WorldWideScience

Sample records for identifying potential drug

  1. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  2. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  3. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  4. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Bruno J Neves

    2015-01-01

    Full Text Available Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD, DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.

  5. A side-effect free method for identifying cancer drug targets.

    Science.gov (United States)

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  6. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  7. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  8. Risk factors for potential drug interactions in general practice

    DEFF Research Database (Denmark)

    Bjerrum, Lars; Gonzalez Lopez-Valcarcel, Beatriz; Petersen, Gert

    2008-01-01

    interactions during 1 year. Patient factors associated with increased risk of potential drug interactions were high age, a high number of concurrently used drugs, and a high number of prescribers. Practice factors associated with potential drug interactions were a high percentage of elderly patients and a low......Objective: To identify patient- and practice-related factors associated with potential drug interactions. Methods: A register analysis study in general practices in the county of Funen, Denmark. Prescription data were retrieved from a population-based prescription database (Odense University......, depending on the severity of outcome and the quality of documentation. A two-level random coefficient logistic regression model was used to investigate factors related to potential drug interactions. Results: One-third of the population was exposed to polypharmacy, and 6% were exposed to potential drug...

  9. 2010 drug packaging review: identifying problems to prevent errors.

    Science.gov (United States)

    2011-06-01

    Prescrire's analyses showed that the quality of drug packaging in 2010 still left much to be desired. Potentially dangerous packaging remains a significant problem: unclear labelling is source of medication errors; dosing devices for some psychotropic drugs create a risk of overdose; child-proof caps are often lacking; and too many patient information leaflets are misleading or difficult to understand. Everything that is needed for safe drug packaging is available; it is now up to regulatory agencies and drug companies to act responsibly. In the meantime, health professionals can help their patients by learning to identify the pitfalls of drug packaging and providing safe information to help prevent medication errors.

  10. Potential intravenous drug interactions in intensive care

    Directory of Open Access Journals (Sweden)

    Maiara Benevides Moreira

    Full Text Available Abstract OBJECTIVE To analyze potential intravenous drug interactions, and their level of severity associated with the administration of these drugs based on the prescriptions of an intensive care unit. METHOD Quantitative study, with aretrospective exploratory design, and descriptive statistical analysis of the ICU prescriptions of a teaching hospital from March to June 2014. RESULTS The sample consisted of 319 prescriptions and subsamples of 50 prescriptions. The mean number of drugs per patient was 9.3 records, and a higher probability of drug interaction inherent to polypharmacy was evidenced. The study identified severe drug interactions, such as concomitant administration of Tramadol with selective serotonin reuptake inhibitor drugs (e.g., Metoclopramide and Fluconazole, increasing the risk of seizures due to their epileptogenic actions, as well as the simultaneous use of Ranitidine-Fentanyl®, which can lead to respiratory depression. CONCLUSION A previous mapping of prescriptions enables the characterization of the drug therapy, contributing to prevent potential drug interactions and their clinical consequences.

  11. Potential drug therapies for the treatment of fibromyalgia.

    Science.gov (United States)

    Lawson, Kim

    2016-09-01

    Fibromyalgia (FM) is a common, complex chronic widespread pain condition is characterized by fatigue, sleep disturbance and cognitive dysfunction. Treatment of FM is difficult, requiring both pharmacological and non-pharmacological approaches, with an empiric approach to drug therapy focused toward individual symptoms, particularly pain. The effectiveness of current medications is limited with many patients discontinuing use. A systemic database search has identified 26 molecular entities as potential emerging drug therapies. Advances in the understanding of the pathophysiology of FM provides clues to targets for new medications. Investigation of bioamine modulation and α2δ ligands and novel targets such as dopamine receptors, NMDA receptors, cannabinoid receptors, melatonin receptors and potassium channels has identified potential drug therapies. Modest improvement of health status in patients with FM has been observed with drugs targeting a diverse range of molecular mechanisms. No single drug, however, offered substantial efficacy against all the symptoms characteristic of FM. Identification of new and improved therapies for FM needs to address the heterogeneity of the condition, which suggests existence of patient subgroups, the relationship of central and peripheral aspects of the pathophysiology and a requirement of combination therapy with drugs targeting multiple molecular mechanisms.

  12. Clinically relevant potential drug-drug interactions among outpatients: A nationwide database study.

    Science.gov (United States)

    Jazbar, Janja; Locatelli, Igor; Horvat, Nejc; Kos, Mitja

    2018-06-01

    Adverse drug events due to drug-drug interactions (DDIs) represent a considerable public health burden, also in Slovenia. A better understanding of the most frequently occurring potential DDIs may enable safer pharmacotherapy and minimize drug-related problems. The aim of this study was to evaluate the prevalence and predictors of potential DDIs among outpatients in Slovenia. An analysis of potential DDIs was performed using health claims data on prescription drugs from a nationwide database. The Lexi-Interact Module was used as the reference source of interactions. The influence of patient-specific predictors on the risk of potential clinically relevant DDIs was evaluated using logistic regression model. The study population included 1,179,803 outpatients who received 15,811,979 prescriptions. The total number of potential DDI cases identified was 3,974,994, of which 15.6% were potentially clinically relevant. Altogether, 9.3% (N = 191,213) of the total population in Slovenia is exposed to clinically relevant potential DDIs, and the proportion is higher among women and the elderly. After adjustment for cofactors, higher number of medications and older age are associated with higher odds of clinically relevant potential DDIs. The burden of DDIs is highest with drug combinations that increase risk of bleeding, enhance CNS depression or anticholinergic effects or cause cardiovascular complications. The current study revealed that 1 in 10 individuals in the total Slovenian population is exposed to clinically relevant potential DDIs yearly. Taking into account the literature based conservative estimate that approximately 1% of potential DDIs result in negative health outcomes, roughly 1800 individuals in Slovenia experience an adverse health outcome each year as a result of clinically relevant potential interactions alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    Directory of Open Access Journals (Sweden)

    Fatma E. El-Khouly

    2017-10-01

    Full Text Available Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG, patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB. We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.

  14. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.

    2012-05-15

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach would be to quantitate the degree of similarity between the responses that cells show when exposed to drugs, so that consistencies in the regulation of cellular response processes that produce success or failure can be more readily identified.Results: We track drug response using fluorescent proteins as transcription activity reporters. Our basic assumption is that drugs inducing very similar alteration in transcriptional regulation will produce similar temporal trajectories on many of the reporter proteins and hence be identified as having similarities in their mechanisms of action (MOA). The main body of this work is devoted to characterizing similarity in temporal trajectories/signals. To do so, we must first identify the key points that determine mechanistic similarity between two drug responses. Directly comparing points on the two signals is unrealistic, as it cannot handle delays and speed variations on the time axis. Hence, to capture the similarities between reporter responses, we develop an alignment algorithm that is robust to noise, time delays and is able to find all the contiguous parts of signals centered about a core alignment (reflecting a core mechanism in drug response). Applying the proposed algorithm to a range of real drug experiments shows that the result agrees well with the prior drug MOA knowledge. © The Author 2012. Published by Oxford University Press. All rights reserved.

  15. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    Science.gov (United States)

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected pneratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  16. Information needs for making clinical recommendations about potential drug-drug interactions: a synthesis of literature review and interviews.

    Science.gov (United States)

    Romagnoli, Katrina M; Nelson, Scott D; Hines, Lisa; Empey, Philip; Boyce, Richard D; Hochheiser, Harry

    2017-02-22

    Drug information compendia and drug-drug interaction information databases are critical resources for clinicians and pharmacists working to avoid adverse events due to exposure to potential drug-drug interactions (PDDIs). Our goal is to develop information models, annotated data, and search tools that will facilitate the interpretation of PDDI information. To better understand the information needs and work practices of specialists who search and synthesize PDDI evidence for drug information resources, we conducted an inquiry that combined a thematic analysis of published literature with unstructured interviews. Starting from an initial set of relevant articles, we developed search terms and conducted a literature search. Two reviewers conducted a thematic analysis of included articles. Unstructured interviews with drug information experts were conducted and similarly coded. Information needs, work processes, and indicators of potential strengths and weaknesses of information systems were identified. Review of 92 papers and 10 interviews identified 56 categories of information needs related to the interpretation of PDDI information including drug and interaction information; study design; evidence including clinical details, quality and content of reports, and consequences; and potential recommendations. We also identified strengths/weaknesses of PDDI information systems. We identified the kinds of information that might be most effective for summarizing PDDIs. The drug information experts we interviewed had differing goals, suggesting a need for detailed information models and flexible presentations. Several information needs not discussed in previous work were identified, including temporal overlaps in drug administration, biological plausibility of interactions, and assessment of the quality and content of reports. Richly structured depictions of PDDI information may help drug information experts more effectively interpret data and develop recommendations

  17. Identifying Adverse Drug Events by Relational Learning.

    Science.gov (United States)

    Page, David; Costa, Vítor Santos; Natarajan, Sriraam; Barnard, Aubrey; Peissig, Peggy; Caldwell, Michael

    2012-07-01

    The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, post-marketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task , related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.

  18. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  19. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  20. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.; Hua, J.; Bittner, M. L.; Ivanov, I.; Dougherty, a. E. R.

    2012-01-01

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach

  1. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy.

    Science.gov (United States)

    Atkin, Talia A; Maher, Chani M; Gerlach, Aaron C; Gay, Bryant C; Antonio, Brett M; Santos, Sonia C; Padilla, Karen M; Rader, JulieAnn; Krafte, Douglas S; Fox, Matthew A; Stewart, Gregory R; Petrovski, Slavé; Devinsky, Orrin; Might, Matthew; Petrou, Steven; Goldstein, David B

    2018-04-01

    Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy. We developed cellular models expressing wild-type or an R1872Q mutation in the Na v 1.6 sodium channel encoded by SCN8A. Voltage clamp experiments in HEK-293 cells expressing the SCN8A R1872Q mutation demonstrated a leftward shift in sodium channel activation as well as delayed inactivation; both changes are consistent with a gain-of-function mutation. We next developed a fluorescence-based, sodium flux assay and used it to assess an extensive library of approved drugs, including a panel of antiepileptic drugs, for inhibitory activity in the mutated cell line. Lead candidates were evaluated in follow-on studies to generate concentration-response curves for inhibiting sodium influx. Select compounds of clinical interest were evaluated by electrophysiology to further characterize drug effects on wild-type and mutant sodium channel functions. The screen identified 90 drugs that significantly inhibited sodium influx in the R1872Q cell line. Four drugs of potential clinical interest-amitriptyline, carvedilol, nilvadipine, and carbamazepine-were further investigated and demonstrated concentration-dependent inhibition of sodium channel currents. A comprehensive drug repurposing screen identified potential new candidates for the treatment of epilepsy caused by the R1872Q mutation in the SCN8A gene. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  2. Drug-related problems identified in medication reviews by Australian pharmacists

    DEFF Research Database (Denmark)

    Stafford, Andrew C; Tenni, Peter C; Peterson, Gregory M

    2009-01-01

    OBJECTIVE: In Australia, accredited pharmacists perform medication reviews for patients to identify and resolve drug-related problems. We analysed the drug-related problems identified in reviews for both home-dwelling and residential care-facility patients. The objective of this study was to exam......OBJECTIVE: In Australia, accredited pharmacists perform medication reviews for patients to identify and resolve drug-related problems. We analysed the drug-related problems identified in reviews for both home-dwelling and residential care-facility patients. The objective of this study....... These reviews had been self-selected by pharmacists and submitted as part of the reaccreditation process to the primary body responsible for accrediting Australian pharmacists to perform medication reviews. The drug-related problems identified in each review were classified by type and drugs involved. MAIN...... OUTCOME MEASURE: The number and nature of drug-related problems identified in pharmacist-conducted medication reviews. RESULTS: There were 1,038 drug-related problems identified in 234 medication reviews (mean 4.6 (+/-2.2) problems per review). The number of problems was higher (4.9 +/- 2.0 vs. 3.9 +/- 2...

  3. Potential drug-drug interactions on in-patient medication ...

    African Journals Online (AJOL)

    Potential drug-drug interactions on in-patient medication prescriptions at Mbarara Regional Referral Hospital (MRRH) in western Uganda: prevalence, clinical importance and associated factors. SJ Lubinga, E Uwiduhaye ...

  4. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    Science.gov (United States)

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  5. Drug-induced acute myocardial infarction: identifying 'prime suspects' from electronic healthcare records-based surveillance system.

    Directory of Open Access Journals (Sweden)

    Preciosa M Coloma

    Full Text Available Drug-related adverse events remain an important cause of morbidity and mortality and impose huge burden on healthcare costs. Routinely collected electronic healthcare data give a good snapshot of how drugs are being used in 'real-world' settings.To describe a strategy that identifies potentially drug-induced acute myocardial infarction (AMI from a large international healthcare data network.Post-marketing safety surveillance was conducted in seven population-based healthcare databases in three countries (Denmark, Italy, and the Netherlands using anonymised demographic, clinical, and prescription/dispensing data representing 21,171,291 individuals with 154,474,063 person-years of follow-up in the period 1996-2010. Primary care physicians' medical records and administrative claims containing reimbursements for filled prescriptions, laboratory tests, and hospitalisations were evaluated using a three-tier triage system of detection, filtering, and substantiation that generated a list of drugs potentially associated with AMI. Outcome of interest was statistically significant increased risk of AMI during drug exposure that has not been previously described in current literature and is biologically plausible.Overall, 163 drugs were identified to be associated with increased risk of AMI during preliminary screening. Of these, 124 drugs were eliminated after adjustment for possible bias and confounding. With subsequent application of criteria for novelty and biological plausibility, association with AMI remained for nine drugs ('prime suspects': azithromycin; erythromycin; roxithromycin; metoclopramide; cisapride; domperidone; betamethasone; fluconazole; and megestrol acetate.Although global health status, co-morbidities, and time-invariant factors were adjusted for, residual confounding cannot be ruled out.A strategy to identify potentially drug-induced AMI from electronic healthcare data has been proposed that takes into account not only statistical

  6. Identifying Drug–Drug Interactions by Data Mining

    DEFF Research Database (Denmark)

    Hansen, Peter Wæde; Clemmensen, Line Katrine Harder; Sehested, Thomas S.G.

    2016-01-01

    Background—Knowledge about drug–drug interactions commonly arises from preclinical trials, from adverse drug reports, or based on knowledge of mechanisms of action. Our aim was to investigate whether drug–drug interactions were discoverable without prior hypotheses using data mining. We focused...... registries. Additionally, we discovered a few potentially novel interactions. This opens up for the use of data mining to discover unknown drug–drug interactions in cardiovascular medicine....... on warfarin–drug interactions as the prototype. Methods and Results—We analyzed altered prothrombin time (measured as international normalized ratio [INR]) after initiation of a novel prescription in previously INR-stable warfarin-treated patients with nonvalvular atrial fibrillation. Data sets were retrieved...

  7. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening.

    Directory of Open Access Journals (Sweden)

    Maha-Hamadien Abdulla

    2009-07-01

    Full Text Available Praziquantel (PZQ is the only widely available drug to treat schistosomiasis. Given the potential for drug resistance, it is prudent to search for novel therapeutics. Identification of anti-schistosomal chemicals has traditionally relied on phenotypic (whole organism screening with adult worms in vitro and/or animal models of disease-tools that limit automation and throughput with modern microtiter plate-formatted compound libraries.A partially automated, three-component phenotypic screen workflow is presented that utilizes at its apex the schistosomular stage of the parasite adapted to a 96-well plate format with a throughput of 640 compounds per month. Hits that arise are subsequently screened in vitro against adult parasites and finally for efficacy in a murine model of disease. Two GO/NO GO criteria filters in the workflow prioritize hit compounds for tests in the animal disease model in accordance with a target drug profile that demands short-course oral therapy. The screen workflow was inaugurated with 2,160 chemically diverse natural and synthetic compounds, of which 821 are drugs already approved for human use. This affords a unique starting point to 'reposition' (re-profile drugs as anti-schistosomals with potential savings in development timelines and costs.Multiple and dynamic phenotypes could be categorized for schistosomula and adults in vitro, and a diverse set of 'hit' drugs and chemistries were identified, including anti-schistosomals, anthelmintics, antibiotics, and neuromodulators. Of those hits prioritized for tests in the animal disease model, a number of leads were identified, one of which compares reasonably well with PZQ in significantly decreasing worm and egg burdens, and disease-associated pathology. Data arising from the three components of the screen are posted online as a community resource.To accelerate the identification of novel anti-schistosomals, we have developed a partially automated screen workflow that

  8. Indolealkylamines: biotransformations and potential drug-drug interactions.

    Science.gov (United States)

    Yu, Ai-Ming

    2008-06-01

    Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug-drug interactions (DDIs). A stable, principal metabolite of an IAA drug of abuse could serve as a useful biomarker in assessing intoxication of the IAA substance. Studies on the metabolism of IAA drugs of abuse including lysergic acid amides, tryptamine derivatives and beta-carbolines are therefore emerging. An important role for polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of IAA drugs of abuse has been revealed by recent studies, suggesting that variations in IAA metabolism, pharmaco- or toxicokinetics and dynamics can arise from distinct CYP2D6 status, and CYP2D6 polymorphism may represent an additional risk factor in the use of these IAA drugs. Furthermore, DDIs with IAA agents could occur additively at the pharmaco/toxicokinetic and dynamic levels, leading to severe or even fatal serotonin toxicity. In this review, the metabolism and potential DDIs of these therapeutic and abused IAA drugs are described.

  9. Prevalence of Potential and Clinically Relevant Statin-Drug Interactions in Frail and Robust Older Inpatients.

    Science.gov (United States)

    Thai, Michele; Hilmer, Sarah; Pearson, Sallie-Anne; Reeve, Emily; Gnjidic, Danijela

    2015-10-01

    A significant proportion of older people are prescribed statins and are also exposed to polypharmacy, placing them at increased risk of statin-drug interactions. To describe the prevalence rates of potential and clinically relevant statin-drug interactions in older inpatients according to frailty status. A cross-sectional study of patients aged ≥65 years who were prescribed a statin and were admitted to a teaching hospital between 30 July and 10 October 2014 in Sydney, Australia, was conducted. Data on socio-demographics, comorbidities and medications were collected using a standardized questionnaire. Potential statin-drug interactions were defined if listed in the Australian Medicines Handbook and three international drug information sources: the British National Formulary, Drug Interaction Facts and Drug-Reax(®). Clinically relevant statin-drug interactions were defined as interactions with the highest severity rating in at least two of the three international drug information sources. Frailty was assessed using the Reported Edmonton Frail Scale. A total of 180 participants were recruited (median age 78 years, interquartile range 14), 35.0% frail and 65.0% robust. Potential statin-drug interactions were identified in 10% of participants, 12.7% of frail participants and 8.5% of robust participants. Clinically relevant statin-drug interactions were identified in 7.8% of participants, 9.5% of frail participants and 6.8% of robust participants. Depending on the drug information source used, the prevalence rates of potential and clinically relevant statin-drug interactions ranged between 14.4 and 35.6% and between 14.4 and 20.6%, respectively. In our study of frail and robust older inpatients taking statins, the overall prevalence of potential statin-drug interactions was low and varied significantly according to the drug information source used.

  10. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  11. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  12. Potential drug-drug interactions with direct oral anticoagulants in elderly hospitalized patients.

    Science.gov (United States)

    Forbes, Heather L; Polasek, Thomas M

    2017-10-01

    To determine the prevalence and nature of potential drug-drug interactions (DDIs) with direct oral anticoagulants (DOACs) in elderly hospitalized patients. This was a retrospective observational study. Inclusion criteria were: aged over 65 years; taking apixaban, rivaroxaban or dabigatran; and admitted to the Repatriation General Hospital between April 2014 and July 2015. A list of clinically relevant 'perpetrator' drugs was compiled from product information, the Australian Medicines Handbook, the Australian National Prescribing Service resources, and local health network guidelines. The prevalence and nature of potential DDIs with DOACs was determined by comparing inpatient drug charts with the list of perpetrator drugs. There were 122 patients in the study with a mean age of 82 years. Most patients had nonvalvular atrial fibrillation and were taking DOACs to prevent thrombotic stroke (83%). Overall, 45 patients (37%) had a total of 54 potential DDIs. Thirty-five patients had potential pharmacodynamic DDIs with antidepressants, nonsteroidal anti-inflammatory drugs and antiplatelets (35/122, 29%). Nineteen patients had potential pharmacokinetic DDIs (19/122, 16%). Of these, 68% (13/19) were taking drugs that increase DOAC plasma concentrations (amiodarone, erythromycin, diltiazem or verapamil) and 32% (6/19) were taking drugs that decrease DOAC plasma concentrations (carbamazepine, primidone or phenytoin). There were no cases of patients taking contraindicated interacting drugs. Potential DDIs with DOACs in elderly hospital inpatients are relatively common, particularly interactions that may increase the risk of bleeding. The risk-benefit ratio of DOACs in elderly patients on polypharmacy should always be carefully considered.

  13. An automated technique to identify potential inappropriate traditional Chinese medicine (TCM) prescriptions.

    Science.gov (United States)

    Yang, Hsuan-Chia; Iqbal, Usman; Nguyen, Phung Anh; Lin, Shen-Hsien; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan

    2016-04-01

    Medication errors such as potential inappropriate prescriptions would induce serious adverse drug events to patients. Information technology has the ability to prevent medication errors; however, the pharmacology of traditional Chinese medicine (TCM) is not as clear as in western medicine. The aim of this study was to apply the appropriateness of prescription (AOP) model to identify potential inappropriate TCM prescriptions. We used the association rule of mining techniques to analyze 14.5 million prescriptions from the Taiwan National Health Insurance Research Database. The disease and TCM (DTCM) and traditional Chinese medicine-traditional Chinese medicine (TCMM) associations are computed by their co-occurrence, and the associations' strength was measured as Q-values, which often referred to as interestingness or life values. By considering the number of Q-values, the AOP model was applied to identify the inappropriate prescriptions. Afterwards, three traditional Chinese physicians evaluated 1920 prescriptions and validated the detected outcomes from the AOP model. Out of 1920 prescriptions, 97.1% of positive predictive value and 19.5% of negative predictive value were shown by the system as compared with those by experts. The sensitivity analysis indicated that the negative predictive value could improve up to 27.5% when the model's threshold changed to 0.4. We successfully applied the AOP model to automatically identify potential inappropriate TCM prescriptions. This model could be a potential TCM clinical decision support system in order to improve drug safety and quality of care. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Potential drug-drug and drug-disease interactions in well-functioning community-dwelling older adults.

    Science.gov (United States)

    Hanlon, J T; Perera, S; Newman, A B; Thorpe, J M; Donohue, J M; Simonsick, E M; Shorr, R I; Bauer, D C; Marcum, Z A

    2017-04-01

    There are few studies examining both drug-drug and drug-disease interactions in older adults. Therefore, the objective of this study was to describe the prevalence of potential drug-drug and drug-disease interactions and associated factors in community-dwelling older adults. This cross-sectional study included 3055 adults aged 70-79 without mobility limitations at their baseline visit in the Health Aging and Body Composition Study conducted in the communities of Pittsburgh PA and Memphis TN, USA. The outcome factors were potential drug-drug and drug-disease interactions as per the application of explicit criteria drawn from a number of sources to self-reported prescription and non-prescription medication use. Over one-third of participants had at least one type of interaction. Approximately one quarter (25·1%) had evidence of had one or more drug-drug interactions. Nearly 10·7% of the participants had a drug-drug interaction that involved a non-prescription medication. % The most common drug-drug interaction was non-steroidal anti-inflammatory drugs (NSAIDs) affecting antihypertensives. Additionally, 16·0% had a potential drug-disease interaction with 3·7% participants having one involving non-prescription medications. The most common drug-disease interaction was aspirin/NSAID use in those with history of peptic ulcer disease without gastroprotection. Over one-third (34·0%) had at least one type of drug interaction. Each prescription medication increased the odds of having at least one type of drug interaction by 35-40% [drug-drug interaction adjusted odds ratio (AOR) = 1·35, 95% confidence interval (CI) = 1·27-1·42; drug-disease interaction AOR = 1·30; CI = 1·21-1·40; and both AOR = 1·45; CI = 1·34-1·57]. A prior hospitalization increased the odds of having at least one type of drug interaction by 49-84% compared with those not hospitalized (drug-drug interaction AOR = 1·49, 95% CI = 1·11-2·01; drug-disease interaction AOR = 1·69, CI = 1·15-2

  15. Drug and Alcohol Exposed Children: Implications for Special Education for Students Identified as Behaviorally Disordered.

    Science.gov (United States)

    Bauer, Anne M.

    1991-01-01

    This article reviews the literature on children prenatally exposed to drugs and alcohol, the potential impact on the educational and social services systems, and implications for programing for children identified as behaviorally disordered. (Author/JDD)

  16. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  17. Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction.

    Science.gov (United States)

    Rao, P S S; O'Connell, Kelly; Finnerty, Thomas Kyle

    2018-01-23

    Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.

  18. 21 CFR 314.104 - Drugs with potential for abuse.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drugs with potential for abuse. 314.104 Section 314.104 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and Abbreviated Applications § 314.104 Drugs with potential for abuse. The Food and Drug...

  19. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    Science.gov (United States)

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several compounds with significant antiparasitic activities. Among these were pimozide and tamoxifen, which are well-characterized drugs prescribed to treat patients with psychiatric disorders and breast cancer

  20. Frequency of potential interactions between drugs in medical prescriptions in a city in southern Brazil

    Directory of Open Access Journals (Sweden)

    Genici Weyh Bleich

    Full Text Available CONTEXT AND OBJECTIVE: Drug interactions form part of current clinical practice and they affect between 3 and 5% of polypharmacy patients. The aim of this study was to identify the frequency of potential drug-drug interactions in prescriptions for adult and elderly patients. TYPE OF STUDY AND SETTING: Cross-sectional pharmacoepidemiological survey in the Parque Verde housing project, municipality of Cascavel, Paraná, Brazil, between December 2006 and February 2007. METHODS: Stratified cluster sampling, proportional to the total number of homes in the housing project, was used. The sample consisted of 95 homes and 96 male or female patients aged 19 or over, with medical prescriptions for at least two pharmaceutical drugs. Interactions were identified using DrugDigest, Medscape and Micromedex softwares. RESULTS: Most of the patients were female (69.8%, married (59.4% and in the age group of 60 years or over (56.3%, with an income less than or equal to three minimum monthly salaries (81.3% and less than eight years of schooling (69.8%; 90.6% of the patients were living with another person. The total number of pharmaceutical drugs was 406 (average of 4.2 medications per patient. The drugs most prescribed were antihypertensives (47.5%. The frequency of drug interactions was 66.6%. Among the 154 potential drug interactions, 4.6% were classified as major, 65.6% as moderate and 20.1% as minor. CONCLUSION: The high frequency of drug prescriptions with a potential for differentiated interactions indicates a situation that has so far been little explored, albeit a reality in household surveys.

  1. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    Science.gov (United States)

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations

    Science.gov (United States)

    Laird, Gregory M.; Bullen, C. Korin; Rosenbloom, Daniel I.S.; Martin, Alyssa R.; Hill, Alison L.; Durand, Christine M.; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs. PMID:25822022

  3. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    Science.gov (United States)

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  4. Potential intravenous drug interactions in intensive care.

    Science.gov (United States)

    Moreira, Maiara Benevides; Mesquita, Maria Gefé da Rosa; Stipp, Marluci Andrade Conceição; Paes, Graciele Oroski

    2017-07-20

    To analyze potential intravenous drug interactions, and their level of severity associated with the administration of these drugs based on the prescriptions of an intensive care unit. Quantitative study, with aretrospective exploratory design, and descriptive statistical analysis of the ICU prescriptions of a teaching hospital from March to June 2014. The sample consisted of 319 prescriptions and subsamples of 50 prescriptions. The mean number of drugs per patient was 9.3 records, and a higher probability of drug interaction inherent to polypharmacy was evidenced. The study identified severe drug interactions, such as concomitant administration of Tramadol with selective serotonin reuptake inhibitor drugs (e.g., Metoclopramide and Fluconazole), increasing the risk of seizures due to their epileptogenic actions, as well as the simultaneous use of Ranitidine-Fentanyl®, which can lead to respiratory depression. A previous mapping of prescriptions enables the characterization of the drug therapy, contributing to prevent potential drug interactions and their clinical consequences. Analisar as potenciais interações medicamentosas intravenosas e seu grau de severidade associadas à administração desses medicamentos a partir das prescrições do Centro de Terapia Intensiva. Estudo quantitativo, tipologia retrospectiva exploratória, com análise estatística descritiva das prescrições medicamentosas do Centro de Terapia Intensiva de um Hospital Universitário, no período de março-junho/2014. A amostra foi composta de 319 prescrições e subamostras de 50 prescrições. Constatou-se que a média de medicamentos por paciente foi de 9,3 registros, e evidenciou-se maior probabilidade para ocorrência de interação medicamentosa inerente à polifarmácia. O estudo identificou interações medicamentosas graves, como a administração concomitante de Tramadol com medicamentos inibidores seletivos da recaptação da serotonina, (exemplo: Metoclopramida e Fluconazol

  5. Rapid, computer vision-enabled murine screening system identifies neuropharmacological potential of two new mechanisms

    Directory of Open Access Journals (Sweden)

    Steven L Roberds

    2011-09-01

    Full Text Available The lack of predictive in vitro models for behavioral phenotypes impedes rapid advancement in neuropharmacology and psychopharmacology. In vivo behavioral assays are more predictive of activity in human disorders, but such assays are often highly resource-intensive. Here we describe the successful application of a computer vision-enabled system to identify potential neuropharmacological activity of two new mechanisms. The analytical system was trained using multiple drugs that are used clinically to treat depression, schizophrenia, anxiety, and other psychiatric or behavioral disorders. During blinded testing the PDE10 inhibitor TP-10 produced a signature of activity suggesting potential antipsychotic activity. This finding is consistent with TP-10’s activity in multiple rodent models that is similar to that of clinically used antipsychotic drugs. The CK1ε inhibitor PF-670462 produced a signature consistent with anxiolytic activity and, at the highest dose tested, behavioral effects similar to that of opiate analgesics. Neither TP-10 nor PF-670462 was included in the training set. Thus, computer vision-based behavioral analysis can facilitate drug discovery by identifying neuropharmacological effects of compounds acting through new mechanisms.

  6. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  7. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Drug-drug interactions among recently hospitalised patients--frequent but mostly clinically insignificant

    DEFF Research Database (Denmark)

    Glintborg, Bente; Andersen, Stig Ejdrup; Dalhoff, Kim

    2005-01-01

    OBJECTIVE: Patients use and store considerable amounts of drugs. The aim of the present study was to identify potential drug-drug interactions between drugs used by patients recently discharged from the hospital and, subsequently, to estimate the clinical implications of these interactions. METHODS......: Patients were visited within 1 week following their discharge from hospital and interviewed about their drug use. Stored products were inspected. We used a bibliography (Hansten and Horn; Wolters Kluwer Health, St. Louis, Mo., 2004) to identify and classify potential drug-drug interactions. RESULTS......: eight per patient; range: 1-24). With respect to those drugs used daily or on demand, 476 potential interactions were identified (126 patients); none were class 1 (always avoid drug combination) and 25 were class 2 (usually avoid combination; 24 patients). Eleven of the potential class 2 interactions...

  9. Identifying problematic drugs based on the characteristics of their targets.

    Science.gov (United States)

    Lopes, Tiago J S; Shoemaker, Jason E; Matsuoka, Yukiko; Kawaoka, Yoshihiro; Kitano, Hiroaki

    2015-01-01

    Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  10. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  11. Drug-drug Interactions of Statins Potentially Leading to Muscle-Related Side Effects in Hospitalized Patients.

    Science.gov (United States)

    Bucsa, Camelia; Farcas, Andreea; Leucuta, D; Mogosan, Cristina; Bojita, M; Dumitrascu, D L

    2015-01-01

    The associations of drugs that may interact with the statins resulting in elevated serum concentration of the statins are an important risk factor for statin induced muscle disorders. We aimed to determine the prevalence of these associations in all hospitalized patients that had been prescribed statins before/during hospitalization and to find out how often they are associated with muscle-related side effects. This prospective, non-interventional study performed in two internal medicine departments included patients with statin therapy before/during hospitalization. Data on each patient demographic characteristics, co-morbidities and treatment was collected from medical charts and interviews. We evaluated patients' therapy for the targeted associations using Thomson Micromedex Drug Interactions checker and we ranked the identified drug-drug interactions (DDIs) accordingly. Each patient with statin treatment before admission was additionally interviewed in order to identify muscular symptoms. In 109 patients on statin treatment we found 35 potential (p) DDIs of statins in 30 (27.5%) patients, most of which were in the therapy before admission (27 pDDIs). The pDDIs were moderate (20 pDDIs) and major (15 pDDIs). Of the total number of pDDIs, 24 were targeting the muscular system. The drugs most frequently involved in the statins' pDDIs were amiodarone and fenofibrate. Two of the patients with pDDIs reported muscle pain, both having additional risk factors for statin induced muscular effects. The prevalence of statins' pDDIs was high in our study, mostly in the therapy before admission, with only a small number of pDDIs resulting in clinical outcome.

  12. Assessing the proarrhythmic potential of drugs

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Matz, Jørgen; Volders, Paul G A

    2006-01-01

    Torsades de pointes (TdP) is a potentially lethal cardiac arrhythmia that can occur as an unwanted adverse effect of various pharmacological therapies. Before a drug is approved for marketing, its effects on cardiac repolarisation are examined clinically and experimentally. This paper expresses...... the opinion that effects on repolarisation duration cannot directly be translated to risk of proarrhythmia. Current safety assessments of drugs only involve repolarisation assays, however the proarrhythmic profile can only be determined in the predisposed model. The availability of these proarrhythmic animal...... surrogate parameters possessing predictive power of TdP arrhythmia are reviewed. As these parameters are not developed to finalisation, any meaningful study of the proarrhythmic potential of a new drug will include evaluation in an integrated model of TdP arrhythmia....

  13. A survey of antiepileptic drug responses identifies drugs with potential efficacy for seizure control in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ho, Karen S; Markham, Leah M; Twede, Hope; Lortz, Amanda; Olson, Lenora M; Sheng, Xiaoming; Weng, Cindy; Wassman, E Robert; Newcomb, Tara; Wassman, E Robert; Carey, John C; Battaglia, Agatino

    2018-04-01

    Seizures are present in over 90% of infants and children with Wolf-Hirschhorn syndrome (WHS). When present, they significantly affect quality of life. The goal of this study was to use caregiver reports to describe the comparative efficacies of commonly used antiepileptic medications in a large population of individuals with WHS. A web-based, confidential caregiver survey was developed to capture seizure semiology and a chronologic record of seizure treatments as well as responses to each treatment. Adverse events for each drug were also cataloged. We received 141 complete survey responses (47% response rate) describing the seizures of individuals ranging in age from 4months to 61years (90 females: 51 males). Using the Early Childhood Epilepsy Severity Scale (E-Chess), WHS-associated seizures are demonstrably severe regardless of deletion size. The best-performing antiepileptic drugs (AEDs) for controlling seizures in this cohort were broad spectrum drugs clobazam, levetiracetam, and lamotrigine; whereas, the three commonly used carboxamide class drugs: carbamazepine, phenytoin, and oxcarbazepine, were reported to have little effect on, or even exacerbate, seizures. The carboxamide class drugs, along with phenobarbital and topiramate, were also associated with the highest rate of intolerance due to cooccurrence of adverse events. Levetiracetam, clobazam, and clonazepam demonstrated higher tolerability and comparatively less severe adverse events (Wilcoxon rank sum comparison between performance of levetiracetam and carboxamide class drugs gives a psyndromes which may have complex seizure etiologies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Identifying Drug-Target Interactions with Decision Templates.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu

    2018-01-01

    During the development process of new drugs, identification of the drug-target interactions wins primary concerns. However, the chemical or biological experiments bear the limitation in coverage as well as the huge cost of both time and money. Based on drug similarity and target similarity, chemogenomic methods can be able to predict potential drug-target interactions (DTIs) on a large scale and have no luxurious need about target structures or ligand entries. In order to reflect the cases that the drugs having variant structures interact with common targets and the targets having dissimilar sequences interact with same drugs. In addition, though several other similarity metrics have been developed to predict DTIs, the combination of multiple similarity metrics (especially heterogeneous similarities) is too naïve to sufficiently explore the multiple similarities. In this paper, based on Gene Ontology and pathway annotation, we introduce two novel target similarity metrics to address above issues. More importantly, we propose a more effective strategy via decision template to integrate multiple classifiers designed with multiple similarity metrics. In the scenarios that predict existing targets for new drugs and predict approved drugs for new protein targets, the results on the DTI benchmark datasets show that our target similarity metrics are able to enhance the predictive accuracies in two scenarios. And the elaborate fusion strategy of multiple classifiers has better predictive power than the naïve combination of multiple similarity metrics. Compared with other two state-of-the-art approaches on the four popular benchmark datasets of binary drug-target interactions, our method achieves the best results in terms of AUC and AUPR for predicting available targets for new drugs (S2), and predicting approved drugs for new protein targets (S3).These results demonstrate that our method can effectively predict the drug-target interactions. The software package can

  15. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval.

    Science.gov (United States)

    Lorberbaum, Tal; Sampson, Kevin J; Woosley, Raymond L; Kass, Robert S; Tatonetti, Nicholas P

    2016-05-01

    Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS. We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs). We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually. We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p = 1.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications. Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation.

  16. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  17. Erosive and cariogenicity potential of pediatric drugs: study of physicochemical parameters.

    Science.gov (United States)

    Xavier, Alidianne Fábia C; Moura, Eline F F; Azevedo, Waldeneide F; Vieira, Fernando F; Abreu, Mauro H N G; Cavalcanti, Alessandro L

    2013-12-10

    Pediatric medications may possess a high erosive potential to dental tissues due to the existence of acid components in their formulations. The purpose was to determine the erosive and cariogenic potential of pediatric oral liquid medications through the analysis of their physicochemical properties in vitro. A total of 59 substances were selected from the drug reference list of the National Health Surveillance Agency (ANVISA), which belong to 11 therapeutic classes, as follows: analgesics, non-steroidal anti-inflammatory, corticosteroids, antihistamines, antitussives, bronchodilators, antibacterials, antiparasitics, antiemetics, anticonvulsants and antipsychotics. Measurement of pH was performed by potentiometry, using a digital pH meter. For the Total Titratable Acidity (TTA) chemical assay, a 0.1 N NaOH standard solution was used, which was titrated until drug pH was neutralized. The Total Soluble Solids Contents (TSSC) quantification was carried out by refractometry using Brix scale and the analysis of Total Sugar Content was performed according to Fehling's method. In addition, it was analyzed the information contained in the drug inserts with regard to the presence of sucrose and type of acid and sweetener added to the formulations. All drug classes showed acidic pH, and the lowest mean was found for antipsychotics (2.61 ± 0.08). There was a large variation in the TTA (0.1% - 1.18%) and SST (10.44% - 57.08%) values. High total sugar contents were identified in the antitussives (53.25%) and anticonvulsants (51.75%). As described in the drug inserts, sucrose was added in 47.5% of the formulations, as well as citric acid (39.0%), sodium saccharin (36.4%) and sorbitol (34.8%). The drugs analyzed herein showed physicochemical characteristics indicative of a cariogenic and erosive potential on dental tissues. Competent bodies' strategies should be implemented in order to broaden the knowledge of health professionals, drug manufacturers and general consuming public

  18. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.

    Science.gov (United States)

    Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman

    2016-12-05

    Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

  19. Intracranial self-stimulation to evaluate abuse potential of drugs.

    Science.gov (United States)

    Negus, S Stevens; Miller, Laurence L

    2014-07-01

    Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  20. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-induced Round Bodies of Borrelia burgdorferi Persisters from an FDA Drug Library

    Directory of Open Access Journals (Sweden)

    Jie eFeng

    2016-05-01

    Full Text Available Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that are not killed by current Lyme antibiotics. To identify more effective drugs that are active against the round bodies of B. burgdorferi, we established a round body persister model induced by amoxicillin and screened the Food and Drug Administration (FDA drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide (PI viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven of these scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. While some drug candidates such as daptomycin and clofazimine overlapped with a previous screen against stationary phase B. burgdorferi persisters, additional drug candidates active against round bodies we identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even if pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease.

  1. Identifying high-risk medication

    DEFF Research Database (Denmark)

    Sædder, Eva; Brock, Birgitte; Nielsen, Lars Peter

    2014-01-01

    salicylic acid, and beta-blockers; 30 drugs or drug classes caused 82 % of all serious MEs. The top ten drugs involved in fatal events accounted for 73 % of all drugs identified. CONCLUSION: Increasing focus on seven drugs/drug classes can potentially reduce hospitalizations, extended hospitalizations...

  2. Identifying drug-induced repolarization abnormalities from distinct ECG patterns in congenital long QT syndrome: a study of sotalol effects on T-wave morphology

    DEFF Research Database (Denmark)

    Graff, Claus; Andersen, Mads P; Xue, Joel Q

    2009-01-01

    BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal repolariz......BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal...... are typical ECG patterns in LQT2. Blinded to labels, the new morphology measures were tested in a third group of 39 healthy subjects receiving sotalol. Over 3 days the sotalol group received 0, 160 and 320 mg doses, respectively, and a 12-lead Holter ECG was recorded for 22.5 hours each day. Drug...... with QTcF, p ECG patterns in LQT2 carriers effectively quantified repolarization changes induced by sotalol. Further studies are needed to validate whether this measure has...

  3. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    Science.gov (United States)

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  4. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  5. Financial Impact of Cancer Drug Wastage and Potential Cost Savings From Mitigation Strategies.

    Science.gov (United States)

    Leung, Caitlyn Y W; Cheung, Matthew C; Charbonneau, Lauren F; Prica, Anca; Ng, Pamela; Chan, Kelvin K W

    2017-07-01

    Cancer drug wastage occurs when a parenteral drug within a fixed vial is not administered fully to a patient. This study investigated the extent of drug wastage, the financial impact on the hospital budget, and the cost savings associated with current mitigation strategies. We conducted a cross-sectional study in three University of Toronto-affiliated hospitals of various sizes. We recorded the actual amount of drug wasted over a 2-week period while using current mitigation strategies. Single-dose vial cancer drugs with the highest wastage potentials were identified (14 drugs). To calculate the hypothetical drug wastage with no mitigation strategies, we determined how many vials of drugs would be needed to fill a single prescription. The total drug costs over the 2 weeks ranged from $50,257 to $716,983 in the three institutions. With existing mitigation strategies, the actual drug wastage over the 2 weeks ranged from $928 to $5,472, which was approximately 1% to 2% of the total drug costs. In the hypothetical model with no mitigation strategies implemented, the projected drug cost wastage would have been $11,232 to $149,131, which accounted for 16% to 18% of the total drug costs. As a result, the potential annual savings while using current mitigation strategies range from 15% to 17%. The financial impact of drug wastage is substantial. Mitigation strategies lead to substantial cost savings, with the opportunity to reinvest those savings. More research is needed to determine the appropriate methods to minimize risk to patients while using the cost-saving mitigation strategies.

  6. Glucosylceramide and Lysophosphatidylcholines as Potential Blood Biomarkers for Drug-Induced Hepatic Phospholipidosis

    Science.gov (United States)

    Saito, Kosuke; Maekawa, Keiko; Ishikawa, Masaki; Senoo, Yuya; Urata, Masayo; Murayama, Mayumi; Nakatsu, Noriyuki; Yamada, Hiroshi; Saito, Yoshiro

    2014-01-01

    Drug-induced phospholipidosis is one of the major concerns in drug development and clinical treatment. The present study involved the use of a nontargeting lipidomic analysis with liquid chromatography-mass spectrometry to explore noninvasive blood biomarkers for hepatic phospholipidosis from rat plasma. We used three tricyclic antidepressants (clomipramine [CPM], imipramine [IMI], and amitriptyline [AMT]) for the model of phospholipidosis in hepatocytes and ketoconazole (KC) for the model of phospholipidosis in cholangiocytes and administered treatment for 3 and 28 days each. Total plasma lipids were extracted and measured. Lipid molecules contributing to the separation of control and drug-treated rat plasma in a multivariate orthogonal partial least squares discriminant analysis were identified. Four lysophosphatidylcholines (LPCs) (16:1, 18:1, 18:2, and 20:4) and 42:1 hexosylceramide (HexCer) were identified as molecules separating control and drug-treated rats in all models of phospholipidosis in hepatocytes. In addition, 16:1, 18:2, and 20:4 LPCs and 42:1 HexCer were identified in a model of hepatic phospholipidosis in cholangiocytes, although LPCs were identified only in the case of 3-day treatment with KC. The levels of LPCs were decreased by drug-induced phospholipidosis, whereas those of 42:1 HexCer were increased. The increase in 42:1 HexCer was much higher in the case of IMI and AMT than in the case of CPM; moreover, the increase induced by IMI was dose-dependent. Structural characterization determining long-chain base and hexose delineated that 42:1 HexCer was d18:1/24:0 glucosylceramide (GluCer). In summary, our study demonstrated that d18:1/24:0 GluCer and LPCs are potential novel biomarkers for drug-induced hepatic phospholipidosis. PMID:24980264

  7. Potential herb-drug interactions found in a community pharmacy patients

    OpenAIRE

    C. Batista; C. Pinho; M. Castel-Branco; M. Caramona; I. Figueiredo

    2015-01-01

    Phytotherapy has always played a leading role in therapeutics. However, a strong knowledge of the risk-benefit relationship of herbal products by patients and health professionals is necessary. The goals of this study were to characterize the consumption pattern of medicinal plants in patients in a community pharmacy, identify potential herb-drug interactions, and establish a list of recommendations for health professionals and/or patients in order to prevent/minimize negative outcomes arisin...

  8. Is Drug Use Related to the Choice of Potentially More Harmful Methods in Suicide Attempts?

    Directory of Open Access Journals (Sweden)

    Dartiu Xavier Da Silveira

    2014-01-01

    Full Text Available Objective To identify whether drug abuse is a risk factor for potentially more harmful methods of suicide attempts that could predict suicide completion in the future. Methods: The study involved the assessment of 86 patients who attempted suicide and who were admitted to the emergency ward of a Southwestern Brazilian general hospital. Results: Most patients were women (84.9%, young adults (30.53 ± 10.4 years, and single (61.6%. Recent drug use was reported by 53.5%, and 25.6% reported the use of drugs during the 24-hour period immediately before the suicide attempt. Most patients (75.6% ingested pills when attempting suicide–-a method considered potentially less harmful. Hanging, jumping, gas inhaling, and wrist cutting accounted for 22.2% of the attempts. Considering dual diagnoses, 54.7% presented with a depressive disorder, 8.1% with a disorder on the impulse control spectrum, and 26.7% reported an associated clinical condition. Recent drug use was predictive of the severity of the suicide attempt, as it was reported by 81% of those who engaged in more harmful attempts and by 46.2% of those who used less harmful methods ( P < 0.01; odds ratio = 4.96; confidence interval: 1.5–16.4. Conclusion: The identified variables associated with the use of potentially more harmful methods in suicide attempts were gender (male, presence of an impulsive control disorder, and recent use of psychoactive drugs.

  9. Nanomaterials potentiating standard chemotherapy drugs' effect

    Science.gov (United States)

    Kazantsev, S. O.; Korovin, M. S.

    2017-09-01

    Application of antitumor chemotherapeutic drugs is hindered by a number of barriers, multidrug resistance that makes effective drug deposition inside cancer cells difficult is among them. Recent research shows that potential efficiency of anticancer drugs can be increased with nanoparticles. This review is devoted to the application of nanoparticles for cancer treatment. Various types of nanoparticles currently used in medicine are reviewed. The nanoparticles that have been used for cancer therapy and targeted drug delivery to damaged sites of organism are described. Also, the possibility of nanoparticles application for cancer diagnosis that could help early detection of tumors is discussed. Our investigations of antitumor activity of low-dimensional nanostructures based on aluminum oxides and hydroxides are briefly reviewed.

  10. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  11. Potential Drug-Drug Interactions among Patients prescriptions collected from Medicine Out-patient Setting.

    Science.gov (United States)

    Farooqui, Riffat; Hoor, Talea; Karim, Nasim; Muneer, Mehtab

    2018-01-01

    To identify and evaluate the frequency, severity, mechanism and common pairs of drug-drug interactions (DDIs) in prescriptions by consultants in medicine outpatient department. This cross sectional descriptive study was done by Pharmacology department of Bahria University Medical & Dental College (BUMDC) in medicine outpatient department (OPD) of a private hospital in Karachi from December 2015 to January 2016. A total of 220 prescriptions written by consultants were collected. Medications given with patient's diagnosis were recorded. Drugs were analyzed for interactions by utilizing Medscape drug interaction checker, drugs.com checker and stockley`s drug interactions index. Two hundred eleven prescriptions were selected while remaining were excluded from the study because of unavailability of the prescribed drugs in the drug interaction checkers. In 211 prescriptions, two common diagnoses were diabetes mellitus (28.43%) and hypertension (27.96%). A total of 978 medications were given. Mean number of medications per prescription was 4.6. A total of 369 drug-drug interactions were identified in 211 prescriptions (175%). They were serious 4.33%, significant 66.12% and minor 29.53%. Pharmacokinetic and pharmacodynamic interactions were 37.94% and 51.21% respectively while 10.84% had unknown mechanism. Number wise common pairs of DDIs were Omeprazole-Losartan (S), Gabapentine- Acetaminophen (M), Losartan-Diclofenac (S). The frequency of DDIs is found to be too high in prescriptions of consultants from medicine OPD of a private hospital in Karachi. Significant drug-drug interactions were more and mostly caused by Pharmacodynamic mechanism. Number wise evaluation showed three common pairs of drugs involved in interactions.

  12. Extent of poly-pharmacy, occurrence and associated factors of drug-drug interaction and potential adverse drug reactions in Gondar Teaching Referral Hospital, North West Ethiopia

    Directory of Open Access Journals (Sweden)

    Endalkachew Admassie

    2013-01-01

    Full Text Available The aim of this study was to assess the extent of poly-pharmacy, occurrence, and associated factors for the occurrence of drug-drug interaction (DDI and potential adverse drug reaction (ADR in Gondar University Teaching Referral Hospital. Institutional-based retrospective cross-sectional study. This study was conducted on prescriptions of both in and out-patients for a period of 3 months at Gondar University Hospital. Both bivariate analysis and multivariate logistic regression were used to identify risk factors for the occurrence of DDI and possible ADRs. All the statistical calculations were performed using SPSS; software. A total of 12,334 prescriptions were dispensed during the study period of which, 2,180 prescriptions were containing two or more drugs per prescription. A total of 21,210 drugs were prescribed and the average number of drugs per prescription was 1.72. Occurrences of DDI of all categories (Major, Moderate, and Minor were analyzed and DDI were detected in 711 (32.6% prescriptions. Sex was not found to be a risk factor for the occurrence of DDI and ADR, while age and number of medications per prescription were found to be significant risk factors for the occurrence of DDI and ADR. The mean number of drugs per prescription was 1.72 and hence with regard to the WHO limit of drugs per prescription, Gondar hospital was able to maintain the limit and prescriptions containing multiple drugs supposed to be taken systemically. Numbers of drugs per prescription as well as older age were found to be predisposing factors for the occurrence of DDI and potential ADRs while sex was not a risk factor.

  13. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  14. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  15. High-throughput screen of drug repurposing library identifies inhibitors of Sarcocystis neurona growth

    Directory of Open Access Journals (Sweden)

    Gregory D. Bowden

    2018-04-01

    Full Text Available The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM, a serious neurologic disease of horses. Many horses in the U.S. are at risk of developing EPM; approximately 50% of all horses in the U.S. have been exposed to S. neurona and treatments for EPM are 60–70% effective. Advancement of treatment requires new technology to identify new drugs for EPM. To address this critical need, we developed, validated, and implemented a high-throughput screen to test 725 FDA-approved compounds from the NIH clinical collections library for anti-S. neurona activity. Our screen identified 18 compounds with confirmed inhibitory activity against S. neurona growth, including compounds active in the nM concentration range. Many identified inhibitory compounds have well-defined mechanisms of action, making them useful tools to study parasite biology in addition to being potential therapeutic agents. In comparing the activity of inhibitory compounds identified by our screen to that of other screens against other apicomplexan parasites, we found that most compounds (15/18; 83% have activity against one or more related apicomplexans. Interestingly, nearly half (44%; 8/18 of the inhibitory compounds have reported activity against dopamine receptors. We also found that dantrolene, a compound already formulated for horses with a peak plasma concentration of 37.8 ± 12.8 ng/ml after 500 mg dose, inhibits S. neurona parasites at low concentrations (0.065 μM [0.036–0.12; 95% CI] or 21.9 ng/ml [12.1–40.3; 95% CI]. These studies demonstrate the use of a new tool for discovering new chemotherapeutic agents for EPM and potentially providing new reagents to elucidate biologic pathways required for successful S. neurona infection. Keywords: Drug repurposing, High-throughput screen, Sarcocystis neurona, Equine protozoal myeloencephalitis

  16. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    Science.gov (United States)

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  17. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities.

    Science.gov (United States)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B; Papamarkou, Theodore; Huber, Kilian V M; Mutz, Cornelia; Toretsky, Jeffrey A; Bennett, Keiryn L; Olsen, Jesper V; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Drug affordability-potential tool for comparing illicit drug markets.

    Science.gov (United States)

    Groshkova, Teodora; Cunningham, Andrew; Royuela, Luis; Singleton, Nicola; Saggers, Tony; Sedefov, Roumen

    2018-06-01

    -national comparisons of retail drug markets in Europe. Future work will need to examine other potential uses of the drug affordability tool. The limitations of this measure reflect primarily the limitations of the constituent data; in addition to issues inherent in collecting accurate data on illicit markets, analysis that relies on data collected from multiple countries is susceptible to discrepancies in data collection practices from country to country. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Potential drug interactions in patients given antiretroviral therapy.

    Science.gov (United States)

    Santos, Wendel Mombaque Dos; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-11-21

    to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. investigar potenciais interações droga-droga (PDDI) em pacientes infectados com HIV em terapia de antirretroviral. um estudo de corte transversal foi conduzido em 161 pessoas infectadas com o HIV. Dados de tratamentos clínicos, sociodemográficos e antirretrovirais foram coletados. Para analisar a possível interação medicamentosa, nós usamos o software Micromedex(r). A análise estatística foi feita por regressão logística binária, com um valor P de ≤0.05, considerado estatisticamente significativo. dos participantes, 52.2% foram expostos a potenciais interações droga-droga. No total, houve 218 interações droga-droga, das quais 79.8% ocorreram entre drogas usadas para a terapia antirretroviral. Houve uma associação entre o uso de cinco ou mais medicamentos e possíveis interações droga-droga (p = 0.000), e entre o período de tempo de terapia antirretroviral acima de seis anos e possíveis interações droga

  20. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    OpenAIRE

    Huang, Hao; He, Yuehan; Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biologi...

  1. IN VITRO MODELS TO EVALUATE DRUG-INDUCED HYPERSENSITIVITY: POTENTIAL TEST BASED ON ACTIVATION OF DENDRITIC CELLS

    Directory of Open Access Journals (Sweden)

    Valentina Galbiati

    2016-07-01

    Full Text Available Hypersensitivity drug reactions (HDRs are the adverse effect of pharmaceuticals that clinically resemble allergy. HDRs account for approximately 1/6 of drug-induced adverse effects, and include immune-mediated ('allergic' and non immune-mediated ('pseudo allergic' reactions. In recent years, the severe and unpredicted drug adverse events clearly indicate that the immune system can be a critical target of drugs. Enhanced prediction in preclinical safety evaluation is, therefore, crucial. Nowadays, there are no validated in vitro or in vivo methods to screen the sensitizing potential of drugs in the pre-clinical phase. The problem of non-predictability of immunologically-based hypersensitivity reactions is related to the lack of appropriate experimental models rather than to the lack of -understanding of the adverse phenomenon.We recently established experimental conditions and markers to correctly identify drug associated with in vivo hypersensitivity reactions using THP-1 cells and IL-8 production, CD86 and CD54 expression. The proposed in vitro method benefits from a rationalistic approach with the idea that allergenic drugs share with chemical allergens common mechanisms of cell activation. This assay can be easily incorporated into drug development for hazard identification of drugs, which may have the potential to cause in vivo hypersensitivity reactions. The purpose of this review is to assess the state of the art of in vitro models to assess the allergenic potential of drugs based on the activation of dendritic cells.

  2. [Prevalence of Avoidable Potential Interactions Between Antidepressants and Other Drugs in Colombian Patients].

    Science.gov (United States)

    Machado-Alba, Jorge E; Morales-Plaza, Cristhian David

    2013-06-01

    To determine the possible drugs interactions with antidepressive agents in data bases of patients in the Health Insurance System of Colombia. From data bases of about 4 million users in Colombia, a systematic review of drugs dispensation statistics was made to identify drug interactions between antidepressive agents, cholinergic antagonists and tramadol in 2010. We identified 114,465 monthly users of antidepressive agents. Of these, 5776 (5.0%) received two, and 178 (0.2%) received three antidepressive agents simultaneously. The most frequent combination was fluoxetine+trazodone (n=3235; 56.9% of cases). About 1127 (1.0%) patients were prescribed a cholinergic antagonist simultaneously; 2523 (2.1%) users were dispensed tramadol at the same time, while raising the risk of serotonin syndrome. Drug interactions represent a potential risk that is often underestimated by physicians. Pharmacovigilance is a useful tool to optimize resources and prevent negative outcomes associated with medication. It is recommended that systematic search is made to enhance surveillance programs for the rational use of medicines in this country. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  4. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES.

    Science.gov (United States)

    Correia, Rion Brattig; Li, Lang; Rocha, Luis M

    2016-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram

  5. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  6. The effect of membrane diffusion potential change on anionic drugs ...

    African Journals Online (AJOL)

    The effect of membrane potential change on anionic drugs Indomethacin and barbitone induced human erythrocyte shape change and red cell uptake of drug has been studied using microscopy and spectrophotometry techniques respectively. The membrane potential was changed by reducing the extracellular chloride ...

  7. [Impact of potentially inappropriate drug usage on health insurance business results].

    Science.gov (United States)

    Kirschke, Malin; Böhme, Jacqueline

    2014-09-01

    In Germany a list was drawn up that included 83 potentially inappropriate drugs. The PRISCUS list published in 2010 was intended to highlight certain problems in the pharmakotherapy of elderly patients and serve as a support for improved medicine safety. Almost a third of the insurance portfolio of the HALLESCHE Krankenversicherung aged over 75 years takes drugs that are on the PRISCUS list. Benzodiazepine and Z-drugs are taken most frequently. The costs per insurant with potentially inappropriate medication are on average higher than for policyholders who do not take drugs on the PRISCUS list. The costs per insurant are rising, with an increase in the number of PRISCUS agents being taken as well. However, there is still no scientific proof that potentially inappropriate drugs lead to adverse drug events.

  8. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Traditionally top-down method was used to identify prognostic features in cancer research. That is to say, differentially expressed genes usually in cancer versus normal were identified to see if they possess survival prediction power. The problem is that prognostic features identified from one set of patient samples can rarely be transferred to other datasets. We apply bottom-up approach in this study: survival correlated or clinical stage correlated genes were selected first and prioritized by their network topology additionally, then a small set of features can be used as a prognostic signature.Gene expression profiles of a cohort of 221 hepatocellular carcinoma (HCC patients were used as a training set, 'bottom-up' approach was applied to discover gene-expression signatures associated with survival in both tumor and adjacent non-tumor tissues, and compared with 'top-down' approach. The results were validated in a second cohort of 82 patients which was used as a testing set.Two sets of gene signatures separately identified in tumor and adjacent non-tumor tissues by bottom-up approach were developed in the training cohort. These two signatures were associated with overall survival times of HCC patients and the robustness of each was validated in the testing set, and each predictive performance was better than gene expression signatures reported previously. Moreover, genes in these two prognosis signature gave some indications for drug-repositioning on HCC. Some approved drugs targeting these markers have the alternative indications on hepatocellular carcinoma.Using the bottom-up approach, we have developed two prognostic gene signatures with a limited number of genes that associated with overall survival times of patients with HCC. Furthermore, prognostic markers in these two signatures have the potential to be therapeutic targets.

  9. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  10. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth

    Science.gov (United States)

    Al-Ali, Hassan; Lee, Do-Hun; Danzi, Matt C.; Nassif, Houssam; Gautam, Prson; Wennerberg, Krister; Zuercher, Bill; Drewry, David H.; Lee, Jae K.; Lemmon, Vance P.; Bixby, John L.

    2016-01-01

    Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multi-target drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown to mediate drug resistance. PMID:26056718

  11. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

    Science.gov (United States)

    Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Kumar, Kamal; Yu, Xueping; Wallqvist, Anders; Reifman, Jaques

    2017-06-08

    The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects. We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles. We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs

  12. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    International Nuclear Information System (INIS)

    Dalmas, Deidre A.; Scicchitano, Marshall S.; Mullins, David; Hughes-Earle, Angela; Tatsuoka, Kay; Magid-Slav, Michal; Frazier, Kendall S.; Thomas, Heath C.

    2011-01-01

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid and high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip® analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan™) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: ► A gene panel was developed to help predict rat drug-induced mesenteric MAN. ► A gene panel was identified following treatment of rats with 28

  13. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  14. Potential geographic "hotspots" for drug-injection related transmission of HIV and HCV and for initiation into injecting drug use in New York City, 2011-2015, with implications for the current opioid epidemic in the US.

    Science.gov (United States)

    Des Jarlais, D C; Cooper, H L F; Arasteh, K; Feelemyer, J; McKnight, C; Ross, Z

    2018-01-01

    We identified potential geographic "hotspots" for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an "end of the epidemic" stage, while HCV is in a continuing, high prevalence (> 50%) stage. We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011-2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential "hotspots" for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk-passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk-injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US.

  15. Potential drug–drug interactions in Alzheimer patients with behavioral symptoms

    Directory of Open Access Journals (Sweden)

    Pasqualetti G

    2015-09-01

    Full Text Available Giuseppe Pasqualetti, Sara Tognini, Valeria Calsolaro, Antonio Polini, Fabio Monzani Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Abstract: The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug–drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug–drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer’s disease (AD patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug–drug interactions, potentially harmful, in AD patients with

  16. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES

    Science.gov (United States)

    CORREIA, RION BRATTIG; LI, LANG; ROCHA, LUIS M.

    2015-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this “Bibliome”, the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products—including cannabis—which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015. We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that

  17. A genome-wide RNAi screen identifies novel targets of neratinib resistance leading to identification of potential drug resistant genetic markers.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Wei; Ryan, Terence E

    2012-04-01

    Neratinib (HKI-272) is a small molecule tyrosine kinase inhibitor of the ErbB receptor family currently in Phase III clinical trials. Despite its efficacy, the mechanism of potential cellular resistance to neratinib and genes involved with it remains unknown. We have used a pool-based lentiviral genome-wide functional RNAi screen combined with a lethal dose of neratinib to discover chemoresistant interactions with neratinib. Our screen has identified a collection of genes whose inhibition by RNAi led to neratinib resistance including genes involved in oncogenesis (e.g. RAB33A, RAB6A and BCL2L14), transcription factors (e.g. FOXP4, TFEC, ZNF), cellular ion transport (e.g. CLIC3, TRAPPC2P1, P2RX2), protein ubiquitination (e.g. UBL5), cell cycle (e.g. CCNF), and genes known to interact with breast cancer-associated genes (e.g. CCNF, FOXP4, TFEC, several ZNF factors, GNA13, IGFBP1, PMEPA1, SOX5, RAB33A, RAB6A, FXR1, DDO, TFEC, OLFM2). The identification of novel mediators of cellular resistance to neratinib could lead to the identification of new or neoadjuvant drug targets. Their use as patient or treatment selection biomarkers could make the application of anti-ErbB therapeutics more clinically effective.

  18. Is Drug Use Related to the Choice of Potentially More Harmful Methods in Suicide Attempts?

    OpenAIRE

    da Silveira, Dartiu Xavier; Fidalgo, Thiago Marques; Di Pietro, Monica; Santos, Jair Guilherme; Oliveira, Leonardo Q

    2014-01-01

    Objective To identify whether drug abuse is a risk factor for potentially more harmful methods of suicide attempts that could predict suicide completion in the future. Methods: The study involved the assessment of 86 patients who attempted suicide and who were admitted to the emergency ward of a Southwestern Brazilian general hospital. Results: Most patients were women (84.9%), young adults (30.53 ± 10.4 years), and single (61.6%). Recent drug use was reported by 53.5%, and 25.6% reported the...

  19. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  20. Historical Spice as a Future Drug: Therapeutic Potential of Piperlongumine.

    Science.gov (United States)

    Prasad, Sahdeo; Tyagi, Amit K

    2016-01-01

    Spice and spice-derived compounds have been identified and explored for their health benefits since centuries. One of the spice long pepper has been traditionally used to treat chronic bronchitis, asthma, constipation, gonorrhea, paralysis of the tongue, diarrhea, cholera, malaria, viral hepatitis, respiratory infections, stomach ache, diseases of the spleen, cough, and tumors. In this review, the evidences for the chemopreventive and chemotherapeutic potential of piperlongumine have been described. The active component piperlonguime has shown effective against various ailments including cancer, neurogenerative disease, arthritis, melanogenesis, lupus nephritis, and hyperlipidemic. These beneficial effects of piperlongumine is attributed to its ability to modulate several signaling molecules like reactive oxygen species, kinases, proteasome, proto-oncogenes, transcription factors, cell cycle, inflammatory molecules and cell growth and survival molecules. Piperlongumine also chemosensitizes to drugs resistant cancer cells. Overall the consumption of long peppers is therefore recommended for the prevention and treatment of various diseases including cancer, and thus piperlongumine may be a promising future candidate drug against cancer.

  1. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations.

    Science.gov (United States)

    Huskinson, Sally L; Naylor, Jennifer E; Rowlett, James K; Freeman, Kevin B

    2014-12-01

    Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    Zeta potential is a scientific term for electrokinetic potential in colloidal systems which has a major effect on the various properties of nano-drug delivery systems. Presently, colloidal nano-carriers are growing at a remarkable rate owing to their strong potential for overcoming old challenges such as poor drug solubility and ...

  3. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  4.  The potential nephrotoxicity of antiretroviral drugs

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2012-09-01

    Full Text Available  The intensive studies carried out in many scientific laboratories and the efforts of numerous pharmaceutical companies have led to the development of drugs which are able to effectively inhibitHIV proliferation. At present, a number of antiretroviral agents with different mechanisms of actionare available. Unfortunately, long-term use of antiretroviral drugs, however, does not remainindifferent to the patient and can cause significant side effects.In the present work, the antiretroviral drugs with a nephrotoxicity potential most commonly usedin clinical practice are described. In the review attention has also been focused on the nephropathyresulting from the HIV infection alone and the influence of genetic factors on the occurrenceof pathological changes in the kidney.

  5. The potential drug-drug interaction between proton pump inhibitors and warfarin

    DEFF Research Database (Denmark)

    Henriksen, Daniel Pilsgaard; Stage, Tore Bjerregaard; Hansen, Morten Rix

    2015-01-01

    BACKGROUND: Proton pump inhibitors (PPIs) have been suggested to increase the effect of warfarin, and clinical guidelines recommend careful monitoring of international normalized ratio (INR) when initiating PPI among warfarin users. However, this drug-drug interaction is sparsely investigated...... in a clinical setting. The aim was to assess whether initiation of PPI treatment among users of warfarin leads to increased INR values. METHODS: The study was an observational self-controlled study from 1998 to 2012 leveraging data on INR measurements on patients treated with warfarin from primary care...... and outpatient clinics and their use of prescription drugs. Data were analyzed in 2015. We assessed INR, warfarin dose, and dose/INR ratio before and after initiating PPI treatment using the paired student's t-test. RESULTS: We identified 305 warfarin users initiating treatment with PPIs. The median age was 71...

  6. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity

    Science.gov (United States)

    Marjanovic, Jasmina; Chalupska, Dominika; Patenode, Caroline; Coster, Adam; Arnold, Evan; Ye, Alice; Anesi, George; Lu, Ying; Okun, Ilya; Tkachenko, Sergey; Haselkorn, Robert; Gornicki, Piotr

    2010-01-01

    Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases. We have developed an inexpensive nonradioactive high-throughput screening system to identify new ACC inhibitors. The screen uses yeast gene-replacement strains depending for growth on cloned human ACC1 and ACC2. In “proof of concept” experiments, growth of such strains was inhibited by compounds known to target human ACCs. The screen is sensitive and robust. Medium-size chemical libraries yielded new specific inhibitors of human ACC2. The target of the best of these inhibitors was confirmed with in vitro enzymatic assays. This compound is a new drug chemotype inhibiting human ACC2 with 2.8 μM IC50 and having no effect on human ACC1 at 100 μM. PMID:20439761

  7. Short communication: cheminformatics analysis to identify predictors of antiviral drug penetration into the female genital tract.

    Science.gov (United States)

    Thompson, Corbin G; Sedykh, Alexander; Nicol, Melanie R; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Kashuba, Angela D M

    2014-11-01

    The exposure of oral antiretroviral (ARV) drugs in the female genital tract (FGT) is variable and almost unpredictable. Identifying an efficient method to find compounds with high tissue penetration would streamline the development of regimens for both HIV preexposure prophylaxis and viral reservoir targeting. Here we describe the cheminformatics investigation of diverse drugs with known FGT penetration using cluster analysis and quantitative structure-activity relationships (QSAR) modeling. A literature search over the 1950-2012 period identified 58 compounds (including 21 ARVs and representing 13 drug classes) associated with their actual concentration data for cervical or vaginal tissue, or cervicovaginal fluid. Cluster analysis revealed significant trends in the penetrative ability for certain chemotypes. QSAR models to predict genital tract concentrations normalized to blood plasma concentrations were developed with two machine learning techniques utilizing drugs' molecular descriptors and pharmacokinetic parameters as inputs. The QSAR model with the highest predictive accuracy had R(2)test=0.47. High volume of distribution, high MRP1 substrate probability, and low MRP4 substrate probability were associated with FGT concentrations ≥1.5-fold plasma concentrations. However, due to the limited FGT data available, prediction performances of all models were low. Despite this limitation, we were able to support our findings by correctly predicting the penetration class of rilpivirine and dolutegravir. With more data to enrich the models, we believe these methods could potentially enhance the current approach of clinical testing.

  8. Identification of clinically significant drug-drug interactions in cardiac ...

    African Journals Online (AJOL)

    Purpose: To identify clinically significant potential drug-drug interactions in cardiac intensive care units of two tertiary care ... hypertension, hyperlipidemia, diabetes or other diseases .... May result in digoxin toxicity (nausea, vomiting, cardiac.

  9. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.

    Science.gov (United States)

    Barua, Neil U; Gill, Steven S; Love, Seth

    2014-03-01

    Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.

  10. Consumer Mobile Apps for Potential Drug-Drug Interaction Check: Systematic Review and Content Analysis Using the Mobile App Rating Scale (MARS).

    Science.gov (United States)

    Kim, Ben Yb; Sharafoddini, Anis; Tran, Nam; Wen, Emily Y; Lee, Joon

    2018-03-28

    General consumers can now easily access drug information and quickly check for potential drug-drug interactions (PDDIs) through mobile health (mHealth) apps. With aging population in Canada, more people have chronic diseases and comorbidities leading to increasing numbers of medications. The use of mHealth apps for checking PDDIs can be helpful in ensuring patient safety and empowerment. The aim of this study was to review the characteristics and quality of publicly available mHealth apps that check for PDDIs. Apple App Store and Google Play were searched to identify apps with PDDI functionality. The apps' general and feature characteristics were extracted. The Mobile App Rating Scale (MARS) was used to assess the quality. A total of 23 apps were included for the review-12 from Apple App Store and 11 from Google Play. Only 5 of these were paid apps, with an average price of $7.19 CAD. The mean MARS score was 3.23 out of 5 (interquartile range 1.34). The mean MARS scores for the apps from Google Play and Apple App Store were not statistically different (P=.84). The information dimension was associated with the highest score (3.63), whereas the engagement dimension resulted in the lowest score (2.75). The total number of features per app, average rating, and price were significantly associated with the total MARS score. Some apps provided accurate and comprehensive information about potential adverse drug effects from PDDIs. Given the potentially severe consequences of incorrect drug information, there is a need for oversight to eliminate low quality and potentially harmful apps. Because managing PDDIs is complex in the absence of complete information, secondary features such as medication reminder, refill reminder, medication history tracking, and pill identification could help enhance the effectiveness of PDDI apps. ©Ben YB Kim, Anis Sharafoddini, Nam Tran, Emily Y Wen, Joon Lee. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 28.03.2018.

  11. Prevalence of potentially serious drug-drug interactions among South African elderly private health sector patients using the Mimica Matanović/Vlahović-Palčevski protocol.

    Science.gov (United States)

    van Heerden, Julandi A; Burger, Johanita R; Gerber, Jan J; Vlahović-Palčevski, Vera

    2018-04-01

    To determine the prevalence of potentially serious drug-drug interactions (DDIs) and their relationship with gender and age, among elderly in South Africa. A cross-sectional study was conducted using pharmaceutical claims data for 2013, for a total of 103 420 medical scheme beneficiaries' ≥65 years. All medications dispensed within one calendar month where the days' supply of medication dispensed overlapped, were grouped as one prescription. DDIs per prescription were then identified using the Mimica Matanović/Vlahović-Palčevski DDI protocol. Results were interpreted using effect sizes, that is Cramér's V, Cohen's d and Cohen's ƒ 2 . A total of 331 659 DDIs were identified on 235 870 (25.8%, N = 912 713) prescriptions (mean 0.36 (SD 0.7) (95% CI, 0.36 to 0.37)). Women encountered 63.5% of all DDIs. Effect sizes for the association between DDIs and age group (Cramér's V = 0.06), and gender (Cramér's V = 0.05) was negligible. There was no difference between men and women regarding the mean number of DDIs identified per prescription (Cohen's d = 0.10). The number of medicine per prescription (ƒ 2 = 0.51) was the biggest predictor of the DDIs. The most frequent interacting drug combinations were between central nervous system medicines (30.6%). Our study is the first to report the prevalence of potentially serious DDIs among an elderly population in the South African private health sector utilising the Mimica Matanović/Vlahović-Palčevski DDI protocol. Overall, we identified DDIs in approximately 26% of the prescriptions in our study. Age and gender were not found to be predictors of potentially serious DDIs. © 2017 Royal Pharmaceutical Society.

  12. Preferred drug lists: Potential impact on healthcare economics

    Directory of Open Access Journals (Sweden)

    Kimberly Ovsag

    2008-04-01

    Full Text Available Kimberly Ovsag, Sabrina Hydery, Shaker A MousaPharmaceutical Research Institute at Albany College of Pharmacy, Albany, New York, USAObjectives: To analyze the implementation of Medicaid preferred drug lists (PDLs in a number of states and determine its impact on quality of care and cost relative to other segments of healthcare.Methods: We reviewed research and case studies found by searching library databases, primarily MEDLINE and EBSCOHost, and searching pertinent journals. Keywords initially included “drug lists,” “prior authorization,” “prior approval,” and “Medicaid.” We added terms such as “influence use of other healthcare services,” “quality of care,” and “overall economic impact.” We mainly used primary sources.Results: Based on our literature review, we determined that there are a number of issues regarding Medicaid PDLs that need to be addressed. Some issues include: (a the potential for PDLs to influence the utilization of other healthcare services, (b criteria used by Medicaid for determining acceptance of drugs onto a PDL, (c the effect of PDL implementation on compliance to new regimens, (d the potential effects of restricting medication availability on quality of care, (e administrative costs associated with PDLs, and (f satisfaction rates among patients and medical providers. This review highlighted expected short-term cost savings with limited degree of compromised quality of PDL implementation, but raised the concern about the potential long-term decline in quality of care and overall economic impact.Conclusions: The number of concerns raised indicates that further studies are warranted regarding both short-term cost benefits as well as potential long-term effects of Medicaid PDL implementation. Objective analysis of these effects is necessary to ensure cost-effectiveness and quality of care.Keywords: preferred drug lists, medicaid, healthcare costs, managed care

  13. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    Science.gov (United States)

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  14. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  15. Utilization of genomic signatures to identify phenotype-specific drugs.

    Directory of Open Access Journals (Sweden)

    Seiichi Mori

    2009-08-01

    Full Text Available Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery, we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines. In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000 compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based screens.

  16. Emory University: MEDICI (Mining Essentiality Data to Identify Critical Interactions) for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has developed a computational methodology to combine high-throughput knockdown data with known protein network topologies to infer the importance of protein-protein interactions (PPIs) for the survival of cancer cells.  Applying these data to the Achilles shRNA results, the CCLE cell line characterizations, and known and newly identified PPIs provides novel insights for potential new drug targets for cancer therapies and identifies important PPI hubs.

  17. Herbal drug patenting in India: IP potential.

    Science.gov (United States)

    Sahoo, Niharika; Manchikanti, Padmavati; Dey, Satya Hari

    2011-09-01

    Herbal drugs are gaining worldwide prominence due to their distinct advantages. Developing countries have started exploring the ethnopharmacological approach of drug discovery and have begun to file patents on herbal drugs. The expansion of R&D in Indian herbal research organizations and presence of manufacturing units at non-Indian sites is an indication of the capability to develop new products and processes. The present study attempts to identify innovations in the Indian herbal drug sector by analyzing the patenting trends in India, US and EU. Based on key word and IPC based search at the IPO, USPTO, Esp@cenet and WIPO databases, patent applications and grant in herbal drugs by Indian applicants/assignees was collected for the last ten years (from 1st January 2001 to 31st October 2010). From this collection patents related to human therapeutic use only were selected. Analysis was performed to identify filing trends, major applicants/assignees, disease area and major plant species used for various treatments. There is a gradual increase in patent filing through the years. In India, individual inventors have maximum applications and grants. CSIR, among research organizations and Hindustan Unilever, Avesthagen, Piramal Life Science, Sahajanand Biotech and Indus Biotech among the companies have the maximum granted patents in India, US and EU respectively. Diabetes, cancer and inflammatory disorders are the major areas for patenting in India and abroad. Recent patents are on new herbal formulations for treatment of AIDS, hepatitis, skin disorders and gastrointestinal disorders. A majority of the herbal patents applications and grants in India are with individual inventors. Claim analysis indicates that these patents include novel multi-herb compositions with synergistic action. Indian research organizations are more active than companies in filing for patents. CSIR has maximum numbers of applications not only in India but also in the US and EU. Patents by research

  18. Therapeutic potential of cannabis-related drugs.

    Science.gov (United States)

    Alexander, Stephen P H

    2016-01-04

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Illicit Drug Use in a Community-Based Sample of Heterosexually Identified Emerging Adults

    Science.gov (United States)

    Halkitis, Perry N.; Manasse, Ashley N.; McCready, Karen C.

    2010-01-01

    In this study we assess lifetime and recent drug use patterns among 261 heterosexually identified 18- to 25-year-olds through brief street intercept surveys conducted in New York City. Marijuana, hallucinogens, powder cocaine, and ecstasy were the most frequently reported drugs for both lifetime and recent use. Findings further suggest significant…

  20. Newer Approaches to Identify Potential Untoward Effects in Functional Foods.

    Science.gov (United States)

    Marone, Palma Ann; Birkenbach, Victoria L; Hayes, A Wallace

    2016-01-01

    Globalization has greatly accelerated the numbers and variety of food and beverage products available worldwide. The exchange among greater numbers of countries, manufacturers, and products in the United States and worldwide has necessitated enhanced quality measures for nutritional products for larger populations increasingly reliant on functionality. These functional foods, those that provide benefit beyond basic nutrition, are increasingly being used for their potential to alleviate food insufficiency while enhancing quality and longevity of life. In the United States alone, a steady import increase of greater than 15% per year or 24 million shipments, over 70% products of which are food related, is regulated under the Food and Drug Administration (FDA). This unparalleled growth has resulted in the need for faster, cheaper, and better safety and efficacy screening methods in the form of harmonized guidelines and recommendations for product standardization. In an effort to meet this need, the in vitro toxicology testing market has similarly grown with an anticipatory 15% increase between 2010 and 2015 of US$1.3 to US$2.7 billion. Although traditionally occupying a small fraction of the market behind pharmaceuticals and cosmetic/household products, the scope of functional food testing, including additives/supplements, ingredients, residues, contact/processing, and contaminants, is potentially expansive. Similarly, as functional food testing has progressed, so has the need to identify potential adverse factors that threaten the safety and quality of these products. © The Author(s) 2015.

  1. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  2. Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target.

    Directory of Open Access Journals (Sweden)

    Thomas C Eadsforth

    Full Text Available The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.

  3. Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets

    Directory of Open Access Journals (Sweden)

    Deepika Kanojia

    2017-11-01

    Full Text Available Abstract Background Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management. Methods Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial. Results Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model. Conclusions Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.

  4. Improving drug policy: The potential of broader democratic participation.

    Science.gov (United States)

    Ritter, Alison; Lancaster, Kari; Diprose, Rosalyn

    2018-05-01

    Policies concerned with illicit drugs vex governments. While the 'evidence-based policy' paradigm argues that governments should be informed by 'what works', in practice policy makers rarely operate this way. Moreover the evidence-based policy paradigm fails to account for democratic participatory processes, particularly how community members and people who use drugs might be included. The aim of this paper is to explore the political science thinking about democratic participation and the potential afforded in 'deliberative democracy' approaches, such as Citizens Juries and other mini-publics for improved drug policy processes. Deliberative democracy, through its focus on inclusion, equality and reasoned discussion, shows potential for drug policy reform and shifts the focus from reliance on and privileging of experts and scientific evidence. But the very nature of this kind of 'deliberation' may delimit participation, notably through its insistence on authorised modes of communication. Other forms of participation beyond reasoned deliberation aligned with the ontological view that participatory processes themselves are constitutive of subject positions and policy problems, may generate opportunities for considering how the deleterious effects of authorised modes of communication might be overcome. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States.

    Science.gov (United States)

    Calderon, Silvia N; Klein, Michael

    2014-12-01

    In the United States of America (USA), the abuse potential assessment of a drug is performed as part of the safety evaluation of a drug under development, and to evaluate if the drug needs to be subject to controls that would minimize the abuse of the drug once on the market. The assessment of the abuse potential of new drugs consists of a scientific and medical evaluation of all data related to abuse of the drug. This paper describes the regulatory framework for evaluating the abuse potential of new drugs, in general, including novel stimulants. The role of the United States Food and Drug Administration (FDA) in the evaluation of the abuse potential of drugs, and its role in drug control are also discussed. A definition of abuse potential, an overview of the currently accepted approaches to evaluating the abuse potential of a drug, as well as a description of the criteria that applies when recommending a specific level of control (i.e., a Schedule) for a drug under the Controlled Substances Act (CSA). This article is part of the Special Issue entitled 'CNS Stimulants'. Published by Elsevier Ltd.

  6. High-throughput screen of drug repurposing library identifies inhibitors of Sarcocystis neurona growth.

    Science.gov (United States)

    Bowden, Gregory D; Land, Kirkwood M; O'Connor, Roberta M; Fritz, Heather M

    2018-04-01

    The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S. are at risk of developing EPM; approximately 50% of all horses in the U.S. have been exposed to S. neurona and treatments for EPM are 60-70% effective. Advancement of treatment requires new technology to identify new drugs for EPM. To address this critical need, we developed, validated, and implemented a high-throughput screen to test 725 FDA-approved compounds from the NIH clinical collections library for anti-S. neurona activity. Our screen identified 18 compounds with confirmed inhibitory activity against S. neurona growth, including compounds active in the nM concentration range. Many identified inhibitory compounds have well-defined mechanisms of action, making them useful tools to study parasite biology in addition to being potential therapeutic agents. In comparing the activity of inhibitory compounds identified by our screen to that of other screens against other apicomplexan parasites, we found that most compounds (15/18; 83%) have activity against one or more related apicomplexans. Interestingly, nearly half (44%; 8/18) of the inhibitory compounds have reported activity against dopamine receptors. We also found that dantrolene, a compound already formulated for horses with a peak plasma concentration of 37.8 ± 12.8 ng/ml after 500 mg dose, inhibits S. neurona parasites at low concentrations (0.065 μM [0.036-0.12; 95% CI] or 21.9 ng/ml [12.1-40.3; 95% CI]). These studies demonstrate the use of a new tool for discovering new chemotherapeutic agents for EPM and potentially providing new reagents to elucidate biologic pathways required for successful S. neurona infection. Copyright © 2018. Published by Elsevier Ltd.

  7. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs

    DEFF Research Database (Denmark)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V

    2016-01-01

    of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along...

  8. Potential Impact of Diet on Treatment Effect from Anti-TNF Drugs in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Hansen, Axel Kornerup; Heitmann, Berit Lilienthal

    2017-01-01

    We wanted to investigate the current knowledge on the impact of diet on anti-TNF response in inflammatory bowel diseases (IBD), to identify dietary factors that warrant further investigations in relation to anti-TNF treatment response, and, finally, to discuss potential strategies for such invest...... inflammation and potentially impact treatment response to anti-TNF drugs. Further studies using hypothesis-driven and data-driven strategies in prospective observational, animal and interventional studies are warranted.......We wanted to investigate the current knowledge on the impact of diet on anti-TNF response in inflammatory bowel diseases (IBD), to identify dietary factors that warrant further investigations in relation to anti-TNF treatment response, and, finally, to discuss potential strategies......% CI: 1.73-4.31, p impact of diet on anti-TNF treatment response for clinical use is scarce. Here we propose a mechanism by which Western style diet high in meat and low in fibre may promote colonic...

  9. Can surveillance systems identify and avert adverse drug events? A prospective evaluation of a commercial application.

    Science.gov (United States)

    Jha, Ashish K; Laguette, Julia; Seger, Andrew; Bates, David W

    2008-01-01

    Computerized monitors can effectively detect and potentially prevent adverse drug events (ADEs). Most monitors have been developed in large academic hospitals and are not readily usable in other settings. We assessed the ability of a commercial program to identify and prevent ADEs in a community hospital. and Measurement We prospectively evaluated the commercial application in a community-based hospital. We examined the frequency and types of alerts produced, how often they were associated with ADEs and potential ADEs, and the potential financial impact of monitoring for ADEs. Among 2,407 patients screened, the application generated 516 high priority alerts. We were able to review 266 alerts at the time they were generated and among these, 30 (11.3%) were considered substantially important to warrant contacting the physician caring for the patient. These 30 alerts were associated with 4 ADEs and 11 potential ADEs. In all 15 cases, the responsible physician was unaware of the event, leading to a change in clinical care in 14 cases. Overall, 23% of high priority alerts were associated with an ADE (95% confidence interval [CI] 12% to 34%) and another 15% were associated with a potential ADE (95% CI 6% to 24%). Active surveillance used approximately 1.5 hours of pharmacist time daily. A commercially available, computer-based ADE detection tool was effective at identifying ADEs. When used as part of an active surveillance program, it can have an impact on preventing or ameliorating ADEs.

  10. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  11. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  12. Drug pricing reform in China: analysis of piloted approaches and potential impact of the reform

    Science.gov (United States)

    Chen, Yixi; Hu, Shanlian; Dong, Peng; Kornfeld, Åsa; Jaros, Patrycja; Yan, Jing; Ma, Fangfang; Toumi, Mondher

    2016-01-01

    Objectives In 2009, the Chinese government launched a national healthcare reform programme aiming to control healthcare expenditure and increase the quality of care. As part of this programme, a new drug pricing reform was initiated on 1 June 2015. The objective of this study was to describe the changing landscape of drug pricing policy in China and analyse the potential impact of the reform. Methods The authors conducted thorough research on the drug pricing reform using three Chinese databases (CNKI, Wanfang, and Weipu), Chinese health authority websites, relevant press releases, and pharmaceutical blogs and discussion forums. This research was complemented with qualitative research based on targeted interviews with key Chinese opinion leaders representing the authorities’ and prescribers’ perspectives. Results With the current reform, the government has attempted to replace its direct control over the prices of reimbursable drugs with indirect, incentive-driven influence. Although the exact implementation of the reform remains unclear at the moment, the changes introduced so far and the pilot project designs indicate that China is considering adaptation of some form of internal and external reference pricing policies, commonly used in the Organisation for Economic Co-operation and Development countries. Several challenges related to the potential new mechanism were identified: 1) the risk of hospital underfunding, if hospital funding reform is not prioritised; 2) the risk of promoting the use of cheap, low-quality drugs, if a reliable quality control system is not in place and discrepancy between the available drugs is present; 3) the risk of increasing disparity in access to care between poor and rich regions, in case of country-wide price convergence; and 4) the risk of industry underinvestment, resulting in reduced competition, issues with quality and sustainability of supply, and potentially negative social impact. Conclusions Foreign pricing policies

  13. Drug product selection: legal issues.

    Science.gov (United States)

    Christensen, T P; Kirking, D M; Ascione, F J; Welage, L S; Gaither, C A

    2001-01-01

    To review the potential legal liability of the pharmacist in the drug product selection process. Published articles identified through MEDLINE, published law reviews identified through InfoTrac, and appellate court decisions. Search terms used included pharmacist liability, drug product selection, and generic substitution. Additional articles, books, and appellate court decisions were identified from the bibliographies of retrieved articles and citations in appellate court decisions. Pharmacists engaging in drug product selection are civilly liable under three legal theories: negligence, express or implied warranties, and strict product liability. Potential criminal liability includes prosecution for insurance fraud, deceptive business practices, and violation of state drug product selection laws and regulation. Pharmacists increase their liability when engaging in drug product selection, but the increase is small. Still, the law continues to evolve as pharmacists seek expanded roles and responsibilities. When courts give closer examination to pharmacists' expanded role, it is likely that pharmacists' liability will increase.

  14. Drug-drug interactions between anti-retroviral therapies and drugs of abuse in HIV systems.

    Science.gov (United States)

    Kumar, Santosh; Rao, P S S; Earla, Ravindra; Kumar, Anil

    2015-03-01

    Substance abuse is a common problem among HIV-infected individuals. Importantly, addictions as well as moderate use of alcohol, smoking, or other illicit drugs have been identified as major reasons for non-adherence to antiretroviral therapy (ART) among HIV patients. The literature also suggests a decrease in the response to ART among HIV patients who use these substances, leading to failure to achieve optimal virological response and increased disease progression. This review discusses the challenges with adherence to ART as well as observed drug interactions and known toxicities with major drugs of abuse, such as alcohol, smoking, methamphetamine, cocaine, marijuana, and opioids. The lack of adherence and drug interactions potentially lead to decreased efficacy of ART drugs and increased ART, and drugs of abuse-mediated toxicity. As CYP is the common pathway in metabolizing both ART and drugs of abuse, we discuss the possible involvement of CYP pathways in such drug interactions. We acknowledge that further studies focusing on common metabolic pathways involving CYP and advance research in this area would help to potentially develop novel/alternate interventions and drug dose/regimen adjustments to improve medication outcomes in HIV patients who consume drugs of abuse.

  15. History as a tool in identifying "new" old drugs.

    Science.gov (United States)

    Riddle, John M

    2002-01-01

    To trace the history of a natural product and its use, it is necessary to identify to correct plant among around a half-million species. One must also know how and when harvest the plant and the morphology of location and extraction. Within the same species plant chemistry varies, depending upon climatic and soil conditions, stage of maturity and even diurnal factors. To all of these variations must be added the diagnostic ability of physicians and native healers (to distinguish between Hippocratically-trained Western physicians and whose knowledge is less formally taught). Seldom was a disease identified as we Know it today, but the constellations of symptoms described, when studied carefully within the framework historical setting of the culture, can be related to modern medicine. It is essential to study the historical contemporary usage data in the language in which those accounts were writTen. Translators are often philologists who are not sensitive to medical nuances. Modern readers of translated historical documents often are unaware of the precision the authors delivered in describing medical afflictions and their treatments. Natural product drugs are truly products of human knowledge. Because so many modern pharmaceuticals are manufactured synthetically we forget that once either the compound or its affinity had a home in a natural product. Over 2,500 years ago man first used a drug obtained from white willow bark, which was aspirin or acetylsalicylic acid. Today's scientists continue to be bewildered by just what aspirin's mechanisms of action are, discovering new modes of action, and how they relate to medical diagnostics. Whatever the science of aspirin, an intelligent person today takes it just as our ancestors did fo millennia. Throughout time, explanations continue to vary just as purpose of administration do as well. Nevertheless, aspirin is perceived as being beneficial. Historical in-use data can also be a factor in judging a drug's safety, since

  16. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  17. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  18. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses.

    Science.gov (United States)

    Chiang, A P; Butte, A J

    2009-11-01

    Drug repositioning refers to the discovery of alternative uses for drugs--uses that are different from that for which the drugs were originally intended. One challenge in this effort lies in choosing the indication for which a drug of interest could be prospectively tested. We systematically evaluated a drug treatment-based view of diseases in order to address this challenge. Suggestions for novel drug uses were generated using a "guilt by association" approach. When compared with a control group of drug uses, the suggested novel drug uses generated by this approach were significantly enriched with respect to previous and ongoing clinical trials.

  19. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  20. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  1. ?When ?Bad? is ?Good??: Identifying Personal Communication and Sentiment in Drug-Related Tweets

    OpenAIRE

    Daniulaityte, Raminta; Chen, Lu; Lamy, Francois R; Carlson, Robert G; Thirunarayan, Krishnaprasad; Sheth, Amit

    2016-01-01

    Background To harness the full potential of social media for epidemiological surveillance of drug abuse trends, the field needs a greater level of automation in processing and analyzing social media content. Objectives The objective of the study is to describe the development of supervised machine-learning techniques for the eDrugTrends platform to automatically classify tweets by type/source of communication (personal, official/media, retail) and sentiment (positive, negative, neutral) expre...

  2. Viral induced oxidative and inflammatory response in Alzheimer's disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach.

    Science.gov (United States)

    Talwar, Puneet; Gupta, Renu; Kushwaha, Suman; Agarwal, Rachna; Saso, Luciano; Kukreti, Shrikant; Kukreti, Ritushree

    2018-04-19

    Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug-Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network.

    Science.gov (United States)

    Melak, Tilahun; Gakkhar, Sunita

    2015-12-01

    In spite of the implementations of several strategies, tuberculosis (TB) is overwhelmingly a serious global public health problem causing millions of infections and deaths every year. This is mainly due to the emergence of drug-resistance varieties of TB. The current treatment strategies for the drug-resistance TB are of longer duration, more expensive and have side effects. This highlights the importance of identification and prioritization of targets for new drugs. This study has been carried out to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv based on their flow to resistance genes. The weighted proteome interaction network of the pathogen was constructed using a dataset from STRING database. Only a subset of the dataset with interactions that have a combined score value ≥770 was considered. Maximum flow approach has been used to prioritize potential drug targets. The potential drug targets were obtained through comparative genome and network centrality analysis. The curated set of resistance genes was retrieved from literatures. Detail literature review and additional assessment of the method were also carried out for validation. A list of 537 proteins which are essential to the pathogen and non-homologous with human was obtained from the comparative genome analysis. Through network centrality measures, 131 of them were found within the close neighborhood of the centre of gravity of the proteome network. These proteins were further prioritized based on their maximum flow value to resistance genes and they are proposed as reliable drug targets of the pathogen. Proteins which interact with the host were also identified in order to understand the infection mechanism. Potential drug targets of Mycobacterium tuberculosis H37Rv were successfully prioritized based on their flow to resistance genes of existing drugs which is believed to increase the druggability of the targets since inhibition of a protein that has a maximum flow to

  4. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  5. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  6. Pharmacogenetics in drug regulation: promise, potential and pitfalls

    Science.gov (United States)

    Shah, Rashmi R

    2005-01-01

    Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels—the two components of the dose–response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose–response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose–response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose–response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as

  7. Application of the Pareto principle to identify and address drug-therapy safety issues.

    Science.gov (United States)

    Müller, Fabian; Dormann, Harald; Pfistermeister, Barbara; Sonst, Anja; Patapovas, Andrius; Vogler, Renate; Hartmann, Nina; Plank-Kiegele, Bettina; Kirchner, Melanie; Bürkle, Thomas; Maas, Renke

    2014-06-01

    Adverse drug events (ADE) and medication errors (ME) are common causes of morbidity in patients presenting at emergency departments (ED). Recognition of ADE as being drug related and prevention of ME are key to enhancing pharmacotherapy safety in ED. We assessed the applicability of the Pareto principle (~80 % of effects result from 20 % of causes) to address locally relevant problems of drug therapy. In 752 cases consecutively admitted to the nontraumatic ED of a major regional hospital, ADE, ME, contributing drugs, preventability, and detection rates of ADE by ED staff were investigated. Symptoms, errors, and drugs were sorted by frequency in order to apply the Pareto principle. In total, 242 ADE were observed, and 148 (61.2 %) were assessed as preventable. ADE contributed to 110 inpatient hospitalizations. The ten most frequent symptoms were causally involved in 88 (80.0 %) inpatient hospitalizations. Only 45 (18.6 %) ADE were recognized as drug-related problems until discharge from the ED. A limited set of 33 drugs accounted for 184 (76.0 %) ADE; ME contributed to 57 ADE. Frequency-based listing of ADE, ME, and drugs involved allowed identification of the most relevant problems and development of easily to implement safety measures, such as wall and pocket charts. The Pareto principle provides a method for identifying the locally most relevant ADE, ME, and involved drugs. This permits subsequent development of interventions to increase patient safety in the ED admission process that best suit local needs.

  8. Potential savings from an evidence-based consumer-oriented public education campaign on prescription drugs.

    Science.gov (United States)

    Donohue, Julie M; Fischer, Michael A; Huskamp, Haiden A; Weissman, Joel S

    2008-10-01

    To estimate potential savings associated with the Consumer Reports Best Buy Drugs program, a national educational program that provides consumers with price and effectiveness information on prescription drugs. National data on 2006 prescription sales and retail prices paid for angiotensin-converting enzyme inhibitors (ACEIs), β-blockers, calcium channel blockers, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase inhibitors (statins). We converted national data on aggregate unit sales of drugs in the four classes to defined daily doses (DDD) and estimated a range of potential savings from generic and therapeutic substitution. We estimated that $2.76 billion, or 7.83 percent of sales, could be saved if use of the drugs recommended by the educational program was increased. The recommended drugs' prices were 15-65 percent lower per DDD than their therapeutic alternatives. The majority (57.4 percent) of potential savings would be achieved through therapeutic substitution. Substantial savings can be achieved through greater use of comparatively effective and lower cost drugs recommended by a national consumer education program. However, barriers to dissemination of consumer-oriented drug information must be addressed before savings can be realized. © Health Research and Educational Trust.

  9. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.

    Science.gov (United States)

    Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying

    2013-01-01

    High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable

  10. Identifying Demand Responses to Illegal Drug Supply Interdictions.

    Science.gov (United States)

    Cunningham, Scott; Finlay, Keith

    2016-10-01

    Successful supply-side interdictions into illegal drug markets are predicated on the responsiveness of drug prices to enforcement and the price elasticity of demand for addictive drugs. We present causal estimates that targeted interventions aimed at methamphetamine input markets ('precursor control') can temporarily increase retail street prices, but methamphetamine consumption is weakly responsive to higher drug prices. After the supply interventions, purity-adjusted prices increased then quickly returned to pre-treatment levels within 6-12 months, demonstrating the short-term effects of precursor control. The price elasticity of methamphetamine demand is -0.13 to -0.21 for self-admitted drug treatment admissions and between -0.24 and -0.28 for hospital inpatient admissions. We find some evidence of a positive cross-price effect for cocaine, but we do not find robust evidence that increases in methamphetamine prices increased heroin, alcohol, or marijuana drug use. This study can inform policy discussions regarding other synthesized drugs, including illicit use of pharmaceuticals. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Evidentiary requirements to identify potentially acceptable sites (PAS) in crystalline rock

    International Nuclear Information System (INIS)

    Comella, P.A.; Smith, B.H.

    1985-01-01

    This report contains information on the evidentiary requirements to identify potentially acceptable sites in crystalline rock for waste disposal. Topics addressed include: chronology, key regulatory assumptions, statutory framework for identifying potentially acceptable sites, application of 10 disqualifiers, consideration of favorable and potentially adverse conditions, a composite favorability analysis, and a proposed outline for PAS identification decision document

  12. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional "hot spots" observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.

  13. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.

    Science.gov (United States)

    Lai, Yi-Hua; Yu, Sung-Liang; Chen, Hsuan-Yu; Wang, Chi-Chung; Chen, Huei-Wen; Chen, Jeremy J W

    2013-05-01

    HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.

  14. Hair analysis for the detection of drug use-is there potential for evasion?

    Science.gov (United States)

    Marrinan, Shanna; Roman-Urrestarazu, Andres; Naughton, Declan; Levari, Emerlinda; Collins, John; Chilcott, Robert; Bersani, Giuseppe; Corazza, Ornella

    2017-05-01

    Hair analysis for illicit substances is widely used to detect chronic drug consumption or abstention from drugs. Testees are increasingly seeking ways to avoid detection by using a variety of untested adulterant products (e.g., shampoos, cleansers) widely sold online. This study aims to investigate adulteration of hair samples and to assess effectiveness of such methods. The literature on hair test evasion was searched for on PubMed or MEDLINE, Psycinfo, and Google Scholar. Given the sparse nature of peer-reviewed data on this subject, results were integrated with a qualitative assessment of online sources, including user-orientated information or commercial websites, drug fora and "chat rooms". Over four million web sources were identified in a Google search by using "beat hair drug test" and the first 86 were monitored on regular basis and considered for further analysis. Attempts to influence hair test results are widespread. Various "shampoos," and "cleansers" among other products, were found for sale, which claim to remove analytes. Often advertised with aggressive marketing strategies, which include discounts, testimonials, and unsupported claims of efficacy. However, these products may pose serious health hazards and are also potentially toxic. In addition, many anecdotal reports suggest that Novel Psychoactive Substances are also consumed as an evasion technique, as these are not easily detectable via standard drug test. Recent changes on Novel Psychoactive Substances legislations such as New Psychoactive Bill in the UK might further challenge the testing process. Further research is needed by way of chemical analysis and trial of the adulterant products sold online and their effects as well as the development of more sophisticated hair testing techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  16. Robust global identifiability theory using potentials--Application to compartmental models.

    Science.gov (United States)

    Wongvanich, N; Hann, C E; Sirisena, H R

    2015-04-01

    This paper presents a global practical identifiability theory for analyzing and identifying linear and nonlinear compartmental models. The compartmental system is prolonged onto the potential jet space to formulate a set of input-output equations that are integrals in terms of the measured data, which allows for robust identification of parameters without requiring any simulation of the model differential equations. Two classes of linear and non-linear compartmental models are considered. The theory is first applied to analyze the linear nitrous oxide (N2O) uptake model. The fitting accuracy of the identified models from differential jet space and potential jet space identifiability theories is compared with a realistic noise level of 3% which is derived from sensor noise data in the literature. The potential jet space approach gave a match that was well within the coefficient of variation. The differential jet space formulation was unstable and not suitable for parameter identification. The proposed theory is then applied to a nonlinear immunological model for mastitis in cows. In addition, the model formulation is extended to include an iterative method which allows initial conditions to be accurately identified. With up to 10% noise, the potential jet space theory predicts the normalized population concentration infected with pathogens, to within 9% of the true curve. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Clinical Drug Library Screen Identifies Tosufloxacin as Being Highly Active against Staphylococcus aureus Persisters

    Directory of Open Access Journals (Sweden)

    Hongxia Niu

    2015-07-01

    Full Text Available To identify effective compounds that are active against Staphylococcus aureus (S. aureus persisters, we screened a clinical drug library consisting of 1524 compounds and identified six drug candidates that had anti-persister activity: tosufloxacin, clinafloxacin, sarafloxacin, doxycycline, thiostrepton, and chlorosalicylanilide. Among them, tosufloxacin had the highest anti-persister activity, which could completely eradicate S. aureus persisters within 2 days in vitro. Clinafloxacin ranked the second with very few persisters surviving the drug exposure. Interestingly, we found that both tosufloxacin and trovafloxacin that had high activity against persisters contained at the N-1 position the 2,4-difluorophenyl group, which is absent in other less active quinolones and may be associated with the high anti-persister activity. Further studies are needed to evaluate tosufloxacin in animal models and to explain its unique activity against bacterial persisters. Our findings may have implications for improved treatment of persistent bacterial infections.

  18. Potential drug-drug interactions in a Brazilian teaching hospital: age-related differences?

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira Melo

    2016-07-01

    Full Text Available This study proposes to measure frequency and to characterize the profile of potential drug interactions (pDDI in a general medicine ward of a teaching hospital. Data about identification and clinical status of patients were extracted from medical records between March to August 2006. The occurrence of pDDI was analyzed using the database monographs Micromedex® DrugReax® System. From 5,336 prescriptions with two or more drugs, 3,097 (58.0% contained pDDI. The frequency of major and well document pDDI was 26.5%. Among 647 patients, 432 (66.8% were exposed to at least one pDDI and 283 (43.7% to major pDDI. The multivariate analysis identified that factors related to higher rates of major pDDI were the same age (p< 0.0001, length of stay (p< 0.0001, prevalence of hypertension [OR=3.42 (p< 0.0001] and diabetes mellitus [OR=2.1 (p< 0.0001], cardiovascular diseases (p< 0.0001 and the number of prescribed drugs (Spearman’s correlation=0.640622, p< 0.0001. Between major pDDI, the main risk was hemorrhage (50.3%, the most frequent major pDDI involved combination of anticoagulants and antiplatelet drugs. Among moderate pDDI, 3,866 (90.8% involved medicines for the treatment of chronic non-communicable diseases, mainly hypertension. In HU-USP, the profile of pDDI was similar among adults and elderly (the most frequent pDDI and major pDDI were same, the difference was only the frequency in either group. The efforts of the clinical pharmacists should be directed to elderly patients with cardiovascular compromise, mainly in use of anticoagulants and antiplatelet drugs. Furthermore, hospital managers should increase the integration between levels of health care to promote safety patient after discharge.Keywords: Drug interactions. Aged. Internal Medicine. Hospitals, University. RESUMOInterações medicamentosas potenciais em um hospital escolar brasileiro: diferenças relacionadas à idade?O estudo tem por objetivo descrever o perfil de intera

  19. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  20. Comparative analysis of three drug-drug interaction screening systems against probable clinically relevant drug-drug interactions: a prospective cohort study.

    Science.gov (United States)

    Muhič, Neža; Mrhar, Ales; Brvar, Miran

    2017-07-01

    Drug-drug interaction (DDI) screening systems report potential DDIs. This study aimed to find the prevalence of probable DDI-related adverse drug reactions (ADRs) and compare the clinical usefulness of different DDI screening systems to prevent or warn against these ADRs. A prospective cohort study was conducted in patients urgently admitted to medical departments. Potential DDIs were checked using Complete Drug Interaction®, Lexicomp® Online™, and Drug Interaction Checker®. The study team identified the patients with probable clinically relevant DDI-related ADRs on admission, the causality of which was assessed using the Drug Interaction Probability Scale (DIPS). Sensitivity, specificity, and positive and negative predictive values of screening systems to prevent or warn against probable DDI-related ADRs were evaluated. Overall, 50 probable clinically relevant DDI-related ADRs were found in 37 out of 795 included patients taking at least two drugs, most common of them were bleeding, hyperkalemia, digitalis toxicity, and hypotension. Complete Drug Interaction showed the best sensitivity (0.76) for actual DDI-related ADRs, followed by Lexicomp Online (0.50), and Drug Interaction Checker (0.40). Complete Drug Interaction and Drug Interaction Checker had positive predictive values of 0.07; Lexicomp Online had 0.04. We found no difference in specificity and negative predictive values among these systems. DDI screening systems differ significantly in their ability to detect probable clinically relevant DDI-related ADRs in terms of sensitivity and positive predictive value.

  1. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  2. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria.

    Science.gov (United States)

    Li, Liping; Tetu, Sasha G; Paulsen, Ian T; Hassan, Karl A

    2018-01-01

    The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.

  4. Potential of surface-eroding poly(ethylene carbonate) for drug delivery to macrophages

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit J; Wang, Yingya

    2016-01-01

    Films composed of poly(ethylene carbonate) (PEC), a biodegradable polymer, were compared with poly(lactide-co-glycolide) (PLGA) films loaded with and without the tuberculosis drug rifampicin to study the characteristics and performance of PEC as a potential carrier for controlled drug delivery...... to macrophages. All drug-loaded PLGA and PEC films were amorphous indicating good miscibility of the drug in the polymers, even at high drug loading (up to 50wt.%). Polymer degradation studies showed that PLGA degraded slowly via bulk erosion while PEC degraded more rapidly and near-linearly via enzyme mediated...... surface erosion (by cholesterol esterase). Drug release studies performed with polymer films indicated a diffusion/erosion dependent delivery behavior for PLGA while an almost zero-order drug release profile was observed from PEC due to the controlled polymer degradation process. When exposed to polymer...

  5. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    Science.gov (United States)

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  6. Role of scanning electron microscopy in identifying drugs used in medical practice.

    Science.gov (United States)

    Fazil Marickar, Y M; Sylaja, N; Koshy, Peter

    2009-10-01

    Several plant preparations are administered for treatment of stone disease without scientific basis. This paper presents the results of in vitro and animal experimental studies using scanning electron microscopy (SEM) in the identification of the therapeutic properties of trial drugs in medicine. In the first set of the study, urinary crystals namely calcium oxalate monohydrate and calcium oxalate dehydrate were grown in six sets of Hane's tubes in silica gel medium. Trial drugs namely scoparia dulcis Lynn, musa sapiens and dolicos biflorus were incorporated in the gel medium to identify the dopant effect of the trial drugs on the size and extent of crystal column growth. The changes in morphology of crystals were studied using SEM. In the second set, six male Wistar rats each were calculogenised by administering sodium oxalate and ethylene glycol and diabetised using streptozotocin. The SEM changes of calculogenisation were studied. The rats were administered trial drugs before calculogenisation or after. The kidneys of the rats studied under the scanning electron microscope showed changes in tissue morphology and crystal deposition produced by calculogenisation and alterations produced by addition of trial drugs. The trial drugs produced changes in the pattern of crystal growth and in the crystal morphology of both calcium oxalate monohydrate and calcium oxalate dihydrate grown in vitro. Elemental distribution analysis showed that the crystal purity was not altered by the trial drugs. Scoparia dulcis Lynn was found to be the most effective anticalculogenic agent. Musa sapiens and dolicos biflorus were found to have no significant effect in inhibiting crystal growth. The kidneys of rats on calculogenisation showed different grades of crystals in the glomerulus and interstitial tissues, extrusion of the crystals into the tubular lumen, collodisation and tissue inflammatory cell infiltration. Scoparia dulcis Lynn exhibited maximum protector effect against the

  7. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Potential and problems in ultrasound-responsive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Zhao YZ

    2013-04-01

    Full Text Available Ying-Zheng Zhao,1,3 Li-Na Du,2 Cui-Tao Lu,1 Yi-Guang Jin,2 Shu-Ping Ge3 1Wenzhou Medical College, Wenzhou City, Zhejiang Province, 2Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3St Christopher’s Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. Keywords: ultrasound, targeted therapy, clinical application

  9. New approaches for identifying and testing potential new anti-asthma agents.

    Science.gov (United States)

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  10. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

    DEFF Research Database (Denmark)

    Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta

    2011-01-01

    's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands to assess...... the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

  11. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    Science.gov (United States)

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of

  12. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride), and ...

  13. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    International Nuclear Information System (INIS)

    Tamura, Akitoshi; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-01-01

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  14. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akitoshi, E-mail: akitoshi-tamura@ds-pharma.co.jp; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-08-15

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  15. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy.

    Science.gov (United States)

    Górska, Agnieszka; Sloderbach, Anna; Marszałł, Michał Piotr

    2014-09-01

    The ability of bacteria to develop resistance to antimicrobial agents poses problems in the treatment of numerous bacterial infections. One method to circumvent permeability-mediated drug resistance involves the employment of the 'Trojan horse' strategy. The Trojan horse concept involves the use of bacterial iron uptake systems to enter and kill bacteria. The siderophore-drug complex is recognized by specific siderophore receptors and is then actively transported across the outer membrane. The recently identified benefits of this strategy have led to the synthesis of a series of siderophore-based antibiotics. Several studies have shown that siderophore-drug conjugates make it possible to design antibiotics with improved cell transport and reduce the frequency of resistance mutants. Growing interest in siderophore-drug conjugates for the treatment of human diseases including iron overload, cancer, and malaria has driven the search for new siderophore-drug complexes. This strategy may have special importance for the development of iron oxide nanoparticle-based therapeutics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cumulative organic anion transporter-mediated drug-drug interaction potential of multiple components in salvia miltiorrhiza (danshen) preparations.

    Science.gov (United States)

    Wang, Li; Venitz, Jürgen; Sweet, Douglas H

    2014-12-01

    To evaluate organic anion transporter-mediated drug-drug interaction (DDI) potential for individual active components of Danshen (Salvia miltiorrhiza) vs. combinations using in vitro and in silico approaches. Inhibition profiles for single Danshen components and combinations were generated in stably-expressing human (h)OAT1 and hOAT3 cells. Plasma concentration-time profiles for compounds were estimated from in vivo human data using an i.v. two-compartment model (with first-order elimination). The cumulative DDI index was proposed as an indicator of DDI potential for combination products. This index was used to evaluate the DDI potential for Danshen injectables from 16 different manufacturers and 14 different lots from a single manufacturer. The cumulative DDI index predicted in vivo inhibition potentials, 82% (hOAT1) and 74% (hOAT3), comparable with those observed in vitro, 72 ± 7% (hOAT1) and 81 ± 10% (hOAT3), for Danshen component combinations. Using simulated unbound Cmax values, a wide range in cumulative DDI index between manufacturers, and between lots, was predicted. Many products exhibited a cumulative DDI index > 1 (50% inhibition). Danshen injectables will likely exhibit strong potential to inhibit hOAT1 and hOAT3 function in vivo. The proposed cumulative DDI index might improve prediction of DDI potential of herbal medicines or pharmaceutical preparations containing multiple components.

  17. Appropriate experimental approaches for predicting abuse potential and addictive qualities in preclinical drug discovery.

    Science.gov (United States)

    Mead, Andy N

    2014-11-01

    Drug abuse is an increasing social and public health issue, putting the onus on drug developers and regulatory agencies to ensure that the abuse potential of novel drugs is adequately assessed prior to product launch. This review summarizes the core preclinical data that frequently contribute to building an understanding of abuse potential for a new molecular entity, in addition to highlighting models that can provide increased resolution regarding the level of risk. Second, an important distinction between abuse potential and addiction potential is drawn, with comments on how preclinical models can inform on each. While the currently adopted preclinical models possess strong predictive validity, there are areas for future refinement and research. These areas include a more refined use of self-administration models to assess relative reinforcement; and the need for open innovation in pursuing improvements. There is also the need for careful scientifically driven application of models rather than a standardization of methodologies, and the need to explore the opportunities that may exist for enhancing the value of physical dependence and withdrawal studies by focusing on withdrawal-induced drug seeking, rather than broad symptomology.

  18. Differentiating drugs by harm potential: the rational versus the feasible.

    Science.gov (United States)

    Kalant, H

    1999-01-01

    In an ideal harm reduction model, drugs would be ranked according to their potential to cause harm, with varying implications for control policies and interventions. In such a public health oriented approach, the maximum protection of the public from harm would be balanced with the least possible restriction of freedom. In reality, however, the accuracy and completeness of the necessary information for such a ranking is highly limited. Many other factors not readily incorporated in a rational model, such as values, beliefs, and traditions, also affect drug policy decisions. Thus, rather than relying on acquisition of the necessary knowledge, it may be preferable to focus efforts on developing effective nonlegal measures to reduce drug use and harm. [Translations are provided in the International Abstracts Section of this issue.

  19. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  20. Modelling intelligence-led policing to identify its potential

    NARCIS (Netherlands)

    Hengst-Bruggeling, M. den; Graaf, H.A.L.M. de; Scheepstal, P.G.M. van

    2014-01-01

    lntelligence-led policing is a concept of policing that has been applied throughout the world. Despite some encouraging reports, the effect of intelligence-led policing is largely unknown. This paper presents a method with which it is possible to identify intelligence-led policing's potential to

  1. Potentially inappropriate prescribing and the risk of adverse drug reactions in critically ill older adults

    Directory of Open Access Journals (Sweden)

    Galli TB

    2016-12-01

    Full Text Available Background: Potentially inappropriate medication (PIM use in the elderly is associated with increased risk of adverse drug reactions (ADRs, but there is limited information regarding PIM use in the intensive care unit (ICU setting. Objective: The aim of the study is to describe the prevalence and factors associated with the use of PIM and the occurrence of PIM-related adverse reactions in the critically ill elderly. Methods: This study enrolled all critically ill older adults (60 years or more admitted to medical or cardiovascular ICUs between January and December 2013, in a large tertiary teaching hospital. For all patients, clinical pharmacists listed the medications given during the ICU stay and data on drugs were analyzed using 2012 Beers Criteria, to identify the prevalence of PIM. For each identified PIM the medical records were analyzed to evaluate factors associated with its use. The frequency of ADRs and, the causal relationship between PIM and the ADRs identified were also evaluated through review of medical records. Results: According to 2012 Beers Criteria, 98.2% of elderly patients used at least one PIM (n=599, of which 24.8% were newly started in the ICUs. In 29.6% of PIMs, there was a clinical circumstance that justified their prescription. The number of PIMs was associated with ICU length of stay and total number of medications. There was at least one ADR identified in 17.8% of patients; more than 40% were attributed to PIM, but there was no statistical association. Conclusions: There is a high prevalence of PIM used in acutely ill older people, but they do not seem to be the major cause of adverse drug reactions in this population. Although many PIMs had a clinical circumstance that led to their prescription during the course of ICU hospitalization, many were still present upon hospital discharge. Therefore, prescription of PIMs should be minimized to improve the safety of elderly patients.

  2. PS-109 Barriers and facilitators to implementing drug changes caused by drug tenders and shortages

    DEFF Research Database (Denmark)

    Rishøj, Rikke Mie; Christrup, Lona Louring; Clemmensen, Marianne H

    2015-01-01

    . Purpose To identify barriers and facilitators for implementing drug changes due to drug tenders and shortages in Danish public hospitals. Material and methods Six focus group interviews were conducted at three hospitals in different regions of the country. At each hospital two focus group interviews were...... thematically through content analysis. Results Barriers Identified included: frequent changes of labelling, packages and drug names. Furthermore, implementing drug changes requires extra resources and finance. Technologies such as computerised physician order entry and barcode scanning systems were perceived...... as potential facilitators, but also as barriers in cases where the quality and implementation of the systems were not adequate. Facilitators included: hospital pharmacy services and lower drug prices. Furthermore recommendations on generic prescription, optimisation of the tendering process and support...

  3. Strategies to enhance the bioavailability of curcumin: a potential antitumor drug

    Science.gov (United States)

    Kumar, Abhishek; Chittigori, Joshna; Li, Lian; Samuelson, Lynne; Sandman, Daniel; Kumar, Jayant

    2012-02-01

    Curcumin is a polyphenol which has elicited considerable interest for its antioxidant and anti tumor properties. Although curcumin may be used as potential therapeutic drug, it is very sparingly soluble in water which makes it less bioavailable under physiological conditions. We report two approaches to make curcumin more bioavailable. The first approach involves fabricating colloidal dispersions of curcumin in the range of tens of nanometers. The second approach involves functionalization of curcumin with polyethylene glycol (PEG) to render it water dispersible or soluble. Since curcumin is a fluorescent molecule as well as a potential drug, its interactions with cells have been investigated using one and two photon confocal fluorescence imaging. We have also observed strong interaction between curcumin and metal ions, which may have physiological implications.

  4. Analysis of Potential Drug-Drug Interactions and Its Clinical Manifestation of Pediatric Prescription on 2 Pharmacies in Bandung

    Directory of Open Access Journals (Sweden)

    Melisa I. Barliana

    2013-09-01

    Full Text Available The potential of Drug-Drug Interactions (DDI in prescription have high incidence around the world, including Indonesia. However, scientific evidence regarding DDI in Indonesia is not available. Therefore, in this study we have conducted survey in 2 pharmacies in Bandung against pediatric prescription given by pediatrician. These prescriptions then analyzed the potential for DDI contained in the prescription and clinical manifestation. The analysis showed that in pharmacy A, there are 33 prescriptions (from a total of 155 prescriptions that have potential DDI, or approximately 21.19% (2 prescriptions have the potential DDI major categories, 23 prescriptions categorized as moderate, and 8 prescriptions as minor. In Pharmacy B, there are 6 prescriptions (from a total of 40 prescriptions or 15% of potential DDI (4 prescriptions categorized as moderate and 2 prescriptions as minor. This result showed that potential DDI happened less than 50% in pediatric prescription from both pharmacies. However, this should get attention because DDI should not happen in a prescription considering its clinical manifestations caused by DDI. Moreover, current pharmaceutical care refers to patient oriented than product oriented. In addition, further study for the pediatric prescription on DDI incidence in large scale need to be investigated.

  5. Identifying drug risk perceptions in Danish youths: Ranking exercises in focus groups

    DEFF Research Database (Denmark)

    Demant, Jakob; Ravn, Signe

    2010-01-01

    Abstract: Background: This paper develops an analytical approach for understanding the perceptions of risks associated with drugs among youths in general. These perceptions are central in order to understand how certain drugs become popular, leading to increasing prevalence of use, while others do...... not. As such, this approach can become an efficient policy tool. Methods: Focus groups are used to investigate risk perceptions. We develop a specific methodology that combines a ranking exercise with discourse theory as an analytical approach. This methodology produces detailed information...... and provides a relatively efficient way of investigating normative risk perceptions at a national or subcultural level. The paper develops this methodology in relation to a Danish case with 12 focus group interviews with youths aged from 17 to 22. Results: The analysis identifies five discourses articulated...

  6. Identifying drug risk perceptions in Danish youths: Ranking exercises in focus groups

    DEFF Research Database (Denmark)

    Demant, Jakob Johan; Ravn, Signe

    2010-01-01

    not. As such, this approach can become an efficient policy tool. Methods: Focus groups are used to investigate risk perceptions. We develop a specific methodology that combines a ranking exercise with discourse theory as an analytical approach. This methodology produces detailed information......Abstract: Background: This paper develops an analytical approach for understanding the perceptions of risks associated with drugs among youths in general. These perceptions are central in order to understand how certain drugs become popular, leading to increasing prevalence of use, while others do...... and provides a relatively efficient way of investigating normative risk perceptions at a national or subcultural level. The paper develops this methodology in relation to a Danish case with 12 focus group interviews with youths aged from 17 to 22. Results: The analysis identifies five discourses articulated...

  7. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Science.gov (United States)

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  8. Potential drug development candidates for human soil-transmitted helminthiases.

    Directory of Open Access Journals (Sweden)

    Piero Olliaro

    2011-06-01

    Full Text Available Few drugs are available for soil-transmitted helminthiasis (STH; the benzimidazoles albendazole and mebendazole are the only drugs being used for preventive chemotherapy as they can be given in one single dose with no weight adjustment. While generally safe and effective in reducing intensity of infection, they are contra-indicated in first-trimester pregnancy and have suboptimal efficacy against Trichuris trichiura. In addition, drug resistance is a threat. It is therefore important to find alternatives.We searched the literature and the animal health marketed products and pipeline for potential drug development candidates. Recently registered veterinary products offer advantages in that they have undergone extensive and rigorous animal testing, thus reducing the risk, cost and time to approval for human trials. For selected compounds, we retrieved and summarised publicly available information (through US Freedom of Information (FoI statements, European Public Assessment Reports (EPAR and published literature. Concomitantly, we developed a target product profile (TPP against which the products were compared.The paper summarizes the general findings including various classes of compounds, and more specific information on two veterinary anthelmintics (monepantel, emodepside and nitazoxanide, an antiprotozoal drug, compiled from the EMA EPAR and FDA registration files.Few of the compounds already approved for use in human or animal medicine qualify for development track decision. Fast-tracking to approval for human studies may be possible for veterinary compounds like emodepside and monepantel, but additional information remains to be acquired before an informed decision can be made.

  9. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Xi-Nan Shi

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required. The cyclin-dependent kinase (CDK pathways are important and well-established targets for cancer treatment. In particular, CDK2 is a key factor regulating the cell cycle G1 to S transition and a hallmark for cancers. In this study, we utilized our free and open-source protein-ligand docking software, idock, prospectively to identify potential CDK2 inhibitors from 4,311 FDA-approved small molecule drugs using a repurposing strategy and an ensemble docking methodology. Sorted by average idock score, nine compounds were purchased and tested in vitro. Among them, the anti-psychotic drug fluspirilene exhibited the highest anti-proliferative effect in human hepatocellular carcinoma HepG2 and Huh7 cells. We demonstrated for the first time that fluspirilene treatment significantly increased the percentage of cells in G1 phase, and decreased the expressions of CDK2, cyclin E and Rb, as well as the phosphorylations of CDK2 on Thr160 and Rb on Ser795. We also examined the anti-cancer effect of fluspirilene in vivo in BALB/C nude mice subcutaneously xenografted with human hepatocellular carcinoma Huh7 cells. Our results showed that oral fluspirilene treatment significantly inhibited tumor growth. Fluspirilene (15 mg/kg exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil (10 mg/kg. Moreover, the cocktail treatment with fluspirilene and 5-fluorouracil exhibited the highest therapeutic effect. These results suggested for the first time that fluspirilene is a potential CDK2 inhibitor and a candidate anti-cancer drug for the treatment of human hepatocellular carcinoma. In view of the fact that fluspirilene has a long history

  10. Potential Risks of Ecological Momentary Assessment Among Persons Who Inject Drugs.

    Science.gov (United States)

    Roth, Alexis M; Rossi, John; Goldshear, Jesse L; Truong, Quan; Armenta, Richard F; Lankenau, Stephen E; Garfein, Richard S; Simmons, Janie

    2017-06-07

    Ecological momentary assessment (EMA)-which often involves brief surveys delivered via mobile technology-has transformed our understanding of the individual and contextual micro-processes associated with legal and illicit drug use. However, little empirical research has focused on participant's perspective on the probability and magnitude of potential risks in EMA studies. To garner participant perspectives on potential risks common to EMA studies of illicit drug use. We interviewed 38 persons who inject drugs living in San Diego (CA) and Philadelphia (PA), United States. They completed simulations of an EMA tool and then underwent a semi-structured interview that systematically explored domains of risk considered within the proposed revisions to the Federal Policy for the Protection of Human Subjects or the "Common Rule." Interviews were transcribed verbatim and coded systematically to explore psychological, physical, social, legal, and informational risks from participation. Participants perceived most risks to be minimal. Some indicated that repetitive questioning about mood or drug use could cause psychological (i.e., anxiety) or behavioral risks (i.e., drug use relapse). Ironically, the questions that were viewed as risky were considered motivational to engage in healthy behaviors. The most cited risks were legal and social risks stemming from participant concerns about data collection and security. Improving our understanding of these issues is an essential first step to protect human participants in future EMA research. We provide a brief set of recommendations that can aid in the design and ethics review of the future EMA protocol with substance using populations.

  11. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  12. IN IDENTIFYING FAKE AND SUBSTANDARD DRUGS IN NIGERIA ...

    African Journals Online (AJOL)

    user

    2017-07-01

    Jul 1, 2017 ... The high prevalence of counterfeit medicines particularly anti-malaria ... ofMobile Authentication Service (MAS) put the power of fake drugs .... In Nigeria today, it is common knowledge that drugs are treated as general ...

  13. [Potential of cell penetrating peptides for cell drug delivery].

    Science.gov (United States)

    Poillot, Cathy; De Waard, Michel

    2011-05-01

    The interest of the scientific community for cell penetrating peptides (CPP) has been growing exponentially for these last years, and the list of novel CPP is increasing. These peptides are powerful tools for the delivery of cargoes to their site of action. Indeed, several drugs that cannot translocate through the cell plasma membrane have been successfully delivered into cells when grafted to a CPP. Various cargoes have been linked to CPP, such as oligonucleotides, pharmacologically active drugs, contrast agents for imaging, or nanoparticles as platforms for multigrafting purposes… This review illustrates the fabulous potential of CPP and the diversity of their use, but their most interesting application appears their future clinical use for the treatment of various pathological conditions. © 2011 médecine/sciences - Inserm / SRMS.

  14. Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Muneo Yamaguchi

    2017-01-01

    Full Text Available Rho-associated kinase (Rho-kinase/ROCK was originally identified as an effector protein of the G protein Rho. Its involvement in various diseases, particularly cancer and cardiovascular disease, has been elucidated, and ROCK inhibitors have already been applied clinically for cerebral vasospasm and glaucoma. Vitreoretinal diseases including diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinoapthy are still a major cause of blindness. While anti-VEGF therapy has recently been widely used for vitreoretinal disorders due to its efficacy, attention has been drawn to new unmet needs. The importance of ROCK in pathological vitreoretinal conditions has also been elucidated and is attracting attention as a potential therapeutic target. ROCK is involved in angiogenesis and hyperpermeability and also in the pathogenesis of various pathologies such as inflammation and fibrosis. It has been expected that ROCK inhibitors will become new molecular target drugs for vitreoretinal diseases. This review summarizes the recent progress on the mechanisms of action of ROCK and their applications in disease treatment.

  15. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  16. Potential intravenous drug incompatibilities in a pediatric unit.

    Science.gov (United States)

    Leal, Karla Dalliane Batista; Leopoldino, Ramon Weyler Duarte; Martins, Rand Randall; Veríssimo, Lourena Mafra

    2016-01-01

    To investigate potential intravenous drug incompatibilities and related risk factors in a pediatric unit. A cross-sectional analytical study conducted in the pediatric unit of a university hospital in Brazil. Data on prescriptions given to children aged 0-15 years from June to October 2014 were collected. Prescriptions that did not include intravenous drugs and prescriptions with incomplete dosage regimen or written in poor handwriting were excluded. Associations between variables and the risk of potential incompatibility were investigated using the Student's t test and ANOVA; the level of significance was set at 5% (ppenicilina G e ceftriaxona. Quase 85% das crianças apresentaram ao menos uma potencial incompatibilidade, razão de 1,2 incompatibilidades/paciente. Os tipos de incompatibilidades mais comuns foram: não testada (93,4%), precipitação (5,5%), turbidez (0,7%) e decomposição química (0,4%). Os fatores associados a potenciais incompatibilidades foram: número de medicamentos e a prescrição dos medicamentos diazepam, fenitoína, fenobarbital e metronidazol. A maioria das prescrições pediátricas apresentou potenciais incompatibilidades e a incompatibilidade não testada foi o tipo mais comum. O número de medicamentos e a prescrição dos medicamentos diazepam, fenobarbital, fenitoína e metronidazol foram fatores de risco para potenciais incompatibilidades.

  17. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.

    Science.gov (United States)

    Barneh, Farnaz; Jafari, Mohieddin; Mirzaie, Mehdi

    2016-11-01

    Network pharmacology elucidates the relationship between drugs and targets. As the identified targets for each drug increases, the corresponding drug-target network (DTN) evolves from solely reflection of the pharmaceutical industry trend to a portrait of polypharmacology. The aim of this study was to evaluate the potentials of DrugBank database in advancing systems pharmacology. We constructed and analyzed DTN from drugs and targets associations in the DrugBank 4.0 database. Our results showed that in bipartite DTN, increased ratio of identified targets for drugs augmented density and connectivity of drugs and targets and decreased modular structure. To clear up the details in the network structure, the DTNs were projected into two networks namely, drug similarity network (DSN) and target similarity network (TSN). In DSN, various classes of Food and Drug Administration-approved drugs with distinct therapeutic categories were linked together based on shared targets. Projected TSN also showed complexity because of promiscuity of the drugs. By including investigational drugs that are currently being tested in clinical trials, the networks manifested more connectivity and pictured the upcoming pharmacological space in the future years. Diverse biological processes and protein-protein interactions were manipulated by new drugs, which can extend possible target combinations. We conclude that network-based organization of DrugBank 4.0 data not only reveals the potential for repurposing of existing drugs, also allows generating novel predictions about drugs off-targets, drug-drug interactions and their side effects. Our results also encourage further effort for high-throughput identification of targets to build networks that can be integrated into disease networks. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Perioperative drug management. Reduction of potential drug-related problems in patients undergoing orthopaedic surgery by perioperative participation of a hospital pharmacist

    NARCIS (Netherlands)

    Duyvendak, M.; Bosman, J.; Klopotowska, J.; Kuiper-Herder, A.J.; Van Roon, E.N.; Brouwers, J.R.B.J.

    2007-01-01

    Objective: Drug management in the perioperative period is complex. Only little is known about the effects of clinical pharmaceutical care in this setting. The aim of this study was to determine the effect of a clinical pharmacy-based intervention on the number of potential drug-related problems in

  19. A GIS methodology to identify potential corn stover collection locations

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Monica A. [Department of Community and Regional Planning, 583 College of Design, Iowa State University, Ames, IA 50011-3095 (United States); Anderson, Paul F. [Department of Landscape Architecture, 481 College of Design, Iowa State University, Ames, IA 50011 (United States); Department of Agronomy, 481 College of Design, Iowa State University, Ames, IA 50011 (United States)

    2008-12-15

    In this study, we use geographic information systems technology to identify potential locations in a Midwestern region for collection and storage of corn stover for use as biomass feedstock. Spatial location models are developed to identify potential collection sites along an existing railroad. Site suitability analysis is developed based on two main models: agronomic productivity potential and environmental costs. The analysis includes the following steps: (1) elaboration of site selection criteria; (2) identification of the study region and service area based on transportation network analysis; (3) reclassification of input spatial layers based on common scales; (4) overlaying the reclassified spatial layers with equal weights to generate the two main models; and (5) overlaying the main models using different weights. A pluralistic approach is adopted, presenting three different scenarios as alternatives for the potential locations. Our results suggest that there is a significant subset of potential sites that meet site selection criteria. Additional studies are needed to evaluate potential sites through field visits, assess economic and social costs, and estimate the proportion of corn producers willing to sell and transport corn stover to collection facilities. (author)

  20. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs: Review and Perspectives.

    Science.gov (United States)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V; Mullangi, Ramesh; Srinivas, Nuggehally R

    2016-10-01

    Sucralfate, a complex of aluminium hydroxide with sulfated sucrose, forms a strong gastrointestinal tract (GIT) mucosal barrier with excellent anti-ulcer property. Because sucralfate does not undergo any significant oral absorption, sucralfate resides in the GIT for a considerable length of time. The unabsorbed sucralfate may alter the pharmacokinetics of the oral drugs by impeding its absorption and reducing the oral bioavailability. Because of the increased use of sucralfate, it was important to provide a reappraisal of the published clinical drug-drug interaction studies of sucralfate with scores of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along with study design, objectives and key remarks. While the loss of oral bioavailability was significant for the fluoroquinolone class, it generally varied for other classes of drugs, suggesting that impact of the co-administration of sucralfate is manageable in clinical situations. Given the technology advancement in formulation development, it may be in order feasible to develop appropriate formulation strategies to either avoid or minimize the absorption-related issues when co-administered with sucralfate. It is recommended that consideration of both in vitro and preclinical studies may be in order to gauge the level of interaction of a drug with sucralfate. Such data may aid in the development of appropriate strategies to navigate the co-administration of sucralfate with other drugs in this age of polypharmacy.

  1. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    Science.gov (United States)

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  2. Exposure to antineoplastic drugs outside the hospital environment.

    Science.gov (United States)

    Meijster, T; Fransman, W; Veldhof, R; Kromhout, H

    2006-10-01

    The objectives were (i) to identify occupational populations outside hospitals working with antineoplastic drugs, (ii) to determine the size of the populations 'at risk', (iii) to identify major determinants and routes of exposure outside hospitals and (iv) to estimate exposure levels and frequencies relative to levels found in hospitals. The survey consisted of two phases; (i) identification of activities with potential exposure to antineoplastic drugs by literature review, interviews, questionnaires and workplace visits, (ii) exploratory measurements of exposure and surface contamination in selected sectors. Eight sectors were identified with potential exposure to antineoplastic drugs: pharmaceutical industry, pharmacies, universities, veterinary medicine, nursing homes, home care, laundry facilities, and waste treatment. Four sectors were of primary concern: veterinary medicine, home care, nursing homes and industrial laundries. The populations potentially exposed in these sectors vary considerably (from several tens to thousands of workers), as do their levels of exposure. Exposure measurements collected in the veterinary medicine sector showed that workers are indeed exposed to antineoplastic drugs and, in some cases (on gloves after administration), levels were 15 times higher than levels measured during administration in hospitals. Workers sorting contaminated hospital laundry in industrial laundry facilities were exposed to antineoplastic drugs through inhalation. For the home care and nursing homes sectors the highest exposure levels were found when cleaning toilets and washing treated patients. These two sectors are expected to have the largest exposed population (5,000-10,000 individuals). This study has resulted in a comprehensive overview of populations with potential exposure to antineoplastic drugs. Exposure levels can potentially be high compared with the hospital environment, because exposure routes are complex and awareness of the hazard (and

  3. The Prevalence of Potential Drug Interactions Among Critically Ill Elderly Patients in the Intensive Care Unit (ICU

    Directory of Open Access Journals (Sweden)

    Hossein Rafiei

    2012-01-01

    Full Text Available Objectives: The aim of the research was to determine prevalence of potential drug interactions among elderly patients in the Shahid Bahonar ICU in Kerman. Methods & Materials: In this cross sectional study, data about all elderly patients who were admitted in the intensive care unit from 1/4/2009 to 1/4/2010 were retrieved from medical records and evaluated with regard to the number and type of drug interactions, the number of drugs administered, age, sex, length of stay in the ICU, and the number of doctors prescribing medications of medications administered. The extent and number of drug interactions were investigated based on the reference textbook Drug Interaction Facts and in order to analyze the data collected, using SPSS 18 and according to study goals, a descriptive test, Pierson's correlation test, an independent T-test and a one-way ANOVA were used. Results: In total, 77 types of drugs and 394 drugs were prescribed with a mean of 5.6(SD=1.5 drugs per patient. A total of 108 potential drug interactions were found related to drugs prescribed during the first twenty-four hours. In terms of the type of drug interactions, delayed, moderate and possible types comprised the highest proportion of drug interactions. The four major interactions were between cimetidine and methadone, furosemide and amikacine, phenytoin and dopamine, and heparin and aspirin. The results of Pierson's correlation test were inicative of a positive correlation between the number of potential drug interactions and that of the drugs prescribed (r=0.563, P<0.05. Results of a one-way ANOVA showed that the mean number of potential drug interaction were significantly higher in those who died than in other patients (P<0.05. Conclusion: Elderly patients who are admitted to the intensive care unit are at a high risk of developing drug interactions and better care must be taken by medical team members.

  4. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    Science.gov (United States)

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  5. Characteristics of medication errors with parenteral cytotoxic drugs

    OpenAIRE

    Fyhr, A; Akselsson, R

    2012-01-01

    Errors involving cytotoxic drugs have the potential of being fatal and should therefore be prevented. The objective of this article is to identify the characteristics of medication errors involving parenteral cytotoxic drugs in Sweden. A total of 60 cases reported to the national error reporting systems from 1996 to 2008 were reviewed. Classification was made to identify cytotoxic drugs involved, type of error, where the error occurred, error detection mechanism, and consequences for the pati...

  6. Use of Pregabalin - A Nationwide Pharmacoepidemiological Drug Utilization Study with Focus on Abuse Potential

    DEFF Research Database (Denmark)

    Schjerning, O; Pottegård, A; Damkier, P

    2016-01-01

    INTRODUCTION: Pregabalin is currently approved for the treatment of epilepsy, generalized anxiety disorder and neuropathic pain with a licensed dosage range of 150 mg to 600 mg/day. Growing concern about the abuse potential of pregabalin is partly based on reports of pregabalin being used...... in dosages that exceed the approved therapeutic range. METHODS: To identify predictors of pregabalin use above recommended dosage, we conducted a pharmacoepidemological drug utilization study using the Danish nationwide registers. We deployed 4 measures of abuse: high use (≥600 mg/day) or very high use (≥1...... 200 mg/day) over a 6- or 12-month period, respectively. Multiple logistic regression was used to identify patient and treatment characteristics that were associated with either abuse marker. RESULTS: Out of 42 520 pregabalin users 4 090 (9.6%) were treated with more than 600 mg/day for 6 months and 2...

  7. Identifying essential genes in bacterial metabolic networks with machine learning methods

    Science.gov (United States)

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  8. Heuristic lipophilicity potential for computer-aided rational drug design

    Science.gov (United States)

    Du, Qishi; Arteca, Gustavo A.; Mezey, Paul G.

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water-octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

  9. Identify drug repurposing candidates by mining the protein data bank.

    Science.gov (United States)

    Moriaud, Fabrice; Richard, Stéphane B; Adcock, Stewart A; Chanas-Martin, Laetitia; Surgand, Jean-Sébastien; Ben Jelloul, Marouane; Delfaud, François

    2011-07-01

    Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site. On one hand, this target hopping case is probably rare because it requires a high similarity between the binding sites. On the other hand, it could be a strong rational evidence to highlight possible off-target reactions and possibly a potential undesired side effect. This target-based drug repurposing can be extended a significant step further with the capability of searching the full surface of all proteins in the PDB, and therefore not relying on pocket detection. Using this approach, we describe how MED-SuMo reproduces the repurposing of tadalafil from PDE5A to PDE4A and a structure of PDE4A with tadalafil. Searching for local protein similarities generates more hits than for whole binding site similarities and therefore fragment repurposing is more likely to occur than for drug-sized compounds. In this work, we illustrate that by mining the PDB for proteins sharing similarities with the hinge region of protein kinases. The experimentally validated examples, biotin carboxylase and synapsin, are retrieved. Further to fragment repurposing, this approach can be applied to the detection of druggable sites from 3D structures. This is illustrated with detection of the protein kinase hinge motif in the HIV-RT non-nucleosidic allosteric site.

  10. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  11. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov [Science and Research Staff, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993–0002 (United States); Cross, Kevin P. [Leadscope, Inc., 1393 Dublin Road, Columbus, OH, 43215–1084 (United States)

    2012-05-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive

  12. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Cross, Kevin P.

    2012-01-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.

  13. Electrochemical Oxidation by Square-Wave Potential Pulses in the Imitation of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.

    2011-01-01

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of

  14. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  15. Improving Patient Involvement in the Drug Development Process: Case Study of Potential Applications from an Online Peer Support Network.

    Science.gov (United States)

    Anand, Amrutha; Brandwood, Helen Jane; Jameson Evans, Matt

    2017-11-01

    To date, social media has been used predominantly by the pharmaceutical industry to market products and to gather feedback and comments on products from consumers, a process termed social listening. However, social media has only been used cautiously in the drug development cycle, mainly because of regulations, restrictions on engagement with patients, or a lack of guidelines for social media use from regulatory bodies. Despite this cautious approach, there is a clear drive, from both the industry and consumers, for increased patient participation in various stages of the drug development process. The authors use the example of HealthUnlocked, one of the world's largest health networks, to illustrate the potential applications of online health communities as a means of increasing patient involvement at various stages of the drug development process. Having identified the willingness of the user population to be involved in research, numerous ways to engage users on the platform have been identified and explored. This commentary describes some of these approaches and reports how online health networks that encourage people to share their experiences in managing their health can, in turn, enable rapid patient engagement for clinical research within the constraints of industry regulation. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  16. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo.

    Science.gov (United States)

    Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung

    2012-12-01

    What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To

  17. Factors Associated with Potential Food-Drug Interaction in Hospitalized Patients: A Cross-Sectional Study in Northeast Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Abdollahi

    2018-04-01

    Full Text Available Background: The minimization of adverse food-drug interactions will improve patient care by optimizing the therapeutic effects and maintaining proper nutritional status. Aim: The aim of the present study was to find the main factors that may place the hospitalized patients at risk of potential food-drug interactions. Method: This cross-sectional, descriptive study was conducted on 400 inpatients admitted to the Department of Internal Medicine of a teaching hospital in Mashhad, Northeast Iran, within 20 March 2013 to 20 April 2013. The potential food-drug interactions were evaluated for 19 commonly prescribed medications. The main factors (e.g., age, gender, education level, number of medications, and duration of the disease that may place the patients at risk of potential food-drug interactions were analyzed for each patient. Results: Out of the 19 commonly prescribed medications, 17 drugs (89% were not properly used with respect to meal. Furthermore, 14 commonly prescribed drugs were found to have a high frequency (≥50% of potential food-drug interactions. Most of the patients (n=359, 89.8% consumed their medicines at inappropriate time with respect to meals. The results of a multiple logistic regression after adjustment for confounders revealed that the age [β=0.005, CI: 0.0-0.01; P=033], number of medications [β=0.1, CI: 0.083-0.117; P

  18. Inappropriate pharmacological treatment in older adults affected by cardiovascular disease and other chronic comorbidities: a systematic literature review to identify potentially inappropriate prescription indicators

    Directory of Open Access Journals (Sweden)

    Lucenteforte E

    2017-10-01

    Full Text Available Ersilia Lucenteforte,1 Niccolò Lombardi,1,* Davide Liborio Vetrano,2,* Domenico La Carpia,2,* Zuzana Mitrova,3 Ursula Kirchmayer,3 Giovanni Corrao,4 Francesco Lapi,5 Alessandro Mugelli,1 Alfredo Vannacci1 On behalf of the Italian Group for Appropriate Drug prescription in the Elderly (I-GrADE 1Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA, University of Florence, Florence, Italy; 2Department of Geriatrics Catholic University, Rome, Italy; 3Department of Epidemiology, ASL 1 Rome, Italy; 4Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy; 5Epidemiology Unit, ARS Toscana, Florence, Italy *These authors contributed equally to this work Abstract: Avoiding medications in which the risks outweigh the benefits in the elderly patient is a challenge for physicians, and different criteria to identify inappropriate prescription (IP exist to aid prescribers. Definition of IP indicators in the Italian geriatric population affected by cardiovascular disease and chronic comorbidities could be extremely useful for prescribers and could offer advantages from a public health perspective. The purpose of the present study was to identify IP indicators by means of a systematic literature review coupled with consensus criteria. A systematic search of PubMed, EMBASE, and CENTRAL databases was conducted, with the search structured around four themes and combining each with the Boolean operator “and”. The first regarded “prescriptions”, the second “adverse events”, the third “cardiovascular conditions”, and the last was planned to identify studies on “older people”. Two investigators independently reviewed titles, abstracts, full texts, and selected articles addressing IP in the elderly affected by cardiovascular condition using the following inclusion criteria: studies on people aged ≥65 years; studies on patients with no restriction on age but with data on subjects

  19. Indolealkylamines: Biotransformations and Potential Drug–Drug Interactions

    OpenAIRE

    Yu, Ai-Ming

    2008-01-01

    Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug–drug interactions (DDIs). A stable, principal metabolite of an IAA drug of ab...

  20. Characterization of drug-related problems identified by clinical pharmacy staff at Danish hospitals

    DEFF Research Database (Denmark)

    Kjeldsen, Lene Juel; Birkholm, Trine; Fischer, Hanne

    2014-01-01

    Background In 2010, a database of drug related problems (DRPs) was implemented to assist clinical pharmacy staff in documenting clinical pharmacy activities locally. A study of quality, reliability and generalisability showed that national analyses of the data could be conducted. Analyses...... at the national level may help identify and prevent DRPs by performing national interventions. Objective The aim of the study was to explore the DRP characteristics as documented by clinical pharmacy staff at hospital pharmacies in the Danish DRP-database during a 3-year period. Setting Danish hospital pharmacies....... Method Data documented in the DRP-database during the initial 3 years after implementation were analyzed retrospectively. The DRP-database contains DRPs reported at hospitals by clinical pharmacy staff. The analyses focused on DRP categories, implementation rates and drugs associated with the DRPs. Main...

  1. Physical stability, biocompatibility and potential use of hybrid iron oxide-gold nanoparticles as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Christopher M. [School of Pharmacy, Keele University (United Kingdom); Gueorguieva, Mariana [Institute of Medical Science and Technology, University of Dundee (United Kingdom); Lees, Martin R. [University of Warwick, Physics Department (United Kingdom); McGarvey, David J. [School of Physical and Geographical Sciences, Keele University, Lennard-Jones Laboratories (United Kingdom); Hoskins, Clare, E-mail: c.hoskins@keele.ac.uk [Institute for Science and Technology in Medicine, Keele University (United Kingdom)

    2013-06-15

    Hybrid nanoparticles (HNPs) such as iron oxide-gold nanoparticles are currently being exploited for their potential application in image-guided therapies. However, little investigation has been carried out into their physical or chemical stability and potential cytotoxicity in biological systems. Here, we determine the HNPs physical stability over 6 months and chemical stability in physiological conditions, and estimate the biological activity of uncoated and poly(ethylene glycol) coated nanoparticles on human pancreatic adenocarcinoma (BxPC-3) and differentiated human monocyte cells (U937). The potential of these HNPs to act as drug carrier vehicles was determined using the model drug 6-Thioguanine (6-TG). The data showed that the HNPs maintained their structural integrity both physically and chemically throughout the duration of the studies. In addition, negligible cytotoxicity or free radical production was observed in the cell lines tested. The 6-TG was successfully conjugated; with a ratio of 3:1:10 Fe:Au:6-TG (wt:wt:wt). After incubation with BxPC-3 cells, enhanced cellular uptake was reported with the 6-TG-conjugated HNPs compared with free drug along with a 10-fold decrease in IC{sub 50}. This exciting data highlights the potential of HNPs for use in image-guided drug delivery.

  2. Drug-drug interactions in prescriptions for hospitalized elderly with Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Tiago Aparecido Maschio de Lima

    2017-11-01

    Full Text Available The objective was to determine the rate of potential drug-drug interactions in prescriptions for elderly diagnosed with Acute Coronary Syndrome in a teaching hospital. This is an exploratory, descriptive study that analyzed 607 prescriptions through databases to identify and classify the interactions based on intensity (major, moderate or minor, the mechanism (pharmacokinetic or pharmacodynamics and documentation relevance. We detected 10,162 drug-drug interactions, distributed in 554 types of different combinations within the prescribed drugs, and 99% of prescriptions presented at least one and a maximum of 53 interactions; highlighting the prevalence of major and moderates ones. There was a correlation between the number of drug-drug interactions and the number of prescribed drugs and the hospitalization time. This study contributes for the delimitation of a prevalence pattern in drug-drug interactions in prescriptions for Acute Coronary Syndrome, besides subsidizing the importance of the effective implementation of the Clinical Pharmacy in teaching hospitals.

  3. Developing a Molecular Roadmap of Drug-Food Interactions

    DEFF Research Database (Denmark)

    Jensen, Kasper; Ni, Yueqiong; Panagiotou, Gianni

    2015-01-01

    therapeutic interventions, a systematic approach for identifying, predicting and preventing potential interactions between food and marketed or novel drugs is not yet available. The overall objective of this work was to sketch a comprehensive picture of the interference of ∼ 4,000 dietary components present...... view of the associations between diet and dietary molecules with drug targets, metabolic enzymes, drug transporters and carriers currently deposited in Drug-Bank. Moreover, we identified disease areas and drug targets that are most prone to the negative effects of drug-food interactions, showcasing......Recent research has demonstrated that consumption of food -especially fruits and vegetables-can alter the effects of drugs by interfering either with their pharmacokinetic or pharmacodynamic processes. Despite the recognition of such drug-food associations as an important element for successful...

  4. Identifying product development crises: The potential of adaptive heuristics

    DEFF Research Database (Denmark)

    Münzberger, C.; Stingl, Verena; Oehmen, Josef

    2017-01-01

    This paper introduces adaptive heuristics as a tool to identify crises in design projects and highlights potential applications of these heuristics as decision support tool for crisis identification. Crises may emerge slowly or suddenly, and often have ambiguous signals. Thus the identification...... for the application of heuristics in design sciences. To achieve this, the paper compares crises to 'business as usual', and presents sixteen indicators for emerging crises. These indicators are potential cues for adaptive heuristics. Specifically three adaptive heuristics, One-single-cue, Fast-and-Frugal-Trees...

  5. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  6. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  7. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Amanda E Brooks

    2015-11-01

    Full Text Available Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1 deliver sensitive biologic molecules, (2 promote intimate contact between the mucosa and the drug, and (3 prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  8. Repositioning FDA Drugs as Potential Cruzain Inhibitors from Trypanosoma cruzi: Virtual Screening, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Isidro Palos

    2017-06-01

    Full Text Available Chagas disease (CD is a neglected disease caused by the parasite Trypanosoma cruzi, which affects underdeveloped countries. The current drugs of choice are nifurtimox and benznidazole, but both have severe adverse effects and less effectivity in chronic infections; therefore, the need to discover new drugs is essential. A computer-guided drug repositioning method was applied to identify potential FDA drugs (approved and withdrawn as cruzain (Cz inhibitors and trypanocidal effects were confirmed by in vitro and in vivo studies. 3180 FDA drugs were virtually screened using a structure-based approach. From a first molecular docking analysis, a set of 33 compounds with the best binding energies were selected. Subsequent consensus affinity binding, ligand amino acid contact clustering analysis, and ranked position were used to choose four known pharmacological compounds to be tested in vitro. Mouse blood samples infected with trypomastigotes from INC-5 and NINOA strains were used to test the trypanocidal effect of four selected compounds. Among these drugs, one fibrate antilipemic (etofyllin clofibrate and three β-lactam antibiotics (piperacillin, cefoperazone, and flucloxacillin showed better trypanocidal effects (LC50 range 15.8–26.1 μg/mL in comparison with benznidazole and nifurtimox (LC50 range 33.1–46.7 μg/mL. A short-term in vivo evaluation of these compounds showed a reduction of parasitemia in infected mice (range 90–60% at 6 h, but this was low compared to benznidazole (50%. This work suggests that four known FDA drugs could be used to design and obtain new trypanocidal agents.

  9. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Tram Chau [Institute of Research and Development, Duy Tan University, Da Nang City 550000 (Viet Nam); Department of Chemical Engineering, Industrial University of HCMC, HCMC 70000 (Viet Nam); Nguyen, Cuu Khoa, E-mail: nckhoavnn@yahoo.com [Department of Materials and Pharmaceutical Chemistry, Vietnam Academy of Science and Technology, HCMC 70000 (Viet Nam); Nguyen, Thi Hiep [Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000 (Viet Nam); Tran, Ngoc Quyen, E-mail: tnquyen@iams.vast.vn [Institute of Research and Development, Duy Tan University, Da Nang City 550000 (Viet Nam); Department of Materials and Pharmaceutical Chemistry, Vietnam Academy of Science and Technology, HCMC 70000 (Viet Nam)

    2017-01-01

    In the study, four kinds of pluronics (P123, F68, F127 and F108) with varying hydrophilic-lipophilic balance (HLB) values were modified and conjugated on 4th generation of polyamidoamine dendrimer (PAMAM). The obtained results from FT-IR, {sup 1}H NMR and GPC showed that the pluronics effectively conjugated on the dendrimer. The molecular weight of four PAMAM G4.0-Pluronics and its morphologies are in range of 200.15–377.14 kDa and around 60–180 nm in diameter by TEM, respectively. Loading efficiency and release of hydrophobic fluorouracil (5-FU) anticancer drug were evaluated by HPLC; Interesting that the dendrimer nanocarrier was conjugated with the highly lipophilic pluronic P123 (G4.0-P123) exhibiting a higher drug loading efficiency (up to 76.25%) in comparison with another pluronics. Live/dead fibroblast cell staining assay mentioned that all conjugated nanocarriers are highly biocompatible. The drug-loaded nanocarriers also indicated a highly anti-proliferative activity against MCF-7 breast cancer cell. The obtained results demonstrated a great potential of the highly lipophilic pluronics-conjugated nanocarriers in hydrophobic drugs delivery for biomedical applications. - Highlights: • Biocompatible pluronic-conjugated polyamidoamine dendrimers were prepared at nanoscale for drug delivery. • The dendrimer nanocarrier was decorated with a lipophilic pluronic exhibiting a higher drug loading efficiency. • The pluronic-functionalized nanocarriers demonstrated a great potential for delivering hydrophobic drugs.

  10. Antibody Arrays Identify Potential Diagnostic Markers of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Brian J. Peter

    2008-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer deaths worldwide. Effective treatment of HCC patients is hampered by the lack of sensitive and specific diagnostic markers of HCC. Alpha-fetoprotein (AFP, the currently used HCC marker, misses 30%–50% of HCC patients, who therefore remain undiagnosed and untreated. In order to identify novel diagnostic markers that can be used individually or in combination with AFP, we used an antibody array platform to detect the levels of candidate proteins in the plasma of HCC patients (n = 48 and patients with chronic hepatitis B or C viral infections (n = 19 (both of which are the major risk factors of HCC. We identified 7 proteins that significantly differentiate HCC patients from hepatitis patients (p < 0.05 (AFP, CTNNB, CSF1, SELL, IGFBP6, IL6R, and VCAM1.Importantly, we also identified 8 proteins that significantly differentiate HCC patients with ‘normal’ levels of AFP (<20 ng/ml from hepatitis patients (p < 0.05 (IL1RN, IFNG, CDKN1A, RETN, CXCL14, CTNNB, FGF2, and SELL. These markers are potentially important complementary markers to AFP. Using an independent immunoassay method in an independent group of 23 HCC patients and 22 hepatitis patients, we validated that plasma levels of CTNNB were significantly higher in the HCC group (p = 0.020. In conclusion, we used an antibody array platform to identify potential circulating diagnostic markers of HCC, some of which may be valuable when used in combination with AFP. The clinical utility of these newly identified HCC diagnostic markers needs to be systematically evaluated.

  11. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  12. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  13. miR Profiling Identifies Cyclin-Dependent Kinase 6 Downregulation as a Potential Mechanism of Acquired Cisplatin Resistance in Non-Small-Cell Lung Carcinoma.

    Science.gov (United States)

    Bar, Jair; Gorn-Hondermann, Ivan; Moretto, Patricia; Perkins, Theodore J; Niknejad, Nima; Stewart, David J; Goss, Glenwood D; Dimitroulakos, Jim

    2015-11-01

    To identify the mechanisms of cisplatin resistance, global microRNA (miR) expression was tested. The expression of miR-145 was consistently higher in resistant cells. The expression of cyclin-dependent kinase 6 (CDK6), a potential target of miR-145, was lower in resistant cells, and inhibition of CDK4/6 protected cells from cisplatin. Cell cycle inhibition, currently being tested in clinical trials, might be antagonistic to cisplatin and other cytotoxic drugs. Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Platinum-based chemotherapeutic drugs are the most active agents in treating advanced disease. Resistance to these drugs is common and multifactorial; insight into the molecular mechanisms involved will likely enhance efficacy. A set of NSCLC platinum-resistant sublines was created from the Calu6 cell line. Cell viability was quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Differentially expressed microRNAs (miRs) in these lines were identified using Affymetrix miR arrays. The potential genes targeted by these miRs were searched using the TargetScan algorithm. The expression levels of miRs and mRNA were tested using real-time polymerase chain reaction. miR-145 was reproducibly elevated in all the resistant sublines tested; however, modulation of miR-145 levels alone in these cells did not affect their response to cisplatin. A potential target of miR-145 is cyclin-dependent kinase 6 (CDK6), an important regulator of cell proliferation. The mRNA and protein levels of CDK6 were both downregulated in the resistant sublines. An inhibitor of CDK4/6 (PD0332991) protected parental NSCLC cells from cisplatin cytotoxicity. In the present study, we identified miRs differentially expressed in cisplatin-resistant cell lines, including miR-145. A predicted target of miR-145 is CDK6, and its expression was found to be downregulated in the resistant sublines, although not directly by miR-145. Inhibition

  14. Discontinued drugs in 2012: cardiovascular drugs.

    Science.gov (United States)

    Zhao, Hong-Ping; Jiang, Hong-Min; Xiang, Bing-Ren

    2013-11-01

    The continued high rate of cardiovascular morbidity and mortality has attracted wide concern and great attention of pharmaceutical industry. In order to reduce the attrition of cardiovascular drug R&D, it might be helpful recapitulating previous failures and identifying the potential factors to success. This perspective mainly analyses the 30 cardiovascular drugs dropped from clinical development in 2012. Reasons causing the termination of the cardiovascular drugs in the past 5 years are also tabulated and analysed. The analysis shows that the attrition is highest in Phase II trials and financial and strategic factors and lack of clinical efficacy are the principal reasons for these disappointments. To solve the four problems (The 'better than the Beatles' problem, the 'cautious regulator' problem, the 'throw money at it' tendency and the 'basic researchbrute force' bias) is recommended as the main measure to increase the number and quality of approvable products.

  15. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigating drug repositioning opportunities in FDA drug labels through topic modeling.

    Science.gov (United States)

    Bisgin, Halil; Liu, Zhichao; Kelly, Reagan; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-01-01

    addition, we identified two therapeutic groups of drugs (Musculo-skeletal system and Anti-infective for systemic use) where over 80% of the drugs have a potential replacement with high significance. Topic modeling can be a powerful tool for the identification of repositioning opportunities by examining the adverse event terms in FDA approved drug labels. The proposed framework not only suggests drugs that can be repurposed, but also provides insight into the safety of repositioned drugs.

  17. Cancer Chemoprevention Effects of Ginger and its Active Constituents: Potential for New Drug Discovery.

    Science.gov (United States)

    Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.

  18. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays.

    Directory of Open Access Journals (Sweden)

    Jonathan A Lee

    Full Text Available Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS pharmaceutical collection (NPC is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/ (AID 1117321. Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.

  19. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    Science.gov (United States)

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  20. Identifying potential kidney donors using social networking web sites.

    Science.gov (United States)

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  1. Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation

    International Nuclear Information System (INIS)

    Nozaki, Yumiko; Honda, Yayoi; Tsujimoto, Shinji; Watanabe, Hitoshi; Kunimatsu, Takeshi; Funabashi, Hitoshi

    2014-01-01

    Field potential duration (FPD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which can express QT interval in an electrocardiogram, is reported to be a useful tool to predict K + channel and Ca 2+ channel blocker effects on QT interval. However, there is no report showing that this technique can be used to predict multichannel blocker potential for QT prolongation. The aim of this study is to show that FPD from MEA (Multielectrode array) of hiPS-CMs can detect QT prolongation induced by multichannel blockers. hiPS-CMs were seeded onto MEA and FPD was measured for 2 min every 10 min for 30 min after drug exposure for the vehicle and each drug concentration. I Kr and I Ks blockers concentration-dependently prolonged corrected FPD (FPDc), whereas Ca 2+ channel blockers concentration-dependently shortened FPDc. Also, the multichannel blockers Amiodarone, Paroxetine, Terfenadine and Citalopram prolonged FPDc in a concentration dependent manner. Finally, the I Kr blockers, Terfenadine and Citalopram, which are reported to cause Torsade de Pointes (TdP) in clinical practice, produced early afterdepolarization (EAD). hiPS-CMs using MEA system and FPDc can predict the effects of drug candidates on QT interval. This study also shows that this assay can help detect EAD for drugs with TdP potential. - Highlights: • We focused on hiPS-CMs to replace in vitro assays in preclinical screening studies. • hiPS-CMs FPD is useful as an indicator to predict drug potential for QT prolongation. • MEA assay can help detect EAD for drugs with TdP potentials. • MEA assay in hiPS-CMs is useful for accurately predicting drug TdP risk in humans

  2. Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Yumiko, E-mail: yumiko-nozaki@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Honda, Yayoi, E-mail: yayoi-honda@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Tsujimoto, Shinji, E-mail: shinji-tsujimoto@ds-pharma.co.jp [Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma. Co., Ltd., Chuo-ku, Tokyo 104-0031 (Japan); Watanabe, Hitoshi, E-mail: hitoshi-1-watanabe@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Kunimatsu, Takeshi, E-mail: takeshi-kunimatsu@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Funabashi, Hitoshi, E-mail: hitoshi-funabashi@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan)

    2014-07-01

    Field potential duration (FPD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which can express QT interval in an electrocardiogram, is reported to be a useful tool to predict K{sup +} channel and Ca{sup 2+} channel blocker effects on QT interval. However, there is no report showing that this technique can be used to predict multichannel blocker potential for QT prolongation. The aim of this study is to show that FPD from MEA (Multielectrode array) of hiPS-CMs can detect QT prolongation induced by multichannel blockers. hiPS-CMs were seeded onto MEA and FPD was measured for 2 min every 10 min for 30 min after drug exposure for the vehicle and each drug concentration. I{sub Kr} and I{sub Ks} blockers concentration-dependently prolonged corrected FPD (FPDc), whereas Ca{sup 2+} channel blockers concentration-dependently shortened FPDc. Also, the multichannel blockers Amiodarone, Paroxetine, Terfenadine and Citalopram prolonged FPDc in a concentration dependent manner. Finally, the I{sub Kr} blockers, Terfenadine and Citalopram, which are reported to cause Torsade de Pointes (TdP) in clinical practice, produced early afterdepolarization (EAD). hiPS-CMs using MEA system and FPDc can predict the effects of drug candidates on QT interval. This study also shows that this assay can help detect EAD for drugs with TdP potential. - Highlights: • We focused on hiPS-CMs to replace in vitro assays in preclinical screening studies. • hiPS-CMs FPD is useful as an indicator to predict drug potential for QT prolongation. • MEA assay can help detect EAD for drugs with TdP potentials. • MEA assay in hiPS-CMs is useful for accurately predicting drug TdP risk in humans.

  3. Accelerating Precision Drug Development and Drug Repurposing by Leveraging Human Genetics.

    Science.gov (United States)

    Pulley, Jill M; Shirey-Rice, Jana K; Lavieri, Robert R; Jerome, Rebecca N; Zaleski, Nicole M; Aronoff, David M; Bastarache, Lisa; Niu, Xinnan; Holroyd, Kenneth J; Roden, Dan M; Skaar, Eric P; Niswender, Colleen M; Marnett, Lawrence J; Lindsley, Craig W; Ekstrom, Leeland B; Bentley, Alan R; Bernard, Gordon R; Hong, Charles C; Denny, Joshua C

    2017-04-01

    The potential impact of using human genetic data linked to longitudinal electronic medical records on drug development is extraordinary; however, the practical application of these data necessitates some organizational innovations. Vanderbilt has created resources such as an easily queried database of >2.6 million de-identified electronic health records linked to BioVU, which is a DNA biobank with more than 230,000 unique samples. To ensure these data are used to maximally benefit and accelerate both de novo drug discovery and drug repurposing efforts, we created the Accelerating Drug Development and Repurposing Incubator, a multidisciplinary think tank of experts in various therapeutic areas within both basic and clinical science as well as experts in legal, business, and other operational domains. The Incubator supports a diverse pipeline of drug indication finding projects, leveraging the natural experiment of human genetics.

  4. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    International Nuclear Information System (INIS)

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2012-01-01

    A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

  5. Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela

    2015-12-30

    Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evaluation of Potential Drug-Drug Interaction Between Delayed-Release Dimethyl Fumarate and a Commonly Used Oral Contraceptive (Norgestimate/Ethinyl Estradiol) in Healthy Women.

    Science.gov (United States)

    Zhu, Bing; Nestorov, Ivan; Zhao, Guolin; Meka, Venkata; Leahy, Mark; Kam, Jeanelle; Sheikh, Sarah I

    2017-11-01

    Delayed-release dimethyl fumarate (DMF) is an oral therapy for relapsing multiple sclerosis with anti-inflammatory and neuroprotective properties. This 2-period crossover study was conducted to evaluate the potential for drug-drug interaction between DMF (240 mg twice daily) and a combined oral contraceptive (OC; norgestimate 250 μg, ethinyl estradiol 35 μg). Forty-six healthy women were enrolled; 32 completed the study. After the lead-in period (OC alone), 41 eligible participants were randomized 1:1 to sequence 1 (OC and DMF coadministration in period 1; OC alone in period 2) or sequence 2 (regimens reversed). Mean concentration profiles of plasma norelgestromin (primary metabolite of norgestimate) and ethinyl estradiol were superimposable following OC alone and OC coadministered with DMF, with 90% confidence intervals of geometric mean ratios for area under the plasma concentration-time curve over the dosing interval and peak plasma concentration contained within the 0.8-1.25 range. Low serum progesterone levels during combined treatment confirmed suppression of ovulation. The pharmacokinetics of DMF (measured via its primary active metabolite, monomethyl fumarate) were consistent with historical data when DMF was administered alone. No new safety concerns were identified. These results suggest that norgestimate/ethinyl estradiol-based OCs may be used with DMF without dose modification. © 2017, The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  7. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  8. Anticoagulant Medicine: Potential for Drug-Food Interactions

    Science.gov (United States)

    ... Medications Anticoagulants and Drug-Food Interactions Anticoagulants and Drug-Food Interactions Make an Appointment Ask a Question Refer Patient ... Jewish Health wants you to be aware these drug-food interactions when taking anticoagulant medicine. Ask your health care ...

  9. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  10. FUNCTIONAL GENOMICS IDENTIFIES TIS21-DEPENDENT MECHANISMS AND PUTATIVE CANCER DRUG TARGETS UNDERLYING MEDULLOBLASTOMA SHH-TYPE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giulia Gentile

    2016-11-01

    Full Text Available We have recently generated a novel medulloblastoma (MB mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+-Tis21KO.ts main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs. By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+-is21 wild-type versus Ptch1+-Tis21 knockout, among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets.The data analysis using bioinformatic tools revealed: i a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; ii a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype the neural cell type involved in group 3 MB; iii the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

  11. The dopamine hypothesis of drug addiction and its potential therapeutic value.

    Directory of Open Access Journals (Sweden)

    Marco eDiana

    2011-11-01

    Full Text Available Dopamine (DA transmission is deeply affected by drugs of abuse, and alterations in DA function are involved in various phases of drug addiction and potentially exploitable therapeutically. In particular, basic studies have documented a reduction in the electrophysiological activity of DA neurons in alcohol, opiate, cannabinoid and other drug-dependent rats. Further, DA release in the Nacc is decreased in virtually all drug-dependent rodents. In parallel, these studies are supported by increments in intracranial self stimulation (ICSS thresholds during withdrawal from alcohol, nicotine, opiates, and other drugs of abuse, thereby suggesting a hypofunction of the neural substrate of ICSS. Accordingly, morphological evaluations fed into realistic computational analysis of the Medium Spiny Neuron (MSN of the Nucleus accumbens (Nacc, post-synaptic counterpart of DA terminals, show profound changes in structure and function of the entire mesolimbic system. In line with these findings, human imaging studies have shown a reduction of dopamine receptors accompanied by a lesser release of endogenous DA in the ventral striatum of cocaine, heroin and alcohol-dependent subjects, thereby offering visual proof of the ‘dopamine-impoverished’ addicted human brain.The reduction in physiological activity of the DA system leads to the idea that an increment in its activity, to restore pre-drug levels, may yield significant clinical improvements (reduction of craving, relapse and drug-seeking/taking. In theory, it may be achieved pharmacologically and/or with novel interventions such as Transcranial Magnetic Stimulation (TMS. Its anatomo-physiological rationale as a possible therapeutic aid in alcoholics and other addicts will be described and proposed as a theoretical framework to be subjected to experimental testing in human addicts.

  12. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  13. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  14. An RNAi-mediated screen identifies novel targets for next-generation antiepileptic drugs based on increased expression of the homeostatic regulator pumilio.

    Science.gov (United States)

    Lin, Wei-Hsiang; He, Miaomiao; Fan, Yuen Ngan; Baines, Richard A

    2018-05-02

    Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio (Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed a genome-wide RNAi screen in S2R + cells, using a luciferase-based dPum activity reporter and identified 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are sufficient to significantly reduce seizure duration in the characterized seizure mutant, para bss . We further show that chemical inhibitors of protein products of some of the genes targeted are similarly anticonvulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favourable target for AED design and, moreover, identifies a number of lead compounds capable of increasing the expression of this homeostatic regulator.

  15. The Potential Return on Public Investment in Detecting Adverse Drug Effects.

    Science.gov (United States)

    Huybrechts, Krista F; Desai, Rishi J; Park, Moa; Gagne, Joshua J; Najafzadeh, Mehdi; Avorn, Jerry

    2017-06-01

    Many countries lack fully functional pharmacovigilance programs, and public budgets allocated to pharmacovigilance in industrialized countries remain low due to resource constraints and competing priorities. Using 3 case examples, we sought to estimate the public health and economic benefits resulting from public investment in active pharmacovigilance programs to detect adverse drug effects. We assessed 3 examples in which early signals of safety hazards were not adequately recognized, resulting in continued exposure of a large number of patients to these drugs when safer and effective alternative treatments were available. The drug examples studied were rofecoxib, cerivastatin, and troglitazone. Using an individual patient simulation model and the health care system perspective, we estimated the potential costs that could have been averted by early systematic detection of safety hazards through the implementation of active surveillance programs. We found that earlier drug withdrawal made possible by active safety surveillance would most likely have resulted in savings in direct medical costs of $773-$884 million for rofecoxib, $3-$10 million for cerivastatin, and $38-$63 million for troglitazone in the United States through the prevention of adverse events. By contrast, the yearly public investment in Food and Drug Administration initiated population-based pharmacovigilance activities in the United States is about $42.5 million at present. These examples illustrate a critical and economically justifiable role for active adverse effect surveillance in protecting the health of the public.

  16. BTS 72664-- a novel CNS drug with potential anticonvulsant, neuroprotective, and antimigraine properties.

    Science.gov (United States)

    Smith, S L; Thompson, K S; Sargent, B J; Heal, D J

    2001-01-01

    BTS 72664, (R)-7-[1-(4-chlorophenoxy)]ethyl]-1,2,4-triazolo(1,5-alpha)pyrimidine, was identified as a drug development candidate from a research program designed to discover novel, broad-spectrum, non-sedative anticonvulsant drugs. BTS 72664 antagonized bicuculline (BIC)- and maximal electroshock (MES)-induced convulsions with ED(50) values of 1.9 and 47.5 mg/kg p.o., respectively. In rodents, it has a wide spectrum of activity preventing seizures induced by picrotoxin, pentylenetetrazol, i.c.v. 4-aminopyridine or NMDA, and audiogenic seizures in DBA-2 mice and GEPR-9 rats. BTS 72664 was also effective in preventing convulsions in amygdala-kindled rats The lack of sedative potential was predicted on the basis of wide separation between ED(50) in anticonvulsant models and TD(50) for motor impairment in mice in rotating rod and inverted horizontal grid tests. BTS 72664 is likely to produce its anticonvulsant effect by enhancing chloride currents through picrotoxin-sensitive chloride channels, and by weak inhibition of Na(+) and NMDA channels. It does not act, however, at the benzodiazepine binding site. In addition to its potential use in the treatment of epilepsy BTS 72664 may be useful in the treatment of stroke. At 50 mg/kg p.o. x 4, given to rats at 12 hourly intervals, starting at 15 min after permanent occlusion of middle cerebral artery (MCA), it reduced cerebral infarct size by 31% (measured at 2 days after insult) and accelerated recovery in a functional behavioral model. BTS 72664 prevented increases in extraneuronal concentrations of glutamate, glycine and serine brain levels induced by a cortical insult to rats (cf. cortical spreading depression). It may, therefore, have also antimigraine activity.

  17. Potential of carrageenans to protect drugs from polymorphic transformation.

    Science.gov (United States)

    Schmidt, Andrea G; Wartewig, Siegfried; Picker, Katharina M

    2003-07-01

    Carrageenans were analysed in mixture with polymorphic drugs to test their potential for minimising polymorphic or pseudopolymorphic transitions, which are induced by the tableting process. The kappa-carrageenans Gelcarin GP-812 NF and Gelcarin GP-911 NF and the iota-carrageenan Gelcarin GP-379 NF were tested in comparison to the well-known tableting excipients microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), and dicalcium phosphate dihydrate (DCPD). Amorphous indomethacin was chosen as model drug since its well-known recrystallisation behaviour can be mechanically stimulated. Further on, theophylline monohydrate was used. Its dehydration is induced by tableting. Pure materials and mixtures containing 20% (w/w) drug were compressed up to different maximum relative densities. The data obtained during tableting were analysed by three-dimensional (3D) modelling. Afterwards tablets were broken and examined by Fourier transform Raman spectroscopy in order to determine the degree of transformation inside the tablet. For quantitative interpretation, the intensities of representative bands were used. Thermal analysis was used additionally. Using 3D modelling a decrease of plastic deformation can be noticed in the order HPMC>MCC>carrageenans, whereas DCPD represents an exception because of brittle fracture. Best hindrance of polymorphic transformation showed the carrageenans, the hindrance was slightly worse for HPMC. MCC and DCPD could not hinder transformation. A complete protection of the amorphous form could not be achieved. For theophylline monohydrate, the results were similar.

  18. [Prevalence of potentially inappropriate drug prescription in the elderly].

    Science.gov (United States)

    Fajreldines, A; Insua, J; Schnitzler, E

    2016-01-01

    One of the causes of preventable adverse drug events (ADES) in older patients constitutes inappropriate prescription of drugs (PIM). The PIM is where risks exceed the clinical benefit. Several instruments can be use to measure this problem, the most used are: a) Beers criteria; b) Screening tool to Older People Potentially inappropriate Prescription (STOPP); c) Screening tool to Alert Doctors to Right Appropriate indicated Treatments (START); d) The Medication Appropriateness Index (MAI). This study aims to assess the prevalence of PIM, in a population of older adults in three clinical scopes of university hospital. cross sectional study of 300 cases from a random sample of fields: hospitalization (n=100), ambulatory (n=100) and emergency (n=100), all patients over 65 years old or more who where treated at our hospital. 1355 prescription drugs were analized, finding patients hospitalized (PIM) of 57.7%, 55%, 26%, and 80% according to Beers, in ambulatory 36%, 36.5%, 5% and 52% with the same tools and in emergency 35%, 35%, 6% y 52% with the same tools. Was found significant association the PIM with polipharmacy with Beers, STOPP and MAI. results can be compare to world literature (26-80% vs 11-73.1%). The STOPP-START used in an integrated manner would be best estimating the problem of PIM. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach

    Directory of Open Access Journals (Sweden)

    S. Vijayakumar

    Full Text Available Parkinson's disease (PD is caused by human physiological function and is ranked as the second most common neurodegenerative disorder. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Currently, available pharmaceutical drugs provide only temporary relief of the disease. Phytocompounds have been identified as promising target of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structure. In this review the drug development of Parkinson disease has been analyzed using computational tools. Keywords: Parkinson disease, Phytocompounds, Computational methods, Drug development and design

  20. Cyclohexane, a potential drug of abuse with pernicious effects for the brain

    Directory of Open Access Journals (Sweden)

    Oscar eGonzalez-Perez

    2016-01-01

    Full Text Available Cyclohexane is a volatile solvent used as a harmless substitute for dangerous organic solvents in several products, such as paint thinners, gasoline and adhesives. Many of these products are used as drugs of abuse and can severely damage neural tissue and impair neurological functions. However, there is very little information on the effects of cyclohexane on the brain. In humans, cyclohexane produces headaches, sleepiness, dizziness, limb weakness, motor changes and verbal memory impairment. Recent studies in mice have demonstrated behavioral alterations, reactive gliosis, microglial reactivity and oxidative stress in the brains of cyclohexane-exposed animals. This indicates that cyclohexane may represent a potential problem for public health. Therefore, studies are needed to clarify the neurobiological effects of this volatile compound, including the cellular and molecular mechanisms of neurotoxicity, and to minimize the human health risk posed by the intentional or accidental inhalation of this potential drug of abuse.

  1. Screening of a Drug Library Identifies Inhibitors of Cell Intoxication by CNF1.

    Science.gov (United States)

    Mahtal, Nassim; Brewee, Clémence; Pichard, Sylvain; Visvikis, Orane; Cintrat, Jean-Christophe; Barbier, Julien; Lemichez, Emmanuel; Gillet, Daniel

    2018-04-06

    Cytotoxic necrotizing factor 1 (CNF1) is a toxin produced by pathogenic strains of Escherichia coli responsible for extra-intestinal infections. CNF1 deamidates Rac1, thereby triggering its permanent activation and worsening inflammatory reactions. Activated Rac1 is prone to proteasomal degradation. There is no targeted therapy against CNF1, despite its clinical relevance. In this work we developed a fluorescent cell-based immunoassay to screen for inhibitors of CNF1-induced Rac1 degradation among 1120 mostly approved drugs. Eleven compounds were found to prevent CNF1-induced Rac1 degradation, and five also showed a protective effect against CNF1-induced multinucleation. Finally, lasalocid, monensin, bepridil, and amodiaquine protected cells from both diphtheria toxin and CNF1 challenges. These data highlight the potential for drug repurposing to fight several bacterial infections and Rac1-based diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy.

    Science.gov (United States)

    Yan, Guoqing; Wang, Jun; Qin, Jiejie; Hu, Liefeng; Zhang, Panpan; Wang, Xin; Tang, Rupei

    2017-07-01

    To compare the chemotherapeutic efficacy determined by extra- and intracellular drug release strategies, poly(ortho ester amide)-based drug carriers (POEAd-C) with well-defined main-chain lengths, are successfully constructed by a facile method. POEAd-C3-doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5-7.2), while POEAd-C6-DOX can rapidly release drug following gradual swelling at intracellular pH (5.0-6.0). In vitro cytotoxicity shows that POEAd-C3-DOX exhibits more toxic effect on tumor cells than POEAd-C6-DOX at extracellular pH, but POEAd-C6-DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd-C6-DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd-C3-DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ...

  4. Computational drug designing of fungal pigments as potential aromatase inhibitors

    Directory of Open Access Journals (Sweden)

    Nighat Fatima

    2014-12-01

    Full Text Available The existing aromatase inhibitors produced unwelcome effects impose the discovery of novel drugs with privileged selectivity, a reduced amount of toxicity and humanizing potency. In this study, we illuminate the binding mode of polyketide azaphilanoid pigments monascin, ankaflavin, monascorubrin and monascorubramine isolated from Monascus fungus to the aromatase by molecular docking. The 3-dimensional structure of aromatase enzyme (PDB: 4KQ8 was obtained from the Protein Data Bank. PatchDock docking software was used to analyze structural complexes of the aromatase with monascus pigments. Comparatively, the AutoGrid model presented the most briskly constructive binding mode of monascin to aromatase. Docked energies in kcal/mol are: monascin;-13.2; monascorubramine:-12.8, monascorubrin:-12.3; ankaflavin: -10.5. These outcomes exposed these ligands could be potential drugs to treat hormone dependent breast cancer.

  5. Natural Compounds from Mexican Medicinal Plants as Potential Drug Leads for Anti-Tuberculosis Drugs

    Directory of Open Access Journals (Sweden)

    ROCIO GÓMEZ-CANSINO

    Full Text Available ABSTRACT In Mexican Traditional Medicine 187 plant species are used in the treatment of respiratory conditions that may be associated with tuberculosis. In this contribution, we review the ethnobotany, chemistry and pharmacology of 63 species whose extracts have been assayed for antimycobacterial activity in vitro. Among these, the most potent is Aristolochia brevipes (MIC= 12.5 µg/mL, followed by Aristolochia taliscana, Citrus sinensis, Chrysactinia mexicana, Persea americana, and Olea europaea (MIC 95%, 50 µg/mL include: Amphipterygium adstringens, Larrea divaricata, and Phoradendron robinsoni. Several active compounds have been identified, the most potent are: Licarin A (isolated from A. taliscana, and 9-amino-9-methoxy-3,4-dihydro-2H-benzo[h]-chromen-2-one (transformation product of 9-methoxytariacuripyrone isolated from Aristolochia brevipes, both with MIC= 3.125 µg/mL, that is 8-fold less potent than the reference drug Rifampicin (MIC= 0.5 µg/mL. Any of the compounds or extracts here reviewed has been studied in clinical trials or with animal models; however, these should be accomplished since several are active against strains resistant to common drugs.

  6. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  7. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  8. An adverse events potential costs analysis based on Drug Programs in Poland. Dermatology focus

    Directory of Open Access Journals (Sweden)

    Szkultecka-Debek Monika

    2014-09-01

    Full Text Available The aim of the project, carried out within the Polish Society for Pharmacoeconomics (PTFE, was to estimate the potential costs of treatment of the side effects which (theoretically may occur as a result of treatments for the selected diseases. This paper deals solely with dermatology related events. Herein, several Drug Programs financed by the National Health Fund in Poland, in 2012, were analyzed. The adverse events were selected based on the Summary of Product Characteristics of the chosen products. We focused the project on those potential adverse events which were defined in SPC as frequent and very frequent. The results are presented according to their therapeutic areas, and in this paper, the focus is upon that which is related to dermatology. The events described as ‘very common’ had an incidence of ≥ 1/10, and that which is ‘common’ - ≥ 1/100, <1 /10. In order to identify the resources used, we, with the engagement of clinical experts, performed a survey. In our work, we employed only the total direct costs incurred by the public payer, based on valid individual cost data in February 2014. Moreover, we calculated the total spending from the public payer’s perspective, as well as the patient’s perspective, and the percentage of each component of the total cost in detail. The paper, thus, informs the reader of the estimated costs of treatment of side effects related to the dermatologic symptoms and reactions. Based on our work, we can state that the treatment of skin adverse drug reactions generates a significant cost - one incurred by both the public payer and the patient.

  9. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs

    KAUST Repository

    Naveed, Hammad

    2015-08-18

    Motivation: The inherent promiscuity of small molecules towards protein targets impedes our understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for the pharmaceutical industry as identifying all protein targets is important to assess (side) effects and repositioning opportunities for a drug. Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering, and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of eleven drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the nuclear receptor PPARγ and the oncogene Bcl-2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development.

  10. TCGA bladder cancer study reveals potential drug targets

    Science.gov (United States)

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  11. An analysis of potential costs of adverse events based on Drug Programs in Poland. Pulmonology focus

    Directory of Open Access Journals (Sweden)

    Szkultecka-Debek Monika

    2014-06-01

    Full Text Available The project was performed within the Polish Society for Pharmacoeconomics (PTFE. The objective was to estimate the potential costs of treatment of side effects, which theoretically may occur as a result of treatment of selected diseases. We analyzed the Drug Programs financed by National Health Fund in Poland in 2012 and for the first analysis we selected those Programs where the same medicinal products were used. We based the adverse events selection on the Summary of Product Characteristics of the chosen products. We extracted all the potential adverse events defined as frequent and very frequent, grouping them according to therapeutic areas. This paper is related to the results in the pulmonology area. The events described as very common had an incidence of ≥ 1/10, and the common ones ≥ 1/100, <1/10. In order to identify the resources used, we performed a survey with the engagement of clinical experts. On the basis of the collected data we allocated direct costs incurred by the public payer. We used the costs valid in December 2013. The paper presents the estimated costs of treatment of side effects related to the pulmonology disease area. Taking into account the costs incurred by the NHF and the patient separately e calculated the total spending and the percentage of each component cost in detail. The treatment of adverse drug reactions generates a significant cost incurred by both the public payer and the patient.

  12. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sciuto

    Full Text Available The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  13. A dictionary to identify small molecules and drugs in free text.

    Science.gov (United States)

    Hettne, Kristina M; Stierum, Rob H; Schuemie, Martijn J; Hendriksen, Peter J M; Schijvenaars, Bob J A; Mulligen, Erik M van; Kleinjans, Jos; Kors, Jan A

    2009-11-15

    From the scientific community, a lot of effort has been spent on the correct identification of gene and protein names in text, while less effort has been spent on the correct identification of chemical names. Dictionary-based term identification has the power to recognize the diverse representation of chemical information in the literature and map the chemicals to their database identifiers. We developed a dictionary for the identification of small molecules and drugs in text, combining information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus. Rule-based term filtering, manual check of highly frequent terms and disambiguation rules were applied. We tested the combined dictionary and the dictionaries derived from the individual resources on an annotated corpus, and conclude the following: (i) each of the different processing steps increase precision with a minor loss of recall; (ii) the overall performance of the combined dictionary is acceptable (precision 0.67, recall 0.40 (0.80 for trivial names); (iii) the combined dictionary performed better than the dictionary in the chemical recognizer OSCAR3; (iv) the performance of a dictionary based on ChemIDplus alone is comparable to the performance of the combined dictionary. The combined dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web site http://www.biosemantics.org/chemlist.

  14. Valproic acid-induced hyperammonemic encephalopathy - a potentially fatal adverse drug reaction.

    Science.gov (United States)

    Sousa, Carla

    2013-12-01

    A patient with an early diagnosed epilepsy Valproic acid is one of the most widely used antiepileptic drugs. Hyperammonemic encephalopathy is a rare, but potentially fatal, adverse drug reaction to valproic acid. A patient with an early diagnosed epilepsy, treated with valproic acid, experienced an altered mental state after 10 days of treatment. Valproic acid serum levels were within limits, hepatic function tests were normal but ammonia levels were above the normal range. Valproic acid was stopped and the hyperammonemic encephalopathy was treated with lactulose 15 ml twice daily, metronidazole 250 mg four times daily and L-carnitine 1 g twice daily. Monitoring liver function and ammonia levels should be recommended in patients taking valproic acid. The constraints of the pharmaceutical market had to be taken into consideration and limited the pharmacological options for this patient's treatment. Idiosyncratic symptomatic hyperammonemic encephalopathy is completely reversible, but can induce coma and even death, if not timely detected. Clinical pharmacists can help detecting adverse drug reactions and provide evidence based information for the treatment.

  15. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease.

    Science.gov (United States)

    Hiremathad, Asha; Keri, Rangappa S; Esteves, A Raquel; Cardoso, Sandra M; Chaves, Sílvia; Santos, M Amélia

    2018-03-25

    Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC 50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aβ aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aβ and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. A Novel Method for Determining the Inhibitory Potential of Anti-HIV Drugs

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Siliciano, Robert F.

    2009-01-01

    In the absence of a cure, most HIV-1-infected individuals will require life-long treatment. It is therefore essential to optimize highly active antiretroviral therapy. Recent research has shown that the slope parameter or Hill coefficient, which describes the steepness of a dose-response curve, is a critical missing dimension in the evaluation of antiviral drug activity. Based on this finding, the instantaneous inhibitory potential (IIP) has been derived as a new measure of antiviral drug activity. IIP incorporates the slope parameter and thus is a more accurate pharmacodynamic measure of antiviral activity than current measures such as IC50 and inhibitory quotient. However, it remains important to determine how to use IIP to predict the in vivo efficacy of anti-HIV-1 drugs. This article discusses recent advances in in vitro measures of antiviral activity and the therapeutic implications of the dose-response curve slope and IIP. PMID:19837466

  17. 75 FR 32952 - Draft Guidance for Industry and Food and Drug Administration Staff; “‘Harmful and Potentially...

    Science.gov (United States)

    2010-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0281] Draft Guidance for Industry and Food and Drug Administration Staff; ```Harmful and Potentially Harmful... Food, Drug, and Cosmetic Act.'' This draft guidance provides written guidance to industry and FDA staff...

  18. Substandard drugs: a potential crisis for public health

    Science.gov (United States)

    Johnston, Atholl; Holt, David W

    2014-01-01

    Poor-quality medicines present a serious public health problem, particularly in emerging economies and developing countries, and may have a significant impact on the national clinical and economic burden. Attention has largely focused on the increasing availability of deliberately falsified drugs, but substandard medicines are also reaching patients because of poor manufacturing and quality-control practices in the production of genuine drugs (either branded or generic). Substandard medicines are widespread and represent a threat to health because they can inadvertently lead to healthcare failures, such as antibiotic resistance and the spread of disease within a community, as well as death or additional illness in individuals. This article reviews the different aspects of substandard drug formulation that can occur (for example, pharmacological variability between drug batches or between generic and originator drugs, incorrect drug quantity and presence of impurities). The possible means of addressing substandard manufacturing practices are also discussed. A concerted effort is required on the part of governments, drug manufacturers, charities and healthcare providers to ensure that only drugs of acceptable quality reach the patient. PMID:24286459

  19. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.

    Science.gov (United States)

    Rodrigues, Tiago

    2017-11-15

    Natural products (NPs) present a privileged source of inspiration for chemical probe and drug design. Despite the biological pre-validation of the underlying molecular architectures and their relevance in drug discovery, the poor accessibility to NPs, complexity of the synthetic routes and scarce knowledge of their macromolecular counterparts in phenotypic screens still hinder their broader exploration. Cheminformatics algorithms now provide a powerful means of circumventing the abovementioned challenges and unlocking the full potential of NPs in a drug discovery context. Herein, I discuss recent advances in the computer-assisted design of NP mimics and how artificial intelligence may accelerate future NP-inspired molecular medicine.

  20. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions.

    Science.gov (United States)

    Ivanov, Sergey; Semin, Maxim; Lagunin, Alexey; Filimonov, Dmitry; Poroikov, Vladimir

    2017-07-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Could chiropractors screen for adverse drug events in the community? Survey of US chiropractors

    Directory of Open Access Journals (Sweden)

    Bero Lisa

    2010-11-01

    Full Text Available Abstract Background The "Put Prevention into Practice" campaign of the US Public Health Service (USPHS was launched with the dissemination of the Clinician's Handbook of Preventive Services that recommended standards of clinical care for various prevention activities, including preventive clinical strategies to reduce the risk of adverse drug events. We explored whether nonprescribing clinicians such as chiropractors may contribute to advancing drug safety initiatives by identifying potential adverse drug events in their chiropractic patients, and by bringing suspected adverse drug events to the attention of the prescribing clinicians. Methods Mail survey of US chiropractors about their detection of potential adverse drug events in their chiropractic patients. Results Over half of responding chiropractors (62% reported having identified a suspected adverse drug event occurring in one of their chiropractic patients. The severity of suspected drug-related events detected ranged from mild to severe. Conclusions Chiropractors or other nonprescribing clinicians may be in a position to detect potential adverse drug events in the community. These detection and reporting mechanisms should be standardized and policies related to clinical case management of suspected adverse drug events occurring in their patients should be developed.

  2. Photopatternable Magnetic Hollowbots by Nd-Fe-B Nanocomposite for Potential Targeted Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available In contrast to traditional drug administration, targeted drug delivery can prolong, localize, target and have a protected drug interaction with the diseased tissue. Drug delivery carriers, such as polymeric micelles, liposomes, dendrimers, nanotubes, and so on, are hard to scale-up, costly, and have short shelf life. Here we show the novel fabrication and characterization of photopatternable magnetic hollow microrobots that can potentially be utilized in microfluidics and drug delivery applications. These magnetic hollowbots can be fabricated using standard ultraviolet (UV lithography with low cost and easily accessible equipment, which results in them being easy to scale up, and inexpensive to fabricate. Contact-free actuation of freestanding magnetic hollowbots were demonstrated by using an applied 900 G external magnetic field to achieve the movement control in an aqueous environment. According to the movement clip, the average speed of the magnetic hollowbots was estimated to be 1.9 mm/s.

  3. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Epidemiology and risk factors for drug allergy.

    Science.gov (United States)

    Thong, Bernard Y-H; Tan, Teck-Choon

    2011-05-01

    The aim of this review was to describe the current evidence-based knowledge of the epidemiology, prevalence, incidence, risk factors and genetic associations of drug allergy. Articles published between 1966 and 2010 were identified in MEDLINE using the key words adult, adverse drug reaction reporting systems, age factors, anaphylactoid, anaphylaxis, anaesthetics, antibiotics, child, drug allergy, drug eruptions, ethnic groups, hypersensitivity, neuromuscular depolarizing agents, neuromuscular nondepolarizing agents, sex factors, Stevens Johnson syndrome and toxic epidermal necrolysis. Additional studies were identified from article reference lists. Relevant, peer-reviewed original research articles, case series and reviews were considered for review. Current epidemiological studies on adverse drug reactions (ADRs) have used different definitions for ADR-related terminology, often do not differentiate immunologically and non-immunologically mediated drug hypersensitivity, study different study populations (different ethnicities, inpatients or outpatients, adults or children), utilize different methodologies (spontaneous vs. non-spontaneous reporting, cohort vs. case-control studies), different methods of assessing drug imputability and different methods of data analyses. Potentially life-threatening severe cutaneous adverse reactions (SCAR) are associated with a high risk of morbidity and mortality. HLA associations for SCAR associated with allopurinol, carbamazepine and abacavir have been reported with the potential for clinical use in screening prior to prescription. Identification of risk factors for drug allergy and appropriate genetic screening of at-risk ethnic groups may improve the outcomes of drug-specific SCAR. Research and collaboration are necessary for the generation of clinically-relevant, translational pharmacoepidemiological and pharmacogenomic knowledge, and success of health outcomes research and policies on drug allergies. © 2011 The Authors

  5. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    Science.gov (United States)

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Contextualization of drug-mediator relations using evidence networks.

    Science.gov (United States)

    Tran, Hai Joey; Speyer, Gil; Kiefer, Jeff; Kim, Seungchan

    2017-05-31

    Genomic analysis of drug response can provide unique insights into therapies that can be used to match the "right drug to the right patient." However, the process of discovering such therapeutic insights using genomic data is not straightforward and represents an area of active investigation. EDDY (Evaluation of Differential DependencY), a statistical test to detect differential statistical dependencies, is one method that leverages genomic data to identify differential genetic dependencies. EDDY has been used in conjunction with the Cancer Therapeutics Response Portal (CTRP), a dataset with drug-response measurements for more than 400 small molecules, and RNAseq data of cell lines in the Cancer Cell Line Encyclopedia (CCLE) to find potential drug-mediator pairs. Mediators were identified as genes that showed significant change in genetic statistical dependencies within annotated pathways between drug sensitive and drug non-sensitive cell lines, and the results are presented as a public web-portal (EDDY-CTRP). However, the interpretability of drug-mediator pairs currently hinders further exploration of these potentially valuable results. In this study, we address this challenge by constructing evidence networks built with protein and drug interactions from the STITCH and STRING interaction databases. STITCH and STRING are sister databases that catalog known and predicted drug-protein interactions and protein-protein interactions, respectively. Using these two databases, we have developed a method to construct evidence networks to "explain" the relation between a drug and a mediator.  RESULTS: We applied this approach to drug-mediator relations discovered in EDDY-CTRP analysis and identified evidence networks for ~70% of drug-mediator pairs where most mediators were not known direct targets for the drug. Constructed evidence networks enable researchers to contextualize the drug-mediator pair with current research and knowledge. Using evidence networks, we were

  7. Co-morbidity and clinically significant interactions between antiepileptic drugs and other drugs in elderly patients with newly diagnosed epilepsy.

    Science.gov (United States)

    Bruun, Emmi; Virta, Lauri J; Kälviäinen, Reetta; Keränen, Tapani

    2017-08-01

    A study was conducted to investigate the frequency of potential pharmacokinetic drug-to-drug interactions in elderly patients with newly diagnosed epilepsy. We also investigated co-morbid conditions associated with epilepsy. From the register of Kuopio University Hospital (KUH) we identified community-dwelling patients aged 65 or above with newly diagnosed epilepsy and in whom use of the first individual antiepileptic drug (AED) began in 2000-2013 (n=529). Furthermore, register data of the Social Insurance Institution of Finland were used for assessing potential interactions in a nationwide cohort of elderly subjects with newly diagnosed epilepsy. We extracted all patients aged 65 or above who had received special reimbursement for the cost of AEDs prescribed on account of epilepsy in 2012 where their first AED was recorded in 2011-2012 as monotherapy (n=1081). Clinically relevant drug interactions (of class C or D) at the time of starting of the first AED, as assessed via the SFINX-PHARAO database, were analysed. Hypertension (67%), dyslipidemia (45%), and ischaemic stroke (32%) were the most common co-morbid conditions in the hospital cohort of patients. In these patients, excessive polypharmacy (more than 10 concomitant drugs) was identified in 27% of cases. Of the patients started on carbamazepine, 52 subjects (32%) had one class-C or class-D drug interaction and 51 (31%) had two or more C- or D-class interactions. Only 2% of the subjects started on valproate exhibited a class-C interaction. None of the subjects using oxcarbazepine displayed class-C or class-D interactions. Patients with 3-5 (OR 4.22; p=0.05) or over six (OR 8.86; p=0.003) other drugs were more likely to have C- or D-class interaction. The most common drugs with potential interactions with carbamazepine were dihydropyridine calcium-blockers, statins, warfarin, and psychotropic drugs. Elderly patients with newly diagnosed epilepsy are at high risk of clinically relevant pharmacokinetic

  8. Identifying the composition of street drug Nyaope using two different ...

    African Journals Online (AJOL)

    The constituents consistently detected in all samples were caffeine, drugs of abuse such as opiates, codeine, morphine, methyl-dioxy amphetamine (MDA) and heroin. Some samples contained antibiotics (citroflex) and antiretroviral drugs (zidovudine). Central nervous system (CNS) depressants such as phenobarbitone ...

  9. The potential of circulating extracellular small RNAs (smexRNA) in veterinary diagnostics-Identifying biomarker signatures by multivariate data analysis.

    Science.gov (United States)

    Melanie, Spornraft; Benedikt, Kirchner; Pfaffl, Michael W; Irmgard, Riedmaier

    2015-09-01

    Worldwide growth and performance-enhancing substances are used in cattle husbandry to increase productivity. In certain countries however e.g., in the EU, these practices are forbidden to prevent the consumers from potential health risks of substance residues in food. To maximize economic profit, 'black sheep' among farmers might circumvent the detection methods used in routine controls, which highlights the need for an innovative and reliable detection method. Transcriptomics is a promising new approach in the discovery of veterinary medicine biomarkers and also a missing puzzle piece, as up to date, metabolomics and proteomics are paramount. Due to increased stability and easy sampling, circulating extracellular small RNAs (smexRNAs) in bovine plasma were small RNA-sequenced and their potential to serve as biomarker candidates was evaluated using multivariate data analysis tools. After running the data evaluation pipeline, the proportion of miRNAs (microRNAs) and piRNAs (PIWI-interacting small non-coding RNAs) on the total sequenced reads was calculated. Additionally, top 10 signatures were compared which revealed that the readcount data sets were highly affected by the most abundant miRNA and piRNA profiles. To evaluate the discriminative power of multivariate data analyses to identify animals after veterinary drug application on the basis of smexRNAs, OPLS-DA was performed. In summary, the quality of miRNA models using all mapped reads for both treatment groups (animals treated with steroid hormones or the β-agonist clenbuterol) is predominant to those generated with combined data sets or piRNAs alone. Using multivariate projection methodologies like OPLS-DA have proven the best potential to generate discriminative miRNA models, supported by small RNA-Seq data. Based on the presented comparative OPLS-DA, miRNAs are the favorable smexRNA biomarker candidates in the research field of veterinary drug abuse.

  10. Cariogenic Potential of Inhaled Antiasthmatic Drugs.

    Science.gov (United States)

    Brigic, Amela; Kobaslija, Sedin; Zukanovic, Amila

    2015-08-01

    The organism of children with asthma is exposed to the effects of the disease but also the drugs for its treatment. Antiasthmatic drugs have different modes that promote the caries formation which varies according to their basic pharmacological composition. Namely, these drugs have a relatively low pH (5.5), can contain sweeteners such as lactose monohydrate in order to improve the drug taste or both. Frequent consumption of these inhalers in combination with reduced secretion of saliva increases the risk of caries. The study sample consisted of 200 patients, age from 7-14 years, divided into two groups: control group (n1 = 100) consisted of healthy children and the experimental group consisted of children suffering from asthma (n2 = 100). In both groups of respondents are determined the DMFT index, plaque index value and hygienic-dietary habits using the questionnaire. The subjects in the control group had significantly higher DMFT index than subjects in the experimental group (p = 0.004). It is determined that there are no significant differences in the values of plaque index (p>0.05). The effect of different diseases or medications from their treatment, diet and fermentable carbohydrates in the etiology of dental caries cannot be observed outside the living conditions of subjects, their social epidemiologic status, age, habits, oral hygiene, fluoride use, etc.

  11. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug use.

    Science.gov (United States)

    Alvaro, Nestor; Conway, Mike; Doan, Son; Lofi, Christoph; Overington, John; Collier, Nigel

    2015-12-01

    Self-reported patient data has been shown to be a valuable knowledge source for post-market pharmacovigilance. In this paper we propose using the popular micro-blogging service Twitter to gather evidence about adverse drug reactions (ADRs) after firstly having identified micro-blog messages (also know as "tweets") that report first-hand experience. In order to achieve this goal we explore machine learning with data crowdsourced from laymen annotators. With the help of lay annotators recruited from CrowdFlower we manually annotated 1548 tweets containing keywords related to two kinds of drugs: SSRIs (eg. Paroxetine), and cognitive enhancers (eg. Ritalin). Our results show that inter-annotator agreement (Fleiss' kappa) for crowdsourcing ranks in moderate agreement with a pair of experienced annotators (Spearman's Rho=0.471). We utilized the gold standard annotations from CrowdFlower for automatically training a range of supervised machine learning models to recognize first-hand experience. F-Score values are reported for 6 of these techniques with the Bayesian Generalized Linear Model being the best (F-Score=0.64 and Informedness=0.43) when combined with a selected set of features obtained by using information gain criteria. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. In vitro and in vivo models for testing arrhythmogenesis in drugs.

    Science.gov (United States)

    Carlsson, L

    2006-01-01

    The steadily increasing list of drugs associated with prolongation of the QT interval and torsades de pointes (TdP) constitute a medical problem of major concern. Hence, there is a need at an early stage to identify drug candidates with an inherent capacity to induce repolarization-related proarrhythmias, avoiding exposure of large populations to potentially harmful drugs. Furthermore, the availability of clinically relevant and predictive animal models should reduce the risk that effective and potentially life-saving drugs never reach the market. This review will discuss the pros and cons of some in vivo and in vitro animal models for assessing proarrhythmia liability.

  13. Drug Products in the Medicaid Drug Rebate Program

    Data.gov (United States)

    U.S. Department of Health & Human Services — Active drugs that have been reported by participating drug manufacturers under the Medicaid Drug Rebate Program. All drugs are identified by National Drug Code...

  14. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system

    International Nuclear Information System (INIS)

    Gao Lei; Zhang Dianrui; Chen Minghui

    2008-01-01

    Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product

  15. The potential of the European network of congenital anomaly registers (EUROCAT) for drug safety surveillance: a descriptive study.

    Science.gov (United States)

    Meijer, Willemijn M; Cornel, Martina C; Dolk, Helen; de Walle, Hermien E K; Armstrong, Nicola C; de Jong-van den Berg, Lolkje T W

    2006-09-01

    European Surveillance of Congenital Anomalies (EUROCAT) is a network of population-based congenital anomaly registries in Europe surveying more than 1 million births per year, or 25% of the births in the European Union. This paper describes the potential of the EUROCAT collaboration for pharmacoepidemiology and drug safety surveillance. The 34 full members and 6 associate members of the EUROCAT network were sent a questionnaire about their data sources on drug exposure and on drug coding. Available data on drug exposure during the first trimester available in the central EUROCAT database for the years 1996-2000 was summarised for 15 out of 25 responding full members. Of the 40 registries, 29 returned questionnaires (25 full and 4 associate members). Four of these registries do not collect data on maternal drug use. Of the full members, 15 registries use the EUROCAT drug code, 4 use the international ATC drug code, 3 registries use another coding system and 7 use a combination of these coding systems. Obstetric records are the most frequently used sources of drug information for the registries, followed by interviews with the mother. Only one registry uses pharmacy data. Percentages of cases with drug exposure (excluding vitamins/minerals) varied from 4.4% to 26.0% among different registries. The categories of drugs recorded varied widely between registries. Practices vary widely between registries regarding recording drug exposure information. EUROCAT has the potential to be an effective collaborative framework to contribute to post-marketing drug surveillance in relation to teratogenic effects, but work is needed to implement ATC drug coding more widely, and to diversify the sources of information used to determine drug exposure in each registry.

  16. Statin drug-drug interactions in a Romanian community pharmacy.

    Science.gov (United States)

    Badiu, Raluca; Bucsa, Camelia; Mogosan, Cristina; Dumitrascu, Dan

    2016-01-01

    Statins are frequently prescribed for patients with dyslipidemia and have a well-established safety profile. However, when associated with interacting dugs, the risk of adverse effects, especially muscular toxicity, is increased. The objective of this study was to identify, characterize and quantify the prevalence of the potential drug-drug interactions (pDDIs) of statins in reimbursed prescriptions from a community pharmacy in Bucharest. We analyzed the reimbursed prescriptions including statins collected during one month in a community pharmacy. The online program Medscape Drug Interaction Checker was used for checking the drug interactions and their classification based on severity: Serious - Use alternative, Significant - Monitor closely and Minor. 132 prescriptions pertaining to 125 patients were included in the analysis. Our study showed that 25% of the patients who were prescribed statins were exposed to pDDIs: 37 Serious and Significant interactions in 31 of the statins prescriptions. The statins involved were atorvastatin, simvastatin and rosuvastatin. Statin pDDIs have a high prevalence and patients should be monitored closely in order to prevent the development of adverse effects that result from statin interactions.

  17. Social inequalities in use of potentially addictive drugs in Norway – use among disability pensioners

    Directory of Open Access Journals (Sweden)

    Ingeborg Hartz

    2010-01-01

    Full Text Available Objectives: The Norwegian Government urges that actions are needed to stimulate the working capacity in disability pensioners (DPs with such a potential. Information on factors that may impair rehabilitation efforts, including use of potentially addictive drugs, may be useful in this context. Thus, the aim was to study the association between DP on initiation as well as long-term use of benzodiazepines (BZDs, and to describe aspects of problematic use of BZDs in terms of: long-term use pattern, including escalation of dose over time, and use of other potentially addictive drugs.Methods: We followed a cohort of 8,942 men and 10,578 women aged 40, 45, 60 years (non-users of BZDs at baseline, who participated in health surveys in 2000-01 in three Norwegian counties, with respect to use of BZDs, and other potentially addictive drugs, by linkage to the Norwegian Prescription Database (NorPD for 2004-2007. Information on DP status was retrieved from Statistics Norway.Results: Incident BZD use was highest among female DPs; 18-20% compared to 5-8% of the non-DPs. Multivariable analyses revealed an independent effect of DP on incident (OR 1.6 (95% CI 1.4-2.0 and long-term use (OR 2.47 (95% CI 1.90-3.20 of BZDs. Among incident users, 51-60% of the DPs retrieved BZDs throughout the period 2004-07, as compared to 32-33% of the non-DPs. The annual median defined daily doses (DDDs of BZDs among long-term users increased throughout the period 2004-07, most pronounced in the youngest DPs; from 50 (interquartile range (IQR 14,140 DDD to 205 (IQR 25,352 DDD.Conclusions: The chance of being prescribed BZDs as well as becoming a long-term user was higher among DPs. High continuation rates, with a steadily increasing annual amount of use among the long term users may reflect an unfavourable use pattern of potentially addictive drugs among DPs, most worrisome among the youngest.

  18. The target landscape of clinical kinase drugs.

    Science.gov (United States)

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Historical uses of saffron: Identifying potential new avenues for modern research

    Directory of Open Access Journals (Sweden)

    Seyedeh Zeinab Mousavi

    2011-09-01

    Full Text Available Objective: During the ancient times, saffron (Crocus sativus L. had many uses around the world; however, some of these uses were forgotten throughout the history. But a newly formed interest in natural active compounds brought back the attention toward historical uses of saffron. Understanding different uses of saffron in the past can help us finding the best uses at present. In this study, we reviewed different uses of saffron throughout the history among different nations.Methods: ISI web of Science and Medline, along with references of traditional Iranian medicine were searched for historical uses of saffron.Results: Saffron has been known since more than 3000 years ago by many nations. It was valued not only as a culinary condiment, but also as a dye, perfume and as a medicinal herb. Its medicinal uses ranged from treating eye problems to genitourinary and many other diseases in various cultures. It was also used as a tonic agent and antidepressant drug among many nations. Conclusion(s: Saffron has had many different uses such as a food additive and a palliative agent for many human diseases. Thus, as an important medicinal herb, it is a good candidate with many promising potentials to be considered for new drug design.

  20. Historical uses of saffron: Identifying potential new avenues for modern research

    Directory of Open Access Journals (Sweden)

    Seyedeh Zeinab Mousavi

    2011-09-01

    Full Text Available Objective: During the ancient times, saffron (Crocus sativus L. had many uses around the world; however, some of these uses were forgotten throughout the history. But a newly formed interest in natural active compounds brought back the attention toward historical uses of saffron. Understanding different uses of saffron in the past can help us finding the best uses at present.In this study, wereviewed different uses of saffron throughout the history among different nations. Methods: ISI web of Science and Medline, along with references of traditional Iranian medicine were searched for historical uses of saffron. Results: Saffron has been known since more than 3000 years ago by many nations. It was valued not only as a culinary condiment, but also as a dye, perfume and as a medicinal herb. Its medicinal uses ranged from treating eye problems to genitourinary and many other diseases in various cultures. It was also used as a tonic agent and antidepressant drug among many nations. Conclusion(s: Saffron has had many different uses such as a food additive and a palliative agent for many human diseases. Thus, as an important medicinal herb, it is a good candidate with many promising potentials to be considered for new drug design.

  1. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  2. Identifying potentially cost effective chronic care programs for people with COPD

    NARCIS (Netherlands)

    L.M.G. Steuten (Lotte); K.M.M. Lemmens (Karin); A.P. Nieboer (Anna); H.J.M. Vrijhoef (Hubertus)

    2009-01-01

    textabstractObjective: To review published evidence regarding the cost effectiveness of multi-component COPD programs and to illustrate how potentially cost effective programs can be identified. Methods: Systematic search of Medline and Cochrane databases for evaluations of multicomponent disease

  3. Central site monitoring: results from a test of accuracy in identifying trials and sites failing Food and Drug Administration inspection.

    Science.gov (United States)

    Lindblad, Anne S; Manukyan, Zorayr; Purohit-Sheth, Tejashri; Gensler, Gary; Okwesili, Paul; Meeker-O'Connell, Ann; Ball, Leslie; Marler, John R

    2014-04-01

    Site monitoring and source document verification account for 15%-30% of clinical trial costs. An alternative is to streamline site monitoring to focus on correcting trial-specific risks identified by central data monitoring. This risk-based approach could preserve or even improve the quality of clinical trial data and human subject protection compared to site monitoring focused primarily on source document verification. To determine whether a central review by statisticians using data submitted to the Food and Drug Administration (FDA) by clinical trial sponsors can identify problem sites and trials that failed FDA site inspections. An independent Analysis Center (AC) analyzed data from four anonymous new drug applications (NDAs) where FDA had performed site inspections overseen by FDA's Office of Scientific Investigations (OSI). FDA team members in the OSI chose the four NDAs from among all NDAs with data in Study Data Tabulation Model (SDTM) format. Two of the NDAs had data that OSI had deemed unreliable in support of the application after FDA site inspections identified serious data integrity problems. The other two NDAs had clinical data that OSI deemed reliable after site inspections. At the outset, the AC knew only that the experimental design specified two NDAs with significant problems. FDA gave the AC no information about which NDAs had problems, how many sites were inspected, or how many were found to have problems until after the AC analysis was complete. The AC evaluated randomization balance, enrollment patterns, study visit scheduling, variability of reported data, and last digit reference. The AC classified sites as 'High Concern', 'Moderate Concern', 'Mild Concern', or 'No Concern'. The AC correctly identified the two NDAs with data deemed unreliable by OSI. In addition, central data analysis correctly identified 5 of 6 (83%) sites for which FDA recommended rejection of data and 13 of 15 sites (87%) for which any regulatory deviations were

  4. Use of a single alcohol screening question to identify other drug use.

    Science.gov (United States)

    Smith, Peter C; Cheng, Debbie M; Allensworth-Davies, Donald; Winter, Michael R; Saitz, Richard

    2014-06-01

    People who consume unhealthy amounts of alcohol are more likely to use illicit drugs. We tested the ability of a screening test for unhealthy alcohol use to simultaneously detect drug use. Adult English speaking patients (n=286) were enrolled from a primary care waiting room. They were asked the screening question for unhealthy alcohol use "How many times in the past year have you had X or more drinks in a day?", where X is 5 for men and 4 for women, and a response of one or more is considered positive. A standard diagnostic interview was used to determine current (past year) drug use or a drug use disorder (abuse or dependence). Oral fluid testing was also used to detect recent use of common drugs of abuse. The single screening question for unhealthy alcohol use was 67.6% sensitive (95% confidence interval [CI], 50.2-82.0%) and 64.7% specific (95% CI, 58.4-70.6%) for the detection of a drug use disorder. It was similarly insensitive for drug use detected by oral fluid testing and/or self-report. Although a patient with a drug use disorder has twice the odds of screening positive for unhealthy alcohol use compared to one without a drug use disorder, suggesting patients who screen positive for alcohol should be asked about drug use, a single screening question for unhealthy alcohol use was not sensitive or specific for the detection of other drug use or drug use disorders in a sample of primary care patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Science.gov (United States)

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  6. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    Science.gov (United States)

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  7. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    Science.gov (United States)

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Developmental Potential for Endomorphin Opioidmimetic Drugs

    Directory of Open Access Journals (Sweden)

    Yoshio Okada

    2012-01-01

    Full Text Available Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM-1 and endomorphin(EM-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr1 with 2′,6′-dimethyl-L-tyrosine (Dmt to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt1]EM-1 and [Dmt1]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt1]EM-1 (47 and [N-allyl-Dmt1]EM-2 (48 exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier.

  9. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  10. The use of random-effects models to identify health care center-related characteristics modifying the effect of antipsychotic drugs.

    Science.gov (United States)

    Nordon, Clementine; Battin, Constance; Verdoux, Helene; Haro, Josef Maria; Belger, Mark; Abenhaim, Lucien; van Staa, Tjeerd Pieter

    2017-01-01

    A case study was conducted, exploring methods to identify drugs effects modifiers, at a health care center level. Data were drawn from the Schizophrenia Outpatient Health Outcome cohort, including hierarchical information on 6641 patients, recruited from 899 health care centers from across ten European countries. Center-level characteristics included the following: psychiatrist's gender, age, length of practice experience, practice setting and type, countries' Healthcare System Efficiency score, and psychiatrist density in the country. Mixed multivariable linear regression models were used: 1) to estimate antipsychotic drugs' effectiveness (defined as the association between patients' outcome at 3 months - dependent variable, continuous - and antipsychotic drug initiation at baseline - drug A vs other antipsychotic drug); 2) to estimate the similarity between clustered data (using the intra-cluster correlation coefficient); and 3) to explore antipsychotic drug effects modification by center-related characteristics (using the addition of an interaction term). About 23% of the variance found for patients' outcome was explained by unmeasured confounding at a center level. Psychiatrists' practice experience was found to be associated with patient outcomes ( p =0.04) and modified the relative effect of "drug A" ( p <0.001), independent of center- or patient-related characteristics. Mixed models may be useful to explore how center-related characteristics modify drugs' effect estimates, but require numerous assumptions.

  11. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  12. Recent trends for drug lag in clinical development of oncology drugs in Japan: does the oncology drug lag still exist in Japan?

    Science.gov (United States)

    Maeda, Hideki; Kurokawa, Tatsuo

    2015-12-01

    This study exhaustively and historically investigated the status of drug lag for oncology drugs approved in Japan. We comprehensively investigated oncology drugs approved in Japan between April 2001 and July 2014, using publicly available information. We also examined changes in the status of drug lag between Japan and the United States, as well as factors influencing drug lag. This study included 120 applications for approval of oncology drugs in Japan. The median difference over a 13-year period in the approval date between the United States and Japan was 875 days (29.2 months). This figure peaked in 2002, and showed a tendency to decline gradually each year thereafter. In 2014, the median approval lag was 281 days (9.4 months). Multiple regression analysis identified the following potential factors that reduce drug lag: "Japan's participation in global clinical trials"; "bridging strategies"; "designation of priority review in Japan"; and "molecularly targeted drugs". From 2001 to 2014, molecularly targeted drugs emerged as the predominant oncology drug, and the method of development has changed from full development in Japan or bridging strategy to global simultaneous development by Japan's taking part in global clinical trials. In line with these changes, the drug lag between the United States and Japan has significantly reduced to less than 1 year.

  13. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production

    International Nuclear Information System (INIS)

    Khanim, F L; Merrick, B A M E; Giles, H V; Jankute, M; Jackson, J B; Giles, L J; Birtwistle, J; Bunce, C M; Drayson, M T

    2011-01-01

    Despite recent therapeutic advancements, multiple myeloma (MM) remains incurable and new therapies are needed, especially for the treatment of elderly and relapsed/refractory patients. We have screened a panel of 100 off-patent licensed oral drugs for anti-myeloma activity and identified niclosamide, an anti-helminthic. Niclosamide, at clinically achievable non-toxic concentrations, killed MM cell lines and primary MM cells as efficiently as or better than standard chemotherapy and existing anti-myeloma drugs individually or in combinations, with little impact on normal donor cells. Cell death was associated with markers of both apoptosis and autophagy. Importantly, niclosamide rapidly reduced free light chain (FLC) production by MM cell lines and primary MM. FLCs are a major cause of renal impairment in MM patients and light chain amyloid and FLC reduction is associated with reversal of tissue damage. Our data indicate that niclosamides anti-MM activity was mediated through the mitochondria with rapid loss of mitochondrial membrane potential, uncoupling of oxidative phosphorylation and production of mitochondrial superoxide. Niclosamide also modulated the nuclear factor-κB and STAT3 pathways in MM cells. In conclusion, our data indicate that MM cells can be selectively targeted using niclosamide while also reducing FLC secretion. Importantly, niclosamide is widely used at these concentrations with minimal toxicity

  14. Metabolomics has the potential to improve drug therapy

    DEFF Research Database (Denmark)

    Stage, Claus; Jürgens, Gesche; Dalhoff, Kim Peder

    2014-01-01

    Until now drug therapy has primarily been controlled by dose titration on the basis of effects and side effects. However, a lot of people being treated with a drug experience too little effect or too many side effects. Therefore it will be advantageous to improve drug therapy and make it even more...

  15. Effect of interventions to reduce potentially inappropriate use of drugs in nursing homes: a systematic review of randomised controlled trials

    Directory of Open Access Journals (Sweden)

    Gjerberg Elisabeth

    2011-04-01

    Full Text Available Abstract Background Studies have shown that residents in nursing homes often are exposed to inappropriate medication. Particular concern has been raised about the consumption of psychoactive drugs, which are commonly prescribed for nursing home residents suffering from dementia. This review is an update of a Norwegian systematic review commissioned by the Norwegian Directorate of Health. The purpose of the review was to identify and summarise the effect of interventions aimed at reducing potentially inappropriate use or prescribing of drugs in nursing homes. Methods We searched for systematic reviews and randomised controlled trials in the Cochrane Library, MEDLINE, EMBASE, ISI Web of Knowledge, DARE and HTA, with the last update in April 2010. Two of the authors independently screened titles and abstracts for inclusion or exclusion. Data on interventions, participants, comparison intervention, and outcomes were extracted from the included studies. Risk of bias and quality of evidence were assessed using the Cochrane Risk of Bias Table and GRADE, respectively. Outcomes assessed were use of or prescribing of drugs (primary and the health-related outcomes falls, physical limitation, hospitalisation and mortality (secondary. Results Due to heterogeneity in interventions and outcomes, we employed a narrative approach. Twenty randomised controlled trials were included from 1631 evaluated references. Ten studies tested different kinds of educational interventions while seven studies tested medication reviews by pharmacists. Only one study was found for each of the interventions geriatric care teams, early psychiatric intervening or activities for the residents combined with education of health care personnel. Several reviews were identified, but these either concerned elderly in general or did not satisfy all the requirements for systematic reviews. Conclusions Interventions using educational outreach, on-site education given alone or as part of an

  16. Drugs with potential chemopreventive properties in relation to epithelial ovarian cancer--a nationwide case-control study.

    Science.gov (United States)

    Baandrup, Louise

    2015-07-01

    Ovarian cancer has a poor prognosis because the disease in the majority of patients is diagnosed at an advanced stage as a result of nonspecific symptoms and lack of efficient screening methods. Because of the poor prognosis of ovarian cancer and the challenge of early detection of the disease, identification of protective factors is important. It has been suggested that some commonly used drugs may have a protective effect against cancer, including ovarian cancer; however, the literature on chemopreventive measures for ovarian cancer is sparse and the results are inconclusive. Most previous studies have substantial methodological constraints, including limited study size and self-reporting of drug use, which introduces potential recall bias and misclassification. This PhD thesis includes a nationwide case-control study to evaluate associations between use of drugs with potential chemopreventive properties and risk of epithelial ovarian cancer. The study is nested in the entire Danish female population using data from the following nationwide registries: the Danish Cancer Registry, the Danish Civil Registration System, the Danish Prescription Registry, the Danish National Patient Register, and registries in Statistics Denmark on fertility, education, and income. Information from the included registries is linked by use of the unique personal identification number assigned to all Danish citizens. The cases were all women in Denmark with epithelial ovarian cancer diagnosed during 2000-2009 (Paper 1) and 2000-2011 (Papers 2 and 3), identified in the Cancer Registry. Age-matched female population controls were randomly selected from the Civil Registration System by risk-set sampling. We required that cases and controls have no history of cancer (except non-melanoma skin cancer) and that controls not previously have undergone bilateral oophorectomy or salpingo-oophorectomy. The total study population comprised 3741 epithelial ovarian cancer cases and 50,576 controls in

  17. Interdisciplinary researches for potential developments of drugs and natural products

    Directory of Open Access Journals (Sweden)

    Arunrat Chaveerach

    2017-04-01

    Full Text Available Developments of drugs or natural products from plants are possibly made, simple to use and lower cost than modern drugs. The development processes can be started with studying local wisdom and literature reviews to choose the plants which have long been used in diverse areas, such as foods, traditional medicine, fragrances and seasonings. Then those data will be associated with scientific researches, namely plant collection and identification, phytochemical screening by gas chromatography-mass spectrometry, pharmacological study/review for their functions, and finally safety and efficiency tests in human. For safety testing, in vitro cell toxicity by cell viability assessment and in vitro testing of DNA breaks by the comet assay in human peripheral blood mononuclear cells can be performed. When active chemicals and functions containing plants were chosen with safety and efficacy for human uses, then, the potential medicinal natural products will be produced. Based on these procedures, the producing cost will be cheaper and the products can be evaluated for their clinical properties. Thus, the best and lowest-priced medicines and natural products can be distributed worldwide.

  18. Interdisciplinary researches for potential developments of drugs and natural products

    Institute of Scientific and Technical Information of China (English)

    Arunrat Chaveerach; Runglawan Sudmoon; Tawatchai Tanee

    2017-01-01

    Developments of drugs or natural products from plants are possibly made,simple to use and lower cost than modern drugs.The development processes can be started with studying local wisdom and literature reviews to choose the plants which have long been used in diverse areas,such as foods,traditional medicine,fragrances and seasonings.Then those data will be associated with scientific researches,namely plant collection and identification,phytochemical screening by gas chromatography-mass spectrometry,pharmacological study/review for their functions,and finally safety and efficiency tests in human.For safety testing,in vitro cell toxicity by cell viability assessment and in vitro testing of DNA breaks by the comet assay in human peripheral blood mononuclear cells can be performed.When active chemicals and functions containing plants were chosen with safety and efficacy for human uses,then,the potential medicinal natural products will be produced.Based on these procedures,the producing cost will be cheaper and the products can be evaluated for their clinical properties.Thus,the best and lowest-priced medicines and natural products can be distributed worldwide.

  19. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Science.gov (United States)

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number

  20. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Directory of Open Access Journals (Sweden)

    Montiago X LaBute

    Full Text Available Late-stage or post-market identification of adverse drug reactions (ADRs is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409 of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively. Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with

  1. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  2. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  3. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy

    Science.gov (United States)

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969

  4. Spontaneous swallowing frequency has potential to identify dysphagia in acute stroke.

    Science.gov (United States)

    Crary, Michael A; Carnaby, Giselle D; Sia, Isaac; Khanna, Anna; Waters, Michael F

    2013-12-01

    Spontaneous swallowing frequency has been described as an index of dysphagia in various health conditions. This study evaluated the potential of spontaneous swallow frequency analysis as a screening protocol for dysphagia in acute stroke. In a cohort of 63 acute stroke cases, swallow frequency rates (swallows per minute [SPM]) were compared with stroke and swallow severity indices, age, time from stroke to assessment, and consciousness level. Mean differences in SPM were compared between patients with versus without clinically significant dysphagia. Receiver operating characteristic curve analysis was used to identify the optimal threshold in SPM, which was compared with a validated clinical dysphagia examination for identification of dysphagia cases. Time series analysis was used to identify the minimally adequate time period to complete spontaneous swallow frequency analysis. SPM correlated significantly with stroke and swallow severity indices but not with age, time from stroke onset, or consciousness level. Patients with dysphagia demonstrated significantly lower SPM rates. SPM differed by dysphagia severity. Receiver operating characteristic curve analysis yielded a threshold of SPM≤0.40 that identified dysphagia (per the criterion referent) with 0.96 sensitivity, 0.68 specificity, and 0.96 negative predictive value. Time series analysis indicated that a 5- to 10-minute sampling window was sufficient to calculate spontaneous swallow frequency to identify dysphagia cases in acute stroke. Spontaneous swallowing frequency presents high potential to screen for dysphagia in acute stroke without the need for trained, available personnel.

  5. Spontaneous Swallowing Frequency [Has Potential to] Identify Dysphagia in Acute Stroke

    Science.gov (United States)

    Carnaby, Giselle D; Sia, Isaac; Khanna, Anna; Waters, Michael

    2014-01-01

    Background and Purpose Spontaneous swallowing frequency has been described as an index of dysphagia in various health conditions. This study evaluated the potential of spontaneous swallow frequency analysis as a screening protocol for dysphagia in acute stroke. Methods In a cohort of 63 acute stroke cases swallow frequency rates (swallows per minute: SPM) were compared to stroke and swallow severity indices, age, time from stroke to assessment, and consciousness level. Mean differences in SPM were compared between patients with vs. without clinically significant dysphagia. ROC analysis was used to identify the optimal threshold in SPM which was compared to a validated clinical dysphagia examination for identification of dysphagia cases. Time series analysis was employed to identify the minimally adequate time period to complete spontaneous swallow frequency analysis. Results SPM correlated significantly with stroke and swallow severity indices but not with age, time from stroke onset, or consciousness level. Patients with dysphagia demonstrated significantly lower SPM rates. SPM differed by dysphagia severity. ROC analysis yielded a threshold of SPM ≤ 0.40 which identified dysphagia (per the criterion referent) with 0.96 sensitivity, 0.68 specificity, and 0.96 negative predictive value. Time series analysis indicated that a 5 to 10 minute sampling window was sufficient to calculate spontaneous swallow frequency to identify dysphagia cases in acute stroke. Conclusions Spontaneous swallowing frequency presents high potential to screen for dysphagia in acute stroke without the need for trained, available personnel. PMID:24149008

  6. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  7. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development

    Directory of Open Access Journals (Sweden)

    Farhana Abu Bakar

    2018-02-01

    Full Text Available Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.

  8. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

    KAUST Repository

    Wu, Manhong

    2012-12-01

    OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  9. Intimate partner violence and prescription of potentially addictive drugs: prospective cohort study of women in the Oslo Health Study

    Science.gov (United States)

    Dyb, Grete; Tverdal, Aage; Jacobsen, Geir Wenberg; Schei, Berit

    2012-01-01

    Objectives To investigate the prescription of potentially addictive drugs, including analgesics and central nervous system depressants, to women who had experienced intimate partner violence (IPV). Design Prospective population-based cohort study. Setting Information about IPV from the Oslo Health Study 2000/2001 was linked with prescription data from the Norwegian Prescription Database from 1 January 2004 through 31 December 2009. Participants The study included 6081 women aged 30–60 years. Main outcome measures Prescription rate ratios (RRs) for potentially addictive drugs derived from negative binomial models, adjusted for age, education, paid employment, marital status, chronic musculoskeletal pain, mental distress and sleep problems. Results Altogether 819 (13.5%) of 6081 women reported ever experiencing IPV: 454 (7.5%) comprised physical and/or sexual IPV and 365 (6.0%) psychological IPV alone. Prescription rates for potentially addictive drugs were clearly higher among women who had experienced IPV: crude RRs were 3.57 (95% CI 2.89 to 4.40) for physical/sexual IPV and 2.13 (95% CI 1.69 to 2.69) for psychological IPV alone. After full adjustment RRs were 1.83 (1.50 to 2.22) for physical/sexual IPV, and 1.97 (1.59 to 2.45) for psychological IPV alone. Prescription rates were increased both for potentially addictive analgesics and central nervous system depressants. Furthermore, women who reported IPV were more likely to receive potentially addictive drugs from multiple physicians. Conclusions Women who had experienced IPV, including psychological violence alone, more often received prescriptions for potentially addictive drugs. Researchers and clinicians should address the possible adverse health and psychosocial impact of such prescription and focus on developing evidence-based healthcare for women who have experienced IPV. PMID:22492384

  10. Rapid Assessment of Drugs of Abuse.

    Science.gov (United States)

    Wiencek, Joesph R; Colby, Jennifer M; Nichols, James H

    Laboratory testing for drugs of abuse has become standard practice in many settings both forensic and clinical. Urine is the predominant specimen, but other specimens are possible including hair, nails, sweat, and oral fluid. Point-of-care test kits provide for rapid analysis at the site where specimens are collected allowing for immediate action on the results. POCT is based on immunochromatography where the drug in the patient's sample competes with drug and antibody conjugates in the test to develop or block the development of a colored line. Most POCTs are visually interpreted in a few minutes. The potential for false positives is possible due to drug cross-reactivity with the antibodies in the test. False negatives are also possible due to dilution of the sample and the potential for adulteration or sample substitution by the patient. POCT shows more variability than central laboratory testing because of the variety of operators involved in the testing process, but POCT has good agreement for most tests with mass spectrometry provided comparable cutoffs and cross-reactivity of drugs/metabolites are considered. Validation of the test performance with the intended operators will identify potential interferences and operational issues before implementing the test in routine practice. POCT offers faster turnaround of test results provided the limitations and challenges of the test are considered. © 2017 Elsevier Inc. All rights reserved.

  11. Automatic extraction of drug indications from FDA drug labels.

    Science.gov (United States)

    Khare, Ritu; Wei, Chih-Hsuan; Lu, Zhiyong

    2014-01-01

    Extracting computable indications, i.e. drug-disease treatment relationships, from narrative drug resources is the key for building a gold standard drug indication repository. The two steps to the extraction problem are disease named-entity recognition (NER) to identify disease mentions from a free-text description and disease classification to distinguish indications from other disease mentions in the description. While there exist many tools for disease NER, disease classification is mostly achieved through human annotations. For example, we recently resorted to human annotations to prepare a corpus, LabeledIn, capturing structured indications from the drug labels submitted to FDA by pharmaceutical companies. In this study, we present an automatic end-to-end framework to extract structured and normalized indications from FDA drug labels. In addition to automatic disease NER, a key component of our framework is a machine learning method that is trained on the LabeledIn corpus to classify the NER-computed disease mentions as "indication vs. non-indication." Through experiments with 500 drug labels, our end-to-end system delivered 86.3% F1-measure in drug indication extraction, with 17% improvement over baseline. Further analysis shows that the indication classifier delivers a performance comparable to human experts and that the remaining errors are mostly due to disease NER (more than 50%). Given its performance, we conclude that our end-to-end approach has the potential to significantly reduce human annotation costs.

  12. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  13. Potential Impact of a Free Online HIV Treatment Response Prediction System for Reducing Virological Failures and Drug Costs after Antiretroviral Therapy Failure in a Resource-Limited Setting

    Directory of Open Access Journals (Sweden)

    Andrew D. Revell

    2013-01-01

    Full Text Available Objective. Antiretroviral drug selection in resource-limited settings is often dictated by strict protocols as part of a public health strategy. The objective of this retrospective study was to examine if the HIV-TRePS online treatment prediction tool could help reduce treatment failure and drug costs in such settings. Methods. The HIV-TRePS computational models were used to predict the probability of response to therapy for 206 cases of treatment change following failure in India. The models were used to identify alternative locally available 3-drug regimens, which were predicted to be effective. The costs of these regimens were compared to those actually used in the clinic. Results. The models predicted the responses to treatment of the cases with an accuracy of 0.64. The models identified alternative drug regimens that were predicted to result in improved virological response and lower costs than those used in the clinic in 85% of the cases. The average annual cost saving was $364 USD per year (41%. Conclusions. Computational models that do not require a genotype can predict and potentially avoid treatment failure and may reduce therapy costs. The use of such a system to guide therapeutic decision-making could confer health economic benefits in resource-limited settings.

  14. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    Science.gov (United States)

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  15. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias.

    Science.gov (United States)

    Lu, H R; Hortigon-Vinagre, M P; Zamora, V; Kopljar, I; De Bondt, A; Gallacher, D J; Smith, G

    2017-09-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are emerging as new and human-relevant source in vitro model for cardiac safety assessment that allow us to investigate a set of 20 reference drugs for predicting cardiac arrhythmogenic liability using optical action potential (oAP) assay. Here, we describe our examination of the oAP measurement using a voltage sensitive dye (Di-4-ANEPPS) to predict adverse compound effects using hiPS-CMs and 20 cardioactive reference compounds. Fluorescence signals were digitized at 10kHz and the records subsequently analyzed off-line. Cells were exposed to 30min incubation to vehicle or compound (n=5/dose, 4 doses/compound) that were blinded to the investigating laboratory. Action potential parameters were measured, including rise time (T rise ) of the optical action potential duration (oAPD). Significant effects on oAPD were sensitively detected with 11 QT-prolonging drugs, while oAPD shortening was observed with I Ca -antagonists, I Kr -activator or ATP-sensitive K + channel (K ATP )-opener. Additionally, the assay detected varied effects induced by 6 different sodium channel blockers. The detection threshold for these drug effects was at or below the published values of free effective therapeutic plasma levels or effective concentrations by other studies. The results of this blinded study indicate that OAP is a sensitive method to accurately detect drug-induced effects (i.e., duration/QT-prolongation, shortening, beat rate, and incidence of early after depolarizations) in hiPS-CMs; therefore, this technique will potentially be useful in predicting drug-induced arrhythmogenic liabilities in early de-risking within the drug discovery phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Detection of Potential Drug-Drug Interactions for Outpatients across Hospitals

    Directory of Open Access Journals (Sweden)

    Yu-Ting Yeh

    2014-01-01

    Full Text Available The National Health Insurance Administration (NHIA has adopted smart cards (or NHI-IC cards as health cards to carry patients’ medication histories across hospitals in Taiwan. The aims of this study are to enhance a computerized physician order entry system to support drug-drug interaction (DDI checking based on a patient’s medication history stored in his/her NHI-IC card. For performance evaluation, we developed a transaction tracking log to keep track of every operation on NHI-IC cards. Based on analysis of the transaction tracking log from 1 August to 31 October 2007, physicians read patients’ NHI-IC cards in 71.01% (8,246 of patient visits; 33.02% (2,723 of the card reads showed at least one medicine currently being taken by the patient, 82.94% of which were prescribed during the last visit. Among 10,036 issued prescriptions, seven prescriptions (0.09% contained at least one drug item that might interact with the currently-taken medicines stored in NHI-IC cards and triggered pop-up alerts. This study showed that the capacity of an NHI-IC card is adequate to support DDI checking across hospitals. Thus, the enhanced computerized physician order entry (CPOE system can support better DDI checking when physicians are making prescriptions and provide safer medication care, particularly for patients who receive medication care from different hospitals.

  17. Detection of potential drug-drug interactions for outpatients across hospitals.

    Science.gov (United States)

    Yeh, Yu-Ting; Hsu, Min-Hui; Chen, Chien-Yuan; Lo, Yu-Sheng; Liu, Chien-Tsai

    2014-01-27

    The National Health Insurance Administration (NHIA) has adopted smart cards (or NHI-IC cards) as health cards to carry patients' medication histories across hospitals in Taiwan. The aims of this study are to enhance a computerized physician order entry system to support drug-drug interaction (DDI) checking based on a patient's medication history stored in his/her NHI-IC card. For performance evaluation, we developed a transaction tracking log to keep track of every operation on NHI-IC cards. Based on analysis of the transaction tracking log from 1 August to 31 October 2007, physicians read patients' NHI-IC cards in 71.01% (8,246) of patient visits; 33.02% (2,723) of the card reads showed at least one medicine currently being taken by the patient, 82.94% of which were prescribed during the last visit. Among 10,036 issued prescriptions, seven prescriptions (0.09%) contained at least one drug item that might interact with the currently-taken medicines stored in NHI-IC cards and triggered pop-up alerts. This study showed that the capacity of an NHI-IC card is adequate to support DDI checking across hospitals. Thus, the enhanced computerized physician order entry (CPOE) system can support better DDI checking when physicians are making prescriptions and provide safer medication care, particularly for patients who receive medication care from different hospitals.

  18. Mapping industrial networks as an approach to identify inter-organisational collaborative potential in new product development

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    2012-01-01

    . Consequently, identifying and selecting potential partners to establish collaboration agreements can be a key activity in the new product development process. This paper explores the implications of mapping industrial networks with the purpose of identifying inter-organisational collaborative potential...

  19. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis.

    Science.gov (United States)

    Kuroda, Yukihiro; Saito, Madoka

    2010-03-01

    An in vitro method to predict phospholipidosis-inducing potential of cationic amphiphilic drugs (CADs) was developed using biochemical and physicochemical assays. The following parameters were applied to principal component analysis, as well as physicochemical parameters: pK(a) and clogP; dissociation constant of CADs from phospholipid, inhibition of enzymatic phospholipid degradation, and metabolic stability of CADs. In the score plot, phospholipidosis-inducing drugs (amiodarone, propranolol, imipramine, chloroquine) were plotted locally forming the subspace for positive CADs; while non-inducing drugs (chlorpromazine, chloramphenicol, disopyramide, lidocaine) were placed scattering out of the subspace, allowing a clear discrimination between both classes of CADs. CADs that often produce false results by conventional physicochemical or cell-based assay methods were accurately determined by our method. Basic and lipophilic disopyramide could be accurately predicted as a nonphospholipidogenic drug. Moreover, chlorpromazine, which is often falsely predicted as a phospholipidosis-inducing drug by in vitro methods, could be accurately determined. Because this method uses the pharmacokinetic parameters pK(a), clogP, and metabolic stability, which are usually obtained in the early stages of drug development, the method newly requires only the two parameters, binding to phospholipid, and inhibition of lipid degradation enzyme. Therefore, this method provides a cost-effective approach to predict phospholipidosis-inducing potential of a drug. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    2014-12-01

    Full Text Available A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ, a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  1. A temporal interestingness measure for drug interaction signal detection in post-marketing surveillance.

    Science.gov (United States)

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Mansour, Ayman; Massanari, R Michael

    2014-01-01

    Drug-drug interactions (DDIs) can result in serious consequences, including death. Existing methods for identifying potential DDIs in post-marketing surveillance primarily rely on the FDA's (Food and Drug Administration) spontaneous reporting system. However, this system suffers from severe underreporting, which makes it difficult to timely collect enough valid cases for statistical analysis. In this paper, we study how to signal potential DDIs using patient electronic health data. Specifically, we focus on discovery of potential DDIs by analyzing the temporal relationships between the concurrent use of two drugs of interest and the occurrences of various symptoms using novel temporal association mining techniques we developed. A new interestingness measure called functional temporal interest was proposed to assess the degrees of temporal association between two drugs of interest and each symptom. The measure was employed to screen potential DDIs from 21,405 electronic patient cases retrieved from the Veterans Affairs Medical Center in Detroit, Michigan. The preliminary results indicate the usefulness of our method in finding potential DDIs for further analysis (e.g., epidemiology study) and investigation (e.g., case review) by drug safety professionals.

  2. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    Directory of Open Access Journals (Sweden)

    Masaaki Sawa

    2008-11-01

    Full Text Available Masaaki Sawa1, Hisao Masai21Carna Biosciences, Inc., Kobe, Japan; 2Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, JapanAbstract: Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 of less than 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.Keywords: Cdc7 kinase, cell cycle, replication fork, genome stability, DNA damages, ATP-binding pocket, kinase inhibitor

  3. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.

    Science.gov (United States)

    Clermont, Pier-Luc; Crea, Francesco; Chiang, Yan Ting; Lin, Dong; Zhang, Amy; Wang, James Z L; Parolia, Abhijit; Wu, Rebecca; Xue, Hui; Wang, Yuwei; Ding, Jiarui; Thu, Kelsie L; Lam, Wan L; Shah, Sohrab P; Collins, Colin C; Wang, Yuzhuo; Helgason, Cheryl D

    2016-01-01

    While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities. In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis. Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.

  4. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Directory of Open Access Journals (Sweden)

    Yin Lu

    Full Text Available Identifying drug-drug interaction (DDI is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  5. The current status of community drug testing via the analysis of drugs and drug metabolites in sewage

    Directory of Open Access Journals (Sweden)

    Malcolm J. Reid

    2011-12-01

    Full Text Available Over the past few years the analysis of drug residues in sewage has been promoted as a means of estimating the level of drug use in communities. Measured drug residue concentrations in the sewage are used to determine the load (total mass of the drug being used by the entire community. Knowledge of the size or population of the community then allows for the calculation of drug-use relative to population (typically drug-mass/day/1000 inhabitants which facilitates comparisons between differing communities or populations. Studies have been performed in many European countries, including Norway, as well as in the US and Australia. The approach has successfully estimated the use of cocaine, amphetamine, methamphetamine, MDMA, cannabis, nicotine and alcohol. The analysis of biomarkers of drug use in sewage has great potential to support and complement existing techniques for estimating levels of drug use, and as such has been identified as a promising development by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA; www.emcdda.europa.eu/wastewater-analysis. The approach is not without its challenges, and ongoing collaboration across Europe aims at agreeing upon best-practice and harmonising the methods being used. In Norway development is being performed through the NFR RUSMIDDEL funded DrugMon (www.niva.no/drugmon project that has led to the development of many new techniques, significantly improved our understanding of the uncertainties associated with the approach and allowed the coordination of Europe wide collaboration which has included all important intercalibration exercises. Application of the technique can provide evidence-based and real-time estimates of collective drug use with the resulting data used to improve the much needed estimates of drug use and dependency.

  6. Effectiveness and cost-effectiveness of potential responses to future high levels of transmitted HIV drug resistance in antiretroviral drug-naive populations beginning treatment

    DEFF Research Database (Denmark)

    Phillips, Andrew N; Cambiano, Valentina; Miners, Alec

    2014-01-01

    BACKGROUND: With continued roll-out of antiretroviral therapy (ART) in resource-limited settings, evidence is emerging of increasing levels of transmitted drug-resistant HIV. We aimed to compare the effectiveness and cost-effectiveness of different potential public health responses to substantial...

  7. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  8. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  9. [Do pediatricians identify adverse drug reactions even when they do not report them?

    Science.gov (United States)

    Morales-Ríos, Olga; Jasso-Gutiérrez, Luis; Garduño-Espinosa, Juan; Olivar-López, Víctor; Muñoz-Hernández, Onofre

    Spontaneous notification depends on the ability of pediatricians to identify adverse drug reactions (ADRs) along with their habit of reporting these incidents. During the years 2008 and 2009, the frequency of reports of ADRs to the Electronic Program of Pharmacovigilance (SISFAR) in the Hospital Infantil of Mexico Federico Gomez (HIMFG) was low (0.44% and 0.20%, respectively). Because of the above, the ability of pediatricians from the Emergency Department (ED) to identify ADRs using the clinical chart review was evaluated in 2010 in this study. A descriptive, observational, cross-sectional retrospective study was conducted in the ED from March 1 to August 31. ADRs were classified and quantified as "ADRs identified by pediatricians" when there was evidence in the clinical chart that pediatricians associated a clinical sign, symptom and laboratory value with an ADR. The numbers of notifications reported in SISFAR were quantified. Descriptive analysis was done using SPSS v.18. Considering patients who were admitted to the ED, the frequency of ADRs was 21.8%. The frequency of ADRs identified by physicians in clinical charts was 86%. The pharmacist detected 14% of ADRs. The frequency of ADRs reported by physicians was 6.1%. Although identification of ADRs in the clinical charts by pediatricians was high, it is possible that some ADRs were undetected. Because underreporting was very high, it is necessary to take actions to improve the reporting process. Copyright © 2015. Publicado por Masson Doyma México S.A.

  10. An albumin-oligonucleotide assembly for potential combinatorial drug delivery and half-life extension applications

    DEFF Research Database (Denmark)

    Kuhlmann, Matthias; Hamming, Jonas Bohn Refslund; Voldum, Anders

    2017-01-01

    The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in wh...... technology platform that offers potential combinatorial drug delivery and half-life extension applications.......The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach......, in which the 3' or 5' end maleimide-derivatized oligodeoxynucleotides are conjugated to albumin cysteine at position 34 (cys34) and annealed with complementary strands to allow single site-specific protein modification with functionalized ds oligodeoxynucleotides. Electrophoretic gel shift assays...

  11. Identifying potential risk situations for humans when removing horses from groups

    DEFF Research Database (Denmark)

    Hartmann, Elke; Søndergaard, Eva; Keeling, Linda J.

    2012-01-01

    Removing a horse from its social group may be considered risky, both for the handler and the horse, because other horses can interfere in the catching process. The main aim of this study was to identify where and when these risk situations occur while removing a horse from its group. A potential...

  12. Diagnosis of Lynch Syndrome: Genetic Testing Identifies a Potentially Deadly Hereditary Disease

    Science.gov (United States)

    ... of Lynch Syndrome Follow us A Diagnosis of Lynch Syndrome Genetic testing identifies a potentially deadly hereditary disease ... helped Jack learn what was wrong. Jack had Lynch Syndrome—an inherited disorder. Lynch Syndrome increases the risk ...

  13. High HCV seroprevalence and HIV drug use risk behaviors among injection drug users in Pakistan

    Directory of Open Access Journals (Sweden)

    Zafar Tariq

    2006-08-01

    Full Text Available Abstract Introduction HIV and HCV risk behaviors among injection drug users (IDUs in two urban areas in Pakistan were identified. Methods From May to June 2003, 351 IDUs recruited in harm-reduction drop-in centers operated by a national non-governmental organization in Lahore (Punjab province and Quetta (Balochistan province completed an interviewer-administered survey and were tested for HIV and HCV. Multivariable logistic regression identified correlates of seropositivity, stratifying by site. All study participants provided written, informed consent. Results All but two were male; median age was 35 and Discussion Despite no HIV cases, overall HCV prevalence was very high, signaling the potential for a future HIV epidemic among IDUs across Pakistan. Programs to increase needle exchange, drug treatment and HIV and HCV awareness should be implemented immediately.

  14. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

    Science.gov (United States)

    Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin

    2017-07-03

    The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

    Science.gov (United States)

    Zhao, Zheng; Martin, Che; Fan, Raymond; Bourne, Philip E; Xie, Lei

    2016-02-18

    The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.

  16. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  17. Modeling of human prokineticin receptors: interactions with novel small-molecule binders and potential off-target drugs.

    Directory of Open Access Journals (Sweden)

    Anat Levit

    Full Text Available The Prokineticin receptor (PKR 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs, their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer.Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity.

  18. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    Science.gov (United States)

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Yan; McGraw, John; Woods, Matthew; Murray, Stuart; Eckert, Amy; Liu, Wei; Ryan, Terence E

    2011-06-01

    ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.

  20. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  1. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  2. Identifying candidate agents for lung adenocarcinoma by walking the human interactome

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-09-01

    Full Text Available Yajiao Sun,1 Ranran Zhang,2 Zhe Jiang,1 Rongyao Xia,1 Jingwen Zhang,1 Jing Liu,1 Fuhui Chen1 1Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 2Department of Respiratory, Harbin First Hospital, Harbin, People’s Republic of China Abstract: Despite recent advances in therapeutic strategies for lung cancer, mortality is still increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present study, we implement drug repositioning for lung adenocarcinoma (LUAD by a bioinformatics method followed by experimental validation. We first identified differentially expressed genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked according to the effect of their targets on differentially expressed genes of LUAD by a random walk with restart algorithm in protein–protein interaction networks. Our method identified some potentially novel agents for LUAD besides those that had been previously reported (eg, hesperidin. Finally, we experimentally verified that atracurium, one of the potential agents, could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate agents identified by our approach may provide greater insights into improving the therapeutic status of LUAD. Keywords: lung adenocarcinoma, drug repositioning, bioinformatics, protein–protein interaction network, atracurium

  3. Identifying High Academic Potential in Australian Aboriginal Children Using Dynamic Testing

    Science.gov (United States)

    Chaffey, Graham W.; Bailey, Stan B.; Vine, Ken W.

    2015-01-01

    The primary purpose of this study was to determine the effectiveness of dynamic testing as a method for identifying high academic potential in Australian Aboriginal children. The 79 participating Aboriginal children were drawn from Years 3-5 in rural schools in northern New South Wales. The dynamic testing method used in this study involved a…

  4. Application of a drug-induced apoptosis assay to identify treatment strategies in recurrent or metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Linda Bosserman

    Full Text Available A drug-induced apoptosis assay has been developed to determine which chemotherapy drugs or regimens can produce higher cell killing in vitro. This study was done to determine if this assay could be performed in patients with recurrent or metastatic breast cancer patients, to characterize the patterns of drug-induced apoptosis, and to evaluate the clinical utility of the assay. A secondary goal was to correlate assay use with clinical outcomes.In a prospective, non-blinded, multi institutional controlled trial, 30 evaluable patients with recurrent or metastatic breast cancer who were treated with chemotherapy had tumor samples submitted for the MiCK drug-induced apoptosis assay. After receiving results within 72 hours after biopsy, physicians could use the test to determine therapy (users, or elect to not use the test (non-users.The assay was able to characterize drug-induced apoptosis in tumor specimens from breast cancer patients and identified which drugs or combinations gave highest levels of apoptosis. Patterns of drug activity were also analyzed in triple negative breast cancer. Different drugs from a single class of agents often produced significantly different amounts of apoptosis. Physician frequently (73% used the assay to help select chemotherapy treatments in patients, Patients whose physicians were users had a higher response (CR+PR rate compared to non-users (38.1% vs 0%, p = 0.04 and a higher disease control (CR+PR+Stable rate (81% vs 25%, p<0.01. Time to relapse was longer in users 7.4 mo compared to non-users 2.2 mo (p<0.01.The MiCK assay can be performed in breast cancer specimens, and results are often used by physicians in breast cancer patients with recurrent or metastatic disease. These results from a good laboratory phase II study can be the basis for a future larger prospective multicenter study to more definitively establish the value of the assay.Clinicaltrials.gov NCT00901264.

  5. Deciphering the Structural Requirements of Nucleoside Bisubstrate Analogues for Inhibition of MbtA in Mycobacterium tuberculosis: A FB-QSAR Study and Combinatorial Library Generation for Identifying Potential Hits.

    Science.gov (United States)

    Maganti, Lakshmi; Das, Sanjit Kumar; Mascarenhas, Nahren Manuel; Ghoshal, Nanda

    2011-10-01

    The re-emergence of tuberculosis infections, which are resistant to conventional drug therapy, has steadily risen in the last decade. Inhibitors of aryl acid adenylating enzyme known as MbtA, involved in siderophore biosynthesis in Mycobacterium tuberculosis, are being explored as potential antitubercular agents. The ability to identify fragments that interact with a biological target is a key step in fragment based drug design (FBDD). To expand the boundaries of quantitative structure activity relationship (QSAR) paradigm, we have proposed a Fragment Based QSAR methodology, referred here in as FB-QSAR, for deciphering the structural requirements of a series of nucleoside bisubstrate analogs for inhibition of MbtA, a key enzyme involved in siderophore biosynthetic pathway. For the development of FB-QSAR models, statistical techniques such as stepwise multiple linear regression (SMLR), genetic function approximation (GFA) and GFAspline were used. The predictive ability of the generated models was validated using different statistical metrics, and similarity-based coverage estimation was carried out to define applicability boundaries. To aid the creation of novel antituberculosis compounds, a bioisosteric database was enumerated using the combichem approach endorsed mining in a lead-like chemical space. The generated library was screened using an integrated in-silico approach and potential hits identified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A resource of potential drug targets and strategic decision-making for obstructive sleep apnoea pharmacotherapy.

    Science.gov (United States)

    Horner, Richard L; Grace, Kevin P; Wellman, Andrew

    2017-07-01

    There is currently no pharmacotherapy for obstructive sleep apnoea (OSA) but there is no principled a priori reason why there should not be one. This review identifies a rational decision-making strategy with the necessary logical underpinnings that any reasonable approach would be expected to navigate to develop a viable pharmacotherapy for OSA. The process first involves phenotyping an individual to quantify and characterize the critical predisposing factor(s) to their OSA pathogenesis and identify, a priori, if the patient is likely to benefit from a pharmacotherapy that targets those factors. We then identify rational strategies to manipulate those critical predisposing factor(s), and the barriers that have to be overcome for success of any OSA pharmacotherapy. A new analysis then identifies candidate drug targets to manipulate the upper airway motor circuitry for OSA pharmacotherapy. The first conclusion is that there are two general pharmacological approaches for OSA treatment that are of the most potential benefit and are practically realistic, one being fairly intuitive but the second perhaps less so. The second conclusion is that after identifying the critical physiological obstacles to OSA pharmacotherapy, there are current therapeutic targets of high interest for future development. The final analysis provides a tabulated resource of 'druggable' targets that are relatively restricted to the circuitry controlling the upper airway musculature, with these candidate targets being of high priority for screening and further study. We also emphasize that a pharmacotherapy may not cure OSA per se, but may still be a useful adjunct to improve the effectiveness of, and adherence to, other treatment mainstays. © 2017 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.

  7. Fumigation in Ayurveda: potential strategy for drug discovery and drug delivery.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Pradeep, Nediyamparambu Sukumaran; Cho, Yong Woo; Gangadharan, Geethalayam Gopinathan; Han, Sung Soo

    2013-09-16

    Ayurveda has its unique perceptions and resultant methodologies for defining and treating human diseases. Fumigation therapy is one of the several treatment methods described in Ayurveda whereby fumes produced from defined drug formulations are inhaled by patients. This therapeutic procedure offers promising research opportunities from phytochemical and ethnopharmacological viewpoints, however, it remains under-noticed. Considering these facts, this review is primarily aimed at introducing said Ayurvedic fumigation therapy and discussing its scientific gaps and future challenges. A search of multiple bibliographical databases and traditional Ayurvedic text books was conducted and the articles analyzed under various key themes, e.g., Ayurvedic fumigation, fumigation therapy, medicinal fumigation, inhalation of drugs and aerosol therapy. Ayurveda recommends fumigation as a method of sterilization and therapeutic procedure for various human diseases including microbial infections and psychological disorders. However, it has not gained much attention as a prospective field with multiple research opportunities. It is necessary to have a more detailed and systematic investigation of the phytochemical and pharmacodynamic properties of Ayurvedic fumigation therapy in order to facilitate the identification of novel bioactive compounds and more effective drug administration methods. © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Identifying and assessing highly hazardous drugs within quality risk management programs.

    Science.gov (United States)

    Sussman, Robert G; Schatz, Anthony R; Kimmel, Tracy A; Ader, Allan; Naumann, Bruce D; Weideman, Patricia A

    2016-08-01

    Historically, pharmaceutical industry regulatory guidelines have assigned certain active pharmaceutical ingredients (APIs) to various categories of concern, such as "cytotoxic", "hormones", and "steroids". These categories have been used to identify APIs requiring segregation or dedication in order to prevent cross-contamination and protect the quality and safety of drug products. Since these terms were never defined by regulatory authorities, and many novel pharmacological mechanisms challenge these categories, there is a recognized need to modify the historical use of these terms. The application of a risk-based approach using a health-based limit, such as an acceptable daily exposure (ADE), is more appropriate for the development of a Quality Risk Management Program (QRMP) than the use of categories of concern. The toxicological and pharmacological characteristics of these categories are discussed to help identify and prioritize compounds requiring special attention. Controlling airborne concentrations and the contamination of product contact surfaces in accordance with values derived from quantitative risk assessments can prevent adverse effects in workers and patients, regardless of specific categorical designations to which these APIs have been assigned. The authors acknowledge the movement away from placing compounds into categories and, while not yet universal, the importance of basing QRMPs on compound-specific ADEs and risk assessments. Based on the results of a risk assessment, segregation and dedication may also be required for some compounds to prevent cross contamination during manufacture of APIs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Computational prediction of drug-drug interactions based on drugs functional similarities.

    Science.gov (United States)

    Ferdousi, Reza; Safdari, Reza; Omidi, Yadollah

    2017-06-01

    Therapeutic activities of drugs are often influenced by co-administration of drugs that may cause inevitable drug-drug interactions (DDIs) and inadvertent side effects. Prediction and identification of DDIs are extremely vital for the patient safety and success of treatment modalities. A number of computational methods have been employed for the prediction of DDIs based on drugs structures and/or functions. Here, we report on a computational method for DDIs prediction based on functional similarity of drugs. The model was set based on key biological elements including carriers, transporters, enzymes and targets (CTET). The model was applied for 2189 approved drugs. For each drug, all the associated CTETs were collected, and the corresponding binary vectors were constructed to determine the DDIs. Various similarity measures were conducted to detect DDIs. Of the examined similarity methods, the inner product-based similarity measures (IPSMs) were found to provide improved prediction values. Altogether, 2,394,766 potential drug pairs interactions were studied. The model was able to predict over 250,000 unknown potential DDIs. Upon our findings, we propose the current method as a robust, yet simple and fast, universal in silico approach for identification of DDIs. We envision that this proposed method can be used as a practical technique for the detection of possible DDIs based on the functional similarities of drugs. Copyright © 2017. Published by Elsevier Inc.

  10. Psychotropic drugs and bruxism.

    Science.gov (United States)

    Falisi, Giovanni; Rastelli, Claudio; Panti, Fabrizio; Maglione, Horacio; Quezada Arcega, Raul

    2014-10-01

    Sleep and awake bruxism is defined as 'a parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth'. Some evidence suggests that bruxism may be caused by, or associated with, alterations in the CNS neurotransmission. Several classes of psychotropic drugs interfering with CNS activity may potentially contribute to bruxism. Thus, the purpose of this study was to examine relevant peer-reviewed papers to identify and describe the various classes of psychotropic substances that may cause, exacerbate or reduce bruxism as the result of their pharmacological action in CNS neurons. A literature search from 1980 to the present was performed using PubMed database. The term 'bruxism' was used in association with 'psychotropic', 'dopamine (DA)', 'serotonin', 'histamine', 'antipsychotics', 'antidepressants', 'antihistaminergics' and 'stimulants'. Studies on the effects of DA agonists (Levo-DOPA, psychostimulants) and antagonists (antipsychotics) identified a central role of DA in the pathogenesis of pharmacologically induced bruxism. Important information from studies on drugs acting on serotonin neurotransmission (antidepressants) was recognized. Other mechanisms involving different neurotransmitters are emerging. This is the case of antihistaminergic drugs which may induce bruxism as a consequence of their disinhibitory effect on the serotonergic system.

  11. Developing a molecular roadmap of drug-food interactions.

    Directory of Open Access Journals (Sweden)

    Kasper Jensen

    2015-02-01

    Full Text Available Recent research has demonstrated that consumption of food -especially fruits and vegetables- can alter the effects of drugs by interfering either with their pharmacokinetic or pharmacodynamic processes. Despite the recognition of such drug-food associations as an important element for successful therapeutic interventions, a systematic approach for identifying, predicting and preventing potential interactions between food and marketed or novel drugs is not yet available. The overall objective of this work was to sketch a comprehensive picture of the interference of ∼ 4,000 dietary components present in ∼1800 plant-based foods with the pharmacokinetics and pharmacodynamics processes of medicine, with the purpose of elucidating the molecular mechanisms involved. By employing a systems chemical biology approach that integrates data from the scientific literature and online databases, we gained a global view of the associations between diet and dietary molecules with drug targets, metabolic enzymes, drug transporters and carriers currently deposited in DrugBank. Moreover, we identified disease areas and drug targets that are most prone to the negative effects of drug-food interactions, showcasing a platform for making recommendations in relation to foods that should be avoided under certain medications. Lastly, by investigating the correlation of gene expression signatures of foods and drugs we were able to generate a completely novel drug-diet interactome map.

  12. A probabilistic approach to identify putative drug targets in biochemical networks.

    NARCIS (Netherlands)

    Murabito, E.; Smalbone, K.; Swinton, J.; Westerhoff, H.V.; Steuer, R.

    2011-01-01

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual

  13. Prescribing quality for older people in Norwegian nursing homes and home nursing services using multidose dispensed drugs.

    Science.gov (United States)

    Halvorsen, Kjell H; Granas, Anne Gerd; Engeland, Anders; Ruths, Sabine

    2012-09-01

    To examine and compare the quality of drug prescribing for older patients in nursing homes and home nursing services. Cross-sectional study comprising 11,254 patients aged ≥ 65 years in nursing homes (n = 2986) and home nursing services (n = 8268). Potentially inappropriate medications were identified by using the Norwegian General Practice criteria and drug-drug interactions through a Norwegian Web-based tool. The impact of care setting on exposure to selected drug groups, potentially inappropriate medications, and drug interactions was calculated, adjusting for patients' age, gender, and number of drugs used. Patients in nursing homes and home nursing services used on average 5.7 (SD = 2.6) multidose dispensed regular drugs. Twenty-six percent used at least one potentially inappropriate medication, 31% in nursing homes and 25% in home nursing services, p nursing homes (18%) and home nursing services (9%), p nursing homes, more patients in home nursing services used cardiovascular drugs and fewer patients used psychotropic drugs. Altogether, 8615 drug-drug interactions were identified in 55% of patients, 48% in nursing homes and 57% in home nursing services, p quality of drug prescribing in nursing homes compared with home nursing services. Explanations as to why these differences exist need to be further explored. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Drug-using and nonusing women: potential for child abuse, child-rearing attitudes, social support, and affection for expected baby.

    Science.gov (United States)

    Williams-Petersen, M G; Myers, B J; Degen, H M; Knisely, J S; Elswick, R K; Schnoll, S S

    1994-10-01

    Eighty pregnant women (25 substance using, 55 nonusing) from an American prenatal clinic serving lower-income to working-class women responded to questionnaire measures of child-rearing attitudes. The drug users' primary substance of misuse was cocaine (68%), alcohol (16%), amphetamines (12%), or sedatives (4%); polydrug use was documented for 80% of the women. The two (user and nonuser) groups were not different on demographic (age, race, marital status, education, SES, source of income) or obstetrical factors (number of pregnancies, number of children). Drug-using women scored significantly higher on a measure of child abuse potential; more than half scored in the range of clinical criterion for extreme risk. As their babies were not yet born, no actual physical abuse was documented, only a higher potential for abuse. The subgroup who were both drug users and had lower social support scored higher on child abuse potential than all other subgroups. The drug users also had lower self-esteem scores than the nonusers. The two groups did not differ on measures of overall social support, authoritarian/democratic child-rearing beliefs, or affection for the expected baby.

  15. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery

    Science.gov (United States)

    Fahmy, Sherif Ashraf; Ponte, Fortuna; Abd El-Rahman, Mohamed K.; Russo, Nino; Sicilia, Emilia; Shoeib, Tamer

    2018-03-01

    Macromolecules including macrocyclic species have been reported to have the potential to encapsulate biologically active compounds such as drugs through host-guest complexation to increase their solubility, stability and bioavailability. In this paper the first experimental and theoretical investigation of the complexation between nedaplatin, a second generation antineoplastic drug, and p-4-sulfocalix[4]arene, a macromolecule possessing a bipolar amphiphilic structure with good biocompatibility and relatively low haemolytic toxicity for potential use as a drug delivery system is presented. Data from 1H NMR, UV, Job's plot analysis, HPLC and DFT calculations are detailed and suggest the formation of a 1:1 complex. The stability constant of the complex was experimentally estimated to be 3.6 × 104 M- 1 and 2.1 × 104 M- 1 which correspond to values of - 6.2 and - 5.9 kcal mol- 1, respectively for the free energy of complexation while the interaction free energy is calculated to be - 4.9 kcal mol- 1. The formed species is shown to be stabilised in solution through hydrogen bonding between the host and the guest which may allow for this strategy to be effective for potential use in drug delivery.

  16. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  17. Drug interactions between common illicit drugs and prescription therapies.

    Science.gov (United States)

    Lindsey, Wesley T; Stewart, David; Childress, Darrell

    2012-07-01

    The aim was to summarize the clinical literature on interactions between common illicit drugs and prescription therapies. Medline, Iowa Drug Information Service, International Pharmaceutical Abstracts, EBSCO Academic Search Premier, and Google Scholar were searched from date of origin of database to March 2011. Search terms were cocaine, marijuana, cannabis, methamphetamine, amphetamine, ecstasy, N-methyl-3,4-methylenedioxymethamphetamine, methylenedioxymethamphetamine, heroin, gamma-hydroxybutyrate, sodium oxybate, and combined with interactions, drug interactions, and drug-drug interactions. This review focuses on established clinical evidence. All applicable full-text English language articles and abstracts found were evaluated and included in the review as appropriate. The interactions of illicit drugs with prescription therapies have the ability to potentiate or attenuate the effects of both the illicit agent and/or the prescription therapeutic agent, which can lead to toxic effects or a reduction in the prescription agent's therapeutic activity. Most texts and databases focus on theoretical or probable interactions due to the kinetic properties of the drugs and do not fully explore the pharmacodynamic and clinical implications of these interactions. Clinical trials with coadministration of illicit drugs and prescription drugs are discussed along with case reports that demonstrate a potential interaction between agents. The illicit drugs discussed are cocaine, marijuana, amphetamines, methylenedioxymethamphetamine, heroin, and sodium oxybate. Although the use of illicit drugs is widespread, there are little experimental or clinical data regarding the effects of these agents on common prescription therapies. Potential drug interactions between illicit drugs and prescription drugs are described and evaluated on the Drug Interaction Probability Scale by Horn and Hansten.

  18. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort?

    Science.gov (United States)

    Mouly, Stéphane; Lloret-Linares, Célia; Sellier, Pierre-Olivier; Sene, Damien; Bergmann, J-F

    2017-04-01

    An interaction of drug with food, herbs, and dietary supplements is usually the consequence of a physical, chemical or physiologic relationship between a drug and a product consumed as food, nutritional supplement or over-the-counter medicinal plant. The current educational review aims at reminding to the prescribing physicians that the most clinically relevant drug-food interactions may not be strictly limited to those with grapefruit juice and with the Saint John's Wort herbal extract and may be responsible for changes in drug plasma concentrations, which in turn decrease efficacy or led to sometimes life-threatening toxicity. Common situations handled in clinical practice such as aging, concomitant medications, transplant recipients, patients with cancer, malnutrition, HIV infection and those receiving enteral or parenteral feeding may be at increased risk of drug-food or drug-herb interactions. Medications with narrow therapeutic index or potential life-threatening toxicity, e.g., the non-steroidal anti-inflammatory drugs, opioid analgesics, cardiovascular medications, warfarin, anticancer drugs and immunosuppressants may be at risk of significant drug-food interactions to occur. Despite the fact that considerable effort has been achieved to increase patient' and doctor's information and ability to anticipate their occurrence and consequences in clinical practice, a thorough and detailed health history and dietary recall are essential for identifying potential problems in order to optimize patient prescriptions and drug dosing on an individual basis as well as to increase the treatment risk/benefit ratio. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  20. A high content screening assay to predict human drug-induced liver injury during drug discovery.

    Science.gov (United States)

    Persson, Mikael; Løye, Anni F; Mow, Tomas; Hornberg, Jorrit J

    2013-01-01

    Adverse drug reactions are a major cause for failures of drug development programs, drug withdrawals and use restrictions. Early hazard identification and diligent risk avoidance strategies are therefore essential. For drug-induced liver injury (DILI), this is difficult using conventional safety testing. To reduce the risk for DILI, drug candidates with a high risk need to be identified and deselected. And, to produce drug candidates without that risk associated, risk factors need to be assessed early during drug discovery, such that lead series can be optimized on safety parameters. This requires methods that allow for medium-to-high throughput compound profiling and that generate quantitative results suitable to establish structure-activity-relationships during lead optimization programs. We present the validation of such a method, a novel high content screening assay based on six parameters (nuclei counts, nuclear area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential (MMP), and mitochondrial area) using ~100 drugs of which the clinical hepatotoxicity profile is known. We find that a 100-fold TI between the lowest toxic concentration and the therapeutic Cmax is optimal to classify compounds as hepatotoxic or non-hepatotoxic, based on the individual parameters. Most parameters have ~50% sensitivity and ~90% specificity. Drugs hitting ≥2 parameters at a concentration below 100-fold their Cmax are typically hepatotoxic, whereas non-hepatotoxic drugs typically hit based on nuclei count, MMP and human Cmax, we identified an area without a single false positive, while maintaining 45% sensitivity. Hierarchical clustering using the multi-parametric dataset roughly separates toxic from non-toxic compounds. We employ the assay in discovery projects to prioritize novel compound series during hit-to-lead, to steer away from a DILI risk during lead optimization, for risk assessment towards candidate selection and to provide guidance of safe

  1. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  2. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  3. Drug-induced status epilepticus.

    Science.gov (United States)

    Cock, Hannah R

    2015-08-01

    Drug-induced status epilepticus (SE) is a relatively uncommon phenomenon, probably accounting for less than 5% of all SE cases, although limitations in case ascertainment and establishing causation substantially weaken epidemiological estimates. Some antiepileptic drugs, particularly those with sodium channel or GABA(γ-aminobutyric acid)-ergic properties, frequently exacerbate seizures and may lead to SE if used inadvertently in generalized epilepsies or less frequently in other epilepsies. Tiagabine seems to have a particular propensity for triggering nonconvulsive SE sometimes in patients with no prior history of seizures. In therapeutic practice, SE is most commonly seen in association with antibiotics (cephalosporins, quinolones, and some others) and immunotherapies/chemotherapies, the latter often in the context of a reversible encephalopathy syndrome. Status epilepticus following accidental or intentional overdoses, particularly of antidepressants or other psychotropic medications, has also featured prominently in the literature: whilst there are sometimes fatal consequences, this is more commonly because of cardiorespiratory or metabolic complications than as a result of seizure activity. A high index of suspicion is required in identifying those at risk and in recognizing potential clues from the presentation, but even with a careful analysis of patient and drug factors, establishing causation can be difficult. In addition to eliminating the potential trigger, management should be as for SE in any other circumstances, with the exception that phenobarbitone is recommended as a second-line treatment for suspected toxicity-related SE where the risk of cardiovascular complications is higher anyways and may be exacerbated by phenytoin. There are also specific recommendations/antidotes in some situations. The outcome of drug-induced status epilepticus is mostly good when promptly identified and treated, though less so in the context of overdoses. This article is

  4. Microwave assisted extraction, antioxidant potential and chromatographic studies of some Rasayana drugs.

    Science.gov (United States)

    Mishra, Ashish; Mishra, Shilpi; Bhargav, Shilpi; Bhargava, Cs; Thakur, Mayank

    2015-07-01

    To study and compare the conventional extraction procedure with microwave assisted extraction (MAE) for some Ayurvedic Rasayana drugs and to evaluate their antioxidant potential and carry out the characterization of extracts by thin layer chromatography. Three Ayurvedic rasayana plants Allium sativum Linn., Bombax ceiba Linn. and Inula racemosa Hook. were evaluated for an improved MAE methodology by determining the effects of grinding degree, extraction solvent, effect of dielectric constant and duration of time on the extractive value. Antioxidant potential of all three drugs was evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power was determined by using Gallic acid as standard. Further thin layer chromatographic (TLC) analysis was performed on pre-activated Silica Gel G plates and Rf value were compared with those reported for the important biomarkers. The total extractive value for Allium sativum Linn. was 36.95% (w/w) and 49.95% (w/w) for ethanol extraction respectively. In case of Bombax ceiba Linn. the yield of aqueous extract by MAE was 50% (w/w) compared to 42% (w/w) in ethanol (50% v/v). Percent yield of Inula racemosa Hook. in aqueous extract was found to be 27.55% (w/w) which was better than ethanol extract (50%) where the yield was 25.95% (w/w). Upon antioxidant activity evaluation. sativum extract showed an absorbance of 0.980±0.92 at concentration of 500 μg with maximum reducing capacity. This was followed by. ceiba Linn. 0.825±0.98 and. racemosa Hook. with 0.799±2.01 at a concentration of 500 μg. TLC based standardization of. sativum Linn. extract shows single spot with Rf value of 0.38, B. ceiba Linn. extract shows Rf values were 0.23, 0.58, 0.77, 0.92 and I. racemosa Hook. extract spot had a Rf value of 0.72. A significant improvement in extractive values was observed as a factor of time and other advantages by using MAE technology. All three drugs have high antioxidant potential and a TLC

  5. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  6. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-01-01

    Full Text Available Comprehensively understanding pharmacological functions of natural products is a key issue to be addressed for the discovery of new drugs. Unlike some single-target drugs, natural products always exert diverse therapeutic effects through acting on a “network” that consists of multiple targets, making it necessary to develop a systematic approach, e.g., network pharmacology, to reveal pharmacological functions of natural products and infer their mechanisms of action. In this work, to identify the “network target” of a natural product, we perform a functional analysis of matrine, a marketed drug in China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis. Here, the network target of matrine was firstly predicted by drugCIPHER, a genome-wide target prediction method. Based on the network target of matrine, we performed a functional gene set enrichment analysis to computationally identify the potential pharmacological functions of matrine, most of which are supported by the literature evidence, including neurotoxicity and neuropharmacological activities of matrine. Furthermore, computational results demonstrated that matrine has the potential for the induction of macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed that the large vesicles induced by matrine are consistent with the typical characteristics of macropinosome. Our verification results also suggested that matrine could decrease cellular ATP level. These findings demonstrated the availability and effectiveness of the network target strategy for identifying the comprehensive pharmacological functions of natural products.

  7. Analysis of clinical drug-drug interaction data to predict uncharacterized interaction magnitudes between antiretroviral drugs and co-medications.

    Science.gov (United States)

    Stader, Felix; Kinvig, Hannah; Battegay, Manuel; Khoo, Saye; Owen, Andrew; Siccardi, Marco; Marzolini, Catia

    2018-04-23

    Despite their high potential for drug-drug-interactions (DDI), clinical DDI studies of antiretroviral drugs (ARVs) are often lacking, because the full range of potential interactions cannot feasibly or pragmatically be studied, with some high-risk DDI studies also ethically difficult to undertake. Thus, a robust method to screen and to predict the likelihood of DDIs is required.We developed a method to predict DDIs based on two parameters: the degree of metabolism by specific enzymes such as CYP3A and the strength of an inhibitor or inducer. These parameters were derived from existing studies utilizing paradigm substrates, inducers and inhibitors of CYP3A, to assess the predictive performance of this method by verifying predicted magnitudes of changes in drug exposure against clinical DDI studies involving ARVs.The derived parameters were consistent with the FDA classification of sensitive CYP3A substrates and the strength of CYP3A inhibitors and inducers. Characterized DDI magnitudes (n = 68) between ARVs and co-medications were successfully quantified meaning 53%, 85% and 98% of the predictions were within 1.25-fold (0.80 - 1.25), 1.5-fold (0.66 - 1.48) and 2-fold (0.66 - 1.94) of the observed clinical data. In addition, the method identifies CYP3A substrates likely to be highly or conversely minimally impacted by CYP3A inhibitors or inducers, thus categorizing the magnitude of DDIs.The developed effective and robust method has the potential to support a more rational identification of dose adjustment to overcome DDIs being particularly relevant in a HIV-setting giving the treatments complexity, high DDI risk and limited guidance on the management of DDIs. Copyright © 2018 American Society for Microbiology.

  8. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions.

    Science.gov (United States)

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel; Wilkinson, Mark D

    2013-04-05

    The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this prototype was limited to a single knowledge domain

  9. The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions

    Science.gov (United States)

    Vandervalk, Ben; McCarthy, E Luke; Cruz-Toledo, José; Klein, Artjom; Baker, Christopher J O; Dumontier, Michel

    2013-01-01

    Background The Web provides widespread access to vast quantities of health-related information that can improve quality-of-life through better understanding of personal symptoms, medical conditions, and available treatments. Unfortunately, identifying a credible and personally relevant subset of information can be a time-consuming and challenging task for users without a medical background. Objective The objective of the Personal Health Lens system is to aid users when reading health-related webpages by providing warnings about personally relevant drug interactions. More broadly, we wish to present a prototype for a novel, generalizable approach to facilitating interactions between a patient, their practitioner(s), and the Web. Methods We utilized a distributed, Semantic Web-based architecture for recognizing personally dangerous drugs consisting of: (1) a private, local triple store of personal health information, (2) Semantic Web services, following the Semantic Automated Discovery and Integration (SADI) design pattern, for text mining and identifying substance interactions, (3) a bookmarklet to trigger analysis of a webpage and annotate it with personalized warnings, and (4) a semantic query that acts as an abstract template of the analytical workflow to be enacted by the system. Results A prototype implementation of the system is provided in the form of a Java standalone executable JAR file. The JAR file bundles all components of the system: the personal health database, locally-running versions of the SADI services, and a javascript bookmarklet that triggers analysis of a webpage. In addition, the demonstration includes a hypothetical personal health profile, allowing the system to be used immediately without configuration. Usage instructions are provided. Conclusions The main strength of the Personal Health Lens system is its ability to organize medical information and to present it to the user in a personalized and contextually relevant manner. While this

  10. [The original nootropic and neuroprotective drug noopept potentiates the anticonvulsant activity of valproate in mice].

    Science.gov (United States)

    Kravchenko, E V; Ponteleeva, I V; Trofimov, S S; Lapa, V I; Ostrovskaia, R U; Voronina, T A

    2009-01-01

    The influence of the original dipeptide drug noopept, known to possess nootrope, neuroprotector, and anxiolytic properties, on the anticonvulsant activity of the antiepileptic drug valproate has been studied on the model of corazole-induced convulsions in mice. Neither a single administration of noopept (0.5 mg/kg, i.p.) nor its repeated introduction in 10 or 35 days enhanced the convulsant effect of corazole, which is evidence that noopept alone does not possess anticonvulsant properties. Prolonged (five weeks) preliminary administration of noopept enhanced the anticonvulsant activity of valproate. This result justifies the joint chronic administration of noopept in combination with valproate in order to potentiate the anticonvulsant effect of the latter drug. In addition, the administration of noopept favorably influences the cognitive functions and suppresses the development of neurodegenerative processes.

  11. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  12. Strategies to design clinical studies to identify predictive biomarkers in cancer research.

    Science.gov (United States)

    Perez-Gracia, Jose Luis; Sanmamed, Miguel F; Bosch, Ana; Patiño-Garcia, Ana; Schalper, Kurt A; Segura, Victor; Bellmunt, Joaquim; Tabernero, Josep; Sweeney, Christopher J; Choueiri, Toni K; Martín, Miguel; Fusco, Juan Pablo; Rodriguez-Ruiz, Maria Esperanza; Calvo, Alfonso; Prior, Celia; Paz-Ares, Luis; Pio, Ruben; Gonzalez-Billalabeitia, Enrique; Gonzalez Hernandez, Alvaro; Páez, David; Piulats, Jose María; Gurpide, Alfonso; Andueza, Mapi; de Velasco, Guillermo; Pazo, Roberto; Grande, Enrique; Nicolas, Pilar; Abad-Santos, Francisco; Garcia-Donas, Jesus; Castellano, Daniel; Pajares, María J; Suarez, Cristina; Colomer, Ramon; Montuenga, Luis M; Melero, Ignacio

    2017-02-01

    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  14. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  15. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    Science.gov (United States)

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  16. PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Irene Paterniti

    Full Text Available BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs, which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score, and TNF-α, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.

  17. Multiplexed and Switchable Release of Distinct Fluids from Microneedle Platforms via Conducting Polymer Nanoactuators for Potential Drug Delivery

    Science.gov (United States)

    Valdés-Ramírez, Gabriela; Windmiller, Joshua R.; Claussen, Jonathan C.; Martinez, Alexandra G.; Kuralay, Filiz; Zhou, Ming; Zhou, Nandi; Polsky, Ronen; Miller, Philip R.; Narayan, Roger; Wang, Joseph

    2013-01-01

    We report on the development of a microneedle-based multiplexed drug delivery actuator that enables the controlled delivery of multiple therapeutic agents. Two individually-addressable channels on a single microneedle array, each paired with its own reservoir and conducting polymer nanoactuator, are used to deliver various permutations of two unique chemical species. Upon application of suitable redox potentials to the selected actuator, the conducting polymer is able to undergo reversible volume changes, thereby serving to release a model chemical agent in a controlled fashion through the corresponding microneedle channels. Time-lapse videos offer direct visualization and characterization of the membrane switching capability and, along with calibration investigations, confirm the ability of the device to alternate the delivery of multiple reagents from individual microneedles of the array with higher precision and temporal resolution than conventional drug delivery actuators. Analytical modeling offers prediction of the volumetric flow rate through a single microneedle and accordingly can be used to assist in the design of subsequent microneedle arrays. The robust solid-state design and lack of mechanical components circumvent reliability issues that challenge fragile conventional microelectromechanical drug delivery devices. This proof-of-concept study demonstrates the potential of the drug delivery actuator system to aid in the rapid administration of multiple therapeutic agents and indicates the potential to counteract diverse biomedical conditions. PMID:24174709

  18. What's the risk? Identifying potential human pathogens within grey-headed flying foxes faeces.

    Directory of Open Access Journals (Sweden)

    Rebekah Henry

    Full Text Available Pteropus poliocephalus (grey-headed flying foxes are recognised vectors for a range of potentially fatal human pathogens. However, to date research has primarily focused on viral disease carriage, overlooking bacterial pathogens, which also represent a significant human disease risk. The current study applied 16S rRNA amplicon sequencing, community analysis and a multi-tiered database OTU picking approach to identify faecal-derived zoonotic bacteria within two colonies of P. poliocephalus from Victoria, Australia. Our data show that sequences associated with Enterobacteriaceae (62.8% ± 24.7%, Pasteurellaceae (19.9% ± 25.7% and Moraxellaceae (9.4% ± 11.8% dominate flying fox faeces. Further colony specific differences in bacterial faecal colonisation patterns were also identified. In total, 34 potential pathogens, representing 15 genera, were identified. However, species level definition was only possible for Clostridium perfringens, which likely represents a low infectious risk due to the low proportion observed within the faeces and high infectious dose required for transmission. In contrast, sequences associated with other pathogenic species clusters such as Haemophilus haemolyticus-H. influenzae and Salmonella bongori-S. enterica, were present at high proportions in the faeces, and due to their relatively low infectious doses and modes of transmissions, represent a greater potential human disease risk. These analyses of the microbial community composition of Pteropus poliocephalus have significantly advanced our understanding of the potential bacterial disease risk associated with flying foxes and should direct future epidemiological and quantitative microbial risk assessments to further define the health risks presented by these animals.

  19. SemaTyP: a knowledge graph based literature mining method for drug discovery.

    Science.gov (United States)

    Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian

    2018-05-30

    Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.

  20. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov

    Directory of Open Access Journals (Sweden)

    Eric Wen Su

    2017-03-01

    Full Text Available Drug repositioning (i.e., drug repurposing is the process of discovering new uses for marketed drugs. Historically, such discoveries were serendipitous. However, the rapid growth in electronic clinical data and text mining tools makes it feasible to systematically identify drugs with the potential to be repurposed. Described here is a novel method of drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics and PolyAnalyst (Megaputer were utilized. An I2E query extracts “Serious Adverse Events” (SAE data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs than the control arm, indicating that potentially the drug is reducing the level of SAE. Hypotheses could then be generated for the new use of these drugs based on the predefined SAE that is indicative of disease (for example, cancer.

  1. Drug overdose surveillance using hospital discharge data.

    Science.gov (United States)

    Slavova, Svetla; Bunn, Terry L; Talbert, Jeffery

    2014-01-01

    We compared three methods for identifying drug overdose cases in inpatient hospital discharge data on their ability to classify drug overdoses by intent and drug type(s) involved. We compared three International Classification of Diseases, Ninth Revision, Clinical Modification code-based case definitions using Kentucky hospital discharge data for 2000-2011. The first definition (Definition 1) was based on the external-cause-of-injury (E-code) matrix. The other two definitions were based on the Injury Surveillance Workgroup on Poisoning (ISW7) consensus recommendations for national and state poisoning surveillance using the principal diagnosis or first E-code (Definition 2) or any diagnosis/E-code (Definition 3). Definition 3 identified almost 50% more drug overdose cases than did Definition 1. The increase was largely due to cases with a first-listed E-code describing a drug overdose but a principal diagnosis that was different from drug overdose (e.g., mental disorders, or respiratory or circulatory system failure). Regardless of the definition, more than 53% of the hospitalizations were self-inflicted drug overdoses; benzodiazepines were involved in about 30% of the hospitalizations. The 2011 age-adjusted drug overdose hospitalization rate in Kentucky was 146/100,000 population using Definition 3 and 107/100,000 population using Definition 1. The ISW7 drug overdose definition using any drug poisoning diagnosis/E-code (Definition 3) is potentially the highest sensitivity definition for counting drug overdose hospitalizations, including by intent and drug type(s) involved. As the states enact policies and plan for adequate treatment resources, standardized drug overdose definitions are critical for accurate reporting, trend analysis, policy evaluation, and state-to-state comparison.

  2. Drug Overdose Surveillance Using Hospital Discharge Data

    Science.gov (United States)

    Bunn, Terry L.; Talbert, Jeffery

    2014-01-01

    Objectives We compared three methods for identifying drug overdose cases in inpatient hospital discharge data on their ability to classify drug overdoses by intent and drug type(s) involved. Methods We compared three International Classification of Diseases, Ninth Revision, Clinical Modification code-based case definitions using Kentucky hospital discharge data for 2000–2011. The first definition (Definition 1) was based on the external-cause-of-injury (E-code) matrix. The other two definitions were based on the Injury Surveillance Workgroup on Poisoning (ISW7) consensus recommendations for national and state poisoning surveillance using the principal diagnosis or first E-code (Definition 2) or any diagnosis/E-code (Definition 3). Results Definition 3 identified almost 50% more drug overdose cases than did Definition 1. The increase was largely due to cases with a first-listed E-code describing a drug overdose but a principal diagnosis that was different from drug overdose (e.g., mental disorders, or respiratory or circulatory system failure). Regardless of the definition, more than 53% of the hospitalizations were self-inflicted drug overdoses; benzodiazepines were involved in about 30% of the hospitalizations. The 2011 age-adjusted drug overdose hospitalization rate in Kentucky was 146/100,000 population using Definition 3 and 107/100,000 population using Definition 1. Conclusion The ISW7 drug overdose definition using any drug poisoning diagnosis/E-code (Definition 3) is potentially the highest sensitivity definition for counting drug overdose hospitalizations, including by intent and drug type(s) involved. As the states enact policies and plan for adequate treatment resources, standardized drug overdose definitions are critical for accurate reporting, trend analysis, policy evaluation, and state-to-state comparison. PMID:25177055

  3. Strategy for the Prediction of Steady-State Exposure of Digoxin to Determine Drug-Drug Interaction Potential of Digoxin With Other Drugs in Digitalization Therapy.

    Science.gov (United States)

    Srinivas, Nuggehally R

    2016-01-20

    Digoxin, a narrow therapeutic index drug, is widely used in congestive heart failure. However, the digitalization therapy involves dose titration and can exhibit drug-drug interaction. Ctrough versus area under the plasma concentration versus time curve in a dosing interval of 24 hours (AUC0-24h) and Cmax versus AUC0-24h for digoxin were established by linear regression. The predictions of digoxin AUC0-24h values were performed using published Ctrough or Cmax with appropriate regression lines. The fold difference, defined as the quotient of the observed/predicted AUC0-24h values, was evaluated. The mean square error and root mean square error, correlation coefficient (r), and goodness of the fold prediction were used to evaluate the models. Both Ctrough versus AUC0-24h (r = 0.9215) and Cmax versus AUC0-24h models for digoxin (r = 0.7781) showed strong correlations. Approximately 93.8% of the predicted digoxin AUC0-24h values were within 0.76-fold to 1.25-fold difference for Ctrough model. In sharp contrast, the Cmax model showed larger variability with only 51.6% of AUC0-24h predictions within 0.76-1.25-fold difference. The r value for observed versus predicted AUC0-24h for Ctrough (r = 0.9551; n = 177; P < 0.001) was superior to the Cmax (r = 0.6134; n = 275; P < 0.001) model. The mean square error and root mean square error (%) for the Ctrough model were 11.95% and 16.2% as compared to 67.17% and 42.3% obtained for the Cmax model. Simple linear regression models for Ctrough/Cmax versus AUC0-24h were derived for digoxin. On the basis of statistical evaluation, Ctrough was superior to Cmax model for the prediction of digoxin AUC0-24h and can be potentially used in a prospective setting for predicting drug-drug interaction or lack of it.

  4. Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2016-06-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD. Prolonged use of NSAIDs, however, produces gastrointestinal (GI toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4–9 that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S-naproxen and (R-flurbiprofen, with (R-α-lipoic acid (LA through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA-stimulated U937 cells (lymphoblast lung from human and Aβ(25–35-treated THP-1 cells (leukemic monocytes. Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.

  5. Transporter-mediated natural product–drug interactions for the treatment of cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    2018-04-01

    Full Text Available The growing use of natural products in cardiovascular (CV patients has been greatly raising the concerns about potential natural product–CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product–CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product–drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins have been identified to be substrates and inhibitors of the solute carrier (SLC transporters and the ATP-binding cassette (ABC transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product–CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product–CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product–CV drug interactions and help public and physicians understand these type of interactions. Keywords: Cardiovascular drugs, Natural products, Drug transporters, Natural product–drug interaction, Pharmacokinetics

  6. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  7. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay.

    Science.gov (United States)

    Linares, María; Viera, Sara; Crespo, Benigno; Franco, Virginia; Gómez-Lorenzo, María G; Jiménez-Díaz, María Belén; Angulo-Barturen, Íñigo; Sanz, Laura María; Gamo, Francisco-Javier

    2015-11-05

    The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. The quantification of new infections to determine parasite viability offers important

  8. Methodological framework to identify possible adverse drug reactions using population-based administrative data [v1; ref status: indexed, http://f1000r.es/3ys

    Directory of Open Access Journals (Sweden)

    Brian Sauer

    2014-10-01

    Full Text Available Purpose: We present a framework for detecting possible adverse drug reactions (ADRs using the Utah Medicaid administrative data. We examined four classes of ADRs associated with treatment of dementia by acetylcholinesterase inhibitors (AChEIs: known reactions (gastrointestinal, psychological disturbances, potential reactions (respiratory disturbance, novel reactions (hepatic, hematological disturbances, and death. Methods: Our cohort design linked drug utilization data to medical claims from Utah Medicaid recipients. We restricted the analysis to 50 years-old and older beneficiaries diagnosed with dementia-related diseases. We compared patients treated with AChEI to patients untreated with anti-dementia medication therapy. We attempted to remove confounding by establishing propensity-score-matched cohorts for each outcome investigated; we then evaluated the effects of drug treatment by conditional multivariable Cox-proportional-hazard regression. Acute and transient effects were evaluated by a crossover design using conditional logistic regression. Results: Propensity-matched analysis of expected reactions revealed that AChEI treatment was associated with gastrointestinal episodes (Hazard Ratio [HR]: 2.02; 95%CI: 1.28-3.2, but not psychological episodes, respiratory disturbance, or death. Among the unexpected reactions, the risk of hematological episodes was higher (HR: 2.32; 95%CI: 1.47-3.6 in patients exposed to AChEI. AChEI exposure was not associated with an increase in hepatic episodes. We also noted a trend, identified in the case-crossover design, toward increase odds of experiencing acute hematological events during AChEI exposure (Odds Ratio: 3.0; 95% CI: 0.97 - 9.3. Conclusions: We observed an expected association between AChEIs treatment and gastrointestinal disturbances and detected a signal of possible hematological ADR after treatment with AChEIs in this pilot study. Using this analytic framework may raise awareness of potential

  9. Why trash don't pass? pharmaceutical licensing and safety performance of drugs.

    Science.gov (United States)

    Banerjee, Tannista; Nayak, Arnab

    2017-01-01

    This paper examines how asymmetric information in pharmaceutical licensing affects the safety standards of licensed drugs. Pharmaceutical companies often license potential drug molecules at different stages of drug development from other pharmaceutical or biotechnology companies and complete the remaining of research stages before submitting the new drug application(NDA) to the food and drug administration. The asymmetric information associated with the quality of licensed molecules might result in the molecules which are less likely to succeed to be licensed out, while those with greater potential of success being held internally for development. We identify the NDAs submitted between 1993 and 2004 where new molecular entities were acquired through licensing. Controlling for other drug area specific and applicant firm specific factors, we investigate whether drugs developed with licensed molecules face higher probability of safety based recall and ultimate withdrawal from the market than drugs developed internally. Results suggest the opposite of Akerlof's (Q J Econ 84:488-500, 1970) lemons problem. Licensed molecules rather have less probability of facing safety based recalls and ultimate withdrawal from the market comparing to internally developed drug molecules. This suggests that biotechnology and small pharmaceutical firms specializing in pharmaceutical research are more efficient in developing good potential molecules because of their concentrated research. Biotechnology firms license out good potential molecules because it increases their market value and reputation. In addition, results suggest that both the number of previous approved drugs in the disease area, and also the applicant firms' total number of previous approvals in all disease areas reduce the probability that an additional approved drug in the same drug area will potentially be harmful.

  10. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  11. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  12. Investigation of bioequivalence of a new fixed-dose combination of nifedipine and candesartan with the corresponding loose combination as well as the drug-drug interaction potential between both drugs under fasting conditions.

    Science.gov (United States)

    Brendel, Erich; Weimann, Boris; Dietrich, Hartmut; Froede, Christoph; Thomas, Dirk

    2013-09-01

    To determine the bioequivalence of a nifedipine and candesartan fixed-dose combination (FDC) with the corresponding loose combination, and to investigate the pharmacokinetic drug-drug interaction potential between both drugs. 49 healthy, white, male subjects received: 60 mg nifedipine and 32 mg candesartan FDC, the loose combination of 60 mg nifedipine GITS and 32 mg candesartan, 60 mg nifedipine GITS alone, or 32 mg candesartan alone in a randomized, non-blinded, 4-period, 4-way crossover design with each dosing following overnight fasting. Treatment periods were separated by washout periods of ≥ 5 days. Plasma samples were collected for 48 hours after dosing and assayed using a validated LC-MS/MS method. Bioequivalence between the FDC and the loose combination as well as the impact of combined treatment with both drugs on candesartan pharmacokinetics was evaluated in 47 subjects, while the corresponding impact of treatment with both drugs on nifedipine pharmacokinetics was assessed in 46 patients. For AUC(0-tlast) and Cmax the 90% confidence intervals (CIs) for the ratios of the FDC vs. the corresponding loose combination were within the acceptance range for bioequivalence of 80 - 125%. When comparing AUC(0-tlast) and Cmax of nifedipine and candesartan after dosing with the loose combination vs. each drug alone, the 90% CIs remained within the range of 80 - 125% indicating the absence of a clinically relevant pharmacokinetic drug-drug interaction. Nifedipine and candesartan as well as the combinations were well tolerated. The FDC containing 60 mg nifedipine and 32 mg candesartan was bioequivalent to the corresponding loose combination following single oral doses under fasting conditions. No clinically relevant pharmacokinetic drug-drug interaction between nifedipine and candesartan was observed.

  13. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug.

    Science.gov (United States)

    Perkins, Frank N; Freeman, Kevin B

    2018-01-01

    Drug addiction can be conceptualized as a disorder of maladaptive decision making in which drugs are chosen at the expense of pro-social, nondrug alternatives. The study of decision making in drug addiction has focused largely on the role of impulsivity as a facilitator of addiction, in particular the tendency for drug abusers to choose small, immediate gains over larger but delayed outcomes (i.e., delay discounting). A parallel line of work, also focused on decision making in drug addiction, has focused on identifying the determinants underlying the choice to take drugs over nondrug alternatives (i.e., drug vs. nondrug choice). Both tracks of research have been valuable tools in the development of pharmacotherapies for treating maladaptive decision making in drug addiction, and a number of common drugs have been studied in both designs. However, we have observed that there is little uniformity in the administration regimens of potential treatments between the designs, which hinders congruence in the development of single treatment strategies to reduce both impulsive behavior and drug choice. The current review provides an overview of the drugs that have been tested in both delay-discounting and drug-choice designs, and focuses on drugs that reduced the maladaptive choice in both designs. Suggestions to enhance congruence between the findings in future studies are provided. Finally, we propose the use of a hybridized, experimental approach that may enable researchers to test the effectiveness of therapeutics at decreasing impulsive and drug choice in a single design. Published by Elsevier Inc.

  15. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  16. PDTD: a web-accessible protein database for drug target identification

    Directory of Open Access Journals (Sweden)

    Gao Zhenting

    2008-02-01

    Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

  17. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).

    Science.gov (United States)

    Sinniger, Frederic; Reimer, James D; Pawlowski, Jan

    2008-12-01

    The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.

  18. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan

    Directory of Open Access Journals (Sweden)

    Jaydeep Patel

    2011-01-01

    Full Text Available Irbesartan (IRB is an angiotensin II receptor blocker antihypertensive agent. The aim of the present investigation was to develop a self-nanoemulsifying drug delivery system (SNEDDS to enhance the oral bioavailability of poorly water-soluble IRB. The solubility of IRB in various oils was determined to identify the oil phase of SNEDDS. Various surfactants and co-surfactants were screened for their ability to emulsify the selected oil. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region. The optimized SNEDDS formulation contained IRB (75 mg, Cremophor® EL (43.33%, Carbitol® (21.67% and Capryol® 90 (32%. SNEDDS was further evaluated for its percentage transmittance, emulsification time, drug content, phase separation, dilution, droplet size and zeta potential. The optimized formulation of IRB-loaded SNEDDS exhibited complete in vitro drug release in 15 min as compared with the plain drug, which had a limited dissolution rate. It was also compared with the pure drug solution by oral administration in male Wister rats. The in vivo study exhibited a 7.5-fold increase in the oral bioavailability of IRB from SNEDDS compared with the pure drug solution. These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability of poorly water-soluble IRB.

  19. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.

    Science.gov (United States)

    Cheng, Feixiong; Zhao, Junfei; Fooksa, Michaela; Zhao, Zhongming

    2016-07-01

    Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics. We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network. We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1). In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  20. Bead-based screening in chemical biology and drug discovery

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland; Qvortrup, Katrine

    2018-01-01

    libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet...... been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made towards bead-based library screening and applications to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed......High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amanable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structural diverse...

  1. Inappropriate prescribing and prescribing omissions among drug-related problems using STOPP-START criteria

    NARCIS (Netherlands)

    Verdoorn, M.A.; Kwint, H.-F.; Faber, A.; L. Bouvy, M.

    2013-01-01

    Background and objectives: Medication review has been suggested as a way to prevent drug related problems (DRPs). Screening tools have been formulated to identify potentially inappropriate medicines (PIMs) and potential prescribing omissions (PPOs) respectively called Screening Tool of Older

  2. Identifying predictive features in drug response using machine learning: opportunities and challenges.

    Science.gov (United States)

    Vidyasagar, Mathukumalli

    2015-01-01

    This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.

  3. FAMILY HEALTH PROGRAM: CHALLENGES AND POTENTIALITIES REGARDING DRUGS USE

    Directory of Open Access Journals (Sweden)

    Marcelle Aparecida de Barros

    2006-04-01

    Full Text Available ABSTRACT: Epidemiological studies on drugs use point towards this phenomenon as a public health problem. Nowadays, the Family Health Program (FHP is presented by the Health Ministry as a model to restructure primary health care and aims to offer family-centered care, permeated by integrality, problem solving and community bonds. This article aims to discuss action possibilities of Family Health Care professionals involving drugs patients. It is evident that, as opposed to other actions already developed by FHP professionals in other health care areas, which has appeared clearly and objectively. This fact is observed in the daily activities of FHP professionals, which give little attention to drugs-related problems. However, research emphasizes that there exists a broad range of action possibilities for FHP professionals. Although other studies evidence this team’s fragilities in terms of care for drugs users, these can be overcome by investing in the training and valuation of these professionals. KEY WORDS: Family Health Program; Street drugs; Health Knowledge, Attitudes, Practice.

  4. Reality Television Programs Are Associated With Illegal Drug Use and Prescription Drug Misuse Among College Students.

    Science.gov (United States)

    Fogel, Joshua; Shlivko, Alexander

    2016-01-02

    Reality television watching and social media use are popular activities. Reality television can include mention of illegal drug use and prescription drug misuse. To determine if reality television and social media use of Twitter are associated with either illegal drug use or prescription drug misuse. Survey of 576 college students in 2011. Independent variables included watching reality television (social cognitive theory), parasocial interaction (parasocial interaction theory), television hours watched (cultivation theory), following a reality television character on Twitter, and demographics. Outcome variables were illegal drug use and prescription drug misuse. Watching reality television and also identifying with reality TV program characters were each associated with greater odds for illegal drug use. Also, following a reality TV character on Twitter had greater odds for illegal drug use and also in one analytical model for prescription drug misuse. No support was seen for cultivation theory. Those born in the United States had greater odds for illegal drug use and prescription drug misuse. Women and Asians had lower odds for illegal drug use. African Americans and Asians had lower odds for prescription drug misuse. Physicians, psychologists, and other healthcare practitioners may find it useful to include questions in their clinical interview about reality television watching and Twitter use. Physician and psychology groups, public health practitioners, and government health agencies should consider discussing with television broadcasting companies the potential negative impact of including content with illegal drugs and prescription drug misuse on reality television programs.

  5. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.

    Science.gov (United States)

    Luo, Yunan; Zhao, Xinbin; Zhou, Jingtian; Yang, Jinglin; Zhang, Yanqing; Kuang, Wenhua; Peng, Jian; Chen, Ligong; Zeng, Jianyang

    2017-09-18

    The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug-target interactions from a constructed heterogeneous network, which integrates diverse drug-related information. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes prediction based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for drug-target interaction prediction. Moreover, we experimentally validate the novel interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and demonstrate the new potential applications of these identified cyclooxygenase inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs.Network-based data integration for drug-target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations.

  6. [Drug interactions in chronic prescription].

    Science.gov (United States)

    Comet, D; Casajuana, J; Bordas, J M; Fuentes, M A; Arnáiz, J A; Núñez, B; Pou, R

    1997-06-30

    Application of computerized program for detection of potential drug interactions (PDI) in chronic prescriptions in four primary care centers. To evaluate the clinical significance of PDI identified according to clinical criterions. An observational crossover study. Clutat Vella health district (City of Barcelona). Using information of Consejo General de Colegios Oficiales de Farmaceuticos databases and the chronic prescriptions database of the primary care centers, computerized drug-interaction system have been developed for detection of PDI in patients. A panel of primary care physicians and clinical pharmacists developed criteria that were used to evaluate the clinical significance of PDI. 9840 Cards of Authorized Prescription (CAP) were analyzed, 36108 medicaments and 42877 drugs. A total of 2140 patients were involved for a total of 3406 PDI, 21.75% of patients with CAP. Clinical signification for the panel was found in 40.07% of these 3406 PIF; 3.78% were suggest to avoid the association drugs. The incidence of PDI with clinical signification are lower than other studies of the literature; it suggest a appropriate knowledge of drug prescription. The application of computerized program make much more easy the detection of adverse drug interactions in chronic prescription.

  7. Potential for Drug Abuse: the Predictive Role of Parenting Styles, Stress and Type D Personality

    Directory of Open Access Journals (Sweden)

    mahin soheili

    2015-06-01

    Full Text Available Objective: This study was an attempt to predict potential for drug abuse on the basis of three predictors of parenting style, stress and type D personality. Method: In this descriptive-correlational study, 200 students (100 males and 100 females of Islamic Azad University of Karaj were selected by convenience sampling. For data collection, perceived parenting styles questionnaire, perceived stress scale, type D personality scale, and addiction potential scale were used. Results: The results showed that rejecting/neglecting parenting style and emotional warmth were positively and negatively correlated with addiction potential, respectively. Conclusion: The child-parent relationship and also the relationship between stress and type D personality can be considered as predictive factors in addiction potential.

  8. The Potential Impact of Up-Front Drug Sensitivity Testing on India's Epidemic of Multi-Drug Resistant Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kuldeep Singh Sachdeva

    Full Text Available In India as elsewhere, multi-drug resistance (MDR poses a serious challenge in the control of tuberculosis (TB. The End TB strategy, recently approved by the world health assembly, aims to reduce TB deaths by 95% and new cases by 90% between 2015 and 2035. A key pillar of this approach is early diagnosis of tuberculosis, including use of higher-sensitivity diagnostic testing and universal rapid drug susceptibility testing (DST. Despite limitations of current laboratory assays, universal access to rapid DST could become more feasible with the advent of new and emerging technologies. Here we use a mathematical model of TB transmission, calibrated to the TB epidemic in India, to explore the potential impact of a major national scale-up of rapid DST. To inform key parameters in a clinical setting, we take GeneXpert as an example of a technology that could enable such scale-up. We draw from a recent multi-centric demonstration study conducted in India that involved upfront Xpert MTB/RIF testing of all TB suspects.We find that widespread, public-sector deployment of high-sensitivity diagnostic testing and universal DST appropriately linked with treatment could substantially impact MDR-TB in India. Achieving 75% access over 3 years amongst all cases being diagnosed for TB in the public sector alone could avert over 180,000 cases of MDR-TB (95% CI 44187 - 317077 cases between 2015 and 2025. Sufficiently wide deployment of Xpert could, moreover, turn an increasing MDR epidemic into a diminishing one. Synergistic effects were observed with assumptions of simultaneously improving MDR-TB treatment outcomes. Our results illustrate the potential impact of new and emerging technologies that enable widespread, timely DST, and the important effect that universal rapid DST in the public sector can have on the MDR-TB epidemic in India.

  9. Cross species association examination of UCN3 and CRHR2 as potential pharmacological targets for antiobesity drugs.

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang

    Full Text Available BACKGROUND: Obesity now constitutes a leading global public health problem. Studies have shown that insulin resistance affiliated with obesity is associated with intramyocellular lipid (IMCL accumulation. Therefore, identification of genes associated with the phenotype would provide a clear target for pharmaceutical intervention and care for the condition. We hypothesized that urocortin 3 (UCN3 and corticotropin-releasing hormone receptor 2 (CRHR2 are associated with IMCL and subcutaneous fat depth (SFD, because the corticotropin-releasing hormone family of peptides are capable of strong anorectic and thermogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We annotated both bovine UCN3 and CRHR2 genes and identified 12 genetic mutations in the former gene and 5 genetic markers in the promoter region of the latter gene. Genotyping of these 17 markers on Wagyu times Limousin F(2 progeny revealed significant associations between promoter polymorphisms and SFD (P = 0.0203-0.0685 and between missense mutations of exon 2 and IMCL (P = 0.0055-0.0369 in the bovine UCN3 gene. The SFD associated promoter SNPs caused a gain/loss of 12 potential transcription regulatory binding sites, while the IMCL associated coding SNPs affected the secondary structure of UCN3 mRNA. However, none of five polymorphisms in CRHR2 gene clearly co-segregated with either trait in the population (P>0.6000. CONCLUSIONS/SIGNIFICANCE: Because UCN3 is located on human chromosome 10p15.1 where quantitative trait loci for obesity have been reported, our cross species study provides further evidence that it could be proposed as a potential target for developing antiobesity drugs. None of the markers in CRHR2 was associated with obesity-type traits in cattle, which is consistent with findings in human. Therefore, CRHR2 does not lend itself to the development of antiobesity drugs.

  10. Occupational Exposure to Antineoplastic Drugs: Identification of Job Categories Potentially Exposed throughout the Hospital Medication System

    Directory of Open Access Journals (Sweden)

    Chun-Yip Hon

    2011-09-01

    Conclusion: We found drug contamination on select surfaces at every stage of the medication system, which indicates the existence of an exposure potential throughout the facility. Our results suggest that a broader range of workers are potentially exposed than has been previously examined. These results will allow us to develop a more inclusive exposure assessment encompassing all healthcare workers that are at risk throughout the hospital medication system.

  11. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    Science.gov (United States)

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    Science.gov (United States)

    2016-06-01

    parasites consistently produced only about half as many liver stages as the isogenic 273 PKG-HA control clone (Supplementary Fig 1F, Supplementary...amongst the nominally isogenic PKG T619Q-HA and 281 PKG-HA clones , although we find it more likely that PKG T619Q-HA is a hypomorphic 282 allele in...prophylaxis and transmission blocking approaches. 494 495 Experimental Procedures 496 497 Ethics Statement 498 All experiments were approved by

  13. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases.

    Science.gov (United States)

    Zha, Weibin

    2018-04-01

    The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product-CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product-CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product-drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product-CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product-CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product-CV drug interactions and help public and physicians understand these type of interactions. Copyright © 2017. Published by Elsevier B.V.

  14. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Saednia, Shahnaz; Saien, Javad; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: ssaednia@gmail.com [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kazem-Rostami, Masoud [Young Researchers Club and Elite, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Sadeghpour, Mahdieh [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Borazjani, Maryam Kiani [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of)

    2013-07-15

    Drug delivery systems based on polymer-drug conjugates give an improved treatment with lower toxicity or side effects and be used for the treatment of different diseases. Conjugates of biodegradable poly(styrene-alt-maleic anhydride) (PSMA), with a therapeutic agents such as amantadine hydrochloride, amlodipine, gabapentin, zonisamide and mesalamine, were afforded by the formation of the amide bonds of the amino drugs that reacted with the PSMA anhydride groups. The amounts of covalently conjugated drugs were determined by a {sup 1}H NMR spectroscopic method, and the in vitro release rate in buffer solution (pH 1.3) was studied at body temperature 37 Degree-Sign C. In kinetic studies, different dissolution models were examined to obtain drug release data and the collected data were well-fitted to the Korsmeyer-Peppas equation, revealing a dominant Fickian diffusion mechanism for drug release under the in vitro conditions. (author)

  15. The potential impact of density dependent fecundity on the use of the faecal egg count reduction test for detecting drug resistance in human hookworms.

    Directory of Open Access Journals (Sweden)

    Andrew C Kotze

    Full Text Available Current efforts to control human soil-transmitted helminth (STH infections involve the periodic mass treatment of people, particularly children, in all endemic areas, using benzimidazole and imidothiazole drugs. Given the fact that high levels of resistance have developed to these same drugs in roundworms of livestock, there is a need to monitor drug efficacy in human STHs. The faecal egg count reduction test (FECRT, in which faecal egg output is measured pre- and post-drug treatment, is presently under examination by WHO as a means of detecting the emergence of resistance. We have examined the potential impact of density dependent fecundity on FECRT data. Recent evidence with the canine hookworm indicates that the density dependent egg production phenomenon shows dynamic properties in response to drug treatment. This will impact on measurements of drug efficacy, and hence drug resistance. It is likely that the female worms that survive a FECRT drug treatment in some human cases will respond to the relaxation of density dependent constraints on egg production by increasing their egg output significantly compared to their pre-treatment levels. These cases will therefore underestimate drug efficacy in the FECRT. The degree of underestimation will depend on the ability of the worms within particular hosts to increase their egg output, which will in turn depend on the extent to which their egg output is constrained prior to the drug treatment. As worms within different human cases will likely be present at quite different densities prior to a proposed FECRT, there is potential for the effects of this phenomenon on drug efficacy measurements to vary considerably within any group of potential FECRT candidates. Measurement of relative drug efficacy may be improved by attempting to ensure a consistent degree of underestimation in groups of people involved in separate FECRTs. This may be partly achieved by omission of cases with the heaviest infections

  16. Drug-induced pulmonary arterial hypertension: a recent outbreak

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2013-09-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare disorder characterised by progressive obliteration of the pulmonary microvasculature resulting in elevated pulmonary vascular resistance and premature death. According to the current classification PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary artery smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used, but are considered possible risk factors, for PAH. Dasatinib, dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, potentially in part reversible after dasatinib withdrawal. Recently, several studies have raised the issue of potential endothelial dysfunction that could be induced by interferon, and a few cases of PAH have been reported with interferon therapy. PAH remains a rare complication of these drugs, suggesting possible individual susceptibility, and further studies are needed to identify patients at risk of drug-induced PAH.

  17. Clinical relevancy and determinants of potential drug–drug interactions in chronic kidney disease patients: results from a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Saleem A

    2017-02-01

    Full Text Available Ahsan Saleem,1,2 Imran Masood,1 Tahir Mehmood Khan3 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 2Pharmacy Services Department, Integrated Medical Center, The Aga Khan University Hospital, Lahore, Pakistan; 3School of Pharmacy, Monash University, Sunway Campus, Selangor, Malaysia Background: Chronic kidney disease (CKD alters the pharmacokinetic and pharmacodynamic responses of various renally excreted drugs and increases the risk of drug-related problems, such as drug–drug interactions.Objectives: To assess the pattern, determinants, and clinical relevancy of potential drug–drug interactions (pDDIs in CKD patients.Materials and methods: This study retrospectively reviewed medical charts of all CKD patients admitted in the nephrology unit of a tertiary care hospital in Pakistan from January 2013 to December 2014. The Micromedex Drug-Reax® system was used to screen patient profiles for pDDIs, and IBM SPSS version 20 was used to carry out statistical analysis.Results: We evaluated 209 medical charts and found pDDIs in nearly 78.5% CKD patients. Overall, 541 pDDIs were observed, of which, nearly 60.8% patients had moderate, 41.1% had minor, 27.8% had major, and 13.4% had contraindicated interactions. Among those interactions, 49.4% had good evidence, 44.0% had fair, 6.3% had excellent evidence, and 35.5% interactions had delayed onset of action. The potential adverse outcomes of pDDIs included postural hypotension, QT prolongation, ceftriaxone–calcium precipitation, cardiac arrhythmias, and reduction in therapeutic effectiveness. The occurrence of pDDIs was found strongly associated with the age of <60 years, number of prescribed medicines ≥5, hypertension, and the lengthy hospitalization of patients.Conclusion: The occurrence of pDDIs was high in CKD patients. It was observed that CKD patients with an older age, higher number of prescribed medicines, lengthy hospitalization, and hypertension were at

  18. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  19. 77 FR 9946 - Draft Guidance for Industry on Drug Interaction Studies-Study Design, Data Analysis, Implications...

    Science.gov (United States)

    2012-02-21

    ... industry entitled ``Drug Interaction Studies--Study Design, Data Analysis, Implications for Dosing, and... data analysis in the context of identifying potential drug interactions. The guidance also addresses... Studies--Study Design, Data Analysis, and Implications for Dosing and Labeling.'' Comments were received...

  20. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population.

    Science.gov (United States)

    Eriksson, Robert; Werge, Thomas; Jensen, Lars Juhl; Brunak, Søren

    2014-04-01

    Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. We used a psychiatric hospital's EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p patient population, larger doses were prescribed to sedated patients than non-sedated patients; five antipsychotics [corrected] exhibited a significant difference (p<0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection.

  1. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    Science.gov (United States)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  2. In-situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery.

    Science.gov (United States)

    Ren, Xiazhong; Svirskis, Darren; Alany, Raid G; Zargar-Shoshtari, Sara; Wu, Zimei

    2012-07-15

    This study is the first to investigate and demonstrate the potential of microemulsions (MEs) for sustained release parenteral drug delivery, due to phase transition behavior in aqueous environments. Phase diagrams were constructed with Miglyol 812N oil and a blend of (co)surfactants Solutol HS 15 and Span 80 with ethanol. Liquid crystal (LC) and coarse emulsion (CE) regions were found adjacent to the ME region in the water-rich corner of the phase diagram. Two formulations were selected, a LC-forming ME and a CE-forming ME and each were investigated with respect to their rheology, particle size, drug release profiles and particularly, the phase transition behavior. The spreadability in an aqueous environment was determined and release profiles from MEs were generated with gamma-scintigraphy. The CE-forming ME dispersed readily in an aqueous environment, whereas the LC-forming ME remained in a contracted region possibly due to the transition of ME to LC at the water/ME interface. Gamma-scintigraphy showed that the LC-forming ME had minimal spreadability and a slow release of (99m)Tc in the first-order manner, suggesting phase conversion at the interface. In conclusion, owing to the potential of phase transition, LC-forming MEs could be used as extravascular injectable drug delivery vehicles for prolonged drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes

    International Nuclear Information System (INIS)

    Lacaze, Emilie; Pédelucq, Julie; Fortier, Marlène; Brousseau, Pauline; Auffret, Michel; Budzinski, Hélène; Fournier, Michel

    2015-01-01

    The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment. - Highlights: • Psychotropic drugs and antibiotics affect the immune system of Mytilus edulis. • Genotoxic and immunotoxic endpoints were relevant to assess pharmaceuticals toxicity. • DNA metabolism is a highly sensitive target for pharmaceuticals. • Fluoxetine and paroxetine were the most toxic compounds on mussel hemocytes. - Psychotropic drugs and antibiotics have the potential to cause immune toxicity and genotoxicity on Mytilus edulis hemocytes

  4. Obtaining subjects' consent to publish identifying personal information: current practices and identifying potential issues.

    Science.gov (United States)

    Yoshida, Akiko; Dowa, Yuri; Murakami, Hiromi; Kosugi, Shinji

    2013-11-25

    In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects' right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need to address issues around the study

  5. Obtaining subjects’ consent to publish identifying personal information: current practices and identifying potential issues

    Science.gov (United States)

    2013-01-01

    Background In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Methods Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Results Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects’ right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Conclusion Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need

  6. Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2009-01-01

    nanoparticles and poly (D,L-lactide-co-glycolide (PLGA for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (∼13 nm on average of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide. An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II. With different contents (0%, 10%, 20%, and 25% of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and a superconducting quantum interference device (SQUID. The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature.

  7. Synergistic Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study.

    Science.gov (United States)

    Maiuri, Ashley R; Wassink, Bronlyn; Turkus, Jonathan D; Breier, Anna B; Lansdell, Theresa; Kaur, Gurpreet; Hession, Sarah L; Ganey, Patricia E; Roth, Robert A

    2017-09-01

    Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a small fraction of patients and has resulted in removal of otherwise efficacious drugs from the market. Current preclinical testing methods are ineffective in predicting which drug candidates have IDILI liability. Recent results suggest that immune mediators such as tumor necrosis factor- α (TNF) and interferon- γ (IFN) interact with drugs that cause IDILI to kill hepatocytes. This proof-of-concept study was designed to test the hypothesis that drugs can be classified according to their ability to cause IDILI in humans using classification modeling with covariates derived from concentration-response relationships that describe cytotoxic interaction with cytokines. Human hepatoma (HepG2) cells were treated with drugs associated with IDILI or with drugs lacking IDILI liability and cotreated with TNF and/or IFN. Detailed concentration-response relationships were determined for calculation of parameters such as the maximal cytotoxic effect, slope, and EC 50 for use as covariates for classification modeling using logistic regression. These parameters were incorporated into multiple classification models to identify combinations of covariates that most accurately classified the drugs according to their association with human IDILI. Of 14 drugs associated with IDILI, almost all synergized with TNF to kill HepG2 cells and were successfully classified by statistical modeling. IFN enhanced the toxicity mediated by some IDILI-associated drugs in the presence of TNF. In contrast, of 10 drugs with little or no IDILI liability, none synergized with inflammatory cytokines to kill HepG2 cells and were classified accordingly. The resulting optimal model classified the drugs with extraordinary selectivity and specificity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Directory of Open Access Journals (Sweden)

    Nir Qvit

    2016-04-01

    Full Text Available Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase and TRACK (Trypanosoma receptor for activated C-kinase. We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase, may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. Keywords: Chagas disease, Leishmaniasis, Peptide, LACK, TRACK, Scaffold protein

  9. A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils

    Directory of Open Access Journals (Sweden)

    Středová Hana

    2015-06-01

    Full Text Available The climate of Central Europe, mainly winter seasons with no snow cover at lower altitudes and a spring drought as well, might cause erosion events on heavy-textured soils. The aim of this paper is to define a universal method to identify the potential risk of wind erosion on heavy-textured soils. The categorization of potential wind erosion risk due to meteorological conditions is based on: (i an evaluation of the number of freeze-thaw episodes forming bare soil surfaces during the cold period of year; and (ii, an evaluation of the number of days with wet soil surfaces during the cold period of year. In the period 2001–2012 (from November to March, episodes with temperature changes from positive to negative and vice versa (thaw-freeze and freeze-thaw cycles and the effects of wet soil surfaces in connection with aggregate disintegration, are identified. The data are spatially interpolated by GIS tools for areas in the Czech Republic with heavy-textured soils. Blending critical categories is used to locate potential risks. The level of risk is divided into six classes. Those areas identified as potentially most vulnerable are the same localities where the highest number of erosive episodes on heavy-textured soils was documented.

  10. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Ana L. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Rodrigues, Daiane [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Weber, Julia; Ribeiro, Roseane F. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Motta, Mariana H. [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Schaffazick, Scheila R.; Adams, Andréa I.H. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Andrade, Diego F. de; Beck, Ruy C.R. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000 (Brazil); and others

    2015-01-01

    Dithranol is a very effective drug for the topical treatment of psoriasis. However, it has some adverse effects such as irritation and stain in the skin that make its application and patient adherence to treatment difficult. The aims of this work were to prepare and characterize dithranol-loaded nanocapsules as well as to evaluate the photostability and the irritation potential of these nanocarriers. Lipid-core nanocapsules containing dithranol (0.5 mg/mL) were prepared by interfacial deposition of preformed polymer. EDTA (0.05%) or ascorbic acid (0.02%) was used as antioxidants. After preparation, dithranol-loaded lipid-core nanocapsules showed satisfactory characteristics: drug content close to the theoretical concentration, encapsulation efficiency of about 100%, nanometric mean size (230–250 nm), polydispersity index below 0.25, negative zeta potential, and pH values from 4.3 to 5.6. In the photodegradation study against UVA light, we observed a higher stability of the dithranol-loaded lipid-core nanocapsules comparing to the solution containing the free drug (half-life times around 4 and 1 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing EDTA, respectively; half-life times around 17 and 7 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing ascorbic acid, respectively). Irritation test by HET-CAM method was conducted to evaluate the safety of the formulations. From the results it was found that the nanoencapsulation of the drug decreased its toxicity compared to the effects observed for the free drug. - Highlights: • Strategy to prepare lipid-core nanocapsules containing dithranol • Evaluation of the nanoencapsulation effect on the photostability and irritation • Evaluation of the in vitro release of dithranol-loaded lipid-core nanocapsules.

  11. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  12. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    Science.gov (United States)

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  13. Review of Drug Quality and Security Act of 2013: The Drug Supply Chain Security Act (DSCSA

    Directory of Open Access Journals (Sweden)

    Elona Gjini

    2016-10-01

    Full Text Available The Drug Supply Chain Security Act (DSCSA signed into law in November 27, 2013 by president Obama creates a uniform national standard for tracing drug products through the supply chain. The goal of DQSA is to enhance FDA’s ability to help protect consumers by detecting and removing potential dangerous products from the pharmaceutics distribution supply chain. A new electronic, interoperable system will identify and trace only prescription drugs in the finished form for human use while distributed in the United States. The purpose of this review was to shed light on a complex and complicated process that it will require cooperation between FDA and drug manufactures, wholesale drug distributors, repackagers and dispensers. The implementation of the DSCSA is based on several law requirements and FDA has developed a schedule with time frames for each of them to be executed over a 10-year period. From this review, FDA recommendations are provided through the FDA Guidance on Identifying Suspect Product document to help trading partners and provide information about the risk of suspect drugs entering the supply chain. Moreover, FDA organized on April 5-6, 2016 in Silver Spring, MD a public workshop to gather valuable feedback from stakeholders who shared their input about the implementation of the new electronic system and its requirements. By the end of 2023, a unified system will provide easier data exchange and less errors, and will increase the safety and security of the pharmaceutical distribution supply chain.   Type: Student Project

  14. Predicting drug?drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge

    OpenAIRE

    Takeda, Takako; Hao, Ming; Cheng, Tiejun; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    Drug?drug interactions (DDIs) may lead to adverse effects and potentially result in drug withdrawal from the market. Predicting DDIs during drug development would help reduce development costs and time by rigorous evaluation of drug candidates. The primary mechanisms of DDIs are based on pharmacokinetics (PK) and pharmacodynamics (PD). This study examines the effects of 2D structural similarities of drugs on DDI prediction through interaction networks including both PD and PK knowledge. Our a...

  15. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  16. 40 CFR Table 5 to Subpart Jj of... - List of VHAP of Potential Concern Identified by Industry

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false List of VHAP of Potential Concern Identified by Industry 5 Table 5 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... 63, Subpt. JJ, Table 5 Table 5 to Subpart JJ of Part 63—List of VHAP of Potential Concern Identified...

  17. Characterization of potential mineralization in Afghanistan: four permissive areas identified using imaging spectroscopy data

    Science.gov (United States)

    King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.

    2014-01-01

    As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.

  18. [MT-45--a dangerous and potentially ototoxic internet drug].

    Science.gov (United States)

    Lindeman, Erik; Bäckberg, Matilda; Personne, Mark; Helander, Anders

    2014-09-11

    During the last years several synthetic opioids have been introduced on Internet sites selling new psychoactive substances (NPS). One of these, called MT-45, a piperazine derivative originally synthesized as a therapeutic drug candidate in the 1970s, has recently been detected in 21 deaths, according to unpublished data from the Swedish National Board of Forensic Medicine. We present clinical data from 12 analytically confirmed hospital cases of MT-45 poisoning. The cases demonstrate that MT-45, like other opioids, can induce potentially life threatening respiratory depression and loss of consciousness in users and that symptoms are usually reversed by standard doses of the opioid receptor antagonist naloxone. Significant auditory symptoms with transient tinnitus and hearing loss occurred in two cases and a pronounced sensorineural hearing loss still present at two weeks follow-up in one case. This indicates that MT-45 may be an ototoxic substance, illustrating the ubiquitous risk of unintended adverse effects NPSs pose to users.

  19. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. Keywords: Brucella melitensis 16M, homology modeling, putative genes, structure based virtual screening, subtractive genomic approach, targets

  20. Relationship between drug interactions and drug-related negative clinical outcomes in two community pharmacies

    Directory of Open Access Journals (Sweden)

    Gonzalo M

    2009-03-01

    Full Text Available Drug interactions may represent an iatrogenic risk that should be controlled in community pharmacies at the dispensing level. Aim: We analyzed the association between potential drug-drug interactions (DDIs and negative clinical outcomes.Methods: We used dispensing data from two community pharmacies: instances where drug dispensing was associated with a potential DDI and a comparison group of randomized dispensing operations with no potential DDI. In cases where potential DDIs were detected, we analyzed the underlying negative clinical outcomes. Age and gender data were included in the analysis.Results: During the study period, we registered 417 potential DDIs. The proportion of women and age were higher in the study group than in the comparison group. The average potential DDIs per patient was 1.31 (SD=0.72. The Consejo General de Colegios Oficiales de Farmacéuticos (CGCOF database did not produce an alert in 2.4% of the cases. Over-the-counter medication use was observed in 5% of the potential DDI cases. The drugs most frequently involved in potential DDIs were acenocoumarol, calcium salts, hydrochlorothiazide, and alendronic acid, whereas the most predominant potential DDIs were calcium salts and bisphosphonates, oral antidiabetics and thiazide diuretics, antidiabetics and glucose, and oral anticoagulant and paracetamol. The existence of a drug-related negative clinical outcome was observed only in 0.96% of the potential DDI cases (50% safety cases and 50% effectiveness cases. Conclusions: Only a small proportion of the detected potential DDIs lead to medication negative outcomes. Considering the drug-related negative clinical outcomes encountered, tighter control would be recommended in potential DDIs with NSAIDs or benzodiazepines.

  1. Potential Impact of Diet on Treatment Effect from Anti-TNF Drugs in Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Vibeke Andersen

    2017-03-01

    Full Text Available We wanted to investigate the current knowledge on the impact of diet on anti-TNF response in inflammatory bowel diseases (IBD, to identify dietary factors that warrant further investigations in relation to anti-TNF treatment response, and, finally, to discuss potential strategies for such investigations. PubMed was searched using specified search terms. One small prospective study on diet and anti-TNF treatment in 56 patients with CD found similar remission rates after 56 weeks among 32 patients with good compliance that received concomitant enteral nutrition and 24 with poor compliance that had no dietary restrictions (78% versus 67%, p = 0.51. A meta-analysis of 295 patients found higher odds of achieving clinical remission and remaining in clinical remission among patients on combination therapy with specialised enteral nutrition and Infliximab (IFX compared with IFX monotherapy (OR 2.73; 95% CI: 1.73–4.31, p < 0.01, OR 2.93; 95% CI: 1.66–5.17, p < 0.01, respectively. In conclusion, evidence-based knowledge on impact of diet on anti-TNF treatment response for clinical use is scarce. Here we propose a mechanism by which Western style diet high in meat and low in fibre may promote colonic inflammation and potentially impact treatment response to anti-TNF drugs. Further studies using hypothesis-driven and data-driven strategies in prospective observational, animal and interventional studies are warranted.

  2. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  3. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    International Nuclear Information System (INIS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-01-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (K d = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX–QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX–QD conjugate with antiDHFR-TAT-QD also confirmed that MTX–QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug–target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology. (paper)

  4. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    International Nuclear Information System (INIS)

    Pentak, Danuta

    2016-01-01

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  5. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl [University of Silesia, Department of Materials Chemistry and Chemical Technology, Institute of Chemistry (Poland)

    2016-05-15

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  6. New Zealand’s Drug Development Industry

    Directory of Open Access Journals (Sweden)

    Christopher Carswell

    2013-09-01

    Full Text Available The pharmaceutical industry’s profitability depends on identifying and successfully developing new drug candidates while trying to contain the increasing costs of drug development. It is actively searching for new sources of innovative compounds and for mechanisms to reduce the enormous costs of developing new drug candidates. There is an opportunity for academia to further develop as a source of drug discovery. The rising levels of industry outsourcing also provide prospects for organisations that can reduce the costs of drug development. We explored the potential returns to New Zealand (NZ from its drug discovery expertise by assuming a drug development candidate is out-licensed without clinical data and has anticipated peak global sales of $350 million. We also estimated the revenue from NZ’s clinical research industry based on a standard per participant payment to study sites and the number of industry-sponsored clinical trials approved each year. Our analyses found that NZ’s clinical research industry has generated increasing foreign revenue and appropriate policy support could ensure that this continues to grow. In addition the probability-based revenue from the out-licensing of a drug development candidate could be important for NZ if provided with appropriate policy and financial support.

  7. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  8. Prevalence and typology of potential drug interactions occurring in primary care patients.

    Science.gov (United States)

    Lopez-Picazo, Julio J; Ruiz, Juan C; Sanchez, Jose F; Ariza, Angeles; Aguilera, Belen; Lazaro, Dolores; Sanz, Gonzalo R

    2010-06-01

    To investigate the prevalence and types of potential drug interactions in primary care patients to detect risky prescriptions as an essential condition to design intervention policies leading to an improvement in patient safety. Cross-sectional descriptive study. Two areas in Spain comprising 715,661 inhabitants. 430,525 subjects with electronic medical records and assigned to a family doctor regularly updating them. On a random day, 29.4% of the population was taking medication. Of these, 73.9% were at risk of suffering interactions, and these were found in 20.6% of them. The amount of interactions was higher among people with chronic conditions, the elderly, females and polymedicated patients. From the total of interactions, 55.1% belonged to the highest clinical relevance 'A' level, and 28.3% should have been avoided. The active ingredients primarily involved were hydrochlorothiazide and ibuprofen and, when focusing on those that should be avoided, omeprazole and acenocoumarol. The most frequent 'A' interaction that should be avoided was between non-conjugated excreted benzodiazepines and proton-pump inhibitors, followed by some NSAIDs and diuretics. 1 in 20 Spanish citizens is currently undergoing a potential drug interaction, including a high rate of clinically relevant ones that should be avoided. These results confirm the existence of a serious safety issue that should be approached and where all parties involved (physicians, health services, medical societies and patients) must do our bit to improve. Health services should foster the implementation of prescription alert systems linked with electronic medical records including clinical data.

  9. Can the genotype or phenotype of two polymorphic drug metabolising cytochrome P450-enzymes identify oral lichenoid drug eruptions?

    DEFF Research Database (Denmark)

    Kragelund, Camilla; Hansen, Claus; Reibel, Jesper

    2010-01-01

    Lichenoid drug eruptions (LDE) in the oral cavity are adverse drug reactions (ADR) that are impossible to differentiate from oral lichen planus (OLP) as no phenotypic criteria exist. Impaired function of polymorphic cytochrome 450-enzymes (CYPs) may cause increased plasma concentration of some...

  10. Synthesis and stereochemical investigation of potential saturated heterocyclic drugs Pt. 1

    International Nuclear Information System (INIS)

    Bernath, G.

    1982-01-01

    Studies of partially and fully saturated heterocyclic compounds with condensed skeleton containing two heteroatoms are presented. The synthesis, stereochemical and conformation analyses aimed at the synthesis of potential drugs. Dihydro- and tetrahydro-1,3-oxazines were prepared from alicyclic 1,3-amino-alcohols by ring closure with aldehydes or imide esters. 1,3-oxazine-4-one derivatives were prepared by reacting alicyclic cis- and trans-2-hydroxy-1-carboxamides with aliphatic or aromatic aldehides. The conformations of the compounds prepared were determined by means of NMR spectroscopy. The main results of the determination of the steric structure of some representatives of the above described families of compounds by means of X-ray diffraction analysis are also presented. (author)

  11. Indian marine bivalves: Potential source of antiviral drugs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Bichurina, M.A.; Sovetova, M.; Boikov, Y.A.

    in large quantities by traditional methods and sold live in the market for human consumption. The economically important sp e cies of marine bivalves are green mussel ( Perna viridis ), e s tuarine oyster ( Crassostrea madrasensis ), giant oyster... in developing an effecti ve drug has been the unique characteristics of antigenic variation of virus resulting in the emergence of new variant virus strains 14 . There are a number of antiviral drugs introduced in the market such as tricyclic sy m- metric...

  12. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  13. Alternative drugs of abuse.

    Science.gov (United States)

    Sutter, M E; Chenoweth, J; Albertson, T E

    2014-02-01

    The incidence of drug abuse with alternative agents is increasing. The term "alternative drugs of abuse" is a catch-all term for abused chemicals that do not fit into one of the classic categories of drugs of abuse. The most common age group abusing these agents range from 17 to 25 years old and are often associated with group settings. Due to their diverse pharmacological nature, legislative efforts to classify these chemicals as a schedule I drug have lagged behind the development of new alternative agents. The potential reason for abuse of these agents is their hallucinogenic, dissociative, stimulant, anti-muscarinic, or sedative properties. Some of these drugs are easily obtainable such as Datura stramonium (Jimson Weed) or Lophophora williamsii (Peyote) because they are natural plants indigenous to certain regions. The diverse pharmacology and clinical effects of these agents are so broad that they do not produce a universal constellation of signs and symptoms. Detailed physical exams are essential for identifying clues leading one to suspect an alternative drug of abuse. Testing for the presence of these agents is often limited, and even when available, the results do not return in a timely fashion. Intoxications from these agents pose unique challenges for health care providers. Physician knowledge of the physiological effects of these alternative agents and the local patterns of drug of abuse are important for the accurate diagnosis and optimal care of poisoned patients. This review summarizes the current knowledge of alternative drugs of abuse and highlights their clinical presentations.

  14. Use of FMEA analysis to reduce risk of errors in prescribing and administering drugs in paediatric wards: a quality improvement report.

    Science.gov (United States)

    Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio

    2012-01-01

    Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children.

  15. Prevalência de potenciais interações medicamentosas droga-droga em unidades de terapia intensiva Potential drug interactions prevalence in intensive care units

    Directory of Open Access Journals (Sweden)

    Jean André Hammes

    2008-12-01

    presence of another drug. They are usually unpredictable and undesirable. A study was conducted to verify the prevalence and clinical value of potential drug interactions in intensive care units METHODS: All patients, of three intensive care units were included in a cross-sectional study, over a period of two months. Patients with less than a 2 days length of stay were excluded. Data were collected from twenty-four hour prescriptions and all possible paired combinations drug-drug were recorded. Prevalence and clinical value (significance were checked at the end of follow-up. RESULTS: One hundred and forty patients were analyzed, 67.1% presented with some significant potential drug interactions and of the 1069 prescriptions, 39.2% disclosed the same potential. Of 188 different potential drug interactions, 29 were considered highly significant. Univariate analysis showed that in the group with significant potential drug interactions a higher number of different drugs, drugs/day had been used, there were more prescribing physicians and extended stay in intensive care units. Adjusted to the multivariate logistic regression model, only the number of drugs/day correlated with increased risk of significant potential drug interaction (p = 0.0011 and, furthermore that use of more than 6 drugs/day increased relative risk by 9.8 times. CONCLUSIONS: Critically ill patients are submitted to high risk of potential drug interactions and the number of drugs/day has a high positive predictive value for these interactions. Therefore, it is imperative that critical care physicians be constantly alert to recognize this problem and provide appropriate mechanisms for management, thereby reducing adverse outcomes.

  16. Potentially inappropriate medications defined by STOPP criteria and the risk of adverse drug events in older hospitalized patients.

    LENUS (Irish Health Repository)

    Hamilton, Hilary

    2011-06-13

    Previous studies have not demonstrated a consistent association between potentially inappropriate medicines (PIMs) in older patients as defined by Beers criteria and avoidable adverse drug events (ADEs). This study aimed to assess whether PIMs defined by new STOPP (Screening Tool of Older Persons\\' potentially inappropriate Prescriptions) criteria are significantly associated with ADEs in older people with acute illness.

  17. Risk of Clinically Relevant Pharmacokinetic-based Drug-drug Interactions with Drugs Approved by the U.S. Food and Drug Administration Between 2013 and 2016.

    Science.gov (United States)

    Yu, Jingjing; Zhou, Zhu; Tay-Sontheimer, Jessica; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2018-03-23

    A total of 103 drugs (including 14 combination drugs) were approved by the U.S. Food and Drug Administration from 2013 to 2016. Pharmacokinetic-based drug interaction profiles were analyzed using the University of Washington Drug Interaction Database and the clinical relevance of these observations was characterized based on information from New Drug Application reviews. CYP3A was identified as a major contributor to clinical drug-drug interactions (DDIs), involved in approximately 2/3 of all interactions. Transporters (alone or with enzymes) were found to participate in about half of all interactions, although most of these were weak-to-moderate interactions. When considered as victims, eight new molecular entities (NMEs; cobimetinib, ibrutnib, isavuconazole, ivabradine, naloxegol, paritaprevir, simeprevir, and venetoclax) were identified as sensitive substrates of CYP3A, two NMEs (pirfenidone and tasimelteon) were sensitive substrates of CYP1A2, one NME (dasabuvir) was a sensitive substrate of CYP2C8, one NME (eliglustat) was a sensitive substrate of CYP2D6, and one NME (grazoprevir) was a sensitive substrate of OATP1B1/3 (with changes in exposure greater than 5-fold when co-administered with a strong inhibitor). Interestingly, approximately 75% of identified CYP3A substrates were also substrates of P-gp. As perpetrators, most clinical DDIs involved weak-to-moderate inhibition or induction, with only two drugs (Viekira Pak and idelalisib) showing strong inhibition of CYP3A, and one NME (lumacaftor) considered as a strong CYP3A inducer. Among drugs with large changes in exposure (≥ 5-fold), whether as victim or perpetrator, the most represented therapeutic classes were antivirals and oncology drugs, suggesting a significant risk of clinical DDIs in these patient populations. The American Society for Pharmacology and Experimental Therapeutics.

  18. Characteristics of potential drug-related problems among oncology patients

    NARCIS (Netherlands)

    Bulsink, Arjan; Imholz, Alex L. T.; Brouwers, Jacobus R. B. J.; Jansman, Frank G. A.

    Background Oncology patients are more at risk for drug related problems because of treatment with (combinations of) anticancer drugs, as they have a higher risk for organ failure or altered metabolism with progression of their disease. Objective The aim of this study was to characterize and to

  19. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents.

    Directory of Open Access Journals (Sweden)

    Peter B Madrid

    Full Text Available BACKGROUND: The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. METHODOLOGY/PRINCIPAL FINDINGS: A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. CONCLUSIONS/SIGNIFICANCE: The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.

  20. A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents

    Science.gov (United States)

    Madrid, Peter B.; Chopra, Sidharth; Manger, Ian D.; Gilfillan, Lynne; Keepers, Tiffany R.; Shurtleff, Amy C.; Green, Carol E.; Iyer, Lalitha V.; Dilks, Holli Hutcheson; Davey, Robert A.; Kolokoltsov, Andrey A.; Carrion, Ricardo; Patterson, Jean L.; Bavari, Sina; Panchal, Rekha G.; Warren, Travis K.; Wells, Jay B.; Moos, Walter H.; Burke, RaeLyn L.; Tanga, Mary J.

    2013-01-01

    Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses. PMID:23577127

  1. Status of drug development for the prevention and treatment of osteoporosis

    DEFF Research Database (Denmark)

    Schwarz, Peter; Jørgensen, Niklas Rye; Abrahamsen, Bo

    2014-01-01

    supplementation. Several new medications for the treatment of postmenopausal osteoporosis are in the pipeline. AREAS COVERED: The authors present the most recent studies on new and current antiresorptive as well as anabolic drugs. Specifically, the authors present the current knowledge on drugs directed against...... cathepsin K and sclerostin as well as the new pathways of interest from preclinical studies. EXPERT OPINION: New scientific results have identified novel signaling pathways as potential targets for future development of anti-osteoporotic drugs. The treatments close to marketing at the moment are odanacatib...

  2. Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies

    International Nuclear Information System (INIS)

    Amacher, David E.

    2011-01-01

    Hepatic steatosis is characterized by the accumulation of lipid droplets in the liver. Although relatively benign, simple steatosis can eventually lead to the development of steatohepatitis, a more serious condition characterized by fibrosis, cirrhosis, and eventual liver failure if the underlying cause is not eliminated. According to the 'two hit' theory of steatohepatitis, the initial hit involves fat accumulation in the liver, and a second hit leads to inflammation and subsequent tissue injury. Because some xenobiotics target liver fatty acid metabolism, especially mitochondrial β-oxidation, it is important to avoid potential drug candidates that can contribute to either the initiation of liver steatosis or progression to the more injurious steatohepatitis. The gold standard for the detection of these types of hepatic effects is histopathological examination of liver tissue. In animal studies, these examinations are slow, restricted to a single sampling time, and limited tissue sections. Recent literature suggests that rapid in vitro screening methods can be used early in the drug R and D process to identify compounds with steatotic potential. Further, progress in the identification of potential serum or plasma protein biomarkers for these liver changes may provide additional in vivo tools to the preclinical study toxicologist. This review summarizes recent developments for in vitro screening and in vivo biomarker detection for steatotic drug candidates.

  3. The potential for research-based information in public health: Identifying unrecognised information needs

    Directory of Open Access Journals (Sweden)

    Forsetlund Louise

    2001-01-01

    Full Text Available Abstract Objective To explore whether there is a potential for greater use of research-based information in public health practice in a local setting. Secondly, if research-based information is relevant, to explore the extent to which this generates questioning behaviour. Design Qualitative study using focus group discussions, observation and interviews. Setting Public health practices in Norway. Participants 52 public health practitioners. Results In general, the public health practitioners had a positive attitude towards research-based information, but believed that they had few cases requiring this type of information. They did say, however, that there might be a potential for greater use. During five focus groups and six observation days we identified 28 questions/cases where it would have been appropriate to seek out research evidence according to our definition. Three of the public health practitioners identified three of these 28 cases as questions for which research-based information could have been relevant. This gap is interpreted as representing unrecognised information needs. Conclusions There is an unrealised potential in public health practice for more frequent and extensive use of research-based information. The practitioners did not appear to reflect on the need for scientific information when faced with new cases and few questions of this type were generated.

  4. GEAR: A database of Genomic Elements Associated with drug Resistance

    Science.gov (United States)

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  5. Metabolomic screening using ESI-FT MS identifies potential radiation-responsive molecules in mouse urine

    International Nuclear Information System (INIS)

    Iizuka, Daisuke; Yoshioka, Susumu; Kawai, Hidehiko; Izumi, Shunsuke; Suzuki, Fumio; Kamiya, Kenji

    2017-01-01

    The demand for establishment of high-throughput biodosimetric methods is increasing. Our aim in this study was to identify low-molecular-weight urinary radiation-responsive molecules using electrospray ionization Fourier transform mass spectrometry (ESI-FT MS), and our final goal was to develop a sensitive biodosimetry technique that can be applied in the early triage of a radiation emergency medical system. We identified nine metabolites by statistical comparison of mouse urine before and 8 h after irradiation. Time-course analysis showed that, of these metabolites, thymidine and either thymine or imidazoleacetic acid were significantly increased dose-dependently 8 h after radiation exposure; these molecules have already been reported as potential radiation biomarkers. Phenyl glucuronide was significantly decreased 8 h after radiation exposure, irrespective of the dose. Histamine and 1-methylhistamine were newly identified by MS/MS and showed significant, dose-dependent increases 72 h after irradiation. Quantification of 1-methylhistamine by enzyme-linked immunosorbent assay (ELISA) analysis also showed a significant increase 72 h after 4 Gy irradiation. These results suggest that urinary metabolomics screening using ESI-FT MS can be a powerful tool for identifying promising radiation-responsive molecules, and that urinary 1-methylhistamine is a potential radiation-responsive molecule for acute, high-dose exposure.

  6. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  7. Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone

    International Nuclear Information System (INIS)

    Meneghello, Marta; Papadopoulou, Evanthia; Ugo, Paolo; Bartlett, Philip N.

    2016-01-01

    Interaction with DNA plays an important role in the biological activity of some anticancer drug molecules. In this paper we show that electrochemical surface enhanced Raman spectroscopy at sphere segment void gold electrodes can be used as a highly sensitive technique to measure the redox potential of the anticancer drug mitoxantrone bound to dsDNA. For this system we show that we can follow the redox reaction of the bound molecule and can extract the redox potential for the molecule bound to dsDNA by deconvolution of the SER spectra recorded as a function of electrode potential. We find that mitoxantrone bound to dsDNA undergoes a 2 electron, 1 proton reduction and that the redox potential (-0.87 V vs. Ag/AgCl at pH 7.2) is shifted approximately 0.12 V cathodic of the corresponding value at a glassy carbon electrode. Our results also show that the reduced form of mitoxantrone remains bound to dsDNA and we are able to use the deconvoluted SER spectra of the reduced mitoxantrone as a function of electrode potential to follow the electrochemically driven melting of the dsDNA at more negative potentials.

  8. A review of drug-drug interactions in older HIV-infected patients.

    Science.gov (United States)

    Chary, Aarthi; Nguyen, Nancy N; Maiton, Kimberly; Holodniy, Mark

    2017-12-01

    The number of older HIV-infected people is growing due to increasing life expectancies resulting from the use of antiretroviral therapy (ART). Both HIV and aging increase the risk of other comorbidities, such as cardiovascular disease, osteoporosis, and some malignancies, leading to greater challenges in managing HIV with other conditions. This results in complex medication regimens with the potential for significant drug-drug interactions and increased morbidity and mortality. Area covered: We review the metabolic pathways of ART and other medications used to treat medical co-morbidities, highlight potential areas of concern for drug-drug interactions, and where feasible, suggest alternative approaches for treating these conditions as suggested from national guidelines or articles published in the English language. Expert commentary: There is limited evidence-based data on ART drug interactions, pharmacokinetics and pharmacodynamics in the older HIV-infected population. Choosing and maintaining effective ART regimens for older adults requires consideration of side effect profile, individual comorbidities, interactions with concurrent prescriptions and non-prescription medications and supplements, dietary patterns with respect to dosing, pill burden and ease of dosing, cost and affordability, patient preferences, social situation, and ART resistance history. Practitioners must remain vigilant for potential drug interactions and intervene when there is a potential for harm.

  9. Identifying multidrug resistant tuberculosis transmission hotspots using routinely collected data12

    Science.gov (United States)

    Manjourides, Justin; Lin, Hsien-Ho; Shin, Sonya; Jeffery, Caroline; Contreras, Carmen; Cruz, Janeth Santa; Jave, Oswaldo; Yagui, Martin; Asencios, Luis; Pagano, Marcello; Cohen, Ted

    2012-01-01

    SUMMARY In most countries with large drug resistant tuberculosis epidemics, only those cases that are at highest risk of having MDRTB receive a drug sensitivity test (DST) at the time of diagnosis. Because of this prioritized testing, identification of MDRTB transmission hotspots in communities where TB cases do not receive DST is challenging, as any observed aggregation of MDRTB may reflect systematic differences in how testing is distributed in communities. We introduce a new disease mapping method, which estimates this missing information through probability–weighted locations, to identify geographic areas of increased risk of MDRTB transmission. We apply this method to routinely collected data from two districts in Lima, Peru over three consecutive years. This method identifies an area in the eastern part of Lima where previously untreated cases have increased risk of MDRTB. This may indicate an area of increased transmission of drug resistant disease, a finding that may otherwise have been missed by routine analysis of programmatic data. The risk of MDR among retreatment cases is also highest in these probable transmission hotspots, though a high level of MDR among retreatment cases is present throughout the study area. Identifying potential multidrug resistant tuberculosis (MDRTB) transmission hotspots may allow for targeted investigation and deployment of resources. PMID:22401962

  10. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    International Nuclear Information System (INIS)

    Cui, Jingjie; Xu, Ping; Li, Hong; Chen, Jing; Chen, Shaowei; Gao, Li

    2016-01-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO 2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs  and molecular biology research. (paper)

  11. Erythromycin potentiates PR interval prolonging effect of verapamil in the rat: A pharmacodynamic drug interaction

    International Nuclear Information System (INIS)

    Dakhel, Yaman; Jamali, Fakhreddin

    2006-01-01

    Calcium channel blockers and macrolide antibiotics account for many drug interactions. Anecdotal reports suggest interactions between the two resulting in severe side effects. We studied the interaction between verapamil and erythromycin in the rat to see whether it occurs at the pharmacokinetics or pharmacodynamic level. Adult male Sprague-Dawley rats received doses of 1 mg/kg verapamil or 100 mg/kg erythromycin alone or in combination (n = 6/group). Serial blood samples (0-6 h) were taken for determination of the drug concentrations using HPLC. Electrocardiograms were recorded (0-6 h) through subcutaneously inserted lead II. Binding of the drugs to plasma proteins was studied using spiked plasma. Verapamil prolonged PR but not QT interval. Erythromycin prolonged QT but not PR interval. The combination resulted in a significant increase in PR interval prolongation and AV node blocks but did not further prolong QT interval. Pharmacokinetics and protein binding of neither drug were altered by the other. Our rat data confirm the anecdotal human case reports that combination of erythromycin and verapamil can result in potentiation of the cardiovascular response. The interaction appears to be at the pharmacodynamic rather than pharmacokinetic level hence may be extrapolated to other calcium channel antagonists

  12. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  13. Methotrexate and epirubicin conjugates as potential antitumor drugs

    Directory of Open Access Journals (Sweden)

    Szymon Wojciech Kmiecik

    2017-07-01

    Full Text Available Introduction: The use of hybrid molecules has become one of the most significant approaches in new cytotoxic drug design. This study describes synthesis and characterization of conjugates consisting of two well-known and characterized chemotherapeutic agents: methotrexate (MTX and epirubicin (EPR. The synthesized conjugates combine two significant anticancer strategies: combinatory therapy and targeted therapy. These two drugs were chosen because they have different mechanisms of action, which can increase the anticancer effect of the obtained conjugates. MTX, which is a folic acid analog, has high cytotoxic properties and can serve as a targeting moiety that can reach folate receptors (FRs overexpresing tumor cells. Combination of nonselective drugs such as EPR with MTX can increase the selectivity of the obtained conjugates, while maintaining the high cytotoxic properties.Materials and methods: Conjugates were purified by RP-HPLC and the structure was investigated by MS and MS/MS methods. The effect of the conjugates on proliferation of LoVo, LoVo/Dx, MCF-7 and MV-4-11 human cancer cell lines was determined by SRB or MTT assay.Results: The conjugation reaction results in the formation of monosubstituted (α, γ and disubstituted MTX derivatives. In vitro proliferation data demonstrate that the conjugates synthesized in our study show lower cytotoxic properties than both chemotherapeutics used alone.Discussion: Epirubicin cytotoxicity was not observed in obtained conjugates. Effective drugs release after internalization needs further investigation.

  14. Intensive care unit drug costs in the context of total hospital drug expenditures with suggestions for targeted cost containment efforts.

    Science.gov (United States)

    Altawalbeh, Shoroq M; Saul, Melissa I; Seybert, Amy L; Thorpe, Joshua M; Kane-Gill, Sandra L

    2018-04-01

    To assess costs of intensive care unit (ICU) related pharmacotherapy relative to hospital drug expenditures, and to identify potential targets for cost-effectiveness investigations. We offer the unique advantage of comparing ICU drug costs with previously published data a decade earlier to describe changes over time. Financial transactions for all ICU patients during fiscal years (FY) 2009-2012 were retrieved from the hospital's data repository. ICU drug costs were evaluated for each FY. ICU departments' charges were also retrieved and calculated as percentages of total ICU charges. Albumin, prismasate (dialysate), voriconazole, factor VII and alteplase denoted the highest percentages of ICU drug costs. ICU drug costs contributed to an average of 31% (SD 1.0%) of the hospital's total drug costs. ICU drug costs per patient day increased by 5.8% yearly versus 7.8% yearly for non-ICU drugs. This rate was higher for ICU drugs costs at 12% a decade previous. Pharmacy charges contributed to 17.7% of the total ICU charges. Growth rates of costs per year have declined but still drug expenditures in the ICU are consistently a significant driver in this resource intensive environment with a high impact on hospital drug expenditures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV

    Directory of Open Access Journals (Sweden)

    Sarawut Ninsawat

    2016-10-01

    Full Text Available In an urban area, the roof is the only available surface that can be utilized for installing solar photovoltaics (PV, and the active surface area depends on the type of roof. Shadows on a solar panel can be caused by nearby tall buildings, construction materials such as water tanks, or the roof configuration itself. The azimuth angle of the sun varies, based on the season and the time of day. Therefore, the simulation of shadow for one or two days or using the rule of thumb may not be sufficient to evaluate shadow effects on solar panels throughout the year. In this paper, a methodology for estimating the solar potential of solar PV on rooftops is presented, which is particularly applicable to urban areas. The objective of this method is to assess how roof type and shadow play a role in potentiality and financial benefit. The method starts with roof type extraction from high-resolution satellite imagery, using Object Base Image Analysis (OBIA, the generation of a 3D structure from height data and roof type, the simulation of shadow throughout the year, and the identification of potential and financial prospects. Based on the results obtained, the system seems to be adequate for calculating the financial benefits of solar PV to a very fine scale. The payback period varied from 7–13 years depending on the roof type, direction, and shadow impact. Based on the potentiality, a homeowner can make a profit of up to 200%. This method could help homeowners to identify potential roof area and economic interest.

  16. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G.

    2015-01-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  17. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody

    2015-06-04

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  18. The draft genome of Mycobacterium aurum , a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Jody Phelan

    2015-01-01

    Full Text Available Mycobacterium aurum (M. aurum is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related to 96.2% for rrs (streptomycin, capreomycin. We observed two homologous genes encoding the catalase-peroxidase enzyme (katG that is associated with resistance to isoniazid. Similarly, two emb B homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum , this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  19. Macrolide drug interactions: an update.

    Science.gov (United States)

    Pai, M P; Graci, D M; Amsden, G W

    2000-04-01

    To describe the current drug interaction profiles for the commonly used macrolides in the US and Europe, and to comment on the clinical impact of these interactions. A MEDLINE search (1975-1998) was performed to identify all pertinent studies, review articles, and case reports. When appropriate information was not available in the literature, data were obtained from the product manufacturers. All available data were reviewed to provide an unbiased account of possible drug interactions. Data for some of the interactions were not available from the literature, but were available from abstracts or company-supplied materials. Although the data were not always explicit, the best attempt was made to deliver pertinent information that clinical practitioners would need to formulate practice opinions. When more in-depth information was supplied in the form of a review or study report, a thorough explanation of pertinent methodology was supplied. Several clinically significant drug interactions have been identified since the approval of erythromycin. These interactions usually were related to the inhibition of the cytochrome P450 enzyme systems, which are responsible for the metabolism of many drugs. The decreased metabolism by the macrolides has in some instances resulted in potentially severe adverse events. The development and marketing of newer macrolides are hoped to improve the drug interaction profile associated with this class. However, this has produced variable success. Some of the newer macrolides demonstrated an interaction profile similar to that of erythromycin; others have improved profiles. The most success in avoiding drug interactions related to the inhibition of cytochrome P450 has been through the development of the azalide subclass, of which azithromycin is the first and only to be marketed. Azithromycin has not been demonstrated to inhibit the cytochrome P450 system in studies using a human liver microsome model, and to date has produced none of the

  20. A General LC-MS/MS Method for Monitoring Potential β-Lactam Contamination in Drugs and Drug-Manufacturing Surfaces.

    Science.gov (United States)

    Qiu, Chen; Zhu, Hongbin; Ruzicka, Connie; Keire, David; Ye, Hongping

    2018-05-15

    Penicillins and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. Thus, possible cross contamination of β-lactams in food or drugs can put people at risk. Therefore, when there is a reasonable possibility that a non-penicillin product could be contaminated by penicillin, the drug products are tested for penicillin contamination. Here, a sensitive and rapid method for simultaneous determination of multiple β-lactam antibiotics using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Mass spectral acquisition was performed on a Q-Exactive HF mass spectrometer in positive ion mode with parallel reaction monitoring (PRM). The method was validated for seven β-lactam antibiotics including one or two from each class and a synthetic intermediate. The quantification precision and accuracy at 200 ppb were in the range of ± 1.84 to ± 4.56 and - 5.20 to 3.44%, respectively. The limit of detection (LOD) was 0.2 ppb, and the limit of quantitation (LOQ) was 2 ppb with a linear dynamic range (LDR) of 2-2000 ppb for all eight β-lactams. From various drug products, the recoveries of eight β-lactams at 200 and 2 ppb ranged from 93.8 ± 3.2 to 112.1 ± 4.2% and 89.7 ± 4.6 to 110.6 ± 1.9%, respectively. The application of the method for detecting cross contamination of trace β-lactams (0.2 ppb) and for monitoring facility surface cleaning was also investigated. This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amount of β-lactam contamination, monitoring cross contamination in manufacturing processes, and determining potency for regulatory purposes and for quality control.