transfer motivation have been identified as important predictors of training transfer. Transfer motivation is thought to mediate the support-training transfer relationship. Especially after team training interventions that include all team members (i.e. whole-team training), individual perception of these…

  5. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  6. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  7. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  8. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  9. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  10. Ion-atom charge-transfer system for a heavy-ion-beam pumped laser

    International Nuclear Information System (INIS)

    Ulrich, A.; Gernhaeuser, R.; Kroetz, W.; Wieser, J.; Murnick, D.E.

    1994-01-01

    An Ar target to which Cs vapor could be added, excited by a pulsed beam of 100-MeV 32 S ions, was studied as a prototype ion-atom charge-transfer system for pumping short-wavelength lasers. Low-velocity Ar 2+ ions were efficiently produced; a huge increase in the intensity of the Ar II 4d-4p spectral lines was observed when Cs vapor was added to the argon. This observation is explained by a selective charge transfer of the Cs 6s electron into the upper levels of the observed transitions. A rate constant of (1.4±0.2)x10 -9 cm 3 /s for the transfer process was determined

  11. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    Science.gov (United States)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  12. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    Science.gov (United States)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  13. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  14. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  15. Transferring the Cost of Wage Rigidity to Subcontracting Firms: The Case of Korea

    Directory of Open Access Journals (Sweden)

    Kwangho Woo

    2016-08-01

    Full Text Available We select a Korean case with ample subcontracting practices and a rigid wage system. Workplaces with subcontract transactions would have reason to impute the additional wage incremental costs associated with the seniority-based wage system (Hobong in Korea to subcontractors. Our empirical results identify the cost-transferring mechanism under which the cost of wage rigidity for contractors is transferred to subcontracting firms and aggravates the wage inequality among workers in contracting and subcontracting firms. We analyze the industrial difference in the intensity of this transferring mechanism and probe policy directions considering the improvement of both the subcontracting structure and pay system simultaneously. For the sustainability of firms, they need to reform a seniority-based wage system, an incentive-based wage system or a job-based wage system and the exploited subcontracting structure for creating share value.

  16. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  17. A commercial outcome prediction system for university technology transfer using neural networks

    OpenAIRE

    Chu, Ling

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 26/03/2007. This thesis presents a commercial outcome prediction system (CPS) capable of predicting the likely future monetary return that would be generated by an invention. The CPS is designed to be used by university technology transfer offices for invention assessment purposes, and is based on the data from their historical invention cases. It is aimed at improving technology transfer off...

  18. Chonopeltis australis (Crustacea) male reproductive system morphology; sperm transfer and review of reproduction in Branchiura.

    Science.gov (United States)

    Neethling, Lourelle Alicia Martins; Avenant-Oldewage, Annemariè

    2015-02-01

    The morphology of the male reproductive system as well as sperm transfer in Branchiura has been described for Dolops ranarum and Argulus japonicus. In this study, the reproductive system and accessory structures are described for male Chonopeltis australis using histology, light microscopy, and scanning electron microscopy. For the first time, we describe sperm transfer by means of a spermatophore in this genus. The internal and external morphology and mechanism of sperm transfer is compared with other Branchiura, where it has been described. The morphology of the reproductive system of C. australis is similar to that of D. ranarum while the accessory structures and the spermatophore produced are similar to that of A. japonicus. A revision of the definition of Branchiura with respect to reproduction is provided. © 2014 Wiley Periodicals, Inc.

  19. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  20. Transferring Knowledge in the Relocation of Manufacturing Units

    DEFF Research Database (Denmark)

    Yang, Cheng; Madsen, Erik; Liangsiri, Jirapha

    2010-01-01

    ABSTRACT Purpose--The global spread of production makes companies relocating their manufacturing units frequently. Not only equipments, systems and facilities, need to be moved, but the transfer of operational knowledge and experience seem to be a major challenge. However, discussions on knowledge...... transfer are derived predominantly from a cognitive perspective and normally focus on the organizational level. Thus, from the perspective of operations management, this paper aims to explore how to transfer production know-how on the shop floor level when manufacturing units are relocated and the paper...... indicate which means can be used to support this intra-firm transfer process. Design/methodology/approach--Four cases are identified from two action research projects on the basis of observations over one-and-half years and semi-structured interviews with more than 59 people. Other methods, such as surveys...

  1. 20 Years of persistent identifiers - Which systems are here to stay?

    Science.gov (United States)

    Klump, Jens; Huber, Robert; Lehnert, Kerstin

    2016-04-01

    Web-based persistent identifiers have been around for more than 20 years, a period long enough to start observing patterns of success and failure. Persistent identifiers were invented to address challenges arising from the distributed and disorganised nature of the internet, which not only allowed new technologies to emerge, it also made it difficult to maintain a persistent record of science. Persistent identifiers now allow unambiguous identification of resources on the net. The expectations were that persistent identifiers would lead to greater accessibility, transparency and reproducibility of research results. Over the past two decades a number of persistent identifier systems have been built, one of them being Digital Object Identifiers (DOI). While DOI were originally invented by the publishing industry, they quickly became an established way for the identification of research resources. At first, these resources referred to scholarly literature and related resources. Other identifier systems, some of them using DOI as an example, were developed as grass-roots efforts by the scientific community. The concept of using persistent identifiers has since been expanded to other, non-textual resources, like datasets (DOI, EPIC) and geological specimens (IGSN), and more recently to authors and contributors of scholarly works (ORCID), and to software and instruments. A common witticism states that "a great thing about standards is that there are so many to choose from." Setting up identifier systems is technically trivial. The real challenge lies in creating a governance system for the respective identifiers. Which systems will stand the test of time? Drawing on data from the Registry of Research Data Repositories (re3data.org) and our own experience in the field, this presentation looks at the history and adoption of existing identifier systems and how this gives us some indications towards factors influencing sustainability of these systems.

  2. MDTM: Optimizing Data Transfer using Multicore-Aware I/O Scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Fermilab; Demar, Phil [Fermilab; Wu, Wenji [Fermilab; Kim, Bockjoo [Florida U.

    2017-05-09

    Bulk data transfer is facing significant challenges in the coming era of big data. There are multiple performance bottlenecks along the end-to-end path from the source to destination storage system. The limitations of current generation data transfer tools themselves can have a significant impact on end-to-end data transfer rates. In this paper, we identify the issues that lead to underperformance of these tools, and present a new data transfer tool with an innovative I/O scheduler called MDTM. The MDTM scheduler exploits underlying multicore layouts to optimize throughput by reducing delay and contention for I/O reading and writing operations. With our evaluations, we show how MDTM successfully avoids NUMA-based congestion and significantly improves end-to-end data transfer rates across high-speed wide area networks.

  3. MDTM: Optimizing Data Transfer using Multicore-Aware I/O Scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Fermilab; Demar, Phil [Fermilab; Wu, Wenji [Fermilab; Kim, Bockjoo [Florida U.

    2017-01-01

    Bulk data transfer is facing significant challenges in the coming era of big data. There are multiple performance bottlenecks along the end-to-end path from the source to destination storage system. The limitations of current generation data transfer tools themselves can have a significant impact on end-to-end data transfer rates. In this paper, we identify the issues that lead to underperformance of these tools, and present a new data transfer tool with an innovative I/O scheduler called MDTM. The MDTM scheduler exploits underlying multicore layouts to optimize throughput by reducing delay and contention for I/O reading and writing operations. With our evaluations, we show how MDTM successfully avoids NUMA-based congestion and significantly improves end-to-end data transfer rates across high-speed wide area networks.

  4. Structural and practical identifiability analysis of S-system.

    Science.gov (United States)

    Zhan, Choujun; Li, Benjamin Yee Shing; Yeung, Lam Fat

    2015-12-01

    In the field of systems biology, biological reaction networks are usually modelled by ordinary differential equations. A sub-class, the S-systems representation, is a widely used form of modelling. Existing S-systems identification techniques assume that the system itself is always structurally identifiable. However, due to practical limitations, biological reaction networks are often only partially measured. In addition, the captured data only covers a limited trajectory, therefore data can only be considered as a local snapshot of the system responses with respect to the complete set of state trajectories over the entire state space. Hence the estimated model can only reflect partial system dynamics and may not be unique. To improve the identification quality, the structural and practical identifiablility of S-system are studied. The S-system is shown to be identifiable under a set of assumptions. Then, an application on yeast fermentation pathway was conducted. Two case studies were chosen; where the first case is based on a larger state trajectories and the second case is based on a smaller one. By expanding the dataset which span a relatively larger state space, the uncertainty of the estimated system can be reduced. The results indicated that initial concentration is related to the practical identifiablity.

  5. From control system security indices to attack identifiability

    NARCIS (Netherlands)

    Herdeiro Teixeira, A.M.; Sandberg, H

    2016-01-01

    In this paper, we investigate detectability and identifiability of attacks on linear dynamical systems that are subjected to external disturbances. We generalize a concept for a security index, which was previously introduced for static systems. The index exactly quantifies the resources

  6. The Value of Sustainable Knowledge Transfer Methods for SMEs, Utilizing Socio-Technical Networks and Complex Systems

    Directory of Open Access Journals (Sweden)

    Susu Nousala

    2010-12-01

    Full Text Available This paper will examine the development of sustainable SME methods for tracking tacit (informal knowledge transfer as a series of networks of larger complex system. Understanding sustainable systems begins with valuing tacit knowledge networks and their ability to produce connections on multiple levels. The behaviour of the social or socio aspects of a system in relation to the explicit formal/physical structures need to be understood and actively considered when utilizing methodologies for interacting within complex systems structures. This paper utilizes theory from several previous studies to underpin the key case study discussed. This approach involved examining the behavioural phenomena of an SME knowledge network. The knowledge network elements were highlighted to identify their value within an SME structure. To understand the value of these emergent elements from between tacit and explicit knowledge networks, is to actively, simultaneously and continuous support sustainable development for SME organizations. The simultaneous links within and between groups of organizations is crucial for understanding sustainable networking structures of complex systems.

  7. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  8. The study of diagnosis status and, transfer time of stroke patients transferred by pre-hospital emergency medical system (EMS to Vali-Asr hospital in Arak City

    Directory of Open Access Journals (Sweden)

    Saiedeh Bahrampouri

    2013-08-01

    Full Text Available Introduction: Stroke is main cause of death and disability in worldwide and emergency care can decrease complications. Emergency Medical System transferred half of stroke patients to hospital, so improve accuracy of diagnosis may accelerated treatment. This study aimed to determine diagnosis status and, transfer time of stroke patients transferred by prehospital Emergency Medical System to hospital in Arak City. Methods: This study was descriptive -analytic study and all 43 patient’s records with a diagnosis of stroke that transferred by Emergency Medical System to hospital in Arak City was selected. The study Checklist was contained information about age, sex, type of accident prehospital, response time, scene time, transfer time and total time from inpatients records and Emergency Center statistics .Regarding data analysis,SPSS19 software and descriptive statistical tests were used. Results: Mean (SD of age all patients were 73/7±3/8 and 51/2% were women. Ambulance paramedics' stroke diagnosis was correct in 15 (34/9%,20(46/5%of false and 8(18/6% not diagnosed for stroke patients who initially presented to them. The most common non stroke conditions were confusion. Mean response time and scene time, transfer time and total time were 6/9,16/9,9/1 and 35/3 minutes, respectively. In patients with correct diagnose stroke, mean response, scene, transfer and total time were 7,17/1,3/9 and 35/7 minutes. The people with the wrong diagnosis or no diagnosis of stroke by emergency medical personnel were taken to hospital, Mean response, scene, transfer and total time were 6/9, 16/8,9/7 and 33/5 minutes. Conclusions: The results of this study showed that, the correct diagnosis by EMS personnel could be resulted faster transferring patient to definite treatment center.It is recommended to develop prehospital diagnosis tool of stroke, which is contextually adapted and appropriate to facilitate diagnose of strokes and improve the quality of care.

  9. Quality evaluation of mammography systems: identification of the best region by the transfer function method

    International Nuclear Information System (INIS)

    Schiabel, H.; Frere, A.F.

    1992-01-01

    The evaluation of mammography systems behaviour, using the conventional analysis method of transfer function is discussed. An investigation for evaluating the behaviour of modulation transfer function on several direction of orifices in the radiation field is also presented. (C.G.C.)

  10. Open conformal systems and perturbations of transfer operators

    CERN Document Server

    Pollicott, Mark

    2017-01-01

    The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, meromorphic maps and rational functions. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite t...

  11. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  12. Opening the black box of transfer systems in public sector health services in a Western state in India.

    Science.gov (United States)

    Purohit, Bhaskar; Martineau, Tim; Sheikh, Kabir

    2016-08-22

    Limited research on Posting and Transfer (P&T) policies and systems in the public sector health services and the reluctance for an open debate on the issue makes P&T as a black box. Limited research on P&T in India suggests that P&T policies and systems are either non-existent, weak, poorly implemented or characterized by corruption. Hence the current study aimed at opening the "black box" of P&T systems in public sector health services in India by assessing the implementation gaps between P&T policies and their actual implementation. This was a qualitative study carried out in Department of Health, in a Western State in India. To understand the extant P&T policies, a systems map was first developed with the help of document review and Key Informant (KI) Interviews. Next systems audit was carried out to assess the actual implementation of transfer policies by interviewing Medical Officers (MOs), the group mainly affected by the P&T policies. Job histories were constructed from the interviews to understand transfer processes like frequencies of transfers and to assess if transfer rules were adhered. The analysis is based on a synthesis of document review, 19 in-depth interviews with MOs working with state health department and five in-depth interviews with Key Informants (KIs). Framework analysis approach was used to analyze data using NVIVO. The state has a generic transfer guideline applicable to all government officers but there is no specific transfer policy or guideline for government health personnel. The generic transfer guidelines are weakly implemented indicating a significant gap between policy and actual implementation. The formal transfer guidelines are undermined by a parallel system in which desirable posts are attained, retained or sometimes given up by the use of political connections and money. MOs' experiences of transfers were marked by perceptions of unfairness and irregularities reflected through interviews as well as the job histories. The

  13. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    International Nuclear Information System (INIS)

    Samosvat, D M; Chikalova-Luzina, O P; Zegrya, G G; Vyatkin, V M

    2016-01-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones. (paper)

  14. A Simple, Visually Oriented Communication System to Improve Postoperative Care Following Microvascular Free Tissue Transfer: Development, Results, and Implications.

    Science.gov (United States)

    Henderson, Peter W; Landford, Wilmina; Gardenier, Jason; Otterburn, David M; Rohde, Christine H; Spector, Jason A

    2016-07-01

    Background Communication, particularly transmission of information between the surgical and nursing teams, has been identified as one of the most crucial determinants of patient outcomes. Nonetheless, transfer of information among and between the physician and nursing teams in the immediate postoperative period is often informal, verbal, and inconsistent. Methods An iterative process of multidisciplinary information gathering was undertaken to create a novel postoperative communication system (the "Pop-form"). Once developed, nurses were surveyed on multiple measures regarding the perceived likelihood that it would improve their ability to provide directed patient care. Data were quantified using a Likert scale (0-10), and statistically analyzed. Results The Pop-form records and transfers operative details, specific anatomic monitoring parameters, and senior physician contact information. Sixty-eight nurses completed surveys. The perceived usefulness of different components of the Pop-form system was as follows: 8.9 for the description of the procedure; 9.3 for the operative diagram; 9.4 for the monitoring details and parameters; and 9.4 for the direct contact information for the appropriate surgical team member. All respondents were in favor of widespread adoption of the Pop-form. Conclusion This uniform, visual communication system requires less than 1 minute to compose, yet formalizes and standardizes inter-team communication, and therefore shows promise for improving outcomes following microvascular free tissue transfer. We believe that this simple, innovative communication tool has the potential to be more broadly applied to many other health care settings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Directory of Open Access Journals (Sweden)

    P. Raval

    2014-02-01

    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  16. Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-12-01

    Full Text Available Increasing the resonant frequency of a wireless power transfer (WPT system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system.

  17. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  18. Laser induced forward transfer of SnO2 for sensing applications using different precursors systems

    Science.gov (United States)

    Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander

    2013-02-01

    This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.

  19. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  20. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-01-01

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  1. Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications.

    Directory of Open Access Journals (Sweden)

    Tai-Yin Chiu

    Full Text Available The ability to engineer synthetic systems in the biochemical context is constantly being improved and has a profound societal impact. Linear system design is one of the most pervasive methods applied in control tasks, and its biochemical realization has been proposed by Oishi and Klavins and advanced further in recent years. However, several technical issues remain unsolved. Specifically, the design process is not fully automated from specification at the transfer function level, systems once designed often lack dynamic adaptivity to environmental changes, matching rate constants of reactions is not always possible, and implementation may be approximative and greatly deviate from the specifications. Building upon the work of Oishi and Klavins, this paper overcomes these issues by introducing a design flow that transforms a transfer-function specification of a linear system into a set of chemical reactions, whose input-output response precisely conforms to the specification. This system is implementable using the DNA strand displacement technique. The underlying configurability is embedded into primitive components and template modules, and thus the entire system is adaptive. Simulation of DNA strand displacement implementation confirmed the feasibility and superiority of the proposed synthesis flow.

  2. Quantum protocols for transference of proof of zero-knowledge systems

    OpenAIRE

    Nascimento, Jose Claudio do; Ramos, Rubens Viana

    2007-01-01

    Zero-knowledge proof system is an important protocol that can be used as a basic block for construction of other more complex cryptographic protocols. An intrinsic characteristic of a zero-knowledge systems is the assumption that is impossible for the verifier to show to a third part that he has interacted with the prover. However, it has been shown that using quantum correlations the impossibility of transferring proofs can be successfully attacked. In this work we show two new protocols for...

  3. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  4. Can a poverty-reducing and progressive tax and transfer system hurt the poor?

    Science.gov (United States)

    Higgins, Sean; Lustig, Nora

    2016-09-01

    To analyze anti-poverty policies in tandem with the taxes used to pay for them, comparisons of poverty before and after taxes and transfers are often used. We show that these comparisons, as well as measures of horizontal equity and progressivity, can fail to capture an important aspect: that a substantial proportion of the poor are made poorer (or non-poor made poor) by the tax and transfer system. We illustrate with data from seventeen developing countries: in fifteen, the fiscal system is poverty-reducing and progressive, but in ten of these at least one-quarter of the poor pay more in taxes than they receive in transfers. We call this fiscal impoverishment, and axiomatically derive a measure of its extent. An analogous measure of fiscal gains of the poor is also derived, and we show that changes in the poverty gap can be decomposed into our axiomatic measures of fiscal impoverishment and gains.

  5. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  6. Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.

  7. Providing global WLCG transfer monitoring

    International Nuclear Information System (INIS)

    Andreeva, J; Dieguez Arias, D; Campana, S; Keeble, O; Magini, N; Molnar, Z; Ro, G; Saiz, P; Salichos, M; Tuckett, D; Flix, J; Oleynik, D; Petrosyan, A; Uzhinsky, A; Wildish, T

    2012-01-01

    The WLCG[1] Transfers Dashboard is a monitoring system which aims to provide a global view of WLCG data transfers and to reduce redundancy in monitoring tasks performed by the LHC experiments. The system is designed to work transparently across LHC experiments and across the various technologies used for data transfer. Currently each LHC experiment monitors data transfers via experiment-specific systems but the overall cross-experiment picture is missing. Even for data transfers handled by FTS, which is used by 3 LHC experiments, monitoring tasks such as aggregation of FTS transfer statistics or estimation of transfer latencies are performed by every experiment separately. These tasks could be performed once, centrally, and then served to all experiments via a well-defined set of APIs. In the design and development of the new system, experience accumulated by the LHC experiments in the data management monitoring area is taken into account and a considerable part of the code of the ATLAS DDM Dashboard is being re-used. The paper describes the architecture of the Global Transfer monitoring system, the implementation of its components and the first prototype.

  8. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  9. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  10. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  11. A Frequency-Tracking and Impedance-Matching Combined System for Robust Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Yanting Luo

    2017-01-01

    Full Text Available One of the greatest challenges to power embedded devices using magnetically coupled resonant wireless power transfer (WPT system is that the amount of power delivered to the load is very sensitive to load impedance variations. Previous adaptive impedance-matching (IM technologies have drawbacks because adding IM networks, relay coils, or other compensating components in the receiver-side will significantly increase the receiver size. In this paper, a novel frequency-tracking and impedance-matching combined system is proposed to improve the robustness of wireless power transfer for embedded devices. The characteristics of the improved WPT system are investigated theoretically based on the two-port network model. Simulation and experimental studies are carried out to validate the proposed system. The results suggest that the frequency-tracking and impedance-matching combined WPT system can quickly find the best matching points and maintain high power transmission efficiency and output power when the load impedance changes.

  12. 5 CFR 838.611 - Identifying the retirement system.

    Science.gov (United States)

    2010-01-01

    ... order must contain language identifying the retirement system to be affected. For example, “CSRS,” “FERS... in paragraphs (b)(1) and (b)(2) of this section, language referring to benefits under another retirement system, such as military retired pay, Foreign Service retirement benefits or Central Intelligence...

  13. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  14. Research on mass transfer and actual performance of the membrane regeneration air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Chen, Qing

    2015-01-01

    Highlights: • Experimental research has been made on the membrane air-conditioning system. • We develop mass transfer models for the membrane regeneration process. • The paper exposes the actual performance of the system. • Increase of membrane pairs improves the performance. - Abstract: Absorption air-conditioning system has great advantages in energy conservation and environmental protection. To improve the performance of the traditional system, the membrane regeneration absorption system was proposed. Its COP could approach 6 by regenerating absorbent solution with the ion exchange membranes. However, the theoretical conclusion has not been supported by the experiment. This paper presents the experimental research of the membrane regeneration process. It has investigated the mass transfer process, energy efficiency and actual performance under different working conditions. Based on that, a mass transfer model has been developed and the influences of some key parameters have been exposed. It found the regeneration performance is mainly influenced by the current intensity. The calculation results with the model agree well the experimental data. The actual efficiency was lower than 50%, caused by energy loss in heat and electrochemical reactions. The actual COP is between 1 and 3, lower current intensity and more membrane pairs could improve it.

  15. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2017-11-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  16. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2017-11-01

    Wireless power transfer (WPT) via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  17. An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

    Directory of Open Access Journals (Sweden)

    Sangyeong Jeong

    2017-10-01

    Full Text Available This paper proposes an experimental optimization method for a wireless power transfer (WPT system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

  18. Second Chances: Investigating Athletes' Experiences of Talent Transfer.

    Directory of Open Access Journals (Sweden)

    Áine MacNamara

    Full Text Available Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psycho-behavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives.

  19. Second Chances: Investigating Athletes' Experiences of Talent Transfer.

    Science.gov (United States)

    MacNamara, Áine; Collins, Dave

    2015-01-01

    Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psycho-behavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives.

  20. Second Chances: Investigating Athletes’ Experiences of Talent Transfer

    Science.gov (United States)

    2015-01-01

    Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psycho-behavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives. PMID:26600303

  1. Comparison of encryption techniques between chaos theory and password for wireless power transfer system: A review

    Science.gov (United States)

    Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.

    2017-09-01

    This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.

  2. The Characteristics of an Abstract System for the Transfer of ...

    African Journals Online (AJOL)

    The mutual intention to transfer and to receive real rights is not construed as an independent real agreement as it is contained in the obligatory agreement. In a causal system the transferor finds himself in a favourable position in relation to other parties while bona fide third parties undoubtedly get the worst of the deal since ...

  3. Migrant Student Record Transfer System (MSRTS) [machine-readable data file].

    Science.gov (United States)

    Arkansas State Dept. of Education, Little Rock. General Education Div.

    The Migrant Student Record Transfer System (MSRTS) machine-readable data file (MRDF) is a collection of education and health data on more than 750,000 migrant children in grades K-12 in the United States (except Hawaii), the District of Columbia, and the outlying territories of Puerto Rico and the Mariana and Marshall Islands. The active file…

  4. Beam profile monitor system for the bevalac transfer line

    International Nuclear Information System (INIS)

    Stover, G.

    1985-01-01

    Incorporated in the current Bevalac transfer line upgrade project is a proposal for a new electronic beam monitoring system. It will be designed to amplify, convert, and transmit the signals of twelve 16 by 16 multi-wire grids to a central computer located in the Bevatron control room. Each station will contain interface amplifiers and a local microprocessor to convert wire grid currents into digitized values which will then be transmitted via a serial data channel to the main computer. The system will have a large dynamic range (1 nano to 1 milli-ampere of beam current), be designed for distributed operation, and will be easily expandable. This paper describes the basic electronic hardware and software components of the proposed system

  5. Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

    International Nuclear Information System (INIS)

    Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil

    2006-01-01

    This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase

  6. MEASUREMENT AND CORRELATION OF THE MASS TRANSFER COEFFICIENT FOR A LIQUID-LIQUID SYSTEM WITH HIGH DENSITY DIFFERENCE

    Directory of Open Access Journals (Sweden)

    Zhixian Huang

    Full Text Available Abstract To investigate the mass transfer behavior of a liquid-liquid system with high density difference (∆ρ≈500 kg/m3, single drop experiments were performed by using the ternary chloroform-ethanol-water system. The mass transfer direction was from the dispersed phase to the continuous phase, while the aqueous phase was dispersed in chloroform to generate drops. The influences of drop diameter, initial solute concentration and temperature on the mass transfer were investigated. The effects of the drop diameter and initial solute concentration on interfacial instability of droplets hanging in the continuous phase were also observed. For the purpose of correlation, a mass transfer enhancement factor F was introduced and then correlated as a function of dimensionless variables. The modified correlation from the mass transfer coefficient model was found to fit well with the experimental values.

  7. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  8. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    Science.gov (United States)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  9. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  10. An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System

    Science.gov (United States)

    Cheng, Po-Tai; Chen, Yu-Hsing

    More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.

  11. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  12. Influence of fluid-mechanical characteristics of the system on the volumetric mass transfer coefficient and gas dispersion in three-phase system

    Directory of Open Access Journals (Sweden)

    Knežević Milena M.

    2014-01-01

    Full Text Available Distribution of gas bubbles and volumetric mass transfer coefficient, Kla, in a three phase system, with different types of solid particles at different operation conditions were studied in this paper. The ranges of superficial gas and liquid velocities used in this study were 0,03-0,09 m/s and 0-0,1 m/s, respectively. The three different types of solid particles were used as a bed in the column (glass dp=3 mm, dp=6 mm; ceramic dp=6 mm. The experiments were carried out in a 2D plexiglas column, 278 x 20,4 x 500 mm and in a cylindrical plexiglas column, with a diameter of 64 mm and a hight of 2000 mm. The Kla coefficient increased with gas and liquid velocities. Results showed that the volumetric mass transfer coefficient has a higher values in three phase system, with solid particles, compared with two phase system. The particles properties (diameter and density have a major impact on oxygen mass transfer in three phase systems.

  13. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    Science.gov (United States)

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  14. Identifying Effectiveness Criteria for Internet Payment Systems.

    Science.gov (United States)

    Shon, Tae-Hwan; Swatman, Paula M. C.

    1998-01-01

    Examines Internet payment systems (IPS): third-party, card, secure Web server, electronic token, financial electronic data interchange (EDI), and micropayment based. Reports the results of a Delphi survey of experts identifying and classifying IPS effectiveness criteria and classifying types of IPS providers. Includes the survey invitation letter…

  15. Characterization of adsorption uptake curves for both intraparticle diffusion and liquid film mass transfer controlling systems

    International Nuclear Information System (INIS)

    Sonetaka, Noriyoshi; Fan, Huan-Jung; Kobayashi, Seiji; Su, Yang-Chih; Furuya, Eiji

    2009-01-01

    In general, the adsorption uptake curve (AUC) can be easily determined in either intraparticle diffusion or liquid film mass transfer dominating systems. However, for both intraparticle diffusion and liquid film mass transfer controlling systems, the characterization of AUC is much more complicated, for example, when relatively small adsorbent particles are employed. In addition, there is no analytical solution available for both intraparticle diffusion and liquid film mass transfer controlling systems. Therefore, this paper is trying to characterize AUC for both intraparticle diffusion and liquid film mass transfer controlling adsorption systems using the shallow bed reactor technique. Typical parameters influencing AUC include liquid film mass transfer coefficient (k F ), effective intraparticle diffusivity (D S ), influent concentration (c 0 ) and equilibrium parameters (such as Freundlich isotherm constants k and 1/n). These parameters were investigated in this research and the simulated results indicated that the ratio of k F /D S and Freundlich constant 1/n had impact on AUC. Biot number (Bi) was used to replace the ratio of k F /D S in this study. Bi represents the ratio of the rate of transport across the liquid layer to the rate of intraparticle diffusion. Furthermore, Bi is much more significant than that of 1/n for AUC. Therefore, AUC can be characterized by Bi. In addition, the obtained Bi could be used to determine D S and k F simultaneously. Both parameters (D S and k F ) are important for designing and operating fixed bed reactors.

  16. Homopolar machine for reversible energy storage and transfer systems

    Science.gov (United States)

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  17. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  18. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  19. Model and Frequency Control for Three-Phase Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Chenyang Xia

    2016-01-01

    Full Text Available In order to the eliminate the “dead spot” in the traditional three-phase wireless power transfer (WPT system, a three-phase WPT system with an asymmetric magnetic circuit is presented in this paper. Additionally, mathematical model of the system is established and the system parameters are optimized. Based on the fact that the resonant frequency and efficiency are greatly varied with the load, a method based on impedance conversion is further proposed to improve the frequency stability and system efficiency. Finally, simulation and experimental results show that the proposed method is reliable and feasible to eliminate the “dead spot.”

  20. Development of In-Service Inspection system for heat transfer tubes in the primary pressurized water cooler in the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Masayuki; Furusawa, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Wada, Shigeyuki

    1999-08-01

    The ISI (In-Service Inspection) system has been developed so as to maintain the structural integrity of heat transfer tubes in the primary pressurized water cooler in the HTTR (High Temperature Engineering Test Reactor). This system consists of eddy current probes, ultra-sonic probes, insertion and extraction units, positioning unit and so on. Verification and performance tests of the developed ISI system were carried out using mock-up heat transfer tubes in the primary pressurized water cooler. The constitution of the system, R and D results of the inspection probes, and verification and performance test results of the ISI system for heat transfer tubes are described in this paper. (author)

  1. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Science.gov (United States)

    2010-07-01

    ... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from...

  2. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  3. Life-cycle cost implications of a system using bare SNF transfer

    International Nuclear Information System (INIS)

    Rose, M.

    1995-01-01

    The U.S. Department of Energy (DOE) is planning the use of the Multi-Purpose Canister (MPC) to handle transportation, storage, and disposal of civilian spent nuclear fuel. This canister, which would be loaded and sealed at the utility site, would remain sealed through waste emplacement in a Mined Geologic Disposal System (MGDS). Two sizes of MPCs are now being considered: large and small rail. The large rail canister has design requirements to be compatible with a 125 ton hook weight crane when fully loaded in the pool with fuel assemblies, water, transportation overpack, and the lifting yoke. The small rail canister under the same conditions weighs less than 75 tons. At present, it is estimated that between four and seventeen reactors will not be able to accommodate either canister. One method of accommodating MPCs at all reactors is the use of Bare Spent nuclear fuel Transfer (BST). In this concept, a small transfer cask is used to move small numbers of assemblies from the spent fuel pool to an external transfer station where a large MPC is loaded. After several of these transfers, the MPC is sealed and either stored on-site, transported to a central storage site, or transported to the MGDS. This paper addresses the total system cost implications of use of BST at 20 sites (31 reactors) which are currently projected to be unable to use the large rail MPC. Results are presented parametrically as a function of the BST capital cost and the time required to load a MPC. This analysis indicates use of BST may be economically favorable if the combination of MPC load times and capital expenditures can be kept to a reasonable level

  4. The international regulation of Informal Value Transfer Systems

    Directory of Open Access Journals (Sweden)

    Anand Ajay Shah

    2007-12-01

    Full Text Available After the 11th September 2001 attacks on the United States international attention quickly focused on the sources and methods of terrorist financing. Among the methods terrorists and other criminal actors use to transfer funds are Informal Value Transfer Systems (IVTS which operate either outside the formal financial sector, or through use of the formal financial sector, but without leaving a full record of the transaction. Though the vast majority of funds moved through IVTS are the earnings of migrant workers and immigrant communities, the lack of uniform worldwide regulation of IVTS provides ample opportunity for abuse and misuse. The international community primarily responded to IVTS concerns through the Financial Action Task Force on Money Laundering, which issued a series of recommendations and best practices for states in regulating IVTS operations. While these recommendations are a secure beginning to regulation of IVTS operating within ethnic communities, they fail to address the more modern forms of IVTS that have come about in the post-Cold War globalised world. Comprehensive recommendations governing all types of IVTS, as well as concerted international cooperation and coordination are necessary to address this global phenomenon.

  5. Transfer function analysis of positron-emitting tracer imaging system (PETIS) data

    International Nuclear Information System (INIS)

    Keutgen, N.; Matsuhashi, S.; Mizuniwa, C.; Ito, T.; Fujimura, T.; Ishioka, N.S.; Watanabe, S.; Sekine, T.; Uchida, H.; Hashimoto, S.

    2002-01-01

    Quantitative analysis of the two-dimensional image data obtained with the positron-emitting tracer imaging system (PETIS) for plant physiology has been carried out using a transfer function analysis method. While a cut leaf base of Chinese chive (Allium tuberosum Rottler) or a cut stem of soybean (Glycine max L.) was immersed in an aqueous solution containing the [ 18 F] F - ion or [ 13 N]NO 3 - ion, tracer images of the leaf of Chinese chive and the trifoliate of soybean were recorded with PETIS. From the time sequence of images, the tracer transfer function was estimated from which the speed of tracer transport and the fraction moved between specified image positions were deduced

  6. System analysis for technology transfer readiness assessment of horticultural postharvest

    Science.gov (United States)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  7. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  8. Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability

    Science.gov (United States)

    Janett, Gioele; Paganini, Alberto

    2018-04-01

    Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.

  9. The effect of reflections on the performance of an acoustic energy transfer system

    NARCIS (Netherlands)

    Roes, M.G.L.; Hendrix, M.A.M.; Duarte, J.L.

    2012-01-01

    Abstract—The performance of an acoustic energy transfer (AET) system, defined as the ratio of electrical output to input power, is affected to a large extent by reflections. Their effect is examined in this paper. A finite element model is created to model reflections in a typical AET system, of

  10. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  11. Development of a Novel Wireless Electric Power Transfer System for Space Applications

    Science.gov (United States)

    VazquezRamos, Gabriel; Yuan, Jiann-Shiun

    2011-01-01

    This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.

  12. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    Science.gov (United States)

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  13. Wireless Power Transfer System Architectures for Portable or Implantable Applications

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2016-12-01

    Full Text Available This paper discusses the near-field inductive coupling wireless power transfer (WPT at the system level, with detailed analyses on each state-of-the-art WPT output voltage regulation topologies. For device miniaturization and power loss reduction, several novel architectures for efficient WPT were proposed in recent years to reduce the number of passive components as well as to improve the system efficiency or flexibility. These schemes are systematically studied and discussed in this paper. The main contribution of this paper is to provide design guidelines for WPT system design. In addition, possible combinations of the WPT building block configurations are summarized, compared, and investigated for potential new architectures.

  14. Quasiclassical trajectory study of the energy transfer in CO2--rare gas systems

    International Nuclear Information System (INIS)

    Suzukawa, H.H. Jr.; Wolfsberg, M.; Thompson, D.L.

    1978-01-01

    Computational methods are presented for the study of collisions between a linear, symmetric triatomic molecule and an atom by three-dimensional quasiclassical trajectory calculations. Application is made to the investigation of translational to rotational and translational to vibrational energy transfer in the systems CO 2 --Kr, CO 2 --Ar, and CO 2 --Ne. Potential-energy surfaces based on spectroscopic and molecular beam scattering data are used. In most of the calculations, the CO 2 molecule is initially in the quantum mechanical zero-point vibrational state and in a rotational state picked from a Boltzmann distribution at 300 0 K. The energy transfer processes are investigated for translational energies ranging from 0.1 to 10 eV. Translational to rotational energy transfer is found to be the major process for CO 2 --rare gas collisions at these energies. Below 1 eV there is very little translational to vibrational energy transfer. The effects of changes in the internal energy of the molecule, in the masses of the collidants, and in the potential-energy parameters are studied in an attempt to gain understanding of the energy transfer processes

  15. Experimental Determination of Operating and Maximum Power Transfer Efficiencies at Resonant Frequency in a Wireless Power Transfer System using PP Network Topology with Top Coupling

    Science.gov (United States)

    Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.

    2017-08-01

    A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.

  16. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    Science.gov (United States)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  17. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  18. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    Science.gov (United States)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  19. Adaptive process triage system cannot identify patients with gastrointestinal perforation

    DEFF Research Database (Denmark)

    Bohm, Aske Mathias; Tolstrup, Mai-Britt; Gögenur, Ismail

    2017-01-01

    INTRODUCTION: Adaptive process triage (ADAPT) is a triage tool developed to assess the severity and address the priority of emergency patients. In 2009-2011, ADAPT was the most frequently used triage system in Denmark. Until now, no Danish triage system has been evaluated based on a selective group...... triaged as green or yellow had a GIP that was not identified by the triage system. CONCLUSION: ADAPT is incapable of identifying one of the most critically ill patient groups in need of emergency abdominal surgery. FUNDING: none. TRIAL REGISTRATION: HEH-2013-034 I-Suite: 02336....

  20. Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2011-02-01

    We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.

  1. Reflex Marine celebrates 10. anniversary of FROG crew transfer device

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Reflex Marine developed the initial 3-person FROG crew transfer device in response to the main risks identified from incidents involving traditional rope baskets for personnel transfer: falling, collisions, hard landings, and immersion. To address these issues, the FROG was developed with 4-point harnesses, a protective shell, shock-absorbing landing feet, and self-righting capability. As a result of industry demand for a higher capacity transfer device, the company introduced 6- and 9-man versions of the FROG. The perceptions and reality of marine transfers have changed greatly over the past decade, from the design of the device to vessel specifications and increased focus on crane operations. Marine transfers offer a low-risk alternative to helicopter transfers. The TORO, a low-cost crew transfer capsule launched in February 2009, fits into a standard shipping container, providing significant logistical advantages. The TORO can carry 4 passengers, offer protection from side impacts and hard landings, and is buoyant and self-righting. Most of the units are being used by major oil and gas companies, but offshore wind turbines are an emerging source of demand for the crew transfer system. 3 figs.

  2. Enforcing Transferable Permit Systems in the Presence of Market Power

    International Nuclear Information System (INIS)

    Chavez, C.A.; Stanlund, J.K.

    2003-01-01

    We derive an enforcement strategy for a transferable permit system in the presence of market power that achieves complete compliance in a cost-effective manner. We show that the presence of a firm with market influence makes designing an enforcement strategy more difficult than enforcing a perfectly competitive system. We also re-consider the suggestion that a firm with market influence should be allocated permits so that it chooses to not participate in the permit market. When enforcement and its costs are taken into account, that suggestion does not hold except in a very special case

  3. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  4. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  5. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  6. Identifying Opportunities for Exploiting Cross-Layer Interactions in Adaptive Wireless Systems

    Directory of Open Access Journals (Sweden)

    Troy Weingart

    2007-01-01

    Full Text Available The flexibility of cognitive and software-defined radio heralds an opportunity for researchers to reexamine how network protocol layers operate with respect to providing quality of service aware transmission among wireless nodes. This opportunity is enhanced by the continued development of spectrally responsive devices—ones that can detect and respond to changes in the radio frequency environment. Present wireless network protocols define reliability and other performance-related tasks narrowly within layers. For example, the frame size employed on 802.11 can substantially influence the throughput, delay, and jitter experienced by an application, but there is no simple way to adapt this parameter. Furthermore, while the data link layer of 802.11 provides error detection capabilities across a link, it does not specify additional features, such as forward error correction schemes, nor does it provide a means for throttling retransmissions at the transport layer (currently, the data link and transport layer can function counterproductively with respect to reliability. This paper presents an analysis of the interaction of physical, data link, and network layer parameters with respect to throughput, bit error rate, delay, and jitter. The goal of this analysis is to identify opportunities where system designers might exploit cross-layer interactions to improve the performance of Voice over IP (VoIP, instant messaging (IM, and file transfer applications.

  7. Waste Transfer Leaks Control Decision Record

    International Nuclear Information System (INIS)

    RYAN, G.W.

    2000-01-01

    Control decision meetings for Waste Transfer Leaks were held on April 24,25,26, and 27, 2000. The agenda for the control decision meetings is included in Appendix A, and attendee lists are included in Appendix B. The purpose of the control decision meetings was to review and revise previously selected controls for the prevention or mitigation of waste transfer leak accidents. Re-evaluation of the controls is warranted due to revisions in the hazard and accident analysis for these Tank Farm events. In particular, calculated radiological consequences are significantly reduced from those currently reported in the Final Safety Analysis Report (FSAR). Revised hazard and accident analysis and a revised control recommendation will be reflected in an Authorization Basis Amendment to be submitted at the Department of Energy, Office of River Protection's (ORP's) request by June 30, 2000 to satisfy ORP Performance Incentive (PI) 2.1.1, Revision 1, ''Authorization Basis Management Process Efficiency Improvement''. The scope of the control decision meetings was to address all waste transfer leak-related hazardous conditions identified in the Tank Farm hazard analysis database, excluding those associated with the use of the Replacement Cross-Site Transfer System (RCSTS) slurry line and sluicing of Tank 241-C-106, which is addressed in FSAR Addendum 1. The scope of this control decision process does include future waste feed delivery waste transfer operations

  8. Design of modified annulus air sampling system for the detection of leakage in waste transfer line

    International Nuclear Information System (INIS)

    Deokar, U.V; Khot, A.R.; Mathew, P.; Ganesh, G.; Tripathi, R.M.; Srivastava, Srishti

    2018-01-01

    Various liquid waste streams are generated during the operation of reprocessing plant. The High Level (HL), Intermediate Level (IL) and Low Level (LL) liquid wastes generated, are transferred from reprocessing plant to Waste Management Facility. These respective waste streams are transferred through pipe-in-pipe lines along the shielded concrete trench. For detection of radioactive leakage from primary waste transfer line into secondary line, sampling of the annulus air between the two pipes is carried out. The currently installed pressurized annulus air sampling system did not have online leakage detection provision. Hence, there are chances of personal exposure and airborne activity in the working area. To overcome these design flaws, free air flow modified online annulus air sampling system with more safety features is designed

  9. Towards model-based testing of electronic funds transfer systems

    OpenAIRE

    Asaadi, H.R.; Khosravi, R.; Mousavi, M.R.; Noroozi, N.

    2010-01-01

    We report on our first experience with applying model-based testing techniques to an operational Electronic Funds Transfer (EFT) switch. The goal is to test the conformance of the EFT switch to the standard flows described by the ISO 8583 standard. To this end, we first make a formalization of the transaction flows specified in the ISO 8583 standard in terms of a Labeled Transition System (LTS). This formalization paves the way for model-based testing based on the formal notion of Input-Outpu...

  10. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  11. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  12. Tritium transfer studies in cellulose-HTO system

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Misra, B.M.

    1986-01-01

    This paper describes some aspects of studies on transfer of tritium to cellulose from tritiated water at six different specific activities and discusses the generalized tritiation pattern. Cellulose was irradiated in steps to 10 M Rads and the tritium transfer was determined at each stage. Experimental results signify substantial increase of tritiation in cellulose at higher dose of irradiation. (author). 8 refs

  13. Sediment transfer dynamics in the Illgraben

    Science.gov (United States)

    Bennett, G. L.; Molnar, P.; McArdell, B. W.; Schlunegger, F.; Burlando, P.

    2012-04-01

    Quantification of the volumes of sediment removed by rock-slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with hydroclimatic variables from the Illgraben, an active debris flow catchment in the Swiss Alps, spanning 1963 - 2010. Two events in the recent history of the catchment make it particularly interesting and challenging to study: a large rock avalanche in 1961, which filled the channel with sediment, and the construction of check dams along the channel in the late 1960s and 1970s. We aimed to (1) identify the nature of hillslope-channel coupling, (2) identify the dominant controls of hillslope sediment production, channel sediment transfer and total sediment yield, (3) observe the response of the channel system to the 1961 rock avalanche and check dam construction, and (4) develop a conceptual model with which to investigate sediment transfer dynamics in various scenarios, including the absence of check dams along the channel. The study captures a multi-decadal period of channel erosion in response to the 1961 rock avalanche, punctuated by shorter cut-and-fill cycles that occur in response to changes in hillslope sediment supply and changes in transport capacity. Hillslopes eroded rapidly at an average rate of 0.34 myr¯ 1, feeding the channel head with sediment. A near doubling of hillslope erosion in the 1980s coincided with a significant increase of air temperature and reduction in snow cover duration and depth, whilst precipitation variables did not change significantly. We find that the main influence of check-dam construction on channel sediment transfer was an initial reduction in sediment transport and a drop in debris flow activity between 1963 and 1986. After 1986 sediment storages in the channel were filled and debris flow activity

  14. A Framework for Identifying and Understanding Enterprise Systems Benefits

    DEFF Research Database (Denmark)

    Schubert, Petra; Williams, Susan P.

    2011-01-01

    Purpose – Identifying the benefits arising from implementations of enterprise systems and realizing business value remains a significant challenge for both research and industry. This paper aims to consolidate previous work. It presents a framework for investigating enterprise systems benefits...... into aspects and criteria plus an attributed appraisal value. The resulting scheme for the “three-level benefit codes” provides a greater level of detail about the nature of expected and realized benefits. Practical implications – The high level of detail and the code scheme comprising 60 different codes...... and the method for deriving the codes allows companies to identify and define benefits as well as to assess the outcome of enterprise systems implementation projects. Originality/value – The paper empirically develops an applicable benefits framework, which addresses the lack of detail of previous frameworks....

  15. WLCG transfers dashboard: a unified monitoring tool for heterogeneous data transfers

    International Nuclear Information System (INIS)

    Andreeva, J; Beche, A; Saiz, P; Tuckett, D; Belov, S; Kadochnikov, I

    2014-01-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool – WLCG Transfers Dashboard – where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  16. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    Science.gov (United States)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  17. A conceptual model for the international transfer of the Japanese management systems

    NARCIS (Netherlands)

    Yokozawa, Kodo; de Bruijn, E.J.; Steenhuis, H.J.; Trimble, Robert

    2007-01-01

    The transferability of Japanese management systems (JMSs) abroad has been studied intensively since the 1980s. However, the conclusions regarding this study field are mixed. Such confusion is caused by the vague definition of terms and the different methods employed by researchers to measure the

  18. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    Science.gov (United States)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  19. The application of PLC automatic control system for resin transfer in pulsed elution

    International Nuclear Information System (INIS)

    Long Maoxiong

    2001-01-01

    An application of Programmable Logic Controller (PLC) in automatic control system for resin transfer in pulsed elution column is described. The design principle as well as hardware and software are also described in detail

  20. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  1. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.

    Science.gov (United States)

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong

    2012-01-01

    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.

  2. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  3. Components for containment enclosures - Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. 1. ed.

    International Nuclear Information System (INIS)

    1998-01-01

    This part of ISO 11933 specifies requirements for the selection, construction and use of the following leak tight components: doors, airlock chambers, double door transfer systems, leaktight connections for waste drums. Some of the elements, double doors or airlock chambers are described in ISO 11933-1 and ISO 11933-2 as well. Doors having bigger dimensions used for personnel od larger objects are not covered by this document

  4. Causes and implications of the slow pace of technology transfer and ...

    African Journals Online (AJOL)

    The causes of slow pace of technology transfer and adoption were identified to include ineffectiveness of extension delivery system, lack of adequate liaison between extension and research, lack of trained personnel both in quantity and quality, inadequate financial support, complexity of the new technology, incompatibility, ...

  5. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  6. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    Science.gov (United States)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  7. A statewide teleradiology system reduces radiation exposure and charges in transferred trauma patients.

    Science.gov (United States)

    Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo

    2016-05-01

    Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Primary design and operation analysis of ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  9. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  10. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D. [Suwon Science College, Suwon (Korea, Republic of); Yim, Seung Woo [Dept. of Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2014-09-15

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

  11. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Yim, Seung Woo

    2014-01-01

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz

  12. Interfacility transfers for US ischemic stroke and TIA, 2006-2014.

    Science.gov (United States)

    George, Benjamin P; Doyle, Sara J; Albert, George P; Busza, Ania; Holloway, Robert G; Sheth, Kevin N; Kelly, Adam G

    2018-05-01

    To investigate changes in emergency department (ED) transfers for ischemic stroke (IS) and TIA. We performed a retrospective observational study using the US Nationwide Emergency Department Sample to identify changes in interfacility ED transfers for IS and TIA from the perspective of the transferring ED (2006-2014). We calculated nationwide transfer rates and individual ED transfer rates for IS/TIA by diagnosis and hospital characteristics. Hospital-level fractional logistic regression examined changes in transfer rates over time. The population-estimated number of transfers for IS/TIA increased from 22,576 patient visits in 2006 to 54,485 patient visits in 2014 ( p trend TIA transfer increased from 3.4 (95% confidence interval [CI] 3.0-3.8) in 2006 to 7.6 (95% CI 7.2-7.9) in 2014 per 100 ED visits. Among individual EDs, mean transfer rates for IS/TIA increased from 8.2 per 100 ED visits (median 2.0, interquartile range [IQR] 0-10.2) to 19.4 per 100 ED visits (median 8.1, IQR 1.1-33.3) (2006-2014) ( p trend TIA increased threefold (2006-2014). Interfacility ED transfers for IS/TIA more than doubled from 2006 to 2014. Further work should determine the necessity of IS/TIA transfers and seek to optimize the US stroke care system. © 2018 American Academy of Neurology.

  13. Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.

    2003-01-01

    or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads....... The system has a very simple design with no internal baffles or heat exchange area, and between batches the rotary jet heads are used for cleaning in place.Mixing time decreases and mass transfer increases with increasing circulation flow rate. For nozzle diameters between 5.5 and 10 mm and with one or two...... rotary jet heads, it is shown that a remarkable saving in power input for a fixed mixing time or mass transfer coefficient can be obtained by using a large nozzle diameter and two rather than one rotary jet heads.At the experimental conditions of the study the system is scaleable by simple formulas...

  14. On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.

    Science.gov (United States)

    Bai, Shun; Skafidas, Stan

    2014-01-01

    Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.

  15. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    Science.gov (United States)

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  16. An improved out-cell to in-cell rapid transfer system at the HFEF/South

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1991-01-01

    This paper reports on Argonne National Laboratory's Fuel Cycle Facility (FCF) (formerly named Hot Fuel Examination Facility-South) (HFEF/South) which is currently being refurbished and upgraded in preparation for demonstrating remote, fast reactor metal-fuel reprocessing and refabrication, as part of the Integral Fast Reactor (IFR) Program. Among the FCF hot-cell system upgrades being provided is a newly fabricated, direct, out-of-cell to in-cell, small-item transfer system for the FCF argon cell. This system will enable the rapid transfer of selected small items from the hot cell exterior into the argon cell (argon-gas atmosphere) of the facility, without necessitating the use of formerly employed, very time-consuming, and quite laborious procedures. The new system will be especially valuable for the rapid insertion of IFR fuel processing makeup materials and small tools into the argon cell, and for use in argon cell and overall FCF radioactive contamination-control activities

  17. Coupled optic-thermodynamic analysis of a novel wireless power transfer system using concentrated sunlight for space applications

    International Nuclear Information System (INIS)

    Zhong, Ming-Liang; Li, Yun-Ze; Mao, Yu-Feng; Liang, Yi-Hao; Liu, Jia

    2017-01-01

    Highlights: • A novel space wireless power transfer system is proposed. • Concentrated sunlight is used as the medium to avoid multiple conversions. • Fresnel lens and optical fiber bundle make the system compact and space-qualified. • Coupled optic-thermodynamic model is developed to analyze link efficiencies. • End-to-end efficiency achieved is as twice as that of microwave or laser system. - Abstract: The energy generation and supply for in-orbit spacecraft have become an urgent problem concerning efficient and economical utilization of spacecraft formation flying. To fill the gap between the requirement of inter-spacecraft energy transfer and the development of wireless power transfer, this paper presents a novel wireless power transfer system whose transmission medium is concentrated sunlight. The system concentrates sunlight using a Fresnel lens, and changes the direction of concentrated sunlight beam with optical fibers. The light energy is converted to thermal form by a heat collector, and then it is utilized to generate electricity by a Stirling engine integrated with linear alternator. Equipments employed on fractionated spacecraft shall be supported by this electric energy. A coupled optic-thermodynamic model was developed to analyze system link efficiencies. This system offers characteristics such as high flexibility, relatively low cost for launch and maintenance, and most importantly, high end-to-end efficiency. Simulation results show that the geometric concentration ratio and the temperature ratio of expansion and compression spaces are two key parameters of this system. Output power of 234.3 W was achieved on the distance of 100 m, and the end-to-end efficiency of the system was above 20%.

  18. Detecting regional lung properties using audio transfer functions of the respiratory system.

    Science.gov (United States)

    Mulligan, K; Adler, A; Goubran, R

    2009-01-01

    In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.

  19. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  20. Station Transfers

    Data.gov (United States)

    Department of Homeland Security — ixed rail transit external system transfers for systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of...

  1. Fire hazard analysis for the K basin fuel transfer system anneses project A-15

    International Nuclear Information System (INIS)

    BARILO, N.F.

    2001-01-01

    The purpose of the Fuel Transfer System (FTS) is to move the spent nuclear fuel currently stored in the K East (KE) Basin and transfer it by shielded cask to the K West (KW) Basin. The fuel will then be processed through the existing fuel cleaning and loading system prior to being loaded into Multi-Canister Overpacks (MCO). The FTS operation is considered an intra-facility transfer because the spent fuel will stay within the 100 K area and between the K Basins. This preliminary Fire Hazards Analysis (FHA) for the K Basin FTS Annexes addresses fire hazards or fire-related concerns in accordance with U.S. Department of Energy (DOE) 420.1 (DOE 2000), and RLID 420.1 (DOE 1999), resulting from or related to the processes and equipment. It is intended to assess the risk from fire associated within the FTS Annexes to ensure that there are no undue fire hazards to site personnel and the public; the potential for the occurrence of a fire is minimized; process control and safety systems are not damaged by fire or related perils; and property damage from fire and related perils does not exceed an acceptable level. Consistent with the preliminary nature of the design information, this FHA is performed on a graded approach

  2. Transfer system development for a remote inspection robot in nuclear power plants

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohnuma, M.; Hamada, K.; Mizutani, T.; Shimada, A.; Segawa, M.; Kubo, K.

    1984-01-01

    A remote operated robot system has been developed for inspection inside the primary containment vessel (PCV) of nuclear power plants. This system consists of an inspection vehicle, a monorail driving system, a signal transmission system, a power supply system and an operator console.. The system has two main features. First is that the operator can transfer the vehicle at any time from outside the PCV to inside or vice versa through a personnel airlock. The second feature is that the vehicle can be transported from one inspection route to another route at junction points. A prototype inspection robot system was fabricated on a trial basis. Running and inspection performances were confirmed utilizing actual size test apparatus

  3. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  4. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  5. Transfer Prices Implication Upon Tax System. The Romanian Experience

    Directory of Open Access Journals (Sweden)

    Dumiter Florin

    2017-06-01

    Full Text Available Transfer prices are a top field in financial and legal scientific research and practical activity. Although this research field is still in the beginning, due to its complexity, as well as it’s inter-, multi- and transdisciplinarity, it can be noted that empirical studies, as well as practical researches in economic and legal matters, have intensified. Moreover, this field of transfer prices is in close connection with the area of international double taxation, which shows its international character. In this article we sought a holistic approach to the transfer price phenomenon, dealing with economic and legal technical aspects that we believed are important to emphasise. Without addressing the issue of transfer prices in an exhaustive manner, in this article we presented both the legal and the economic framework of transfer prices in Romania. The added value of this article lies in the approach to transfer prices, both legally and economically.

  6. Immunity to transplantable nitrosourea-induced neurogenic tumors. III. Systemic adoptive transfer of immunity

    International Nuclear Information System (INIS)

    Shibuya, N.; Hochgeschwender, U.; Kida, Y.; Hochwald, G.M.; Thorbecke, G.J.; Cravioto, H.

    1984-01-01

    The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10 5 gliosarcoma T 9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10 5 T 9 cells inhibited the growth of T 9 cells mixed with spleen cells in a ratio of 1:25 and injected ID, but could not act after intravenous transfer. However, donor rats which had rejected increasing T 9 challenge doses up to 1 X 10 7 cells produced immune spleen cells which, upon IV transfer, could inhibit growth of ID T 9 challenge but not of EB-679, an unrelated glioma, in recipient rats. Rejection of IC T 9 challenge was also obtained after IV transfer, in recipients of such ''hyperimmune'' spleen cells, but was less (60% maximum) than that noted after ID T 9 challenge (100% maximum). The removal of B cells from the transferred spleen cells did not affect the results, suggesting that the specific immunity was mediated by T cells. The authors conclude that the special immunological circumstances of tumors growing in the brain renders them less accessible to rejection by systemically transferred immune cells, but it is nevertheless possible to effect a significant incidence of rejection of syngeneic tumor growth in the brain by the intravenous transfer of hyperimmune spleen cells

  7. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-12-01

    Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.

  8. Design analysis report for the 244-AR vault Interim Stabilization interior transfer system

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    2002-01-01

    The purpose of this calculation note is to verify that the 244-AR Vault Interior Transfer System piping installed in the vault meets ASME B31.3 code requirements. This calculation also evaluates the pipe support loads

  9. Intelligent Image Recognition System for Marine Fouling Using Softmax Transfer Learning and Deep Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    C. S. Chin

    2017-01-01

    Full Text Available The control of biofouling on marine vessels is challenging and costly. Early detection before hull performance is significantly affected is desirable, especially if “grooming” is an option. Here, a system is described to detect marine fouling at an early stage of development. In this study, an image of fouling can be transferred wirelessly via a mobile network for analysis. The proposed system utilizes transfer learning and deep convolutional neural network (CNN to perform image recognition on the fouling image by classifying the detected fouling species and the density of fouling on the surface. Transfer learning using Google’s Inception V3 model with Softmax at last layer was carried out on a fouling database of 10 categories and 1825 images. Experimental results gave acceptable accuracies for fouling detection and recognition.

  10. Design assessment for Melton Valley liquid low-level waste collection and transfer system upgrade project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-10-01

    This project is designed for collecting liquid low level waste (LLLW) from generating points inside the Radioisotope Engineering and Development Center (Buildings 7920 and 7930) facility and transferring this waste to the Collection Tank (F-1800) in the new Monitoring and Control Station (MCS) facility. The LLLW is transferred to the MCS in a new, underground, jacketed, stainless steel piping system. The LLLW will then be transferred from Tank F-1800 through a new, underground, jacketed, stainless steel piping system that connects the existing Bethel Valley LLLW Collection System and the Evaporator Facility Service Tanks. The interface for the two systems will be at the existing Interconnecting Pipe Line (ICPL) Valve Box adjacent to the Nonradiological Wastewater Treatment Plant. The project scope consists of the following systems: (1) Building 7920 LLLW Collection System; (2) Building 7930 LLLW Collection System; (3) LLLW Underground Transfer System to MCS; (4) MCS Building (including all equipment contained therein); (5) LLLW Underground Transfer System to ICPL Valve Box; and (6) Leak detection system for jacketed piping systems (3) and (5)

  11. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  12. The study on knowledge transferring incentive for information system requirement development

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [School of Economics and Business Administration, Chongqing University (China)

    2015-03-10

    Information system requirement development is a process of users’ knowledge sharing and transferring. However the tacit requirements developing is a main problem during requirement development process, for the reason of difficult to encoding, express, and communicate. Knowledge fusion and corporate effort is needed to finding tacit requirements. Under this background, our paper try to find out the rule of effort dynamic evolutionary of software developer and user by building an evolutionary game model on the condition of incentive system. And in addition this paper provides an in depth discussion at the end of this paper.

  13. The study on knowledge transferring incentive for information system requirement development

    International Nuclear Information System (INIS)

    Li, Yang

    2015-01-01

    Information system requirement development is a process of users’ knowledge sharing and transferring. However the tacit requirements developing is a main problem during requirement development process, for the reason of difficult to encoding, express, and communicate. Knowledge fusion and corporate effort is needed to finding tacit requirements. Under this background, our paper try to find out the rule of effort dynamic evolutionary of software developer and user by building an evolutionary game model on the condition of incentive system. And in addition this paper provides an in depth discussion at the end of this paper

  14. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  15. Impact evaluation for University-Business Cooperation and Technology Transfer in higher education systems: cluster analysis

    Directory of Open Access Journals (Sweden)

    Tomoe Daniela Hamanaka Gusberti

    2017-09-01

    Full Text Available Abstract Higher education systems evolved in recent decades. Universities must not only provide society with capable professionals but also act in the market for technologies, knowledge, and ideas to promote technological development. This paper discusses the motivational performance evaluation system for technology transfer process, specifically the patterns’ evaluation of academic units considering micro-cultures and idiosyncrasies’ analysis, in the academic context of autonomy. Based on action research, the existing performance evaluation system was assessed, and multivariate cluster analysis was proposed and tested as a method to enable micro cultures’ identification and evaluation. The analysis proposed enabled a tool for reflexive discussion regarding the effectiveness of the institutional innovation system in academic units and Engineering Education, and its implications for social and technological development of industry and society enabled action proposals for improvement in the university’s technology transfer management process.

  16. The structure of control and data transfer management system for the GAMMA-400 scientific complex

    International Nuclear Information System (INIS)

    Arkhangelskiy, A I; Bobkov, S G; Serdin, O V; Gorbunov, M S; Topchiev, N P

    2016-01-01

    A description of the control and data transfer management system for scientific instrumentation involved in the GAMMA-400 space project is given. The technical capabilities of all specialized equipment to provide the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands, as well as program commands in the form of 16-bit code words, which are transmitted via onboard control system and scientific data acquisition system. Up to 100 GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified by the experimental working-off of the prototype of the GAMMA-400 scientific complex in laboratory conditions. (paper)

  17. Near field wireless power transfer using curved relay resonators for extended transfer distance

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Clare, L; Stark, B H

    2015-01-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates. (paper)

  18. Wireless power transfer: control algorithm to transfer the maximum power

    OpenAIRE

    Rojas Urbano, Javier Arturo

    2016-01-01

    This job is developed as part of “Health aware enhanced range wireless power transfer systems", known as ETHER. It is a cooperation project where Universidad Politécnica de Madrid (UPM) and Universidad Politécnica de Cataluña (UPC) research groups are mainly involved. ETHER objective is to develop a wireless power transfer system for medical applications, specifically a pacemaker charger to improve patient’s lifestyle decreasing the number of required operations to replace pacemaker batter...

  19. Volume of Courses Students Carry among Central Data Warehouse (CDW) Institutions: Implications for Recalibration of the BC Transfer System

    Science.gov (United States)

    Box, Dale

    2008-01-01

    The British Columbia (BC) Council on Admissions and Transfer (BCCAT) has undertaken, in the last couple of years, a review of the BC Transfer System. Preliminary findings indicate that the current structure of the BC Transfer Guide (BCTG), which designates institutions as either "sending" institutions or "receiving"…

  20. Privatization contractor transfer/feed line corridor obstructions

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    One of the issues that came out of the Tank Waste Remediation System (TWRS) Privatization Interface Control Document (ICD) effort was the need to identify below grade obstructions that exist where the TWRS Privatization Phase 1 transfer/feed corridors pass through the former Grout complex (ICD Issue 9C). Due to the numerous phases of construction at the complex, and the lack of consolidated facility configuration drawings, as-built (or as-recorded) information on the area is difficult to find, let alone decipher. To resolve the issue, this study was commissioned to identify and consolidate the as-recorded information available (drawings and Engineering Change Notices, ECNS)

  1. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  2. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    International Nuclear Information System (INIS)

    Martin, J.; Shore, B.W.; Bergmann, K.

    1995-01-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid

  3. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    Science.gov (United States)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  4. Automatic computation of transfer functions

    Science.gov (United States)

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  5. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Lionel Guy

    2013-03-01

    Full Text Available Gene transfer agents (GTAs randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.

  6. Thermodynamic aspects of information transfer in complex dynamical systems

    Science.gov (United States)

    Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom

    2016-02-01

    From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.

  7. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  8. Phase control of light amplification with dynamically irreversible pathways of population transfer in a Λ system

    International Nuclear Information System (INIS)

    Yuan Shi; Wu Jinhui; Gao Jinyue; Pan Chunliu

    2002-01-01

    We use the relative phase of two coherent fields for the control of light amplification with dynamically irreversible pathways of population transfer in a Λ system. The population inversion and gain with dynamically irreversible pathways of population transfer are shown as the relative phase is varied. We support our results by numerical calculation and analytical explanation

  9. The Adsorption Langmuir Model of Transfer Metal Ti, V and Mn on System Water-Sediment in Along Side Code River, Yogyakarta

    International Nuclear Information System (INIS)

    Rini Jati Wardani; Muzakky; Agus Taftazani

    2007-01-01

    The adsorption langmuir model of transfer metal Ti, V and Mn on system water-sediment in along side Code river, Yogyakarta has been studied. For that purpose, the study is to make prediction about adsorption langmuir model of identified metal Ti, V and Mn from upstream until downstream samples water and sediment in along side Code river. The factor influenced of langmuir adsorption on transfer metal Ti, V and Mn in system water-sediment is Total Suspended Solid (TSS). The analysis showed that between TSS with metal concentration in sediment have linear correlation. The result of calculation from curve of langmuir isotherm, showed for Ti has R 2 = 0.8006 with capacities of adsorption = 0.5 mol/l and energy of adsorption = 13.286 J/mol, V has R 2 = 0.9883 with capacities of adsorption = 0.0137 mol/l and energy of adsorption = 16.64 J/mol, Mn has R 2 = 0.9624 with capacities of adsorption 0.152 mol/l and energy of adsorption = 10.51 J/mol. The conclusion from this topic about adsorption langmuir for metal Ti, V and Mn according to energy of langmuir adsorption by chemisorption process above 10 J/mo. (author)

  10. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  11. Heat transfer modeling in exhaust systems of high-performance two-stroke engines

    OpenAIRE

    Lujan Martinez, José Manuel; Climent Puchades, Héctor; Olmeda González, Pablo Cesar; JIMENEZ MACEDO, VICTOR DANIEL

    2014-01-01

    Heat transfer from the hot gases to the wall in exhaust systems of high-performance two-stroke engines is underestimated using steady state with fully developed flow empirical correlations. This fact is detected when comparing measured and modeled pressure pulses in different positions in the exhaust system. This can be explained taking into account that classical expressions have been validated for fully developed flows, a situation that is far from the flow behavior in reciprocating interna...

  12. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Science.gov (United States)

    Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-01-01

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration. PMID:29596330

  13. A Dynamically Adaptable Impedance-Matching System for Midrange Wireless Power Transfer with Misalignment

    Directory of Open Access Journals (Sweden)

    Thuc Phi Duong

    2015-07-01

    Full Text Available To enable the geometrical freedom envisioned for wireless power transfer (WPT, fast dynamic adaptation to unpredictable changes in receiver position is needed. In this paper, we propose an adaptive impedance-searching system that achieves good impedance matching quickly. For fast and robust operation, the proposed method consists of three steps: system calibration, coarse search, and fine search. The proposed WPT system is characterized using distance variation and lateral and angular misalignment between coils. The measured results indicate that the proposed method significantly reduces searching time from a few minutes to approximately one second. Furthermore, the proposed system achieves impedance matching with good accuracy. The robust impedance-searching capability of the proposed system significantly improves power transfer efficiency. At 6.78 MHz, we achieve a maximum efficiency of 89.7% and a high efficiency of >80% up to a distance of 50 cm. When the center-to-center misalignment is 35 cm, the efficiency is improved from 48.4% to 74.1% with the proposed method. At a distance of 40 cm, the efficiency is higher than 74% for up to 60° of angular rotation. These results agree well with the simulated results obtained using a lumped-element circuit model.

  14. Proton transfer along water bridges in biological systems with density-functional tight-binding

    Science.gov (United States)

    Reiss, Krystle; Wise, Abigail; Mazzuca, James

    2015-03-01

    When examining the dynamics of charge transfer in high dimensional enzymatic systems, the cost of quantum mechanical treatment of electrons increases exponentially with the size of the system. As a semi-empirical method, density-functional tight-binding aids in shortening these calculation times, but can be inaccurate in the regime where bonds are being formed and broken. To address these inaccuracies with respect to proton transfer in an enzymatic system, DFTB is being used to calculate small model systems containing only a single amino acid residue donor, represented by an imidazole molecule, and a water acceptor. When DFTB calculations are compared to B3LYP geometry calculations of the donor molecule, we observe a bond angle error on the order of 1.2 degrees and a bond length error on the order of 0.011 Å. As we move forward with small donor-acceptor systems, comparisons between DFTB and B3LYP energy profiles will provide a better clue as to what extent improvements need to be made. To improve the accuracy of the DFTB calculations, the internuclear repulsion term may be altered. This would result in energy profiles that closely resemble those produced by higher-level theory. Alma College Provost's Office.

  15. 5 CFR 838.911 - Identifying the retirement system.

    Science.gov (United States)

    2010-01-01

    .... (a) To satisfy the requirements of § 838.804(b)(1), a court order must contain language identifying...) and (b)(2) of this section, language referring to benefits under another retirement system, such as military retired pay, Foreign Service retirement benefits and Central Intelligence Agency retirement...

  16. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  17. Which Doctor to Trust: A Recommender System for Identifying the Right Doctors.

    Science.gov (United States)

    Guo, Li; Jin, Bo; Yao, Cuili; Yang, Haoyu; Huang, Degen; Wang, Fei

    2016-07-07

    Key opinion leaders (KOLs) are people who can influence public opinion on a certain subject matter. In the field of medical and health informatics, it is critical to identify KOLs on various disease conditions. However, there have been very few studies on this topic. We aimed to develop a recommender system for identifying KOLs for any specific disease with health care data mining. We exploited an unsupervised aggregation approach for integrating various ranking features to identify doctors who have the potential to be KOLs on a range of diseases. We introduce the design, implementation, and deployment details of the recommender system. This system collects the professional footprints of doctors, such as papers in scientific journals, presentation activities, patient advocacy, and media exposure, and uses them as ranking features to identify KOLs. We collected the information of 2,381,750 doctors in China from 3,657,797 medical journal papers they published, together with their profiles, academic publications, and funding. The empirical results demonstrated that our system outperformed several benchmark systems by a significant margin. Moreover, we conducted a case study in a real-world system to verify the applicability of our proposed method. Our results show that doctors' profiles and their academic publications are key data sources for identifying KOLs in the field of medical and health informatics. Moreover, we deployed the recommender system and applied the data service to a recommender system of the China-based Internet technology company NetEase. Patients can obtain authority ranking lists of doctors with this system on any given disease.

  18. Properties of the transfer matrices of deflecting magnet systems for free electron laser

    International Nuclear Information System (INIS)

    Takao, Masaru

    1993-01-01

    The oscillation of the free electron laser (FEL) requires the high current and low emittance electron beam. The beam transport system should be achromatic and isochronous to preserve the brightness and the emittance of the electron beam. In this paper we clarify the algebraic properties of the transfer matrices of the magnetic deflection system, which is a key component in the beam transport line. (author)

  19. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  20. Experimental investigations of heat transfer in thermo active building systems in combination with suspended ceilings

    DEFF Research Database (Denmark)

    Alvarez, Maria Alonso; Hviid, Christian Anker; Weitzmann, Peter

    2014-01-01

    buildings to cover acoustic requirements hinders the use of TABS. To measure the reduction of the heat capacity, several experiments are performed in a room equipped with TABS in the upper deck and mixing ventilation. The heat transfer is measured for different suspended ceiling covering percentages...... that the ventilation rate has a high influence on the convective heat capacity. When the ventilation rate is increased from 1.7 h-1 to 2.9 h-1, the heat transfer coefficient increases up to 16% for the same occupancy and suspended ceiling layout.......Thermo Active Building Systems (TABS), described as radiant heating or cooling systems with pipes embedded in the building structure, represent a sustainable alternative to replace conventional systems by using source temperatures close to room temperatures. The use of suspended ceiling in office...

  1. Self-Help Training System for Nursing Students to Learn Patient Transfer Skills

    Science.gov (United States)

    Huang, Zhifeng; Nagata, Ayanori; Kanai-Pak, Masako; Maeda, Jukai; Kitajima, Yasuko; Nakamura, Mitsuhiro; Aida, Kyoko; Kuwahara, Noriaki; Ogata, Taiki; Ota, Jun

    2014-01-01

    This paper describes the construction and evaluation of a self-help skill training system for assisting student nurses in learning skills involving the transfer of patients from beds to wheelchairs. We have proposed a feedback method that is based on a checklist and video demonstrations. To help trainees efficiently check their performance and…

  2. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18, 1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30, 1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  3. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18,1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30,1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  4. Genetic transfer in Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Rapp, B.J.; Wall, J.D.

    1987-01-01

    An apparently defective bacteriophage capable of mediating transduction has been identified in culture filtrates of Desulfovibrio desulfuricans (American Type Culture Collection 27774). Phage-mediated intraspecies transfer of antibiotic resistance markers occurs with a frequency of 10 -4 to 10 -6 per recipient cell. The vector contains linear fragments of double-strained DNA of about 13.5 kilobase pairs, which appear to be random pieces of bacterial DNA. As yet, neither induction nor plaque formation has been observed. To the authors' knowledge, a system of genetic exchange has not been described before for a member of the sulfate-reducing bacteria

  5. Safe Exploration for Identifying Linear Systems via Robust Optimization

    OpenAIRE

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  6. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  7. A proposed approach for the derivation of a system transfer function by the use of an external network

    Energy Technology Data Exchange (ETDEWEB)

    Guppy, C B [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-10-15

    This report outlines a method which might have some application for Transfer Function analysis of a given system. It consists of using the system itself in a general external feed-back, feed-forward circuit. The coefficients of the external circuit are set up one at a time to produce recognisable steady states at the output terminals of the external circuit. In effect step by step neutralisation of the system under test is achieved in the external circuit by setting up the inverse transfer function. (author)

  8. A proposed approach for the derivation of a system transfer function by the use of an external network

    International Nuclear Information System (INIS)

    Guppy, C.B.

    1961-10-01

    This report outlines a method which might have some application for Transfer Function analysis of a given system. It consists of using the system itself in a general external feed-back, feed-forward circuit. The coefficients of the external circuit are set up one at a time to produce recognisable steady states at the output terminals of the external circuit. In effect step by step neutralisation of the system under test is achieved in the external circuit by setting up the inverse transfer function. (author)

  9. A review of near-field mass transfer in geologic disposal systems

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1990-02-01

    In this report we summarize the analyses of the time-dependent mass transfer of radionuclides from a waste solid into surrounding porous or fractured media that have been developed at the University of California, Berkeley. For each analysis we describe the conceptual model, we present the governing equations and the resulting analytic solutions, and we illustrate the results. Designers of geologic disposal systems for solid waste must predict the long-term time-dependent rate of dissolution of toxic contaminants in ground water, to provide the source term for predicting the later transport of these contaminants to the environment. Mass-transfer analysis is being used to predict rates of dissolution and release of radioactive constituents in future repositories for high-level radioactive waste, and it has been applied to predict the life of a copper container for high-level radioactive waste. Mechanistic analysis of mass-transfer is based on well-established theory of diffusive-convective transport. Its application requires experimental measurement of well-defined parameters such as porosity, solubility, diffusion coefficient, and pore velocity. Our first analysis assumed a waste solid in direct contact with porous rock. Subsequently we analyzed the more realistic situations of backfill between the waste and rock, rock with discrete fractures as well as pores, and the effects of waste constituents of high solubility. Those dealing with specifically with mass transfer in the near field are presented here. In order to have a consistent set of notation within this review, some of the notation here is different than in the reports cited. 71 refs., 47 figs., 7 tabs

  10. Optimisation of multiplet identifier processing on a PLAYSTATION® 3

    Science.gov (United States)

    Hattori, Masami; Mizuno, Takashi

    2010-02-01

    To enable high-performance computing (HPC) for applications with large datasets using a Sony® PLAYSTATION® 3 (PS3™) video game console, we configured a hybrid system consisting of a Windows® PC and a PS3™. To validate this system, we implemented the real-time multiplet identifier (RTMI) application, which identifies multiplets of microearthquakes in terms of the similarity of their waveforms. The cross-correlation computation, which is a core algorithm of the RTMI application, was optimised for the PS3™ platform, while the rest of the computation, including data input and output remained on the PC. With this configuration, the core part of the algorithm ran 69 times faster than the original program, accelerating total computation speed more than five times. As a result, the system processed up to 2100 total microseismic events, whereas the original implementation had a limit of 400 events. These results indicate that this system enables high-performance computing for large datasets using the PS3™, as long as data transfer time is negligible compared with computation time.

  11. Fuel conditioning facility zone-to-zone transfer administrative controls

    International Nuclear Information System (INIS)

    Pope, C. L.

    2000-01-01

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container types for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion

  12. Wireless adiabatic power transfer

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-01-01

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  13. Assessment of Risk Due to Chemicals Transferred in a Watershed: A Case of an Aquifer Storage Transfer and Recovery Site

    Directory of Open Access Journals (Sweden)

    Hyon Wook Ji

    2016-06-01

    Full Text Available This paper presents an analysis of the potential risks of chemicals that can affect an aquifer storage transfer and recovery (ASTR site. ASTR is a water supply system that injects surface water into an aquifer and then extracts naturally filtered groundwater. The pilot site of the ASTR supplying drinking water is located downstream of the Nakdong River in South Korea. Hazard analysis and critical control points (HACCP was adopted to ensure suitable water quality in response to the deteriorated water quality of the Nakdong River. HACCP is a proactive management system for ensuring consistent confidence in food (or water. Hazard analysis, the first of the seven principles of HACCP, assesses physical, microbial, chemical, and radioactive hazards. This study focuses on the chemicals that are most likely to be involved in major hazardous events. Pollutant release and transfer register (PRTR data were used to analyze potential risks of chemicals. A PRTR is a national environmental database of potentially hazardous chemicals. Potential risk analysis considers the total amount of chemicals transferred off-site for treatment or disposal. Fifty-five cities and the top 10 chemicals released in the Nakdong River basin were investigated. Potential risk was defined as a function of total transfers, the relative distance, and toxicity. The top 10 cities with high potential risks were identified, and the city with the highest potential risk turned out to be Ulju.

  14. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility without necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting

  15. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    Science.gov (United States)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  16. A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem

    Directory of Open Access Journals (Sweden)

    Xin Dai

    2017-10-01

    Full Text Available Maximum power transfer tracking (MPTT is meant to track the maximum power point during the system operation of wireless power transfer (WPT systems. Traditionally, MPTT is achieved by impedance matching at the secondary side when the load resistance is varied. However, due to a loosely coupling characteristic, the variation of coupling coefficient will certainly affect the performance of impedance matching, therefore MPTT will fail accordingly. This paper presents an identification method of coupling coefficient for MPTT in WPT systems. Especially, the two-value issue during the identification is considered. The identification approach is easy to implement because it does not require additional circuit. Furthermore, MPTT is easy to realize because only two easily measured DC parameters are needed. The detailed identification procedure corresponding to the two-value issue and the maximum power transfer tracking process are presented, and both the simulation analysis and experimental results verified the identification method and MPTT.

  17. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2018-03-01

    Full Text Available This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF combined precise point positioning (PPP model with two dual-frequency combinations (IF-PPP1 and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2. A dataset with a short baseline (with a common external time frequency and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

  18. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  19. Weapons to widgets: Organic systems and public policy for tech transfer

    Science.gov (United States)

    Cargo, Russell A.

    1994-01-01

    Large cuts in defense spending cause serious repercussions throughout the American economy. One means to counter the negative effects of defense reductions is to redirect federal dollars to temporarily prop up defense industries and, over the longer-term, stimulate growth of new nondefense industries. The creation of non-defense products and industries by channeling ideas from public laboratories into the private sector manufacturing facilities, known as technology transfer, is being undertaken in a massive program that has high visibility, large amounts of money, and broad federal agency involvement. How effectively federal money can be directed toward stimulating the creation of non-defense products will define the strength of the economy, (i.e., tax base, employment level, trade balance, capital investments, etc.), over the next decade. Key functions of the tech transfer process are technology and market assessment, capital formation, manufacturing feasibility, sales and distribution, and business organization creation. Those, however, are not functions typically associated with the federal government. Is the government prepared to provide leadership in those areas? This paper suggests organic systems theory as a means to structure the public sector's actions to provide leadership in functional areas normally outside their scope of expertise. By applying new ideas in organization theory, can we design government action to efficiently and effectively transfer technologies?

  20. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2017-09-10

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.

  1. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  2. Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System

    Science.gov (United States)

    Ghanti, Shaila

    2016-01-01

    Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack. PMID:28116350

  3. Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System.

    Science.gov (United States)

    Ghanti, Shaila; Naik, G M

    2016-01-01

    Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack.

  4. Charge-transfer collisions involving few-electron systems

    International Nuclear Information System (INIS)

    Kirchner, T.

    2016-01-01

    Ion-atom collision systems that involve more than one electron constitute nonseparable few-body problems, whose full solution is difficult to say the least. At impact energies well below 1 keV/amu an expansion of the stationary scattering wave function in terms of a limited number of products of nuclear and molecular state wave functions (amended to satisfy scattering boundary conditions) is feasible and usually sufficient to obtain accurate charge-transfer cross sections provided the electronic wave functions include configuration interaction. At energies above 1 keV/amu this approach becomes inefficient and close-coupling methods within the semi classical approximation are better suited to treat the problem. For bare-ion collisions from helium target atoms explicit solutions of the two-electron time-dependent Schrödinger equation can be achieved, but are computationally costly and cannot be extended to problems which involve more than two electrons.

  5. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  6. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  7. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left-Right twisted tapes

    International Nuclear Information System (INIS)

    Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.

    2011-01-01

    Research highlights: → Conventional solar heaters are inefficient due to poor convective heat transfer. → Twisted tapes improve the heat transfer rate in solar water heater system. → Increase in outlet water temperature by 15 o C through the use of twisted tapes. →Thermal performance of twisted tape collector is 19% more than plain tube system. → Reduces collector area (0.6 m 2 ) whereas area for conventional collector is 1 m 2 . -- Abstract: Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left-Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left-Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left-Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left-Right twisted tape collector with increase in solar intensity.

  8. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    Science.gov (United States)

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  9. A taxonomy for teaching transfer skills in the Danish VET system

    DEFF Research Database (Denmark)

    Aarkrog, Vibe

    2011-01-01

    The educational system is grounded in the belief that you can teach people in one setting — the school — in order that they will be able to perform in other settings outside school. The vital process of applying knowledge and skills acquired in an educational situation to working life is known......’; in other words, their ability to apply knowledge and skills to a broad range of situations. To adapt to frequent changes in the labour market, students need to develop general competences that will enable them to move to other jobs and other companies. Therefore the pedagogy of VET should provide...... to the transfer process solely within the specialised vocational and education and training (VET) stream in Denmark. The existence of many identical elements in both training and transfer situations is known as ‘near transfer’, and is most readily achieved when training is conducted within company premises...

  10. Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

    Directory of Open Access Journals (Sweden)

    A. Collado

    2017-06-01

    Full Text Available The design of wireless power transfer (WPT and energy harvesting (EH solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  11. Identifying inaccuracy of MS Project using system analysis

    Science.gov (United States)

    Fachrurrazi; Husin, Saiful; Malahayati, Nurul; Irzaidi

    2018-05-01

    The problem encountered in project owner’s financial accounting report is the difference in total project costs of MS Project to the Indonesian Standard (Standard Indonesia Standard / Cost Estimating Standard Book of Indonesia). It is one of the MS Project problems concerning to its cost accuracy, so cost data cannot be used in an integrated way for all project components. This study focuses on finding the causes of inaccuracy of the MS Projects. The aim of this study, which is operationally, are: (i) identifying cost analysis procedures for both current methods (SNI) and MS Project; (ii) identifying cost bias in each element of the cost analysis procedure; and (iii) analysing the cost differences (cost bias) in each element to identify what the cause of inaccuracies in MS Project toward SNI is. The method in this study is comparing for both the system analysis of MS Project and SNI. The results are: (i) MS Project system in Work of Resources element has limitation for two decimal digits only, have led to its inaccuracy. Where the Work of Resources (referred to as effort) in MS Project represents multiplication between the Quantities of Activities and Requirements of resources in SNI; (ii) MS Project and SNI have differences in the costing methods (the cost estimation methods), in which the SNI uses the Quantity-Based Costing (QBC), meanwhile MS Project uses the Time-Based Costing (TBC). Based on this research, we recommend to the contractors who use SNI should make an adjustment for Work of Resources in MS Project (with correction index) so that it can be used in an integrated way to the project owner’s financial accounting system. Further research will conduct for improvement the MS Project as an integrated tool toward all part of the project participant.

  12. Heat/mass transfer on effusion plate with circular pin fins for impingement/effusion cooling system with initial crossflow

    International Nuclear Information System (INIS)

    Hong, Sung Kook; Rhee, Dong Ho; Cho, Hyung Hee

    2005-01-01

    Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging jet, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing 16%∼22% enhancement of overall Sh value at high blowing ratio of M=1.5

  13. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  14. Primary design and operation analysis of the ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  15. Technical specification for transferring National Pollutant Discharge Elimination System water data to the Oak Ridge Environmental Information System

    International Nuclear Information System (INIS)

    1996-11-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility (FFA) and the Tennessee Oversight Agreement (TOA) as they pertain to NPDES surface water data maintained in Oak Ridge, Tennessee, by the Department of Energy's Maintenance and Operations (M ampersand O) contractor Martin Marietta Energy Systems and prime contractors to DOE. This technical specification describes the organizational responsibilities for getting NPDES data into OREIS, describes the logical data transfer file required from NPDES, addresses business rules and submission rules, describes the physical data transfer file, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure due to the requirements of NPDES

  16. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  17. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Fisher, J.J.

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures

  18. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  19. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro.

    Science.gov (United States)

    Waaijman, Taco; Breetveld, Melanie; Ulrich, Magda; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2010-01-01

    This in vitro study describes a novel cell culture, transport, and transfer protocol that may be highly suitable for delivering cultured proliferating keratinocytes and melanocytes to large open skin wounds (e.g., burns). We have taken into account previous limitations identified using other keratinocyte transfer techniques, such as regulatory issues, stability of keratinocytes during transport (single cell suspensions undergo terminal differentiation), ease of handling during application, and the degree of epidermal blistering resulting after transplantation (both related to transplanting keratinocyte sheets). Large numbers of proliferating epidermal cells (EC) (keratinocytes and melanocytes) were generated within 10-14 days and seeded onto a three-dimensional matrix composed of elastin and collagen types I, III, and V (Matriderm®), which enabled easy and stable transport of the EC for up to 24 h under ambient conditions. All culture conditions were in accordance with the regulations set by the Dutch Central Committee on Research Involving Human Subjects (CCMO). As an in vitro model system for clinical in vivo transfer, the EC were then transferred from Matriderm onto human acellular dermis during a period of 3 days. After transfer the EC maintained the ability to regenerate into a fully differentiated epidermis containing melanocytes on the human dermis. Proliferating keratinocytes were located in the basal layer and keratin-10 expression was located in differentiating suprabasal layers similar to that found in human epidermis. No blistering was observed (separation of the epidermis from the basement membrane). Keratin-6 expression was strongly upregulated in the regenerating epidermis similar to normal wound healing. In summary, we show that EC-Matriderm contains viable, metabolically active keratinocytes and melanocytes cultured in a manner that permits easy transportation and contains epidermal cells with the potential to form a pigmented reconstructed

  20. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.