WorldWideScience

Sample records for identifying potential biomarkers

  1. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  2. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    Science.gov (United States)

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  3. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  4. The Potential Biomarkers to Identify the Development of Steatosis in Hyperuricemia.

    Directory of Open Access Journals (Sweden)

    Yong Tan

    Full Text Available Hyperuricemia (HU often progresses to combine with non-alcoholic fatty liver disease (NAFLD in the clinical scenario, which further exacerbates metabolic disorders; early detection of biomarkers, if obtained during the HU progression, may be beneficial for preventing its combination with NAFLD. This study aimed to decipher the biomarkers and mechanisms of the development of steatosis in HU. Four groups of subjects undergoing health screening, including healthy subjects, subjects with HU, subjects with HU combined with NAFLD (HU+NAFLD and subjects with HU initially and then with HU+NAFLD one year later (HU→HU+NAFLD, were recruited in this study. The metabolic profiles of all subjects' serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolomic data from subjects with HU and HU+NAFLD were compared, and the biomarkers for the progression from HU to HU+NAFLD were predicted. The metabolomic data from HU→HU+NAFLD subjects were collected for further verification. The results showed that the progression was associated with disturbances of phospholipase metabolism, purine nucleotide degradation and Liver X receptor/retinoic X receptor activation as characterized by up-regulated phosphatidic acid, cholesterol ester (18:0 and down-regulated inosine. These metabolic alterations may be at least partially responsible for the development of steatosis in HU. This study provides a new paradigm for better understanding and further prevention of disease progression.

  5. Clinical proteomics identifies urinary CD14 as a potential biomarker for diagnosis of stable coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Min-Yi Lee

    Full Text Available Inflammation plays a key role in coronary artery disease (CAD and other manifestations of atherosclerosis. Recently, urinary proteins were found to be useful markers for reflecting inflammation status of different organs. To identify potential biomarker for diagnosis of CAD, we performed one-dimensional SDS-gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS. Among the proteins differentially expressed in urine samples, monocyte antigen CD14 was found to be consistently expressed in higher amounts in the CAD patients as compared to normal controls. Using enzyme-linked immunosorbent assays to analyze the concentrations of CD14 in urine and serum, we confirmed that urinary CD14 levels were significantly higher in patients (n = 73 with multi-vessel and single vessel CAD than in normal control (n = 35 (P < 0.001. Logistic regression analysis further showed that urinary CD14 concentration level is associated with severity or number of diseased vessels and SYNTAX score after adjustment for potential confounders. Concomitantly, the proportion of CD14+ monocytes was significantly increased in CAD patients (59.7 ± 3.6% as compared with healthy controls (14.9 ± 2.1% (P < 0.001, implicating that a high level of urinary CD14 may be potentially involved in mechanism(s leading to CAD pathogenesis. By performing shotgun proteomics, we further revealed that CD14-associated inflammatory response networks may play an essential role in CAD. In conclusion, the current study has demonstrated that release of CD14 in urine coupled with more CD14+ monocytes in CAD patients is significantly correlated with severity of CAD, pointing to the potential application of urinary CD14 as a novel noninvasive biomarker for large-scale diagnostic screening of susceptible CAD patients.

  6. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers.

    Science.gov (United States)

    Laíns, Inês; Kelly, Rachel S; Miller, John B; Silva, Rufino; Vavvas, Demetrios G; Kim, Ivana K; Murta, Joaquim N; Lasky-Su, Jessica; Miller, Joan W; Husain, Deeba

    2018-02-01

    that the most significant metabolites map to the glycerophospholipid pathway. These findings have the potential to improve our understanding of AMD pathogenesis, to support the development of plasma-based metabolomics biomarkers of AMD, and to identify novel targets for treatment of this blinding disease. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. Urinary Metabolomic Profiling to Identify Potential Biomarkers for the Diagnosis of Behcet’s Disease by Gas Chromatography/Time-of-Flight−Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Joong Kyong Ahn

    2017-11-01

    Full Text Available Diagnosing Behcet’s disease (BD is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight–mass spectrometry (GC/TOF−MS. Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC were assessed using GC/TOF−MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF−MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA model were R2X of 0.231, R2Y of 0.804, and Q2 of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974. OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%. We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF−MS.

  8. MALDI-TOF and SELDI-TOF analysis: “tandem” techniques to identify potential biomarker in fibromyalgia

    Directory of Open Access Journals (Sweden)

    A. Lucacchini

    2011-11-01

    Full Text Available Fibromyalgia (FM is characterized by the presence of chronic widespread pain throughout the musculoskeletal system and diffuse tenderness. Unfortunately, no laboratory tests have been appropriately validated for FM and correlated with the subsets and activity. The aim of this study was to apply a proteomic technique in saliva of FM patients: the Surface Enhance Laser Desorption/Ionization Time-of-Flight (SELDI-TOF. For this study, 57 FM patients and 35 HC patients were enrolled. The proteomic analysis of saliva was carried out using SELDI-TOF. The analysis was performed using different chip arrays with different characteristics of binding. The statistical analysis was performed using cluster analysis and the difference between two groups was underlined using Student’s t-test. Spectra analysis highlighted the presence of several peaks differently expressed in FM patients compared with controls. The preliminary results obtained by SELDI-TOF analysis were compared with those obtained in our previous study performed on whole saliva of FM patients by using electrophoresis. The m/z of two peaks, increased in FM patients, seem to overlap well with the molecular weight of calgranulin A and C and Rho GDP-dissociation inhibitor 2, which we had found up-regulated in our previous study. These preliminary results showed the possibility of identifying potential salivary biomarker through salivary proteomic analysis with MALDI-TOF and SELDI-TOF in FM patients. The peaks observed allow us to focus on some of the particular pathogenic aspects of FM, the oxidative stress which contradistinguishes this condition, the involvement of proteins related to the cytoskeletal arrangements, and central sensibilization.

  9. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection......, and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...

  10. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection...... in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular...... fluid and can be detected in serum, this protein also represents a potential serological marker....

  11. International Team Identifies Biomarker for Scleroderma

    Science.gov (United States)

    ... Spotlight on Research International Team Identifies Biomarker for Scleroderma By Kirstie Saltsman, Ph.D. | May 5, 2014 ... molecule correlates with a more severe form of scleroderma, a chronic autoimmune disorder that involves the abnormal ...

  12. The potential of circulating extracellular small RNAs (smexRNA) in veterinary diagnostics-Identifying biomarker signatures by multivariate data analysis.

    Science.gov (United States)

    Melanie, Spornraft; Benedikt, Kirchner; Pfaffl, Michael W; Irmgard, Riedmaier

    2015-09-01

    Worldwide growth and performance-enhancing substances are used in cattle husbandry to increase productivity. In certain countries however e.g., in the EU, these practices are forbidden to prevent the consumers from potential health risks of substance residues in food. To maximize economic profit, 'black sheep' among farmers might circumvent the detection methods used in routine controls, which highlights the need for an innovative and reliable detection method. Transcriptomics is a promising new approach in the discovery of veterinary medicine biomarkers and also a missing puzzle piece, as up to date, metabolomics and proteomics are paramount. Due to increased stability and easy sampling, circulating extracellular small RNAs (smexRNAs) in bovine plasma were small RNA-sequenced and their potential to serve as biomarker candidates was evaluated using multivariate data analysis tools. After running the data evaluation pipeline, the proportion of miRNAs (microRNAs) and piRNAs (PIWI-interacting small non-coding RNAs) on the total sequenced reads was calculated. Additionally, top 10 signatures were compared which revealed that the readcount data sets were highly affected by the most abundant miRNA and piRNA profiles. To evaluate the discriminative power of multivariate data analyses to identify animals after veterinary drug application on the basis of smexRNAs, OPLS-DA was performed. In summary, the quality of miRNA models using all mapped reads for both treatment groups (animals treated with steroid hormones or the β-agonist clenbuterol) is predominant to those generated with combined data sets or piRNAs alone. Using multivariate projection methodologies like OPLS-DA have proven the best potential to generate discriminative miRNA models, supported by small RNA-Seq data. Based on the presented comparative OPLS-DA, miRNAs are the favorable smexRNA biomarker candidates in the research field of veterinary drug abuse.

  13. Two dimensional gel electrophoresis using narrow pH 3-5.6 immobilised pH gradient strips identifies potential novel disease biomarkers in plasma or serum

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bevin Gangadharan & Nicole Zitzmann ### Abstract Two-dimensional gel electrophoresis (2-DE) is a protein separation technique often used to separate plasma or serum proteins in an attempt to identify novel biomarkers. This protocol describes how to run 2-DE gels using narrow pH 3-5.6 immobilised pH gradient strips to separate 2 mg of serum proteins. pH 3-6 ampholytes are used to enhance the solubility of proteins in this pH range before the serum proteins are separated in the...

  14. Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers

    Directory of Open Access Journals (Sweden)

    Andreas Hohn

    2018-01-01

    Full Text Available During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.

  15. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα as a potential biomarker of consumption and dual diagnosis

    Directory of Open Access Journals (Sweden)

    Rosa Maza-Quiroga

    2017-10-01

    Full Text Available Background Cocaine use disorder (CUD is a complex health condition, especially when it is accompanied by comorbid psychiatric disorders (dual diagnosis. Dual diagnosis is associated with difficulties in the stratification and treatment of patients. One of the major challenges in clinical practice of addiction psychiatry is the lack of objective biological markers that indicate the degree of consumption, severity of addiction, level of toxicity and response to treatment in patients with CUD. These potential biomarkers would be fundamental players in the diagnosis, stratification, prognosis and therapeutic orientation in addiction. Due to growing evidence of the involvement of the immune system in addiction and psychiatric disorders, we tested the hypothesis that patients with CUD in abstinence might have altered circulating levels of signaling proteins related to systemic inflammation. Methods The study was designed as a cross-sectional study of CUD treatment-seeking patients. These patients were recruited from outpatient programs in the province of Malaga (Spain. The study was performed with a total of 160 white Caucasian subjects, who were divided into the following groups: patients diagnosed with CUD in abstinence (N = 79, cocaine group and matched control subjects (N = 81, control group. Participants were clinically evaluated with the diagnostic interview PRISM according to the DSM-IV-TR, and blood samples were collected for the determination of chemokine C-C motif ligand 11 (CCL11, eotaxin-1, interferon gamma (IFNγ, interleukin-4 (IL-4, interleukin-8 (IL-8, interleukin-17α (IL-17α, macrophage inflammatory protein 1α (MIP-1α and transforming growth factor α (TGFα levels in the plasma. Clinical and biochemical data were analyzed in order to find relationships between variables. Results While 57% of patients with CUD were diagnosed with dual diagnosis, approximately 73% of patients had other substance use disorders. Cocaine patients

  16. Plasma proteomics to identify biomarkers - Application to cardiovascular diseases

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Overgaard, Martin; Melholt Rasmussen, Lars

    2015-01-01

    There is an unmet need for new cardiovascular biomarkers. Despite this only few biomarkers for the diagnosis or screening of cardiovascular diseases have been implemented in the clinic. Thousands of proteins can be analysed in plasma by mass spectrometry-based proteomics technologies. Therefore......, this technology may therefore identify new biomarkers that previously have not been associated with cardiovascular diseases. In this review, we summarize the key challenges and considerations, including strategies, recent discoveries and clinical applications in cardiovascular proteomics that may lead...

  17. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    Science.gov (United States)

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  18. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  20. Identification of Potential Biomarkers for Antimony Susceptibility ...

    Indian Academy of Sciences (India)

    Identification of Potential Biomarkers for Antimony Susceptibility/Resistance in L. donovani Rentala Madhubala School of Life Sciences Jawaharlal Nehru University New Delhi, India · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16.

  1. Cilengitide-induced temporal variations in transvascular transfer parameters of tumor vasculature in a rat glioma model: identifying potential MRI biomarkers of acute effects.

    Directory of Open Access Journals (Sweden)

    Tavarekere N Nagaraja

    Full Text Available Increased efficacy of radiotherapy (RT 4-8 h after Cilengitide treatment has been reported. We hypothesized that the effects of Cilengitide on tumor transvascular transfer parameters might underlie, and thus predict, this potentiation. Athymic rats with orthotopic U251 glioma were studied at ~21 days after implantation using dynamic contrast-enhanced (DCE-MRI. Vascular parameters, viz: plasma volume fraction (v(p, forward volume transfer constant (K(trans and interstitial volume fraction (v(e of a contrast agent, were determined in tumor vasculature once before, and again in cohorts 2, 4, 8, 12 and 24 h after Cilengitide administration (4 mg/kg; N = 31; 6-7 per cohort. Perfusion-fixed brain sections were stained for von Willebrand factor to visualize vascular segments. A comparison of pre- and post-treatment parameters showed that the differences between MR indices before and after Cilengitide treatment pivoted around the 8 h time point, with 2 and 4 h groups showing increases, 12 and 24 h groups showing decreases, and values at the 8 h time point close to the baseline. The vascular parameter differences between group of 2 and 4 h and group of 12 and 24 h were significant for K(trans (p = 0.0001 and v(e (p = 0,0271. Vascular staining showed little variation with time after Cilengitide. The vascular normalization occurring 8 h after Cilengitide treatment coincided with similar previous reports of increased treatment efficacy when RT followed Cilengitide by 8 h. Pharmacological normalization of vasculature has the potential to increase sensitivity to RT. Evaluating acute temporal responses of tumor vasculature to putative anti-angiogenic drugs may help in optimizing their combination with other treatment modalities.

  2. Strategies to design clinical studies to identify predictive biomarkers in cancer research.

    Science.gov (United States)

    Perez-Gracia, Jose Luis; Sanmamed, Miguel F; Bosch, Ana; Patiño-Garcia, Ana; Schalper, Kurt A; Segura, Victor; Bellmunt, Joaquim; Tabernero, Josep; Sweeney, Christopher J; Choueiri, Toni K; Martín, Miguel; Fusco, Juan Pablo; Rodriguez-Ruiz, Maria Esperanza; Calvo, Alfonso; Prior, Celia; Paz-Ares, Luis; Pio, Ruben; Gonzalez-Billalabeitia, Enrique; Gonzalez Hernandez, Alvaro; Páez, David; Piulats, Jose María; Gurpide, Alfonso; Andueza, Mapi; de Velasco, Guillermo; Pazo, Roberto; Grande, Enrique; Nicolas, Pilar; Abad-Santos, Francisco; Garcia-Donas, Jesus; Castellano, Daniel; Pajares, María J; Suarez, Cristina; Colomer, Ramon; Montuenga, Luis M; Melero, Ignacio

    2017-02-01

    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Imaging Biomarkers for Adult Medulloblastomas: Genetic Entities May Be Identified by Their MR Imaging Radiophenotype.

    Science.gov (United States)

    Keil, V C; Warmuth-Metz, M; Reh, C; Enkirch, S J; Reinert, C; Beier, D; Jones, D T W; Pietsch, T; Schild, H H; Hattingen, E; Hau, P

    2017-10-01

    The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences in MR imaging biomarkers identified in pediatric medulloblastomas. Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists. Lesions and perifocal edema were volumetrized and multiparametrically evaluated for classic morphologic characteristics, location, hydrocephalus, and Chang criteria. To identify MR imaging biomarkers, we correlated genetic entities sonic hedgehog ( SHH ) TP53 wild type, wingless ( WNT ), and non -WNT/ non -SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. There were 19 SHH TP53 wild type (69%), 4 WNT -activated (14%), and 5 Group 4 (17%) medulloblastomas. Six potential MR imaging biomarkers were identified, 3 of which, hydrocephalus ( P = .03), intraventricular macrometastases ( P = .02), and hemorrhage ( P = .04), when combined, could identify WNT medulloblastoma with 100% sensitivity and 88.3% specificity (95% CI, 39.8%-100.0% and 62.6%-95.3%). WNT -activated nuclear β-catenin accumulating medulloblastomas were smaller than the other entities (95% CI, 5.2-22.3 cm 3 versus 35.1-47.6 cm 3 ; P = .03). Hemorrhage was exclusively present in non -WNT/ non -SHH medulloblastomas ( P = .04; n = 2/5). MR imaging biomarkers were all discordant from those identified in the pediatric cohort. Desmoplastic/nodular medulloblastomas were more rarely in contact with the fourth ventricle (4/15 versus 7/13; P = .04). MR imaging biomarkers can help distinguish histologic and genetic

  4. Novel TIA biomarkers identified by mass spectrometry-based proteomics.

    Science.gov (United States)

    George, Paul M; Mlynash, Michael; Adams, Christopher M; Kuo, Calvin J; Albers, Gregory W; Olivot, Jean-Marc

    2015-12-01

    Transient ischemic attacks remain a clinical diagnosis with significant variability between physicians. Finding reliable biomarkers to identify transient ischemic attacks would improve patient care and optimize treatment. Our aim is to identify novel serum TIA biomarkers through the use of mass spectroscopy-based proteomics. Patients with transient neurologic symptoms were prospectively enrolled. Mass spectrometry-based proteomics, an unbiased method to identify candidate proteins, was used to test the serum of the patients for biomarkers of cerebral ischemia. Three candidate proteins were found, and serum concentrations of these proteins were measured by enzyme-linked immunosorbent assay in a second cohort of prospectively enrolled patients. The Student's t-test was used for comparison. The Benjamini-Hochberg false discovery rate controlling procedure for multiple comparison adjustments determined significance for the proteomic screen. Patients with transient ischemic attacks (n = 20), minor strokes (n = 15), and controls (i.e. migraine, seizure, n = 12) were enrolled in the first cohort. Ceruloplasmin, complement component C8 gamma (C8γ), and platelet basic protein were significantly different between the ischemic group (transient ischemic attack and minor stroke) and the controls (P = 0·0001, P = 0·00027, P = 0·00105, respectively). A second cohort of patients with transient ischemic attack (n = 22), minor stroke (n = 20), and controls' (n = 12) serum was enrolled. Platelet basic protein serum concentrations were increased in the ischemic samples compared with control (for transient ischemic attack alone, P = 0·019, for the ischemic group, P = 0·046). Ceruloplasmin trended towards increased concentrations in the ischemic group (P = 0·127); no significant difference in C8γ (P = 0·44) was found. Utilizing mass spectrometry-based proteomics, platelet basic protein has been identified as a candidate serum

  5. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  6. Progranulin as a biomarker and potential therapeutic agent.

    Science.gov (United States)

    Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste

    2017-10-01

    Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    International Nuclear Information System (INIS)

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-01-01

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of ∼ 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  8. Potential Biomarkers for Diagnosis and Screening of Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2014-12-01

    Full Text Available BACKGROUND: Autism spectrum disorder (ASD is a highly heritable neurodevelopmental condition, which is typically characterized by a triad of symptoms: impaired social communication, social reciprocity and repetitive stereotypic behavior. While the behavioral phenotype of ASD is well described, the search for reliable ‘autism biomarkers’ continues. CONTENT: Insulin growth factor (IGF is essential for the myelination of developing fetal neurons; this is in addition to the well-known links between IGF, maternal inflammation, infection and autism supporting IGF as a potential marker. Combining IGF data with data regarding levels of the known markers, serotonin and anti-myelin basic protein, in order to calculate an autism index, could provide a new diagnostic method for at-risk neonates. Disruptions to multiple pathophysiological systems, including redox, folate, methylation, tryptophan metabolism, and mitochondrial metabolism, have been well documented in autistic patients. Maternal infection and inflammation have known links with autism. Autoimmunity has therefore been a well-studied area of autism research. The potential of using autoantibodies as novel biomarkers for autism, in addition to providing insights into the neurodevelopmental processes that lead to autism. SUMMARY: The six proposed causes of autism involve both metabolic and immunologic dysfunctions and include: increased oxidative stress; decreased methionine metabolism and trans-sulfuration: aberrant free and bound metal burden; gastrointestinal (GI disturbances; immune/inflammation dysregulation; and autoimmune targeting. A newborn screening program for early-onset ASD should be capable of utilizing a combination of ASD-associated biomarkers representative of the six proposed causes of autism in order to identify newborns at risk. The biomarkers discussed in this article are useful to guide the selection, efficacy and sufficiency of biomedical interventions, which would likely

  9. Placenta-derived exosomes: potential biomarkers of preeclampsia.

    Science.gov (United States)

    Pillay, Preenan; Moodley, Kogi; Moodley, Jagidesa; Mackraj, Irene

    2017-01-01

    Preeclampsia remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. Although several clinical and biological markers of preeclampsia have been evaluated, they have proven to be ineffective in providing a definitive diagnosis during the various stages of the disorder. Exosomes have emerged as ideal biomarkers of pathological states, such as cancer, and have more recently gained interest in pregnancy-related complications, due to their role in cellular communication in normal and complicated pregnancies. This occurs as a result of the specific placenta-derived exosomal molecular cargo, which may be involved in normal pregnancy-associated immunological events, such as the maintenance of maternal-fetal tolerance. This review provides perspectives on placenta-derived exosomes as possible biomarkers for the diagnosis/prognosis of preeclampsia. Using keywords, online databases were searched to identify relevant publications to review the potential use of placenta-derived exosomes as biomarkers of preeclampsia.

  10. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  11. Placenta-derived exosomes: potential biomarkers of preeclampsia

    Directory of Open Access Journals (Sweden)

    Pillay P

    2017-10-01

    Full Text Available Preenan Pillay,1,2 Kogi Moodley,1 Jagidesa Moodley,3 Irene Mackraj3 1Discipline of Human Physiology, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; 2Pearson Institute of Higher Education, Midrand, South Africa; 3Women’s Health and HIV Research Group, Nelson R Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa Abstract: Preeclampsia remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. Although several clinical and biological markers of preeclampsia have been evaluated, they have proven to be ineffective in providing a definitive diagnosis during the various stages of the disorder. Exosomes have emerged as ideal biomarkers of pathological states, such as cancer, and have more recently gained interest in pregnancy-related complications, due to their role in cellular communication in normal and complicated pregnancies. This occurs as a result of the specific placenta-derived exosomal molecular cargo, which may be involved in normal pregnancy-associated immunological events, such as the maintenance of maternal–fetal tolerance. This review provides perspectives on placenta-derived exosomes as possible biomarkers for the diagnosis/prognosis of preeclampsia. Using keywords, online databases were searched to identify relevant publications to review the potential use of placenta-derived exosomes as biomarkers of preeclampsia. Keywords: placenta-derived exosomes, preeclampsia, biomarkers

  12. Ionizing radiation biomarkers for potential use in epidemiological studies

    International Nuclear Information System (INIS)

    Pernot, Eileen; Cardis, Elisabeth; Hall, Janet; Baatout, Sarah; El Saghire, Houssein; Mohammed Abderrafi Benotmane; Roel Quintens; Blanchardon, Eric; Bouffler, Simon; Gomolka, Maria; Guertler, Anne; Kreuzer, Michaela; Harms-Ringdahl, Mats; Jeggo, Penny; Laurier, Dominique; Lindholm, Carita; Mkacher, Radhia; Sabatier, Laure; Tapio, Soile; De Vathaire, Florent

    2012-01-01

    Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100 mSv and/or 0.1 mSv min -1 ) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of

  13. Urinary microRNAs as potential biomarkers of pesticide exposure

    International Nuclear Information System (INIS)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C.; Thompson, Beti; Faustman, Elaine M.

    2016-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  14. Urinary microRNAs as potential biomarkers of pesticide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C. [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Thompson, Beti [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Faustman, Elaine M., E-mail: faustman@uw.edu [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States)

    2016-12-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  15. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  16. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    Science.gov (United States)

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p  13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  18. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep; MacPherson, Cameron R; Schmeier, Sebastian; Narasimhan, Kothandaraman; Choolani, Mahesh; Bajic, Vladimir B.

    2011-01-01

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  19. Biomarkers and asthma management: analysis and potential applications

    NARCIS (Netherlands)

    Richards, Levi B.; Neerincx, Anne H.; van Bragt, Job J. M. H.; Sterk, Peter J.; Bel, Elisabeth H. D.; Maitland-van der Zee, Anke H.

    2018-01-01

    Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or

  20. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  1. Microparticles as Potential Biomarkers of Cardiovascular Disease

    International Nuclear Information System (INIS)

    França, Carolina Nunes; Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein

    2015-01-01

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice

  2. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  3. Prognostic and predictive potential molecular biomarkers in colon cancer.

    Science.gov (United States)

    Nastase, A; Pâslaru, L; Niculescu, A M; Ionescu, M; Dumitraşcu, T; Herlea, V; Dima, S; Gheorghe, C; Lazar, V; Popescu, I

    2011-01-01

    An important objective in nowadays research is the discovery of new biomarkers that can detect colon tumours in early stages and indicate with accuracy the status of the disease. The aim of our study was to identify potential biomarkers for colon cancer onset and progression. We assessed gene expression profiles of a list of 10 candidate genes (MMP-1, MMP-3, MMP-7, DEFA 1, DEFA-5, DEFA-6, IL-8, CXCL-1, SPP-1, CTHRC-1) by quantitative real time PCR in triplets of colonic mucosa (normal, adenoma, tumoral tissue) collected from the same patient during surgery for a group of 20 patients. Additionally we performed immunohistochemistry for DEFA1-3 and SPP1. We remarked that DEFA5 and DEFA6 are key factors in adenoma formation (p<0.05). MMP7 is important in the transition from a benign to a malignant status (p <0.01) and further in metastasis being a prognostic indicator for tumor transformation and for the metastatic potential of cancer cells. IL8, irrespective of tumor stage, has a high mRNA level in adenocarcinoma (p< 0.05). The level of expression for SPP1 is correlated with tumor level. We suggest that high levels of DEFAS, DEFA6 (key elements in adenoma formation), MMP7 (marker of colon cancer onset and progression to metastasis), SPP1 (marker of progression) and IL8 could be used to diagnose an early stage colon cancer and to evaluate the prognostic of progression for colon tumors. Further, if DEFA5 and DEFA6 level of expression are low but MMP7, SPP1 and IL8 level are high we could point out that the transition from adenoma to adenocarcinoma had already occurred. Thus, DEFA5, DEFA6, MMP7, IL8 and SPP1 consist in a valuable panel of biomarkers, whose detection can be used in early detection and progressive disease and also in prognostic of colon cancer.

  4. Potential Peripheral Biomarkers for the Diagnosis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Seema Patel

    2011-01-01

    Full Text Available Advances in the discovery of a peripheral biomarker for the diagnosis of Alzheimer's would provide a way to better detect the onset of this debilitating disease in a manner that is both noninvasive and universally available. This paper examines the current approaches that are being used to discover potential biomarker candidates available in the periphery. The search for a peripheral biomarker that could be utilized diagnostically has resulted in an extensive amount of studies that employ several biological approaches, including the assessment of tissues, genomics, proteomics, epigenetics, and metabolomics. Although a definitive biomarker has yet to be confirmed, advances in the understanding of the mechanisms of the disease and major susceptibility factors have been uncovered and reveal promising possibilities for the future discovery of a useful biomarker.

  5. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.

    Science.gov (United States)

    Choi, Jonghwan; Park, Sanghyun; Yoon, Youngmi; Ahn, Jaegyoon

    2017-11-15

    Identification of genes that can be used to predict prognosis in patients with cancer is important in that it can lead to improved therapy, and can also promote our understanding of tumor progression on the molecular level. One of the common but fundamental problems that render identification of prognostic genes and prediction of cancer outcomes difficult is the heterogeneity of patient samples. To reduce the effect of sample heterogeneity, we clustered data samples using K-means algorithm and applied modified PageRank to functional interaction (FI) networks weighted using gene expression values of samples in each cluster. Hub genes among resulting prioritized genes were selected as biomarkers to predict the prognosis of samples. This process outperformed traditional feature selection methods as well as several network-based prognostic gene selection methods when applied to Random Forest. We were able to find many cluster-specific prognostic genes for each dataset. Functional study showed that distinct biological processes were enriched in each cluster, which seems to reflect different aspect of tumor progression or oncogenesis among distinct patient groups. Taken together, these results provide support for the hypothesis that our approach can effectively identify heterogeneous prognostic genes, and these are complementary to each other, improving prediction accuracy. https://github.com/mathcom/CPR. jgahn@inu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Identifying biomarkers of dietary patterns by using metabolomics123

    Science.gov (United States)

    Derkach, Andriy; Reedy, Jill; Subar, Amy F; Sampson, Joshua N; Albanes, Demetrius; Gu, Fangyi; Kontto, Jukka; Lassale, Camille; Liao, Linda M; Männistö, Satu; Mondul, Alison M; Weinstein, Stephanie J; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael

    2017-01-01

    Background: Healthy dietary patterns that conform to national dietary guidelines are related to lower chronic disease incidence and longer life span. However, the precise mechanisms involved are unclear. Identifying biomarkers of dietary patterns may provide tools to validate diet quality measurement and determine underlying metabolic pathways influenced by diet quality. Objective: The objective of this study was to examine the correlation of 4 diet quality indexes [the Healthy Eating Index (HEI) 2010, the Alternate Mediterranean Diet Score (aMED), the WHO Healthy Diet Indicator (HDI), and the Baltic Sea Diet (BSD)] with serum metabolites. Design: We evaluated dietary patterns and metabolites in male Finnish smokers (n = 1336) from 5 nested case-control studies within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort. Participants completed a validated food-frequency questionnaire and provided a fasting serum sample before study randomization (1985–1988). Metabolites were measured with the use of mass spectrometry. We analyzed cross-sectional partial correlations of 1316 metabolites with 4 diet quality indexes, adjusting for age, body mass index, smoking, energy intake, education, and physical activity. We pooled estimates across studies with the use of fixed-effects meta-analysis with Bonferroni correction for multiple comparisons, and conducted metabolic pathway analyses. Results: The HEI-2010, aMED, HDI, and BSD were associated with 23, 46, 23, and 33 metabolites, respectively (17, 21, 11, and 10 metabolites, respectively, were chemically identified; r-range: −0.30 to 0.20; P = 6 × 10−15 to 8 × 10−6). Food-based diet indexes (HEI-2010, aMED, and BSD) were associated with metabolites correlated with most components used to score adherence (e.g., fruit, vegetables, whole grains, fish, and unsaturated fat). HDI correlated with metabolites related to polyunsaturated fat and fiber components, but not other macro- or micronutrients (e

  7. Potential Evaporite Biomarkers from the Dead Sea

    Science.gov (United States)

    Morris, Penny A.; Wentworth, Susan J.; Thomas-Keprta, Kathie; Allen, Carlton C.; McKay, David S.

    2001-01-01

    The Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are

  8. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging

    Science.gov (United States)

    Xu, Jing; Chen, Yanhua; Zhang, Ruiping; He, Jiuming; Song, Yongmei; Wang, Jingbo; Wang, Huiqing; Wang, Luhua; Zhan, Qimin; Abliz, Zeper

    2016-10-01

    We performed a metabolomics study using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis (MVDA) to discriminate global urine profiles in urine samples from esophageal squamous cell carcinoma (ESCC) patients and healthy controls (NC). Our work evaluated the feasibility of employing urine metabolomics for the diagnosis and staging of ESCC. The satisfactory classification between the healthy controls and ESCC patients was obtained using the MVDA model, and obvious classification of early-stage and advanced-stage patients was also observed. The results suggest that the combination of LC-MS analysis and MVDA may have potential applications for ESCC diagnosis and staging. We then conducted LC-MS/MS experiments to identify the potential biomarkers with large contributions to the discrimination. A total of 83 potential diagnostic biomarkers for ESCC were screened out, and 19 potential biomarkers were identified; the variations between the differences in staging using these potential biomarkers were further analyzed. These biomarkers may not be unique to ESCCs, but instead result from any malignant disease. To further elucidate the pathophysiology of ESCC, we studied related metabolic pathways and found that ESCC is associated with perturbations of fatty acid β-oxidation and the metabolism of amino acids, purines, and pyrimidines.

  9. Proteomics analysis after traumatic brain injury in rats: the search for potential biomarkers

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-04-01

    Full Text Available Many studies of protein expression after traumatic brain injury (TBI have identified biomarkers for diagnosing or determining the prognosis of TBI. In this study, we searched for additional protein markers of TBI using a fluid perfusion impact device to model TBI in S-D rats. Two-dimensional gel electrophoresis and mass spectrometry were used to identify differentially expressed proteins. After proteomic analysis, we detected 405 and 371 protein spots within a pH range of 3-10 from sham-treated and contused brain cortex, respectively. Eighty protein spots were differentially expressed in the two groups and 20 of these proteins were identified. This study validated the established biomarkers of TBI and identified potential biomarkers that could be examined in future work.

  10. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guipaud, O; Vereycken-Holler, V; Benderitter, M [Institut de Radioprotection et de Surete Nucleaire, Lab. de Radiopathologie, 92 - Fontenay aux Roses (France); Royer, N; Vinh, J [Ecole Superieure de Physique et de Chimie Industrielles, 75 - Paris (France)

    2006-07-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  11. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    International Nuclear Information System (INIS)

    Guipaud, O.; Vereycken-Holler, V.; Benderitter, M.; Royer, N.; Vinh, J.

    2006-01-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  12. Evaluation of MicroRNA 125b as a potential biomarker for ...

    African Journals Online (AJOL)

    Purpose: To identify significant dysregulated miRNAs in postmenopausal osteoporosis in Chinese women and to test whether any of these miRNAs have diagnostic potential as circulatory biomarkers for postmenopausal osteoporosis. Methods: Thirty osteoporotic patients and 30 non-osteoporotic healthy individuals were ...

  13. Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Harsha, H C; Grønborg, Mads

    2008-01-01

    Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based...

  14. REG4 Is Highly Expressed in Mucinous Ovarian Cancer: A Potential Novel Serum Biomarker.

    Directory of Open Access Journals (Sweden)

    Laura Lehtinen

    Full Text Available Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.

  15. Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.

    Science.gov (United States)

    Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao

    2014-09-05

    Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.

  16. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice.

    Directory of Open Access Journals (Sweden)

    Robin L P Jump

    Full Text Available The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment.To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam.Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30% exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites or decreased (pentoses, dipeptides with clindamycin treatment. Piperacillin

  17. Classification for longevity potential: the use of novel biomarkers

    Directory of Open Access Journals (Sweden)

    Marian Beekman

    2016-10-01

    Full Text Available Background: In older people chronological age may not be the best predictor of residual lifespan and mortality, because with age the heterogeneity in health is increasing. Biomarkers for biological age and residual lifespan are being developed to predict disease and mortality better at an individual level than chronological age. In the current paper we aim to classify a group of older people into those with longevity potential or controls.Methods: In the Leiden Longevity Study participated 1671 offspring of nonagenarian siblings, as the group with longevity potential, and 744 similarly aged controls. Using known risk factors for cardiovascular disease, previously reported markers for human longevity and other physiological measures as predictors, classification models for longevity potential were constructed with multiple logistic regression of the offspring-control status.Results: The Framingham Risk Score is predictive for longevity potential (AUC = 64.7. Physiological parameters involved in immune responses and glucose, lipid and energy metabolism further improve the prediction performance for longevity potential (AUCmale = 71.4, AUCfemale = 68.7.Conclusion: Using the Framingham Risk Score, the classification of older people in groups with longevity potential and controls is moderate, but can be improved to a reasonably good classification in combination with markers of immune response, glucose, lipid and energy metabolism. We show that individual classification of older people for longevity potential may be feasible using biomarkers from a wide variety of different biological processes.

  18. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Martin

    Full Text Available Osteosarcoma is the most common malignancy of bone, and occurs most frequently in children and adolescents. Currently, the most reliable technique for determining a patients' prognosis is measurement of histopathologic tumor necrosis following pre-operative neo-adjuvant chemotherapy. Unfavourable prognosis is indicated by less than 90% estimated necrosis of the tumor. Neither genetic testing nor molecular biomarkers for diagnosis and prognosis have been described for osteosarcomas. We used the novel nanoString mRNA digital expression analysis system to analyse gene expression in 32 patients with sporadic paediatric osteosarcoma. This system used specific molecular barcodes to quantify expression of a set of 17 genes associated with osteosarcoma tumorigenesis. Five genes, from this panel, which encoded the bone differentiation regulator RUNX2, the cell cycle regulator CDC5L, the TP53 transcriptional inactivator MDM2, the DNA helicase RECQL4, and the cyclin-dependent kinase gene CDK4, were differentially expressed in tumors that responded poorly to neo-adjuvant chemotherapy. Analysis of the signalling relationships of these genes, as well as other expression markers of osteosarcoma, indicated that gene networks linked to RB1, TP53, PI3K, PTEN/Akt, myc and RECQL4 are associated with osteosarcoma. The discovery of these networks provides a basis for further experimental studies of role of the five genes (RUNX2, CDC5L, MDM2, RECQL4, and CDK4 in differential response to chemotherapy.

  19. Potential biomarkers for the clinical prognosis of severe dengue

    Directory of Open Access Journals (Sweden)

    Mayara Marques Carneiro da Silva

    2013-09-01

    Full Text Available Currently, several assays can confirm acute dengue infection at the point-of-care. However, none of these assays can predict the severity of the disease symptoms. A prognosis test that predicts the likelihood of a dengue patient to develop a severe form of the disease could permit more efficient patient triage and treatment. We hypothesise that mRNA expression of apoptosis and innate immune response-related genes will be differentially regulated during the early stages of dengue and might predict the clinical outcome. Aiming to identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral blood mononuclear cells of mild and severe dengue patients during the febrile stage of the disease to measure the expression levels of selected genes by quantitative polymerase chain reaction. The selected candidate biomarkers were previously identified by our group as differentially expressed in microarray studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and FCGR3B were differentially expressed between patients who developed clinical symptoms associated with the mild type of dengue and patients who showed clinical symptoms associated with severe dengue. We suggest that this gene expression panel could putatively serve as biomarkers for the clinical prognosis of dengue haemorrhagic fever.

  20. The potential role of biomarkers in predicting gestational diabetes

    Directory of Open Access Journals (Sweden)

    Huguette S Brink

    2016-08-01

    Full Text Available Gestational diabetes (GD is a frequent complication during pregnancy and is associated with maternal and neonatal complications. It is suggested that a disturbing environment for the foetus, such as impaired glucose metabolism during intrauterine life, may result in enduring epigenetic changes leading to increased disease risk in adult life. Hence, early prediction of GD is vital. Current risk prediction models are based on maternal and clinical parameters, lacking a strong predictive value. Adipokines are mainly produced by adipocytes and suggested to be a link between obesity and its cardiovascular complications. Various adipokines, including adiponectin, leptin and TNFα, have shown to be dysregulated in GD. This review aims to outline biomarkers potentially associated with the pathophysiology of GD and discuss the role of integrating predictive biomarkers in current clinical risk prediction models, in order to enhance the identification of those at risk.

  1. A CONCISE PANEL OF BIOMARKERS IDENTIFIES NEUROCOGNITIVE FUNCTIONING CHANGES IN HIV-INFECTED INDIVIDUALS

    Science.gov (United States)

    Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.

    2013-01-01

    Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on

  2. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M.; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan

    2016-01-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  3. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Shilpa [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Koller, Antonius [Proteomics Center, Stony Brook University School of Medicine, Stony Brook, New York (United States); Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Mani, Kartik M. [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wen, Ruofeng [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York (United States); Alfieri, Alan; Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wang, Jian [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Patel, Purvi [Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York (United States); Bandeira, Nuno [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); and others

    2016-11-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  4. Exosomal MicroRNAs as Potential Biomarkers in Neuropsychiatric Disorders.

    Science.gov (United States)

    Fries, Gabriel R; Quevedo, Joao

    2018-01-01

    This chapter will discuss the potential use of microRNAs, particularly those located in peripherally-isolated exosomes, as biomarkers in neuropsychiatric disorders. These extracellular vesicles are released as a form of cell-to-cell communication and may mediate the soma-to-germline transmission of brain-relevant information, thereby potentially contributing to the inter- or transgenerational transmission of behavioral traits. Recent novel methods allow for the enrichment of peripheral exosomes specifically released by neurons and astrocytes and may provide valuable brain-relevant biosignatures of disease.

  5. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status.

    Science.gov (United States)

    Sébédio, Jean-Louis

    Diet, dietary patterns, and other environmental factors such as exposure to toxins are playing an important role in the prevention/development of many diseases, like obesity, type 2 diabetes, and consequently on the health status of individuals. A major challenge nowadays is to identify novel biomarkers to detect as early as possible metabolic dysfunction and to predict evolution of health status in order to refine nutritional advices to specific population groups. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics coupled with statistical and bioinformatics tools have already shown great potential in this research field even if so far only few biomarkers have been validated. For the past two decades, important analytical techniques have been developed to detect as many metabolites as possible in human biofluids such as urine, blood, and saliva. In the field of food science and nutrition, many studies have been carried out for food authenticity, quality, and safety, as well as for food processing. Furthermore, metabolomic investigations have been carried out to discover new early biomarkers of metabolic dysfunction and predictive biomarkers of developing pathologies (obesity, metabolic syndrome, type-2 diabetes, etc.). Great emphasis is also placed in the development of methodologies to identify and validate biomarkers of nutrients exposure. © 2017 Elsevier Inc. All rights reserved.

  6. Metabolomics of Hydrazine-Induced Hepatotoxicity in Rats for Discovering Potential Biomarkers

    Directory of Open Access Journals (Sweden)

    Zhuoling An

    2018-01-01

    Full Text Available Metabolic pathway disturbances associated with drug-induced liver injury remain unsatisfactorily characterized. Diagnostic biomarkers for hepatotoxicity have been used to minimize drug-induced liver injury and to increase the clinical safety. A metabolomics strategy using rapid-resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS analyses and multivariate statistics was implemented to identify potential biomarkers for hydrazine-induced hepatotoxicity. The global serum and urine metabolomics of 30 hydrazine-treated rats at 24 or 48 h postdosing and 24 healthy rats were characterized by a metabolomics approach. Multivariate statistical data analyses and receiver operating characteristic (ROC curves were performed to identify the most significantly altered metabolites. The 16 most significant potential biomarkers were identified to be closely related to hydrazine-induced liver injury. The combination of these biomarkers had an area under the curve (AUC > 0.85, with 100% specificity and sensitivity, respectively. This high-quality classification group included amino acids and their derivatives, glutathione metabolites, vitamins, fatty acids, intermediates of pyrimidine metabolism, and lipids. Additionally, metabolomics pathway analyses confirmed that phenylalanine, tyrosine, and tryptophan biosynthesis as well as tyrosine metabolism had great interactions with hydrazine-induced liver injury in rats. These discriminating metabolites might be useful in understanding the pathogenesis mechanisms of liver injury and provide good prospects for drug-induced liver injury diagnosis clinically.

  7. Circulating microRNAs as Potential Biomarkers of Infectious Disease

    Science.gov (United States)

    Correia, Carolina N.; Nalpas, Nicolas C.; McLoughlin, Kirsten E.; Browne, John A.; Gordon, Stephen V.; MacHugh, David E.; Shaughnessy, Ronan G.

    2017-01-01

    microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease. PMID:28261201

  8. Identifying blood biomarkers and physiological processes that distinguish humans with superior performance under psychological stress.

    Directory of Open Access Journals (Sweden)

    Amanda M Cooksey

    2009-12-01

    Full Text Available Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB, which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others.Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology.The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.

  9. MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer

    International Nuclear Information System (INIS)

    Pal, Manish K.; Jaiswar, Shyam P.; Dwivedi, Vinaya N.; Tripathi, Amit K.; Dwivedi, Ashish; Sankhwar, Pushplata

    2015-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers (mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as microRNAs (miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish miRNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers

  10. Potential early biomarkers of sarcopenia among independent older adults.

    Science.gov (United States)

    Coto Montes, Ana; Boga, José Antonio; Bermejo Millo, Carlos; Rubio González, Adrián; Potes Ochoa, Yaiza; Vega Naredo, Ignacio; Martínez Reig, Marta; Romero Rizos, Luis; Sánchez Jurado, Pedro Manuel; Solano, Juan Jose; Abizanda, Pedro; Caballero, Beatriz

    2017-10-01

    There are no tools or biomarkers for a quantitative analysis of sarcopenia. Cross-sectional study of the diagnosis of sarcopenia in 200 independent adults aged 70 years or over. Sarcopenia was defined as loss of muscle mass together with low strength and/or loss of physical performance. We considered different clinical parameters and assayed potential blood biomarkers (cell energetic metabolism, muscle performance, inflammation, infection and oxidative stress). The prevalence of sarcopenia was 35.3% in women and 13.1% in men, and it was significantly associated with advanced age, a low functional performance in the lower extremities, deficient weekly consumption of kilocalories, risk of malnutrition, and drug use for the digestive system. A close relationship was found between sarcopenia, pre-frailty and depressed mood. With these confounding variables, we observed that products of lipid peroxidation were closely associated with sarcopenia in independent older adults (frail participants and those with severe dependence had been excluded from the sample). The best multivariate model proposed was able to predict 67.6% of the variance in sarcopenia, with a power of discrimination of 93.5%. Additional analyses considering lipid levels, fat mass, dyslipidemia, use of lipid-lowering drugs and hypertension confirmed this close association between lipid peroxidation and sarcopenia. Given the difficulty in the diagnosis of sarcopenia in clinical practice, we suggest the use of blood circulating products of lipid peroxidation as potential biomarkers for an early diagnosis of sarcopenia in independent older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transmembrane amyloid-related proteins in CSF as potential biomarkers for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Inmaculada eLopez-Font

    2015-06-01

    Full Text Available In the continuing search for new cerebrospinal fluid (CSF biomarkers for Alzheimer’s disease (AD, reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP, as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1 and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.

  12. Identification of potential biomarkers from microarray experiments using multiple criteria optimization

    International Nuclear Information System (INIS)

    Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio

    2013-01-01

    Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization

  13. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    Science.gov (United States)

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  14. SNIPE: A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer’s Disease

    DEFF Research Database (Denmark)

    Coupé, Pierrick; Eskildsen, Simon Fristed; Manjón, José V.

    , from a clinical point of view the prediction of AD is the key question since it is in that moment when treatment is possible. The potential use of structural MRI as imaging biomarker for Alzheimer’s disease (AD) for early detection has become generally accepted, especially the use of atrophy...

  15. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    Science.gov (United States)

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  16. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, Christian; Jourdain, P.; Magistretti, Pierre J.

    2016-01-01

    parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  17. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  18. Circulating DNA as Potential Biomarker for Cancer Individualized Therapy

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    2013-09-01

    Full Text Available Cancer individualized therapy often requires for gene mutation analysis of tumor tissue. However, tumor tissue is not always available in clinical practice, particularly from patients with refractory and recurrence disease. Even if patients have sufficient tumor tissue for detection, as development of cancer, the gene status and drug sensitivity of tumor tissues could also change. Hence, screening mutations from primary tumor tissues becomes useless, it’s necessary to find a surrogate tumor tissue for individualized gene screening. Circulating DNA is digested rapidly from blood, which could provide real-time information of the released fragment and make the real-time detection possible. Therefore, it’s expected that circulating DNA could be a potential tumor biomarker for cancer individualized therapy. This review focuses on the biology and clinical utility of circulating DNA mainly on gene mutation detection. Besides, its current status and possible direction in this research area is summarized and discussed objectively.

  19. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    Science.gov (United States)

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  20. Nitric oxide as a potential biomarker in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Nesina Avdagić

    2013-02-01

    Full Text Available The aim of this study was to investigate changes in serum nitric oxide (NO concentration in inflammatory bowel diseases (IBD patients and its use as potential biomarker in differential diagnosis of ulcerative colitis (UC and Crohn's disease (CD and in disease activity assessment. In 60 patients of both genders - 30 with ulcerative colitis and 30 with Crohn's disease - and 30 controls serum nitric oxide concentration was determined by measuring nitrite concentration, a stable metabolic product of NO with oxygen. Conversion of nitrates (NO3- to nitrites (NO2- was done with elementary zinc. The nitrite concentration was determined by classic colorimetrical Griess reaction. Median serum NO concentration was statistically different (p=0,0005 between UC patients (15.25 µmol/L; 13.47 - 19.88 µmol/L, CD patients (14.54 µmol/L; 13.03 -16.32 µmol/L and healthy controls (13.29 µmol/L; 12.40 - 13.92 µmol/L. When active UC and CD patients were compared with inactive UC and CD patients respectively a significant difference in serum NO level was found (p=0.0005. With a cut-off level of 17.39 µmol/L NO had a sensitivity of 100% and a specificity of 100% in discriminating between active and inactive UC patients. With cut-off value of 14.01 µmol/L serum NO level had a sensitivity of 88% and a specificity of 69% in distinguishing between patients with active CD and inactive CD. Serum NO concentration is a minimally invasive and rapid tool for discriminating between active and inactive IBD patients and could be used as useful biomarker in monitoring of disease activity in IBD patients.

  1. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1.

    Science.gov (United States)

    Yee, S W; Giacomini, M M; Hsueh, C-H; Weitz, D; Liang, X; Goswami, S; Kinchen, J M; Coelho, A; Zur, A A; Mertsch, K; Brian, W; Kroetz, D L; Giacomini, K M

    2016-11-01

    Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  2. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker.

    Science.gov (United States)

    Ray, Partha; Rialon-Guevara, Kristy L; Veras, Emanuela; Sullenger, Bruce A; White, Rebekah R

    2012-05-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.

  3. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    Science.gov (United States)

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  4. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    Science.gov (United States)

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  5. Investigating the biomarker potential of glycoproteins using comparative glycoprofiling - application to tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Thøgersen, Ida; Lademann, Ulrik Axel

    2008-01-01

    Cancer-induced alterations of protein glycosylations are well-known phenomena. Hence, the glycoprofile of certain glycoproteins can potentially be used as biomarkers for early diagnosis. However, there are a substantial number of candidates and the techniques for measuring their biomarker potential...

  6. Harnessing Cerebrospinal Fluid Biomarkers in Clinical Trials for Treating Alzheimer's and Parkinson's Diseases: Potential and Challenges.

    Science.gov (United States)

    Kim, Dana; Kim, Young Sam; Shin, Dong Wun; Park, Chang Shin; Kang, Ju Hee

    2016-10-01

    No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.

  7. Plasma YKL-40: a potential new cancer biomarker?

    DEFF Research Database (Denmark)

    Johansen, Julia S; Schultz, Nicolai A; Jensen, Benny V

    2009-01-01

    tissue remodeling. Plasma levels of YKL-40 are elevated in a subgroup of patients with primary or advanced cancer compared with age-matched healthy subjects, but also in patients with many different diseases characterized by inflammation. Elevated plasma YKL-40 levels are an independent prognostic...... by inflammation. Large prospective, longitudinal clinical cancer studies are needed to determine if plasma YKL-40 is a new cancer biomarker, or is mainly a biomarker of inflammation....

  8. Potential biomarkers for bipolar disorder: Where do we stand?

    Directory of Open Access Journals (Sweden)

    Rajesh Sagar

    2017-01-01

    Full Text Available Bipolar disorder (BD is a severe, recurrent mood disorder, associated with a significant morbidity and mortality, with high rates of suicides and medical comorbidities. There is a high risk of mood disorders among the first-degree relatives of patients with BD. In the current clinical practice, the diagnosis of BD is made by history taking, interview and behavioural observations, thereby lacking an objective, biological validation. This approach may result in underdiagnosis, misdiagnosis and eventually poorer outcomes. Due to the heterogeneity of BD, the possibility of developing a single, specific biomarker is still remote; however, there is a set of promising biomarkers which may serve as predictive, prognostic or treatment markers in the future. The review presents a critical appraisal and update on some of the most promising candidates for biomarkers, namely, neuroimaging markers, peripheral biomarkers and genetic markers, including a brief discussion on cognitive endophenotypes as indicative of genetic risk. The lessons learnt from other fields and specialties in medicine need to be applied to psychiatry to translate the knowledge from 'bench to bedside' by means of clinically useful biomarkers. Overall, the biomarkers may help in pushing the shift towards personalized medicine for psychiatric patients.

  9. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Cui Ziyou

    2009-03-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML patients. Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS. A classification model was established by Biomarker Pattern Software (BPS. Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4 and pro-platelet basic protein precursor (PBP. Two other candidate protein peaks (8137 and 8937 m/z were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a. Conclusion Platelet factor (PF4, connective tissue activating peptide III (CTAP-III and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with

  10. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Shi, Linan; Zhang, Jun; Wu, Peng; Feng, Kai; Li, Jing; Xie, Zhensheng; Xue, Peng; Cai, Tanxi; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Zhang, Jianzhong; Yang, Fuquan

    2009-01-01

    Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional

  11. Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.

    Science.gov (United States)

    Worst, Thomas Stefan; von Hardenberg, Jost; Gross, Julia Christina; Erben, Philipp; Schnölzer, Martina; Hausser, Ingrid; Bugert, Peter; Michel, Maurice Stephan; Boutros, Michael

    2017-06-01

    In prostate cancer and other malignancies sensitive and robust biomarkers are lacking or have relevant limitations. Prostate specific antigen (PSA), the only biomarker widely used in prostate cancer, is suffering from low specificity. Exosomes offer new perspectives in the discovery of blood-based biomarkers. Here we present a proof-of principle study for a proteomics-based identification pipeline, implementing existing data sources, to exemplarily identify exosome-based biomarker candidates in prostate cancer.Exosomes from malignant PC3 and benign PNT1A cells and from FBS-containing medium were isolated using sequential ultracentrifugation. Exosome and control samples were analyzed on an LTQ-Orbitrap XL mass spectrometer. Proteomic data is available via ProteomeXchange with identifier PXD003651. We developed a scoring scheme to rank 64 proteins exclusively found in PC3 exosomes, integrating data from four public databases and published mass spectrometry data sets. Among the top candidates, we focused on the tight junction protein claudin 3. Retests under serum-free conditions using immunoblotting and immunogold labeling confirmed the presence of claudin 3 on PC3 exosomes. Claudin 3 levels were determined in the blood plasma of patients with localized ( n = 58; 42 with Gleason score 6-7, 16 with Gleason score ≥8) and metastatic prostate cancer ( n = 11) compared with patients with benign prostatic hyperplasia ( n = 15) and healthy individuals ( n = 15) using ELISA, without prior laborious exosome isolation. ANOVA showed different CLDN3 plasma levels in these groups ( p = 0.004). CLDN3 levels were higher in patients with Gleason ≥8 tumors compared with patients with benign prostatic hyperplasia ( p = 0.012) and Gleason 6-7 tumors ( p = 0.029). In patients with localized tumors CLDN3 levels predicted a Gleason score ≥ 8 (AUC = 0.705; p = 0.016) and did not correlate with serum PSA.By using the described workflow claudin 3 was identified and validated as a

  12. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects.

    Directory of Open Access Journals (Sweden)

    Joseph A Rothwell

    Full Text Available Coffee contains various bioactives implicated with human health and disease risk. To accurately assess the effects of overall consumption upon health and disease, individual intake must be measured in large epidemiological studies. Metabolomics has emerged as a powerful approach to discover biomarkers of intake for a large range of foods. Here we report the profiling of the urinary metabolome of cohort study subjects to search for new biomarkers of coffee intake. Using repeated 24-hour dietary records and a food frequency questionnaire, 20 high coffee consumers (183-540 mL/d and 19 low consumers were selected from the French SU.VI.MAX2 cohort. Morning spot urine samples from each subject were profiled by high-resolution mass spectrometry. Partial least-square discriminant analysis of multidimensional liquid chromatography-mass spectrometry data clearly distinguished high consumers from low via 132 significant (p-value<0.05 discriminating features. Ion clusters whose intensities were most elevated in the high consumers were annotated using online and in-house databases and their identities checked using commercial standards and MS-MS fragmentation. The best discriminants, and thus potential markers of coffee consumption, were the glucuronide of the diterpenoid atractyligenin, the diketopiperazine cyclo(isoleucyl-prolyl, and the alkaloid trigonelline. Some caffeine metabolites, such as 1-methylxanthine, were also among the discriminants, however caffeine may be consumed from other sources and its metabolism is subject to inter-individual variation. Receiver operating characteristics curve analysis showed that the biomarkers identified could be used effectively in combination for increased sensitivity and specificity. Once validated in other cohorts or intervention studies, these specific single or combined biomarkers will become a valuable alternative to assessment of coffee intake by dietary survey and finally lead to a better understanding of

  13. Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens.

    Science.gov (United States)

    Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng

    2017-03-01

    Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.

  14. Exosomal microRNAs as potential circulating biomarkers in gastrointestinal tract cancers: a systematic review protocol

    Directory of Open Access Journals (Sweden)

    Elmira Gheytanchi

    2017-11-01

    Full Text Available Abstract Background Metastasis is the most frequent type of recurrence in gastrointestinal (GI cancers, and there is an emerging potential for new diagnostic and therapeutic approaches, especially in the cases of metastatic GI carcinomas. The expression profiles of circulating exosomal microRNAs are of particular interest as novel non-invasive diagnostic and prognostic biomarkers for improved detection of GI cancers in body fluids, especially in the serum of patients with recurrent cancers. The aim of this study is to systematically review primary studies and identify the miRNA profiles of serum exosomes of GI cancers. Methods and design This systematic review will be reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA guidance. Relevant studies will be identified through a comprehensive search of the following main electronic databases: PubMed, Web of Science, Embase, Scopus, and Google Scholar, with no language restrictions (up to July 2017. Full copies of articles will be identified by a defined search strategy and will be considered for inclusion against pre-defined criteria. The quality assessment of the included studies will be performed by the Newcastle-Ottawa Scale (NOS. Data will be analyzed using Stata software V.12. Publication bias will be assessed by funnel plots, Beggs’ and Eggers’ tests. The levels of evidence for primary outcomes will be evaluated using the GRADE criteria. Discussion The analysis of circulating exosomal miRNA profiles provides attractive screening and non-invasive diagnostic tools for the majority of solid tumors including GI cancers. There is limited information regarding the relationship between serum exosomal miRNA profiles and the pathological condition of patients with different GI cancers. Since there is no specific biomarker for GI cancers, we aim to suggest a number of circulating exosomal miRNA candidates as potential multifaceted GI cancer biomarkers

  15. Antibody phage display assisted identification of junction plakoglobin as a potential biomarker for atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Seraina Cooksley-Decasper

    Full Text Available To date, no plaque-derived blood biomarker is available to allow diagnosis, prognosis or monitoring of atherosclerotic vascular diseases. In this study, specimens of thrombendarterectomy material from carotid and iliac arteries were incubated in protein-free medium to obtain plaque and control secretomes for subsequent subtractive phage display. The selection of nine plaque secretome-specific antibodies and the analysis of their immunopurified antigens by mass spectrometry led to the identification of 22 proteins. One of them, junction plakoglobin (JUP-81 and its smaller isoforms (referred to as JUP-63, JUP-55 and JUP-30 by molecular weight were confirmed by immunohistochemistry and immunoblotting with independent antibodies to be present in atherosclerotic plaques and their secretomes, coronary thrombi of patients with acute coronary syndrome (ACS and macrophages differentiated from peripheral blood monocytes as well as macrophage-like cells differentiated from THP1 cells. Plasma of patients with stable coronary artery disease (CAD (n = 15 and ACS (n = 11 contained JUP-81 at more than 2- and 14-fold higher median concentrations, respectively, than plasma of CAD-free individuals (n = 13. In conclusion, this proof of principle study identified and verified JUP isoforms as potential plasma biomarkers for atherosclerosis. Clinical validation studies are needed to determine its diagnostic efficacy and clinical utility as a biomarker for diagnosis, prognosis or monitoring of atherosclerotic vascular diseases.

  16. Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer

    Directory of Open Access Journals (Sweden)

    Shen Hu

    2010-09-01

    Full Text Available Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC. A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B. We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.

  17. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    Science.gov (United States)

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  18. Novel biomarkers with potential for cardiovascular risk reclassification.

    Science.gov (United States)

    Mallikethi-Reddy, Sagar; Briasoulis, Alexandros; Akintoye, Emmanuel; Afonso, Luis

    Precise estimation of the absolute risk for CVD events is necessary when making treatment recommendations for patients. A number of multivariate risk models have been developed for estimation of cardiovascular risk in asymptomatic individuals based upon assessment of multiple variables. Due to the inherent limitation of risk models, several novel risk markers including serum biomarkers have been studied in an attempt to improve the cardiovascular risk prediction above and beyond the established risk factors. In this review, we discuss the role of underappreciated biomarkers such as red cell distribution width (RDW), cystatin C (cysC), and homocysteine (Hcy) as well as imaging biomarkers in cardiovascular risk reclassification, and highlight their utility as additional source of information in patients with intermediate risk.

  19. Potential Immune Biomarkers in Diagnosis and Clinical Management for Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Zecevic Lamija

    2018-04-01

    Full Text Available Background: There is still no reliable, specific biomarker for precision diagnosis and clinical monitoring of systemic lupus erythematosus. The aim of this study was to investigate the importance of the determination of immunofenotypic profiles (T, B lymphocytes and NK cells and serum cytokine concentrations (IL-17 and IFN-alpha as potential biomarkers for this disease.

  20. Identifying Potential Child Abuse through Oral Examination

    Directory of Open Access Journals (Sweden)

    Jillian N. Printz

    2017-01-01

    Full Text Available Limited reports of oropharyngeal trauma exist in the literature even though this type of injury is extremely common in pediatric populations. There are no widely agreed upon diagnostic and management tools for such injuries in abuse cases, emphasizing the importance of reporting rare cases of orofacial trauma. This case report of a soft palate laceration demonstrates an instance of initially unrecognized potential child abuse. We aim to clarify understanding of such injuries. Furthermore, the report highlights the need for recognition of oral signs of child abuse in order to promote early detection, reporting, and appropriate management.

  1. Agama lizard: A potential biomarker of environmental heavy metal ...

    African Journals Online (AJOL)

    In this study, the suitability of Agama lizard as a biomarker in assessing environmental pollution levels of arsenium (As), barium (Ba), cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) was investigated. Samples of top soil and agama lizards were taken from five sites within a university community in ...

  2. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins.

    Science.gov (United States)

    Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan

    2016-08-25

    Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the

  3. Cardiovascular risk assessment of dyslipidemic children: analysis of biomarkers to identify monogenic dyslipidemia[S

    Science.gov (United States)

    Medeiros, Ana Margarida; Alves, Ana Catarina; Aguiar, Pedro; Bourbon, Mafalda

    2014-01-01

    The distinction between a monogenic dyslipidemia and a polygenic/environmental dyslipidemia is important for the cardiovascular risk assessment, counseling, and treatment of these patients. The present work aims to perform the cardiovascular risk assessment of dyslipidemic children to identify useful biomarkers for clinical criteria improvement in clinical settings. Main cardiovascular risk factors were analyzed in a cohort of 237 unrelated children with clinical diagnosis of familial hypercholesterolemia (FH). About 40% carried at least two cardiovascular risk factors and 37.6% had FH, presenting mutations in LDLR and APOB. FH children showed significant elevated atherogenic markers and lower concentration of antiatherogenic particles. Children without a molecular diagnosis of FH had higher levels of TGs, apoC2, apoC3, and higher frequency of BMI and overweight/obesity, suggesting that environmental factors can be the underlying cause of their hypercholesterolem≥ia. An apoB/apoA1 ratio ≥0.68 was identified as the best biomarker (area under the curve = 0.835) to differentiate FH from other dyslipidemias. The inclusion in clinical criteria of a higher cut-off point for LDL cholesterol or an apoB/apoA1 ratio ≥0.68 optimized the criteria sensitivity and specificity. The correct identification, at an early age, of all children at-risk is of great importance so that specific interventions can be implemented. apoB/apoA1 can improve the identification of FH patients. PMID:24627126

  4. A Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in Children.

    Directory of Open Access Journals (Sweden)

    Dang My Nhi

    2016-02-01

    Full Text Available Severe dengue with severe plasma leakage (SD-SPL is the most frequent of dengue severe form. Plasma biomarkers for early predictive diagnosis of SD-SPL are required in the primary clinics for the prevention of dengue death.Among 63 confirmed dengue pediatric patients recruited, hospital based longitudinal study detected six SD-SPL and ten dengue with warning sign (DWS. To identify the specific proteins increased or decreased in the SD-SPL plasma obtained 6-48 hours before the shock compared with the DWS, the isobaric tags for relative and absolute quantification (iTRAQ technology was performed using four patients each group. Validation was undertaken in 6 SD-SPL and 10 DWS patients.Nineteen plasma proteins exhibited significantly different relative concentrations (p<0.05, with five over-expressed and fourteen under-expressed in SD-SPL compared with DWS. The individual protein was classified to either blood coagulation, vascular regulation, cellular transport-related processes or immune response. The immunoblot quantification showed angiotensinogen and antithrombin III significantly increased in SD-SPL whole plasma of early stage compared with DWS subjects. Even using this small number of samples, antithrombin III predicted SD-SPL before shock occurrence with accuracy.Proteins identified here may serve as candidate predictive markers to diagnose SD-SPL for timely clinical management. Since the number of subjects are small, so further studies are needed to confirm all these biomarkers.

  5. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    International Nuclear Information System (INIS)

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    2016-01-01

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  6. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Mi, Dong, E-mail: mid@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-09-15

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  7. MicroRNA-146a expression as a potential biomarker for rheumatoid ...

    African Journals Online (AJOL)

    MicroRNA-146a expression as a potential biomarker for rheumatoid arthritis in Egypt. Heba Mohamed Abdelkader Elsayed, Walaa Shawky Khater, Ayman Asaad Ibrahim, Maha Salah El-din Hamdy, Nashwa Aly Morshedy ...

  8. Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy.

    Science.gov (United States)

    Wu, Helen C; Dachet, Fabien; Ghoddoussi, Farhad; Bagla, Shruti; Fuerst, Darren; Stanley, Jeffrey A; Galloway, Matthew P; Loeb, Jeffrey A

    2017-09-01

    This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  9. Research on Potential Biomarkers in Hereditary Haemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Luisa Maria Botella

    2015-03-01

    Full Text Available Hereditary Hemorrhagic Telangiectasia (HHT is a genetically heterogeneous disorder, involving mutations in two predominant genes known as Endoglin (ENG; HHT1 and Activin receptor like kinase 1 (ACVRL1/ALK1; HHT2, as well as in some less frequent genes, such as MADH4/SMAD4 (JP-HHT or BMP9/GDF2 (HHT5. The diagnosis of HHT patients currently remains at the clinical level, according to the Curaçao criteria, whereas the molecular diagnosis is used to confirm or rule out suspected HHT cases, especially when a well characterized index case is present in the family or in an isolated population. Unfortunately, many suspected patients do not present a clear HHT diagnosis or do not show pathogenic mutations in HHT genes, prompting the need to investigate additional biomarkers of the disease. Here, several HHT biomarkers and novel methodological approaches developed during the last years will be reviewed. On one hand, products detected in plasma or serum samples: soluble proteins (VEGF, TGF-β1, soluble endoglin, angiopoietin-2 and microRNA variants (miR-27a, miR-205, miR-210. On the other hand, differential HHT gene expression fingerprinting, Next Generation Sequencing (NGS of a panel of genes involved in HHT, and infrared spectroscopy combined with Artificial Neural Network (ANN patterns will also be reviewed. All these biomarkers might help to improve and refine HHT diagnosis by distinguishing from the non-HHT population.

  10. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  11. Characterisation of esterases as potential biomarkers of pesticide exposure in the lugworm Arenicola marina (Annelida: Polychaeta)

    International Nuclear Information System (INIS)

    Hannam, Marie L.; Hagger, Josephine A.; Jones, Malcolm B.; Galloway, Tamara S.

    2008-01-01

    Here, we identify and characterise cholinesterase (ChE) and carboxylesterase (CbE) activities in the body tissues of the sediment dwelling worm Arenicola marina. Exposure to the organophosphorus pesticide azamethiphos yielded an in vitro IC 50 of 5 μg l -1 for propionylcholinesterase (PChE). PChE was significantly inhibited in vivo after a 10 day exposure to 100 μg l -1 azamethiphos, equivalent to the recommended aquatic application rate (ANOVA; F = 2.75, P = 0.033). To determine sensitivity to environmental conditions, A. marina were exposed for 10 days to field collected sediments. PChE activity was significantly lower in worms exposed to sediments from an estuary classified to be at high risk from point source pollution by the UK Environment Agency (ANOVA; F = 15.33, P < 0.001). Whilst causality cannot be directly attributed from these latter exposures, they provide an important illustration of the potential utility of esterase activity as a biomarker of environmental quality in this ecologically relevant sentinel species. - This paper provides a preliminary characterisation of esterase enzyme activities in the tissues and body fluids of the sediment dwelling worm Arenicola marina and explores their potential use as biomarkers of organophosphorus pesticide exposure in the marine environment

  12. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  13. Characterisation of esterases as potential biomarkers of pesticide exposure in the lugworm Arenicola marina (Annelida: Polychaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Hannam, Marie L. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom)], E-mail: marie.hannam@plymouth.ac.uk; Hagger, Josephine A.; Jones, Malcolm B.; Galloway, Tamara S. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom)

    2008-03-15

    Here, we identify and characterise cholinesterase (ChE) and carboxylesterase (CbE) activities in the body tissues of the sediment dwelling worm Arenicola marina. Exposure to the organophosphorus pesticide azamethiphos yielded an in vitro IC{sub 50} of 5 {mu}g l{sup -1} for propionylcholinesterase (PChE). PChE was significantly inhibited in vivo after a 10 day exposure to 100 {mu}g l{sup -1} azamethiphos, equivalent to the recommended aquatic application rate (ANOVA; F = 2.75, P = 0.033). To determine sensitivity to environmental conditions, A. marina were exposed for 10 days to field collected sediments. PChE activity was significantly lower in worms exposed to sediments from an estuary classified to be at high risk from point source pollution by the UK Environment Agency (ANOVA; F = 15.33, P < 0.001). Whilst causality cannot be directly attributed from these latter exposures, they provide an important illustration of the potential utility of esterase activity as a biomarker of environmental quality in this ecologically relevant sentinel species. - This paper provides a preliminary characterisation of esterase enzyme activities in the tissues and body fluids of the sediment dwelling worm Arenicola marina and explores their potential use as biomarkers of organophosphorus pesticide exposure in the marine environment.

  14. MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy.

    Science.gov (United States)

    Sommariva, Elena; D'Alessandra, Yuri; Farina, Floriana Maria; Casella, Michela; Cattaneo, Fabio; Catto, Valentina; Chiesa, Mattia; Stadiotti, Ilaria; Brambilla, Silvia; Dello Russo, Antonio; Carbucicchio, Corrado; Vettor, Giulia; Riggio, Daniela; Sandri, Maria Teresa; Barbuti, Andrea; Vernillo, Gianluca; Muratori, Manuela; Dal Ferro, Matteo; Sinagra, Gianfranco; Moimas, Silvia; Giacca, Mauro; Colombo, Gualtiero Ivanoe; Pompilio, Giulio; Tondo, Claudio

    2017-07-06

    Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53 ± 0.04 fold expression difference in ACM vs. HC (p ACM (n = 13) and HC (n = 17) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78 ± 0.05 fold expression change vs. IVT (p = 0.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation.

  15. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    Science.gov (United States)

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  16. Serum Metabolomics to Identify the Liver Disease-Specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma

    Science.gov (United States)

    Gao, Rong; Cheng, Jianhua; Fan, Chunlei; Shi, Xiaofeng; Cao, Yuan; Sun, Bo; Ding, Huiguo; Hu, Chengjin; Dong, Fangting; Yan, Xianzhong

    2015-12-01

    Hepatocellular carcinoma (HCC) is a common malignancy that has region specific etiologies. Unfortunately, 85% of cases of HCC are diagnosed at an advanced stage. Reliable biomarkers for the early diagnosis of HCC are urgently required to reduced mortality and therapeutic expenditure. We established a non-targeted gas chromatography-time of flight-mass spectrometry (GC-TOFMS) metabolomics method in conjunction with Random Forests (RF) analysis based on 201 serum samples from healthy controls (NC), hepatitis B virus (HBV), liver cirrhosis (LC) and HCC patients to explore the metabolic characteristics in the progression of hepatocellular carcinogenesis. Ultimately, 15 metabolites were identified intimately associated with the process. Phenylalanine, malic acid and 5-methoxytryptamine for HBV vs. NC, palmitic acid for LC vs. HBV, and asparagine and β-glutamate for HCC vs. LC were screened as the liver disease-specific potential biomarkers with an excellent discriminant performance. All the metabolic perturbations in these liver diseases are associated with pathways for energy metabolism, macromolecular synthesis, and maintaining the redox balance to protect tumor cells from oxidative stress.

  17. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases

    Directory of Open Access Journals (Sweden)

    Müller G

    2012-08-01

    Full Text Available Günter MüllerDepartment of Biology 1, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, GermanyAbstract: Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy – hallmarks of personalized medicine – plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the

  18. Chimeric RNAs as potential biomarkers for tumor diagnosis

    Directory of Open Access Journals (Sweden)

    Jianhua Zhou

    2012-03-01

    Full Text Available Cancers claim millions of lives each year. Early detection thatcan enable a higher chance of cure is of paramount importanceto cancer patients. However, diagnostic tools for many forms oftumors have been lacking. Over the last few years, studies ofchimeric RNAs as biomarkers have emerged. Numerous reportsusing bioinformatics and screening methodologies havedescribed more than 30,000 expressed sequence tags (EST orcDNA sequences as putative chimeric RNAs. While cancer cellshave been well known to contain fusion genes derived fromchromosomal translocations, rearrangements or deletions, recentstudies suggest that trans-splicing in cells may be another sourceof chimeric RNA production. Unlike cis-splicing, trans-splicingtakes place between two pre-mRNA molecules, which are inmost cases derived from two different genes, generating achimeric non-co-linear RNA. It is possible that trans-splicingoccurs in normal cells at high frequencies but the resultingchimeric RNAs exist only at low levels. However the levels ofcertain RNA chimeras may be elevated in cancers, leading to theformation of fusion genes. In light of the fact that chimeric RNAshave been shown to be overrepresented in various tumors,studies of the mechanisms that produce chimeric RNAs andidentification of signature RNA chimeras as biomarkers presentan opportunity for the development of diagnoses for early tumordetection. (BMB reports 2012; 45(3: 133-140

  19. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Firas H Kobeissy

    2016-11-01

    Full Text Available Traumatic brain injury (TBI represents a critical health problem of which diagnosis, management and treatment remain challenging. TBI is a contributing factor in approximately 1/3 of all injury-related deaths in the United States. The Centers for Disease Control and Prevention (CDC estimate that 1.7 million TBI people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics-systems biology is proving to be a prominent tool in biomarker discovery for central nervous system (CNS injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI model of experimental TBI in rat model to assess the temporal-global proteome changes after acute (1 day and for the first time, subacute (7 days, post-injury time frame using the established CAX-PAGE LC-MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entities, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day and subacute (7 days periods post TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7-days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is amongst the first to assess temporal neuroproteome

  20. Glucosylceramide and Lysophosphatidylcholines as Potential Blood Biomarkers for Drug-Induced Hepatic Phospholipidosis

    Science.gov (United States)

    Saito, Kosuke; Maekawa, Keiko; Ishikawa, Masaki; Senoo, Yuya; Urata, Masayo; Murayama, Mayumi; Nakatsu, Noriyuki; Yamada, Hiroshi; Saito, Yoshiro

    2014-01-01

    Drug-induced phospholipidosis is one of the major concerns in drug development and clinical treatment. The present study involved the use of a nontargeting lipidomic analysis with liquid chromatography-mass spectrometry to explore noninvasive blood biomarkers for hepatic phospholipidosis from rat plasma. We used three tricyclic antidepressants (clomipramine [CPM], imipramine [IMI], and amitriptyline [AMT]) for the model of phospholipidosis in hepatocytes and ketoconazole (KC) for the model of phospholipidosis in cholangiocytes and administered treatment for 3 and 28 days each. Total plasma lipids were extracted and measured. Lipid molecules contributing to the separation of control and drug-treated rat plasma in a multivariate orthogonal partial least squares discriminant analysis were identified. Four lysophosphatidylcholines (LPCs) (16:1, 18:1, 18:2, and 20:4) and 42:1 hexosylceramide (HexCer) were identified as molecules separating control and drug-treated rats in all models of phospholipidosis in hepatocytes. In addition, 16:1, 18:2, and 20:4 LPCs and 42:1 HexCer were identified in a model of hepatic phospholipidosis in cholangiocytes, although LPCs were identified only in the case of 3-day treatment with KC. The levels of LPCs were decreased by drug-induced phospholipidosis, whereas those of 42:1 HexCer were increased. The increase in 42:1 HexCer was much higher in the case of IMI and AMT than in the case of CPM; moreover, the increase induced by IMI was dose-dependent. Structural characterization determining long-chain base and hexose delineated that 42:1 HexCer was d18:1/24:0 glucosylceramide (GluCer). In summary, our study demonstrated that d18:1/24:0 GluCer and LPCs are potential novel biomarkers for drug-induced hepatic phospholipidosis. PMID:24980264

  1. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    Science.gov (United States)

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  3. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands.

    Science.gov (United States)

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-12-23

    Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should

  4. Mediators of Inflammation and Angiogenesis in Chronic Spontaneous Urticaria: Are They Potential Biomarkers of the Disease?

    Directory of Open Access Journals (Sweden)

    Ilaria Puxeddu

    2017-01-01

    Full Text Available In chronic spontaneous urticaria (CSU, different pathophysiological mechanisms, potentially responsible for the development of the disease, have been recently described. It is likely that the activation of skin mast cells with consequent release of histamine and other proinflammatory mediators is responsible for vasodilation in the lesional skin of CSU. However, the underlying causes of mast cell activation in the disease are largely unknown and remain to be identified. Thus, in this review, we discuss new insights in the pathogenesis of CSU, focusing on inflammation and angiogenesis. The understanding of these mechanisms will enable the identification of biomarkers useful for the diagnosis, follow-up, and management of CSU and will allow the development of novel, more specific, and patient-tailored therapies.

  5. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

    Science.gov (United States)

    Nath, Anjali K.; Roberts, Lee D.; Liu, Yan; Mahon, Sari B.; Kim, Sonia; Ryu, Justine H.; Werdich, Andreas; Januzzi, James L.; Boss, Gerry R.; Rockwood, Gary A.; MacRae, Calum A.; Brenner, Matthew; Gerszten, Robert E.; Peterson, Randall T.

    2013-01-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. PMID:23345455

  6. SATB2 is a Promising Biomarker for Identifying a Colorectal Origin for Liver Metastatic Adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Yi-Jun Zhang

    2018-02-01

    Full Text Available SATB2 (Special AT-rich sequence-binding protein 2 has recently been shown to be a specific biomarker of colorectal cancer (CRC. The aim of this study was to investigate the diagnostic potential of SATB2 as a means of detecting a CRC origin for liver metastases. SATB2 expression was examined in a resection cohort of 101 CRC and 273 non-CRC adenocarcinoma samples using immunohistochemistry (IHC. The diagnostic accuracy of CRC origins of liver metastases based on SATB2 and a three marker panel of SATB2, CK20 and CDX2 was evaluated using an independent cohort of 192 liver biopsies. IHC showed 97 of the 101 (96.0% primary CRC samples were SATB2 positive, compared to only 6 of the 273 (2.1% samples of other cancer types. The sensitivity, specificity and AUC values of SATB2 expression in resection samples were 97%, 97.1% and 0.977, respectively. Meanwhile, for the liver biopsy samples, the sensitivity, specificity and AUC values of a CRC liver metastases was 92.2%, 97.8% and 0.948 for SATB2, 95.1%, 91.0% and 0.959 for CK20, and 100%, 85.4% and 0.976 for CDX2, respectively. Further analysis demonstrated that all three-marker positivity was detected in 92/103 (89.3% CRC and 2/89 (2.2% non-CRC liver metastases sampled by biopsy. Our findings suggest that SATB2, as measured by IHC, could serve as a promising diagnostic biomarker of CRC metastases. Combining evaluation of SATB2 with CK20 and CDX2 to form a three marker panel further improved the detection of metastatic CRCs in liver biopsy tissues.

  7. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid

    Directory of Open Access Journals (Sweden)

    Lee Jae-Mok

    2011-07-01

    Full Text Available Abstract Background The inflammatory disease periodontitis results in tooth loss and can even lead to diseases of the whole body if not treated. Gingival crevicular fluid (GCF reflects the condition of the gingiva and contains proteins transuded from serum or cells at inflamed sites. In this study, we aimed to discover potential protein biomarkers for periodontitis in GCF proteome using LC-MS/MS. Results We identified 305 proteins from GCF of healthy individuals and periodontitis patients collected using a sterile gel loading tip by ESI-MS/MS coupled to nano-LC. Among these proteins, about 45 proteins were differentially expressed in the GCF proteome of moderate periodontitis patients when compared to the healthy individuals. We first identified azurocidin in the GCF, but not the saliva, as an upregulated protein in the periodontitis patients and verified its increased expression during periodontitis by ELISA using the GCF of the classified periodontitis patients compared to the healthy individuals. In addition, we found that azurocidin inhibited the differentiation of bone marrow-derived macrophages to osteoclasts. Conclusions Our results show that GCF collection using a gel loading tip and subsequent LC-MS/MS analysis following 1D-PAGE proteomic separation are effective for the analysis of the GCF proteome. Our current results also suggest that azurocidin could be a potential biomarker candidate for the early detection of inflammatory periodontal destruction by gingivitis and some chronic periodontitis. Our data also suggest that azurocidin may have an inhibitory role in osteoclast differentiation and, thus, a protective role in alveolar bone loss during the early stages of periodontitis.

  8. Pharmacogenomic Biomarkers

    Directory of Open Access Journals (Sweden)

    Sandra C. Kirkwood

    2002-01-01

    Full Text Available Pharmacogenomic biomarkers hold great promise for the future of medicine and have been touted as a means to personalize prescriptions. Genetic biomarkers for disease susceptibility including both Mendelian and complex disease promise to result in improved understanding of the pathophysiology of disease, identification of new potential therapeutic targets, and improved molecular classification of disease. However essential to fulfilling the promise of individualized therapeutic intervention is the identification of drug activity biomarkers that stratify individuals based on likely response to a particular therapeutic, both positive response, efficacy, and negative response, development of side effect or toxicity. Prior to the widespread clinical application of a genetic biomarker multiple scientific studies must be completed to identify the genetic variants and delineate their functional significance in the pathophysiology of a carefully defined phenotype. The applicability of the genetic biomarker in the human population must then be verified through both retrospective studies utilizing stored or clinical trial samples, and through clinical trials prospectively stratifying patients based on the biomarker. The risk conferred by the polymorphism and the applicability in the general population must be clearly understood. Thus, the development and widespread application of a pharmacogenomic biomarker is an involved process and for most disease states we are just at the beginning of the journey towards individualized therapy and improved clinical outcome.

  9. A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles

    Directory of Open Access Journals (Sweden)

    Dey Dipak K

    2008-01-01

    Full Text Available Abstract Background The discovery of biomarkers is an important step towards the development of criteria for early diagnosis of disease status. Recently electrospray ionization (ESI and matrix assisted laser desorption (MALDI time-of-flight (TOF mass spectrometry have been used to identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such studies are generally very large in size and thus require the use of sophisticated statistical techniques to glean useful information. Most recent attempts to process these types of data model each compound's intensity either discretely by positional (mass to charge ratio clustering or through each compounds' own intensity distribution. Traditionally data processing steps such as noise removal, background elimination and m/z alignment, are generally carried out separately resulting in unsatisfactory propagation of signals in the final model. Results In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery. Conclusion To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass

  10. Biomarkers to assess potential developmental immunotoxicity in children

    International Nuclear Information System (INIS)

    Luster, Michael I.; Johnson, Victor J.; Yucesoy, Berran; Simeonova, Petia P.

    2005-01-01

    Clinical tests are readily available for assessing severe loss of immune function in children with diseases such as AIDS or primary immunodeficiency. However tests that could reliably identify subtle immune changes, as might be expected to result from exposure to developmental immunotoxic agents, are not readily available. A number of tests are described which we believe have potential applicability for epidemiological studies involving developmental immunotoxicity. Several of the tests, such as T cell receptor rearrangement excision circles (TRECs) and cytokine measurements, while highly relevant from a biological standpoint, may be precluded from use at the current time, for either technical issues or insufficient validation. Immunophenotyping and measurement of serum immunoglobulin levels, on the other hand, are well validated. Yet they may require extraordinary care in experimental design and technical performance in order to obtain data that would consistently detect subtle changes, as these tests are not generally considered highly sensitive. Quantification of the immune response to childhood vaccine, while up to the present used sparingly, may represent an excellent indicator for developmental immunotoxicity when conducted under appropriate conditions

  11. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    International Nuclear Information System (INIS)

    McClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B.T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-01-01

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  12. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  13. Salusins: Potential Use as a Biomarker for Atherosclerotic Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2013-01-01

    Full Text Available Human salusin-α and salusin-β are related peptides produced from prosalusin. Bolus injection of salusin-β into rats induces more profound hypotension and bradycardia than salusin-α. Central administration of salusin-β increases blood pressure via release of norepinephrine and arginine-vasopressin. Circulating levels of salusin-α and salusin-β are lower in patients with essential hypertension. Salusin-β exerts more potent mitogenic effects on human vascular smooth muscle cells (VSMCs and fibroblasts than salusin-α. Salusin-β accelerates inflammatory responses in human endothelial cells and monocyte-endothelial adhesion. Human macrophage foam cell formation is stimulated by salusin-β but suppressed by salusin-α. Chronic salusin-β infusion into apolipoprotein E-deficient mice enhances atherosclerotic lesions; salusin-α infusion reduces lesions. Salusin-β is expressed in proliferative neointimal lesions of porcine coronary arteries after stenting. Salusin-α and salusin-β immunoreactivity have been detected in human coronary atherosclerotic plaques, with dominance of salusin-β in macrophage foam cells, VSMCs, and fibroblasts. Circulating salusin-β levels increase and salusin-α levels decrease in patients with coronary artery disease. These findings suggest that salusin-β and salusin-α may contribute to proatherogenesis and antiatherogenesis, respectively. Increased salusin-β and/or decreased salusin-α levels in circulating blood and vascular tissue are closely linked with atherosclerosis. Salusin-α and salusin-β could be candidate biomarkers and therapeutic targets for atherosclerotic cardiovascular diseases.

  14. Circulating microRNAs as a Novel Class of Potential Diagnostic Biomarkers in Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Kichukova Tatyana M.

    2015-12-01

    Full Text Available Neuropsychiatric diseases, such as schizophrenia, bipolar disorder (BD, major depressive disorder (MDD and autism spectrum disorder (ASD, are a huge burden on society, impairing the health of those affected, as well as their ability to learn and work. Biomarkers that reflect the dysregulations linked to neuropsychiatric diseases may potentially assist the diagnosis of these disorders. Most of these biomarkers are found in the brain tissue, which is not easily accessible. This is the challenge for the search of novel biomarkers that are present in various body fluids, including serum or plasma. As a group of important endogenous small noncoding RNAs that regulate gene expression at post-transcriptional level, microRNAs (miRNAs play a crucial role in many physiological and pathological processes. Previously, researchers discovered that miRNAs contribute to the neurodevelopment and maturation, including neurite outgrowth, dendritogenesis and dendritic spine formation. These developments underline the significance of miRNAs as potential biomarkers for diagnosing and prognosing central nervous system diseases. Accumulated evidence indicates that there are considerable differences between the cell-free miRNA expression profiles of healthy subjects and those of patients. Therefore, circulating miRNAs are likely to become a new class of noninvasive, sensitive biomarkers. Despite the fact that little is known about the origin and functions of circulating miRNAs, their essential roles in the clinical diagnosis and prognosis of neuropsychiatric diseases make them attractive biomarkers. In this review we cover the increasing amounts of dataset that have accumulated in the last years on the use of circulating miRNAs and their values as potential biomarkers in most areas of neuropsychiatric diseases.

  15. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARγ and TNFα signaling.

    Directory of Open Access Journals (Sweden)

    Stefano Maria Pagnotta

    Full Text Available We describe a novel bioinformatic and translational pathology approach, gene Signature Finder Algorithm (gSFA to identify biomarkers associated with Colorectal Cancer (CRC survival. Here a robust set of CRC markers is selected by an ensemble method. By using a dataset of 232 gene expression profiles, gSFA discovers 16 highly significant small gene signatures. Analysis of dichotomies generated by the signatures results in a set of 133 samples stably classified in good prognosis group and 56 samples in poor prognosis group, whereas 43 remain unreliably classified. AKAP12, DCBLD2, NT5E and SPON1 are particularly represented in the signatures and selected for validation in vivo on two independent patients cohorts comprising 140 tumor tissues and 60 matched normal tissues. Their expression and regulatory programs are investigated in vitro. We show that the coupled expression of NT5E and DCBLD2 robustly stratifies our patients in two groups (one of which with 100% survival at five years. We show that NT5E is a target of the TNF-α signaling in vitro; the tumor suppressor PPARγ acts as a novel NT5E antagonist that positively and concomitantly regulates DCBLD2 in a cancer cell context-dependent manner.

  16. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Ressom, Habtom W.; Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao Yi; Wang Jinlian; Di Poto, Cristina; Cheema, Amrita K.; Tadesse, Mahlet G.; Goldman, Radoslav; Shetty, Kirti

    2012-01-01

    (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in high risk population of cirrhotic patients.

  17. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Ressom, Habtom W., E-mail: hwr@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao Yi; Wang Jinlian; Di Poto, Cristina; Cheema, Amrita K. [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Tadesse, Mahlet G. [Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057 (United States); Goldman, Radoslav [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Shetty, Kirti [Department of Surgery, Georgetown University Medical Center, Washington, DC 20057 (United States); Georgetown University Hospital, Washington, DC 20057 (United States)

    2012-09-19

    cholesterol metabolism) such as glycochenodeoxycholic acid 3-sulfate (3-sulfo-GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in high risk population of cirrhotic patients.

  18. NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis.

    Science.gov (United States)

    Cui, Jiajia; Liu, Yuetao; Hu, Yinghuan; Tong, Jiayu; Li, Aiping; Qu, Tingli; Qin, Xuemei; Du, Guanhua

    2017-01-05

    Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, 1 H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers

    Directory of Open Access Journals (Sweden)

    M. Safari

    2016-04-01

    Full Text Available Silver Nanoparticles (AgNPs have gained considerable interests during the last decade due to their excellent antimicrobial activities. Despite their extensive use, the potential toxicity of these nanoparticles and possible mechanisms by which they may induce adverse reactions have not received sufficient attention and no specific biomarker exist to describe and quantify their toxic effects. Nanoparticles, depending on their physicochemical characteristics and compositions, can interact with vital organs such as the brain and induce toxic effects. A specific concern is that any contact with AgNPs independent of the route of administration is thought to result in significant systemic uptake, internal exposure of sensitive organs, especially in the central nervous system (CNS and different toxic responses. There are considerable evidences that AgNPs can disrupt the Blood-Brain Barrier (BBB and induce subsequent brain edema formation. Therefore, it is essential to understand the differential effects of AgNPs on brain cell with especial emphasis on the possible mechanisms of action. Recently, biomarkers are increasingly used as surrogate indicators of toxic responses in biological monitoring due to the inaccessibility of target organs. Moreover, as the most nanoscale contaminants occur at low concentrations, physiological biomarkers may be better indicators of potential impact of nanomaterials than traditional toxicity testing. This review aims to investigate the effects of AgNPs on CNS targets of toxicity and clarify the role of existing biomarkers especially the role of dopamine levels as a potential biomarker of Ag-NPs neurotoxicity.

  20. Identification of potential prognostic microRNA biomarkers for predicting survival in patients with hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Liao X

    2018-04-01

    Full Text Available Xiwen Liao,1 Guangzhi Zhu,1 Rui Huang,2 Chengkun Yang,1 Xiangkun Wang,1 Ketuan Huang,1 Tingdong Yu,1 Chuangye Han,1 Hao Su,1 Tao Peng1 1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China; 2Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China Background: The aim of the present study was to identify potential prognostic microRNA (miRNA biomarkers for hepatocellular carcinoma (HCC prognosis prediction based on a dataset from The Cancer Genome Atlas (TCGA. Materials and methods: A miRNA sequencing dataset and corresponding clinical parameters of HCC were obtained from TCGA. Genome-wide univariate Cox regression analysis was used to screen prognostic differentially expressed miRNAs (DEMs, and multivariable Cox regression analysis was used for prognostic signature construction. Comprehensive survival analysis was performed to evaluate the prognostic value of the prognostic signature. Results: Five miRNAs were regarded as prognostic DEMs and used for prognostic signature construction. The five-DEM prognostic signature performed well in prognosis prediction (adjusted P < 0.0001, adjusted hazard ratio = 2.249, 95% confidence interval =1.491–3.394, and time-dependent receiver–operating characteristic (ROC analysis showed an area under the curve (AUC of 0.765, 0.745, 0.725, and 0.687 for 1-, 2-, 3-, and 5-year HCC overall survival (OS prediction, respectively. Comprehensive survival analysis of the prognostic signature suggests that the risk score model could serve as an independent factor of HCC and perform better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of hsa-mir-139 and hsa-mir-5003 indicates that they were significantly enriched in multiple biological processes and pathways, including cell proliferation and cell migration

  1. Bioinformatic Analysis of Potential Biomarkers for Spinal Cord Injured Patients With Intractable Neuropathic Pain.

    Science.gov (United States)

    Wang, Yimin; Ye, Fang; Huang, Chanyan; Xue, Faling; Li, Yingyuan; Gao, Shaowei; Qiu, Zeting; Li, Si; Chen, Qinchang; Zhou, Huaqiang; Song, Yiyan; Huang, Wenqi; Tan, Wulin; Wang, Zhongxing

    2018-03-15

    Neuropathic pain is one of the common complications after spinal cord injury (SCI), affecting patients' life quality. The molecular mechanism for neuropathic pain after SCI is still unclear. We aimed to discover potential genes and MicroRNAs(miRNAs) related to neuropathic pain by bioinformatics method. Microarray data of GSE69901 were obtained from Gene Expression Omnibus (GEO) database. Peripheral blood samples from patients with or without neuropathic pain after spinal cord injury (SCI) were collected. 12 samples with neuropathic pain and 13 samples without pain as control were included in the downloaded microarray. Differentially expressed genes (DEGs) between neuropathic pain group and control group were detected using GEO2R online tool. Functional enrichment analysis of DEGs was performed using DAVID database. Protein-protein interaction (PPI) network was constructed from STRING database. MiRNAs targeting these DEGs were obtained from miRNet database. A merged miRNA-DEG network was constructed and analyzed with Cytoscape software. Total 1134 DEGs were identified between patients with or without neuropathic pain(case and control) and 454 biological processes were enriched. We identified 4 targeted miRNAs, including mir-204-5p, mir-519d-3p, mir-20b-5p, mir-6838-5p, which may be the potential biomarker for SCI patients. Protein modification and regulation biological process of central nervous system may be a risk factor of in SCI patients. Certain genes and miRNAs may be potential biomarkers for the prediction of and potential targets for prevention and treatment of neuropathic pain after SCI.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http

  2. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    Science.gov (United States)

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  3. CEP biomarkers as potential tools for monitoring therapeutics.

    Directory of Open Access Journals (Sweden)

    Kutralanathan Renganathan

    Full Text Available Carboxyethylpyrrole (CEP adducts are oxidative modifications derived from docosahexaenoate-containing lipids that are elevated in ocular tissues and plasma in age-related macular degeneration (AMD and in rodents exposed to intense light. The goal of this study was to determine whether light-induced CEP adducts and autoantibodies are modulated by pretreatment with AL-8309A under conditions that prevent photo-oxidative damage of rat retina. AL-8309A is a serotonin 5-HT1A receptor agonist.Albino rats were dark adapted prior to blue light exposure. Control rats were maintained in normal cyclic light. Rats were injected subcutaneously 3x with 10 mg/kg AL-8309A (2 days, 1 day and 0 hours before light exposure for 6 h (3.1 mW/cm(2, λ=450 nm. Animals were sacrificed immediately following light exposure and eyes, retinas and plasma were collected. CEP adducts and autoantibodies were quantified by Western analysis or ELISA.ANOVA supported significant differences in mean amounts of CEP adducts and autoantibodies among the light + vehicle, light + drug and dark control groups from both retina and plasma. Light-induced CEP adducts in retina were reduced ~20% following pretreatment with AL-8309A (n = 62 rats, p = 0.006 and retinal CEP immunoreactivity was less intense by immunohistochemistry. Plasma levels of light-induced CEP adducts were reduced at least 30% (n = 15 rats, p = 0.004 by drug pretreatment. Following drug treatment, average CEP autoantibody titer in light exposed rats (n = 22 was unchanged from dark control levels, and ~20% (p = 0.046 lower than in vehicle-treated rats.Light-induced CEP adducts in rat retina and plasma were significantly decreased by pretreatment with AL-8309A. These results are consistent with and extend previous studies showing AL-8309A reduces light-induced retinal lesions in rats and support CEP biomarkers as possible tools for monitoring the efficacy of select therapeutics.

  4. Potential serum biomarkers and metabonomic profiling of serum in ischemic stroke patients using UPLC/Q-TOF MS/MS.

    Directory of Open Access Journals (Sweden)

    Hongxue Sun

    Full Text Available Stroke still has a high incidence with a tremendous public health burden and it is a leading cause of mortality and disability. However, biomarkers for early diagnosis are absent and the metabolic alterations associated with ischemic stroke are not clearly understood. The objectives of this case-control study are to identify serum biomarkers and explore the metabolic alterations of ischemic stroke.Metabonomic analysis was performed using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis was employed to study 60 patients with or without ischemic stroke (30 cases and 30 controls.Serum metabolic profiling identified a series of 12 metabolites with significant alterations, and the related metabolic pathways involved glycerophospholipid, sphingolipid, phospholipid, fat acid, acylcarnitine, heme, and purine metabolism. Subsequently, multiple logistic regression analyses of these metabolites showed uric acid, sphinganine and adrenoyl ethanolamide were potential biomarkers of ischemic stroke with an area under the receiver operating characteristic curve of 0.941.These findings provide insights into the early diagnosis and potential pathophysiology of ischemic stroke.

  5. [Cellular microparticles, potential useful biomarkers in the identification of cerebrovascular accidents].

    Science.gov (United States)

    Anglés-Cano, Eduardo; Vivien, Denis

    2009-10-01

    The clinical utility of biomarkers depends on their ability to identify high-risk individuals in order to establish preventive, diagnostic or therapeutic measures. Currently, no practical, rapid and sensitive test is available for the diagnosis of acute ischemic stroke. A number of soluble molecules have been identified that are merely associated to these cerebrovascular accidents. Despite this association not a single molecule has the characteristics of a true biomarker directly involved in the pathophysiology of ischemic stroke-none of them is organ-specific and may therefore be elevated in the context of medical comorbidities. When explored as a combination of biomarkers, e.g. matrix metalloproteinase 9, brain natriuretic protein, D-dimer, protein S100B, the question still remains whether serial biomarker analysis provides additional prognostic information. Even S100B, a glial activation protein, has a low specificity for acute ischemic stroke because it may originate from extracranial sources. Current knowledge from the field of cell-derived microparticles suggests that these membrane fragments may represent reliable biomarkers as they are cell-specific and are released early in the pathophysiological cascade of a disease. These microparticles can be found not only in the cerebrospinal fluid but also in tears and circulating blood in case of blood-brain barrier dysfunction. They represent a new challenge in stroke diagnosis and management.

  6. Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy.

    Science.gov (United States)

    Jorge, Karina T O S; Souza, Renan P; Assis, Marieta T A; Araújo, Marcelo G; Locati, Massimo; Jesus, Amélia M R; Dias Baptista, Ida M F; Lima, Cristiano X; Teixeira, Antônio L; Teixeira, Mauro M; Soriani, Frederico M

    2017-05-01

    Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy. Copyright © 2017 American Society for Microbiology.

  7. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer.

    Science.gov (United States)

    Shukla, Hem D

    2017-10-25

    During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics

  8. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer

    Directory of Open Access Journals (Sweden)

    Hem D. Shukla

    2017-10-01

    Full Text Available During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA, and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein–protein interaction

  9. Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging.

    Science.gov (United States)

    Sangaralingham, S Jeson; Heublein, Denise M; Grande, Joseph P; Cataliotti, Alessandro; Rule, Andrew D; McKie, Paul M; Martin, Fernando L; Burnett, John C

    2011-11-01

    Renal aging is characterized by structural changes in the kidney including fibrosis, which contributes to the increased risk of kidney and cardiac failure in the elderly. Studies involving healthy kidney donors demonstrated subclinical age-related nephropathy on renal biopsy that was not detected by standard diagnostic tests. Thus there is a high-priority need for novel noninvasive biomarkers to detect the presence of preclinical age-associated renal structural and functional changes. C-type natriuretic peptide (CNP) possesses renoprotective properties and is present in the kidney; however, its modulation during aging remains undefined. We assessed circulating and urinary CNP in a Fischer rat model of experimental aging and also determined renal structural and functional adaptations to the aging process. Histological and electron microscopic analysis demonstrated significant renal fibrosis, glomerular basement membrane thickening, and mesangial matrix expansion with aging. While plasma CNP levels progressively declined with aging, urinary CNP excretion increased, along with the ratio of urinary to plasma CNP, which preceded significant elevations in proteinuria and blood pressure. Also, CNP immunoreactivity was increased in the distal and proximal tubules in both the aging rat and aging human kidneys. Our findings provide evidence that urinary CNP and its ratio to plasma CNP may represent a novel biomarker for early age-mediated renal structural alterations, particularly fibrosis. Thus urinary CNP could potentially aid in identifying subjects with preclinical structural changes before the onset of symptoms and disease, allowing for the initiation of strategies designed to prevent the progression of chronic kidney disease particularly in the aging population.

  10. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung

    Directory of Open Access Journals (Sweden)

    Laing Richard

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA. Methods We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS. Results Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7% than both the healthy controls 5/17 (29% (p Ps. aeruginosa 4/13(30.7% (p Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99 and 69.2% (95% CI, 38-89 respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243 than the healthy controls (median 0, range 0-161; p Ps. aeruginosa (median 0, range 0-287; p Conclusions Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung.

  11. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    Science.gov (United States)

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars.

  12. Development of Biomarkers for Assessing In Situ RDX Biodegradation Potential

    Science.gov (United States)

    2016-06-10

    the RDX degrading communities in four different soil slurries. The third task examined the microorganisms involved in RDX biodegradation from...RDX biodegradation at two Navy sites. Several key microorganisms were associated with RDX removal in these mixed communities. These phylogenetic and...manuscripts. 1 ABSTRACT Objective The objective was to identify the microorganisms and genes responsible for the biodegradation of RDX (hexahydro

  13. Potential renal toxicity bio-markers indicating radiation injury after 177Lu-octreotate treatment

    International Nuclear Information System (INIS)

    Dalmo, J.; Forssell-Aronsson, E.; Westberg, E.; Toernqvist, M.; Svedborn, L.; Barregaerd, L.

    2015-01-01

    Full text of publication follows. The kidneys are one of the most exposed non-tumor tissues and regarded as one of the main dose-limiting organs in peptide receptor radionuclide therapy (PRRT). [ 177 Lu-DOTA0, Tyr3]-octreotate ( 177 Lu-octreotate) has shown promising results in the treatment of somatostatin receptor over-expressing neuroendocrine tumors, but optimization is still needed. The ability to give each patient as much 177 Lu-octreotate as possible without inducing nephrotoxicity is necessary for an efficient treatment. However, due to large inter-individual differences in uptake and retention in the kidneys, there is a need for efficient methods that can indicate renal injury early. A possible way is to identify bio-markers for high risk of radiation nephrotoxicity. The aim of this study was to investigate the potential of using urinary retinol binding protein (RBP), and blood valinhydantoin (VH) as bio-markers of nephrotoxicity on adult mice after 177 Lu-octreotate treatment. BALB/c nude mice (n=6/group) were i.v. injected with 60 MBq or 120 MBq of 177 Lu-octreotate. The control group was mock treated with saline. Spot urine samples were collected before injection, and 14, 30, 60 and 90 days after injection. Analysis of RBP4 and creatinine was performed using Mouse RBP4 ELISA kit and Creatinine kit from R/D Systems, respectively. Erythrocytes were separated from whole blood samples collected 90 days after injection, and analysed for VH by LC-MS/MS. The ratio between VH and a volumetric standard was calculated. The RBP/creatinine level increased with time in both groups given 177 Lu-octreotate, with earlier and higher response for the 120 MBq group. No clear change in VH level between the different groups was observed. The results show that RBP may be a promising new bio-marker for radiation induced kidney toxicity. The presently used method based on VH was not sensitive enough to be used as kidney toxicity marker. Further studies on mice are ongoing to

  14. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kałużna-Czaplińska, Joanna; Żurawicz, Ewa; Struck, Wiktoria; Markuszewski, Michał

    2014-09-01

    There is a need to identify metabolic phenotypes in autism as they might each require unique approaches to prevention. Biological markers can help define autism subtypes and reveal potential therapeutic targets. The aim of the study was to identify alterations of small molecular weight compounds and to find potential biomarkers. Gas chromatography/mass spectrometry was employed to evaluate major metabolic changes in low molecular weight urine metabolites of 14 children with autism spectrum disorders vs. 10 non-autistic subjects. The results prove the usefulness of an identified set of 21 endogenous compounds (including 14 organic acids), whose levels are changed in diseased children. Gas chromatography/mass spectrometry method combined with multivariate statistical analysis techniques provide an efficient way of depicting metabolic perturbations of diseases, and may potentially be applicable as a novel strategy for the noninvasive diagnosis and treatment of autism. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Novel Biomarker Panel to Identify Steroid Resistance in Childhood Idiopathic Nephrotic Syndrome

    Directory of Open Access Journals (Sweden)

    Michael R Bennett

    2017-03-01

    Full Text Available Idiopathic nephrotic syndrome (NS is the most common glomerular disorder of childhood. Response to initial treatment with corticosteroids is an indicator of prognosis, as resistant patients often present more progressive disease. In this cross-sectional pilot study, we set out to discover a panel of noninvasive biomarkers that could distinguish steroid-resistant nephrotic syndrome (SRNS from steroid-sensitive nephrotic syndrome (SSNS. Information gleaned from such a panel could yield more individualized treatment plans and prevent unnecessary steroid exposure in patients unlikely to respond. Urine was collected from 50 pediatric patients diagnosed with idiopathic NS at Cincinnati Children’s Hospital Medical Center. Isobaric tags for relative and absolute quantitation (iTRAQ was used to discover 13 proteins that were differentially expressed in SSNS vs SRNS in a small 5 × 5 discovery cohort. Suitable assays were found for 9 of the 13 markers identified by iTRAQ and were used in a 25 SRNS × 25 SSNS validation cohort. Vitamin D–binding protein (VDBP, alpha-1 acid glycoprotein 1 (AGP1, alpha-1 acid glycoprotein 2 (AGP2, alpha-1-B glycoprotein (A1BG, fetuin-A, prealbumin, thyroxine-binding globulin and hemopexin, and alpha-2 macroglobulin were measured and combined with urine neutrophil gelatinase–associated lipocalin (NGAL, which had been previously shown to distinguish patients with SRNS. Urinary VDBP, prealbumin, NGAL, fetuin-A, and AGP2 were found to be significantly elevated in SRNS using univariate analysis, with area under the receiver operating characteristic curves (AUCs ranging from 0.65 to 0.81. Multivariate analysis revealed a panel of all 10 markers that yielded an AUC of 0.92 for identification of SRNS. A subset of 5 markers (including VDBP, NGAL, fetuin-A, prealbumin, and AGP2 showed significant associations with SRNS and yielded an AUC of 0.85.

  16. Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy.

    Science.gov (United States)

    Braadland, Peder R; Giskeødegård, Guro; Sandsmark, Elise; Bertilsson, Helena; Euceda, Leslie R; Hansen, Ailin F; Guldvik, Ingrid J; Selnæs, Kirsten M; Grytli, Helene H; Katz, Betina; Svindland, Aud; Bathen, Tone F; Eri, Lars M; Nygård, Ståle; Berge, Viktor; Taskén, Kristin A; Tessem, May-Britt

    2017-11-21

    Robust biomarkers that identify prostate cancer patients with high risk of recurrence will improve personalised cancer care. In this study, we investigated whether tissue metabolites detectable by high-resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) were associated with recurrence following radical prostatectomy. We performed a retrospective ex vivo study using HR-MAS MRS on tissue samples from 110 radical prostatectomy specimens obtained from three different Norwegian cohorts collected between 2002 and 2010. At the time of analysis, 50 patients had experienced prostate cancer recurrence. Associations between metabolites, clinicopathological variables, and recurrence-free survival were evaluated using Cox proportional hazards regression modelling, Kaplan-Meier survival analyses and concordance index (C-index). High intratumoural spermine and citrate concentrations were associated with longer recurrence-free survival, whereas high (total-choline+creatine)/spermine (tChoCre/Spm) and higher (total-choline+creatine)/citrate (tChoCre/Cit) ratios were associated with shorter time to recurrence. Spermine concentration and tChoCre/Spm were independently associated with recurrence in multivariate Cox proportional hazards modelling after adjusting for clinically relevant risk factors (C-index: 0.769; HR: 0.72; P=0.016 and C-index: 0.765; HR: 1.43; P=0.014, respectively). Spermine concentration and tChoCre/Spm ratio in prostatectomy specimens were independent prognostic markers of recurrence. These metabolites can be noninvasively measured in vivo and may thus offer predictive value to establish preoperative risk assessment nomograms.

  17. ANALYSIS OR THE POTENTIAL SPERM BIOMARKER, SP22, IN HUMAN SEMEN

    Science.gov (United States)

    ANALYSIS OF THE POTENTIAL SPERM BIOMARKER SP22 IN HUMAN SEMEN Rebecca A. Morris Ph.D.1, Gary R. Klinefelter Ph.D.1, Naomi L. Roberts 1, Juan D. Suarez 1, Lillian F. Strader 1, Susan C. Jeffay 1 and Sally D. Perreault Ph.D.1 1 U.S. EPA / ORD / National Health a...

  18. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    Science.gov (United States)

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  19. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath.

    Science.gov (United States)

    Beck, Olof; Olin, Anna-Carin; Mirgorodskaya, Ekaterina

    2016-01-01

    Exhaled breath contains nonvolatile substances that are part of aerosol particles of submicrometer size. These particles are formed and exhaled as a result of normal breathing and contain material from distal airways of the respiratory system. Exhaled breath can be used to monitor biomarkers of both endogenous and exogenous origin and constitutes an attractive specimen for medical investigations. This review summarizes the present status regarding potential biomarkers of nonvolatile compounds in exhaled breath. The field of exhaled breath condensate is briefly reviewed, together with more recent work on more selective collection procedures for exhaled particles. The relation of these particles to the surfactant in the terminal parts of the respiratory system is described. The literature on potential endogenous low molecular weight compounds as well as protein biomarkers is reviewed. The possibility to measure exposure to therapeutic and abused drugs is demonstrated. Finally, the potential future role and importance of mass spectrometry is discussed. Nonvolatile compounds exit the lung as aerosol particles that can be sampled easily and selectively. The clinical applications of potential biomarkers in exhaled breath comprise diagnosis of disease, monitoring of disease progress, monitoring of drug therapy, and toxicological investigations. © 2015 American Association for Clinical Chemistry.

  20. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    Directory of Open Access Journals (Sweden)

    Nam Pham

    Full Text Available Sport-related mild traumatic brain injury (mTBI or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C as a potential reliable biomarker for blast induced TBI (bTBI in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C in male and female students. The measured plasma soluble PrP(C in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  1. Cytokine genes as potential biomarkers for muscle weakness in OPMD

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Raz, Yotam; van der Slujis, Barbara

    2016-01-01

    is a dominant, late-onset myopathy, caused by an alanine-expansion mutation in the gene encoding for poly(A) binding protein nuclear 1 (expPABPN1). Here, we investigated the hypothesis that cytokines could mark OPMD disease state. We determined cytokines levels the vastus lateralis muscle from genetically...... confirmed expPABPN1 carriers at a symptomatic or a presymptomatic stage. We identified cytokine-related genes candidates from a transcriptome study in a mouse overexpressing exp PABPN1 Six cytokines were found to be consistently down-regulated in OPMD vastus lateralis muscles. Expression levels...

  2. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    Science.gov (United States)

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  3. Prespecified candidate biomarkers identify follicular lymphoma patients who achieved longer progression-free survival with bortezomib-rituximab versus rituximab.

    Science.gov (United States)

    Coiffier, Bertrand; Li, Weimin; Henitz, Erin D; Karkera, Jayaprakash D; Favis, Reyna; Gaffney, Dana; Shapiro, Alice; Theocharous, Panteli; Elsayed, Yusri A; van de Velde, Helgi; Schaffer, Michael E; Osmanov, Evgenii A; Hong, Xiaonan; Scheliga, Adriana; Mayer, Jiri; Offner, Fritz; Rule, Simon; Teixeira, Adriana; Romejko-Jarosinska, Joanna; de Vos, Sven; Crump, Michael; Shpilberg, Ofer; Zinzani, Pier Luigi; Cakana, Andrew; Esseltine, Dixie-Lee; Mulligan, George; Ricci, Deborah

    2013-05-01

    Identify subgroups of patients with relapsed/refractory follicular lymphoma deriving substantial progression-free survival (PFS) benefit with bortezomib-rituximab versus rituximab in the phase III LYM-3001 study. A total of 676 patients were randomized to five 5-week cycles of bortezomib-rituximab or rituximab. The primary end point was PFS; this prespecified analysis of candidate protein biomarkers and genes was an exploratory objective. Archived tumor tissue and whole blood samples were collected at baseline. Immunohistochemistry and genetic analyses were completed for 4 proteins and 8 genes. In initial pairwise analyses, using individual single-nucleotide polymorphism genotypes, one biomarker pair (PSMB1 P11A C/G heterozygote, low CD68 expression) was associated with a significant PFS benefit with bortezomib-rituximab versus rituximab, controlling for multiple comparison corrections. The pair was analyzed under dominant, recessive, and additive genetic models, with significant association with PFS seen under the dominant model (G/G+C/G). In patients carrying this biomarker pair [PSMB1 P11A G allele, low CD68 expression (≤50 CD68-positive cells), population frequency: 43.6%], median PFS was 14.2 months with bortezomib-rituximab versus 9.1 months with rituximab (HR 0.47, P < 0.0001), and there was a significant overall survival benefit (HR 0.49, P = 0.0461). Response rates were higher and time to next antilymphoma therapy was longer in the bortezomib-rituximab group. In biomarker-negative patients, no significant efficacy differences were seen between treatment groups. Similar proportions of patients had high-risk features in the biomarker-positive and biomarker-negative subsets. Patients with PSMB1 P11A (G allele) and low CD68 expression seemed to have significantly longer PFS and greater clinical benefit with bortezomib-rituximab versus rituximab. ©2013 AACR.

  4. The human oral metaproteome reveals potential biomarkers for caries disease

    DEFF Research Database (Denmark)

    Belda-Ferre, Pedro; Williamson, James; Simón-Soro, Áurea

    2015-01-01

    metabolism and immune response. We applied multivariate analysis in order to find the minimum set of proteins that better allows discrimination of healthy and caries-affected dental plaque samples, detecting seven bacterial and five human protein functions that allow determining the health status......Tooth decay is considered the most prevalent human disease worldwide. We present the first metaproteomic study of the oral biofilm, using different mass spectrometry approaches that have allowed us to quantify individual peptides in healthy and caries-bearing individuals. A total of 7771 bacterial...... and 853 human proteins were identified in 17 individuals, which provide the first available protein repertoire of human dental plaque. Actinomyces and Coryneybacterium represent a large proportion of the protein activity followed by Rothia and Streptococcus. Those four genera account for 60-90% of total...

  5. [HMGA proteins and their genes as a potential neoplastic biomarkers].

    Science.gov (United States)

    Balcerczak, Ewa; Balcerczak, Mariusz; Mirowski, Marek

    2005-01-01

    HMGA proteins and their genes are described in this article. HMGA proteins reveal ability to bind DNA in AT-rich regions, which are characteristic for gene promoter sequences. This interaction lead to gene silencing or their overexpression. In normal tissue HMGA proteins level is low or even undetectable. During embriogenesis their level is increasing. High HMGA proteins level is characteristic for tumor phenotype of spontaneous and experimental malignant neoplasms. High HMGA proteins expression correlate with bad prognostic factors and with metastases formation. HMGA genes expression can be used as a marker of tumor progression. Present studies connected with tumor gene therapy based on HMGA proteins sythesis inhibition by the use of viral vectors containing gene encoding these proteins in antisence orientation, as well as a new potential anticancer drugs acting as crosslinkers between DNA and HMGA proteins suggest their usefulness as a targets in cancer therapy.

  6. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  7. Potentials of plasma NGAL and MIC-1 as biomarker(s in the diagnosis of lethal pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sukhwinder Kaur

    Full Text Available Pancreatic cancer (PC is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1 are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91 and compared it with those in healthy control (HC individuals (n = 24 and patients with chronic pancreatitis (CP, n = 23. The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2, 219.2 U/mL (7.8 and 4.5 ng/mL (4.1, respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81% but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively. For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively. CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2 pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml. Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029. Overall, MIC-1 in combination with CA19-9 improved the diagnostic

  8. PTX3: A Potential Biomarker in Thyroid Associated Ophthalmopathy

    Directory of Open Access Journals (Sweden)

    Pei Mou

    2018-01-01

    Full Text Available Background. Thyroid associated ophthalmopathy (TAO is an autoimmune disease, which involves inflammation and tissue remodeling. Pentraxin-3 (PTX3 is a component of innate immune system and recently implicated in autoimmunity. This observation may indicate that PTX3 participates in the inflammatory process of TAO. Methods. All studies were performed on TAO patients and healthy controls (45: 28 in total. RNA-seq was used to detect differential gene expression of orbital adipose-connective tissue. Quantitative PCR was performed to verify the results. PTX3 protein in orbital adipose-connective tissues was visualized by immunohistochemistry (IHC. PTX3 concentration in serum was determined by enzyme-linked immunosorbent assay (ELISA. Results. RNA-seq showed 1.86-log⁡2FC higher PTX3 expression in the orbital adipose-connective tissues from TAO group than controls (FDR = 0.0059. qPCR confirmed the difference (5.59-fold increase, p=0.0012. The presence of PTX3 protein was demonstrated. Orbital adipose tissue from healthy controls showed weak staining for PTX3 while tissue from TAO group was strongly positive. Serum PTX3 concentration was significantly elevated in patients when compared to the control group (1.9-fold increase; p<0.0001. Conclusions. Patients with TAO showed increased presence of PTX3 in orbital tissue and serum, which may suggest a potential relationship of PTX3 and TAO.

  9. PTX3: A Potential Biomarker in Thyroid Associated Ophthalmopathy

    Science.gov (United States)

    Chen, Ziyu

    2018-01-01

    Background Thyroid associated ophthalmopathy (TAO) is an autoimmune disease, which involves inflammation and tissue remodeling. Pentraxin-3 (PTX3) is a component of innate immune system and recently implicated in autoimmunity. This observation may indicate that PTX3 participates in the inflammatory process of TAO. Methods All studies were performed on TAO patients and healthy controls (45: 28 in total). RNA-seq was used to detect differential gene expression of orbital adipose-connective tissue. Quantitative PCR was performed to verify the results. PTX3 protein in orbital adipose-connective tissues was visualized by immunohistochemistry (IHC). PTX3 concentration in serum was determined by enzyme-linked immunosorbent assay (ELISA). Results RNA-seq showed 1.86-log⁡2FC higher PTX3 expression in the orbital adipose-connective tissues from TAO group than controls (FDR = 0.0059). qPCR confirmed the difference (5.59-fold increase, p = 0.0012). The presence of PTX3 protein was demonstrated. Orbital adipose tissue from healthy controls showed weak staining for PTX3 while tissue from TAO group was strongly positive. Serum PTX3 concentration was significantly elevated in patients when compared to the control group (1.9-fold increase; p < 0.0001). Conclusions Patients with TAO showed increased presence of PTX3 in orbital tissue and serum, which may suggest a potential relationship of PTX3 and TAO. PMID:29675428

  10. [Adipocytokines: potential biomarkers for childhood obesity and anorexia nervosa].

    Science.gov (United States)

    Leoni, M C; Pizzo, D; Marchi, A

    2010-04-01

    Adipose tissue is now considered an important endocrine organ that secretes a large number of physiologically active peptides affecting metabolic homeostasis of human body: they are collectively referred to as adipocytokines. Leptin is a key hormone in the regulation of food intake, energy expenditure, neuroendocrine and immune function. Leptin is related with obesity and its metabolic disorders; starvation-induced depletion of fat stores is accompanied by alterations of circulating adipocytokines that may have potential repercussions in the pathophysiology of anorexia nervosa. Adiponectin enhances insulin sensitivity, controls body weight, prevents atherosclerosis and negatively regulates immune functions. Plasma adiponectin relates inversely to adiposity and reflects the sequelae of accumulation of excess adiposity. Resistin is a protein hormone produced both by adipocytes and immunocompetent cells that affect fuel homeostasis and insulin action. Plasma resistin levels are decreased in anorectic patients, while plasma adiponectin levels are increased. Plasma ghrelin levels present opposite changes in obesity and anorexia nervosa, suggesting that ghrelin is a good marker of nutritional status. Visfatin shows to correlate with visceral fat mass in patients with obesity. Its possible role in patients with anorexia nervosa is unknown. In conclusion, obesity is defined as a state of low-grade inflammation, which is associated with increased leptin, resistin and ghrelin levels and decreased adiponectin levels; anorexia nervosa is characterized by opposite changes. Finally, plasma adipocytokines levels can represent a sensitive parameter of nutritional status that reflects changes in the level of body fat in children and adolescents with obesity and anorexia nervosa.

  11. Plasma Soluble Prion Protein, a Potential Biomarker for Sport-Related Concussions: A Pilot Study

    OpenAIRE

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasm...

  12. EEG-based motor network biomarkers for identifying target patients with stroke for upper limb rehabilitation and its construct validity.

    Directory of Open Access Journals (Sweden)

    Chun-Chuan Chen

    Full Text Available Rehabilitation is the main therapeutic approach for reducing poststroke functional deficits in the affected upper limb; however, significant between-patient variability in rehabilitation efficacy indicates the need to target patients who are likely to have clinically significant improvement after treatment. Many studies have determined robust predictors of recovery and treatment gains and yielded many great results using linear approachs. Evidence has emerged that the nonlinearity is a crucial aspect to study the inter-areal communication in human brains and abnormality of oscillatory activities in the motor system is linked to the pathological states. In this study, we hypothesized that combinations of linear and nonlinear (cross-frequency network connectivity parameters are favourable biomarkers for stratifying patients for upper limb rehabilitation with increased accuracy. We identified the biomarkers by using 37 prerehabilitation electroencephalogram (EEG datasets during a movement task through effective connectivity and logistic regression analyses. The predictive power of these biomarkers was then tested by using 16 independent datasets (i.e. construct validation. In addition, 14 right handed healthy subjects were also enrolled for comparisons. The result shows that the beta plus gamma or theta network features provided the best classification accuracy of 92%. The predictive value and the sensitivity of these biomarkers were 81.3% and 90.9%, respectively. Subcortical lesion, the time poststroke and initial Wolf Motor Function Test (WMFT score were identified as the most significant clinical variables affecting the classification accuracy of this predictive model. Moreover, 12 of 14 normal controls were classified as having favourable recovery. In conclusion, EEG-based linear and nonlinear motor network biomarkers are robust and can help clinical decision making.

  13. Sparse feature selection identifies H2A.Z as a novel, pattern-specific biomarker for asymmetrically self-renewing distributed stem cells

    Directory of Open Access Journals (Sweden)

    Yang Hoon Huh

    2015-03-01

    Full Text Available There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow. Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify such useful and specific DSC biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells, with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ.

  14. Do classic blood biomarkers of JSLE identify active lupus nephritis? Evidence from the UK JSLE Cohort Study.

    Science.gov (United States)

    Smith, E M D; Jorgensen, A L; Beresford, M W

    2017-10-01

    Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus (JSLE) patients. The value of commonly available biomarkers, such as anti-dsDNA antibodies, complement (C3/C4), ESR and full blood count parameters in the identification of active LN remains uncertain. Methods Participants from the UK JSLE Cohort Study, aged modeling, with stepAIC function applied to select a final model. Receiver-operating curve analysis was used to assess diagnostic accuracy. Results A total of 370 patients were recruited; 191 (52%) had active LN and 179 (48%) had inactive LN. Binary logistic regression modeling demonstrated a combination of ESR, C3, white cell count, neutrophils, lymphocytes and IgG to be best for the identification of active LN (area under the curve 0.724). Conclusions At best, combining common classic blood biomarkers of lupus activity using multivariate analysis provides a 'fair' ability to identify active LN. Urine biomarkers were not included in these analyses. These results add to the concern that classic blood biomarkers are limited in monitoring discrete JSLE manifestations such as LN.

  15. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  16. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus).

    Science.gov (United States)

    Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P 1.0, P puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.

  17. Screening and identification of APOC1 as a novel potential biomarker for differentiate of mycoplasma pneumoniae in children

    Directory of Open Access Journals (Sweden)

    Jieqiong Li

    2016-12-01

    Full Text Available Background: Although mycoplasma pneumoniae (MP is a common cause of community-acquired pneumonia in children, the currently used diagnostic methods are not optimal. Proteomics is increasingly being used to study the biomarkers of infectious diseases. Methods: Label-free quantitative proteomics and liquid chromatography-mass/mass spectrometry were used to analyze the fold change of protein expression in plasma of children with MP pneumonia (MPP, infectious disease control (IDC, and healthy control (HC groups. Selected proteins that can distinguish MPP from HC and IDC were further validated by enzyme-linked immunosorbent assay (ELISA.Results: After multivariate analyses, 27 potential plasma biomarkers were identified to be expressed differently among child MPP, HC, and IDC groups. Among these proteins, SERPINA3, APOC1, ANXA6, KNTC1, and CFLAR were selected for ELISA verification. SERPINA3, APOC1, and CFLAR levels were significantly different among the three groups and the ratios were consistent with the trends of proteomics results. A comparison of MPP patients and HC showed APOC1 had the largest area under the curve (AUC of 0.853, with 77.6% sensitivity and 81.1% specificity. When APOC1 levels were compared between MPP and IDC patients, it also showed a relatively high AUC of 0.882, with 77.6% sensitivity and 88.3% specificity. Conclusion: APOC1 is a potential biomarker for the rapid and noninvasive diagnosis of MPP in children. The present finding may offer new insights into the pathogenesis and biomarker selection of MPP in children.

  18. Identification of potential biomarkers for gut barrier failure in broiler chickens

    Directory of Open Access Journals (Sweden)

    Juxing eChen

    2015-05-01

    Full Text Available The objective of the present study was to identify potential biomarkers for gut barrier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens were housed in 24 battery cages with 6 chicks per cage. Cages were randomly assigned to either a control group (CON or gut barrier failure (GBF group. During the first 13 d, birds in CON or GBF groups were fed a common corn-soy starter diet. On d 14, CON chickens were switched to a corn grower diet and GBF chickens were switched to rye-wheat-barley grower diet. In addition, on d 21, GBF chickens were orally challenged with a coccidiosis vaccine. At d 21 and d 28, birds were weighed by cage and feed intake was recorded to calculate feed conversion ratio. At d 28, one chicken from each cage was euthanized to collect intestinal samples for morphometric analysis, blood for serum, and intestinal mucosa scrapings for gene expression. Overall performance and feed efficiency was severely affected (P < 0.05 by a GBF model when compared with CON group at d 21 and d 28. Duodenum of GBF birds had wider villi, longer crypt depth, and higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer crypt depth in jejunum and ileum when compared with CON birds. An increase (P <0.05 in serum endotoxin, α1-acid glycoprotein (AGP, as well as interleukin (IL-8, IL-1β, transforming growth factor (TGF-β4 and fatty-acid-binding protein (FABP 6 mRNA levels were increased in GBF birds compared to CON; however, FABP2 mRNA levels were decreased (P <0.05 in GBF birds compared to CON. Occludin was numerically reduced by 24% (P = 0.107 and mucin 2 (MUC2 was reduced by 29 % (P = 0.088 in GBF birds compared to CON birds. The results from the present study suggest that serum endotoxin and AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β and TGF-β4 in mucosa may work as potential biomarkers for gut barrier health in chickens.

  19. Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis.

    Science.gov (United States)

    Liu, Xuhui; Liu, Yanfei; Zhao, Jingrong; Liu, Yan

    2018-05-01

    The present study aimed to screen potential biomarkers for uterine leiomyomas disease, particularly target genes associated with the mediator of RNA polymerase II transcription subunit 12 (MED12) mutation. The microarray data of GSE30673, including 10 MED12 wild-type myometrium, 8 MED12 mutation leiomyoma and 2 MED12 wild-type leiomyoma samples, were downloaded from the Gene Expression Omnibus database. Compared with myometrium samples, differently-expressed genes (DEGs) in the MED12 mutation and wild-type leiomyoma samples were identified using the Limma package. The two sets of DEGs obtained were intersected to screen common DEGs. The DEGs in the MED12 mutation and wild-type leiomyoma samples, and common DEGs were defined as group A, B and C. Gene Ontology (GO) and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery online tool. Based on the Kyoto Encyclopedia of Genes and Genomes database, pathway relation networks were constructed. DEGs in GO terms and pathways were intersected to screen important DEGs. Subsequently, a gene co‑expression network was constructed and visualized using Cytoscape software. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of important DEGs. A total of 1,258 DEGs in group A were screened, and enriched for extracellular matrix (ECM) organization and ECM‑receptor interaction. In addition, a total of 1,571 DEGs in group B were enriched for cell adhesion. Furthermore, 391 DEGs were involved in extracellular matrix organization. Pathway relation networks of group A, B and C were constructed with nodes of 48, 39, and 28, respectively. Finally, 135 important DEGs were obtained, including Acyl‑CoA synthetase medium‑chain family member 3, protein S (α) (PROS1) and F11 receptor. A gene co‑expression network with 68 nodes was constructed. The expression of caspase 1 (CASP1) and aldehyde dehydrogenase 1 family member

  20. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    Science.gov (United States)

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  1. The Potential of Angiogenin as a Serum Biomarker for Diseases: Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Dongdong Yu

    2018-01-01

    Full Text Available Background. Angiogenin (ANG is a multifunctional angiogenic protein that participates in both normal development and diseases. Abnormal serum ANG levels are commonly reported in various diseases. However, whether ANG can serve as a diagnostic or prognostic marker for different diseases remains a matter of debate. Methods. Here, we performed a systematic review and meta-analysis of the literature utilizing PubMed, Web of Science, and Scopus search engines to identify all publications comparing plasma or serum ANG levels between patients with different diseases and healthy controls, as were studies evaluating circulating ANG levels in healthy populations, pregnant women, or other demographic populations. Results. This study demonstrated that the serum ANG concentration in healthy populations was 336.14 ± 142.83 ng/ml and remained relatively stable in different populations and regions. We noted no significant differences in serum ANG levels between patients and healthy controls, except in cases in which patients suffered from cancer or cardiovascular diseases. The serum ANG concentrations were significantly higher in patients who developed colorectal cancer, acute myeloid leukemia, multiple myeloma, myelodysplastic syndromes, and heart failure than those in healthy controls. Conclusion. ANG has the potential of being a serum biomarker for cancers and cardiovascular diseases.

  2. Serum quantitative proteomic analysis reveals potential zinc-associated biomarkers for nonbacterial prostatitis.

    Science.gov (United States)

    Yang, Xiaoli; Li, Hongtao; Zhang, Chengdong; Lin, Zhidi; Zhang, Xinhua; Zhang, Youjie; Yu, Yanbao; Liu, Kun; Li, Muyan; Zhang, Yuening; Lv, Wenxin; Xie, Yuanliang; Lu, Zheng; Wu, Chunlei; Teng, Ruobing; Lu, Shaoming; He, Min; Mo, Zengnan

    2015-10-01

    Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies. © 2015 Wiley Periodicals, Inc.

  3. Identifying coronary artery disease in men with type 2 diabetes: osteoprotegerin, pulse wave velocity, and other biomarkers of cardiovascular risk.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2012-02-01

    OBJECTIVES: In patients with type 2 diabetes, high serum levels of osteoprotegerin (OPG) have been associated with a greater risk of cardiovascular events. However, it remains unclear how well OPG performs when compared with traditional biomarkers of cardiovascular risk such as high-sensitivity C-reactive protein (hsCRP). Furthermore, OPG levels are also high in the presence of diabetes-related microvascular disease, and it is unclear whether OPG can distinguish microvascular disease from large-vessel atherosclerosis. The first aim of this study was to compare OPG levels against other biomarkers of cardiovascular risk in the identification of patients with documented multivessel coronary artery disease (CAD). The second aim was to compare OPG levels in patients with microvascular complications (microalbuminuria) against those with established CAD. METHODS: Three groups of male patients with type 2 diabetes were recruited: patients without microvascular complications or large-vessel atherosclerosis (n = 24), patients with microalbuminuria only (n = 23), and patients with microalbuminuria and documented multivessel CAD (n = 25). OPG, hsCRP, interleukin 6, urate, and pulse wave velocity were measured. RESULTS: Serum OPG levels were significantly higher in patients with a combination of microalbuminuria and CAD than in those with microalbuminuria alone. There were no significant differences in any of the other biomarkers between the groups. CONCLUSION: OPG was found to be superior to the other biomarkers studied in identifying patients with documented CAD. The presence of CAD was a greater determinant of serum OPG levels than microalbuminuria in our population. These findings support the use of OPG as a biomarker of cardiovascular risk.

  4. Potential diagnostic biomarkers for chronic kidney disease of unknown etiology (CKDu) in Sri Lanka: a pilot study.

    Science.gov (United States)

    Sayanthooran, Saravanabavan; Magana-Arachchi, Dhammika N; Gunerathne, Lishanthe; Abeysekera, Tilak

    2017-01-19

    In Sri Lanka, there exists chronic kidney disease of both known (CKD) and unknown etiologies (CKDu). Identification of novel biomarkers that are customized to the specific causative factors would lead to early diagnosis and clearer prognosis of the diseases. This study aimed to find genetic biomarkers in blood to distinguish and identify CKDu from CKD as well as healthy populations from CKDu endemic and non-endemic areas of Sri Lanka. The expression patterns of a selected panel of 12 potential genetic biomarkers were analyzed in blood using RT-qPCR. Fold changes of gene expressions in early and late stages of CKD and CKDu patients, and an apparently healthy population of a CKDu endemic area, Girandurukotte (GH) were calculated relative to apparently healthy volunteers from a CKDu non-endemic area, Kandy (KH) of Sri Lanka, using the comparative CT method. Significant differences were observed between KH and early stage CKDu for both the insulin-like growth factor binding protein 1 (IGFBP1; p = 0.012) and kidney injury molecule-1 (KIM1; p = 0.003) genes, and KH and late stage CKD and CKDu for the glutathione-S-transferase mu 1 (GSTM1; p CKDu (p CKDu, whereas these genes in addition with FN1, IGFBP3 and KLK1 could be used to monitor progression of CKDu. The regulation of these genes has to be studied on larger populations to validate their efficiency for further clinical use.

  5. Potential Immunological Biomarkers for Detection of Mycobacterium tuberculosis Infection in a Setting Where M. tuberculosis Is Endemic, Ethiopia.

    Science.gov (United States)

    Teklu, Takele; Kwon, Keehwan; Wondale, Biniam; HaileMariam, Milkessa; Zewude, Aboma; Medhin, Girmay; Legesse, Mengistu; Pieper, Rembert; Ameni, Gobena

    2018-04-01

    Accurate diagnosis and early treatment of tuberculosis (TB) and latent TB infection (LTBI) are vital to prevent and control TB. The lack of specific biomarkers hinders these efforts. This study's purpose was to screen immunological markers that discriminate Mycobacterium tuberculosis infection outcomes in a setting where it is endemic, Ethiopia. Whole blood from 90 participants was stimulated using the ESAT-6/CFP-10 antigen cocktail. The interferon gamma (IFN-γ)-based QuantiFERON diagnostic test was used to distinguish between LTBI and uninfected control cases. Forty cytokines/chemokines were detected from antigen-stimulated plasma supernatants (SPSs) and unstimulated plasma samples (UPSs) using human cytokine/chemokine antibody microarrays. Statistical tests allowed us to identify potential biomarkers that distinguish the TB, LTBI, and healthy control groups. As expected, the levels of IFN-γ in SPSs returned a high area under the receiver operating characteristic curve (AUC) value comparing healthy controls and LTBI cases (Z = 0.911; P SPSs of TB-infected compared to healthy controls ( P SPSs and UPSs, with P values of 0.013 and 0.012, respectively, in active TB versus LTBI cases and 0.001 and 0.002, respectively, in active TB versus healthy controls. These results encourage biomarker verification studies for IL-17 and RANTES. Combinations of these cytokines may complement IFN-γ measurements to diagnose LTBI and distinguish active TB from LTBI cases. Copyright © 2018 American Society for Microbiology.

  6. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers.

    Directory of Open Access Journals (Sweden)

    Katarina Resman Rus

    2016-06-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and Crimean-Congo hemorrhagic fever (CCHF are common representatives of viral hemorrhagic fevers still often neglected in some parts of the world. Infection with Dobrava or Puumala virus (HFRS and Crimean-Congo hemorrhagic fever virus (CCHFV can result in a mild, nonspecific febrile illness or as a severe disease with hemorrhaging and high fatality rate. An important factor in optimizing survival rate in patients with VHF is instant recognition of the severe form of the disease for which significant biomarkers need to be elucidated. To determine the prognostic value of High Mobility Group Box 1 (HMGB1 as a biomarker for disease severity, we tested acute serum samples of patients with HFRS or CCHF. Our results showed that HMGB1 levels are increased in patients with CCHFV, DOBV or PUUV infection. Above that, concentration of HMGB1 is higher in patients with severe disease progression when compared to the mild clinical course of the disease. Our results indicate that HMGB1 could be a useful prognostic biomarker for disease severity in PUUV and CCHFV infection, where the difference between the mild and severe patients group was highly significant. Even in patients with severe DOBV infection concentrations of HMGB1 were 2.8-times higher than in the mild group, but the difference was not statistically significant. Our results indicated HMGB1 as a potential biomarker for severe hemorrhagic fevers.

  8. Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study.

    Science.gov (United States)

    Dai, Yu; Liang, Zhixin; Li, Yulin; Li, Chunsun; Chen, Liangan

    2017-11-01

    Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.

  9. Urinary fructose: a potential biomarker for dietary fructose intake in children.

    Science.gov (United States)

    Johner, S A; Libuda, L; Shi, L; Retzlaff, A; Joslowski, G; Remer, T

    2010-11-01

    Recently, urinary fructose and sucrose excretion in 24-h urine have been established experimentally as new biomarkers for dietary sugar intake in adults. Our objective was to investigate 1) whether the fructose biomarker is also applicable in free-living children and 2) for what kind of sugar it is standing for. Intakes of added and total sugar (including additional sugar from fruit and fruit juices) were assessed by 3-day weighed dietary records in 114 healthy prepubertal children; corresponding 24-h urinary fructose excretion was measured photometrically. The associations between dietary sugar intakes and urinary fructose excretion were examined using linear regression models. To determine whether one of the two sugar variables may be better associated with the urinary biomarker, the statistical Pitman's test was used. Added and total sugar correlated significantly with urinary fructose, but the linear regression indicated a weak association between intake of added sugar and urinary log-fructose excretion (β=0.0026, R(2)=0.055, P=0.01). The association between total sugar intake and log-urinary fructose (β=0.0040, R(2)=0.181, Pestimation of total sugar intake than for the estimation of added dietary sugar intake in children. However, as excreted fructose stems almost exclusively from the diet (both from food-intrinsic and added intakes), it can be assumed that urinary fructose represents a potential biomarker for total dietary fructose intake, irrespective of its source.

  10. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease

    DEFF Research Database (Denmark)

    Brinkmalm, Gunnar; Sjödin, Simon; Simonsen, Anja Hviid

    2018-01-01

    SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association with neurode......SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association...... with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS: Coefficients of variation were generally below 15%. Clinical...

  11. Urinary collagen IV and πGST: potential biomarkers for detecting localized kidney injury in diabetes--a pilot study.

    LENUS (Irish Health Repository)

    Cawood, T J

    2010-01-01

    Urinary biomarkers can identify damage to specific parts of the nephron. We performed a cross-sectional study to characterise the pattern of diabetic nephropathy using urinary biomarkers of glomerular fibrosis (collagen IV), proximal tubular damage (α-glutathione-S-transferase, GST) and distal tubular damage (πGST).

  12. Potential biomarkers of tardive dyskinesia: A multiplex analysis of blood serum

    OpenAIRE

    Boiko, Anastasia S; Kornetova, Elena G; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Potential biomarkers of tardive dyskinesia: a multiplex analysis of blood serum A.S. Boiko(1), E.G. Kornetova(2), S.A. Ivanova(1), A.J.M. Loonen(3) (1)Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Laboratory of Molecular Genetics and Biochemistry, Tomsk, Russia (2)Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Department of Endogenous Disorders, Tomsk, Russia (3)Univers...

  13. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Kamper, Peter; Ludvigsen, Maja; Bendix, Knud

    2011-01-01

    Considerable effort has been spent identifying prognostic biomarkers in classic Hodgkin lymphoma (cHL). The aim of our study was to search for possible prognostic parameters in advanced-stage cHL using a proteomics-based strategy. A total of 14 cHL pretreatment tissue samples from younger, advanced......-stage patients were included. Patients were grouped according to treatment response. Proteins that were differentially expressed between the groups were analyzed using 2D-PAGE and identified by liquid chromatography mass spectrometry. Selected proteins were validated using Western blot analysis. One...

  14. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  15. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation.

    Science.gov (United States)

    Rosenbluth, Evan M; Shelton, Dawne N; Wells, Lindsay M; Sparks, Amy E T; Van Voorhis, Bradley J

    2014-05-01

    To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes. Experimental study of human embryos and IVF culture media. Academic IVF program. 91 donated, cryopreserved embryos that developed into 28 tested blastocysts, from 13 couples who had previously completed IVF cycles. None. Relative miRNA expression in IVF culture media. Blastocysts were assessed by chromosomal comparative genomic hybridization analysis, and the culture media from 55 single-embryo transfer cycles was tested for miRNA expression using an array-based quantitative real-time polymerase chain reaction analysis. The expression of the identified miRNA was correlated with pregnancy outcomes. Ten miRNA were identified in the culture media; two were specific to spent media (miR-191 and miR-372), and one was only present in media before the embryos had been cultured (miR-645). MicroRNA-191 was more highly concentrated in media from aneuploid embryos, and miR-191, miR-372, and miR-645 were more highly concentrated in media from failed IVF/non-intracytoplasmic sperm injection cycles. Additionally, miRNA were found to be more highly concentrated in ICSI and day-5 media samples when compared with regularly inseminated and day-4 samples, respectively. MicroRNA can be detected in IVF culture media. Some of these miRNA are differentially expressed according to the fertilization method, chromosomal status, and pregnancy outcome, which makes them potential biomarkers for predicting IVF success. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Isabel M Vincent

    2016-12-01

    Full Text Available Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF. Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity and stage of disease (92% sensitivity and 81% specificity. A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages versus control.

  17. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  18. Carbonyl Stress and Microinflammation-Related Molecules as Potential Biomarkers in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Tohru Ohnuma

    2018-03-01

    Full Text Available This literature review primarily aims to summarize our research, comprising both cross-sectional and longitudinal studies, and discuss the possibility of using microinflammation-related biomarkers as peripheral biomarkers in the diagnosis and monitoring of patients with schizophrenia. To date, several studies have been conducted on peripheral biomarkers to recognize the potential markers for the diagnosis of schizophrenia and to determine the state and effects of therapy in patients with schizophrenia. Research has established a correlation between carbonyl stress, an environmental factor, and the pathophysiology of neuropsychiatric diseases, including schizophrenia. In addition, studies on biomarkers related to these stresses have achieved results that are either replicable or exhibit consistent increases or decreases in patients with schizophrenia. For instance, pentosidine, an advanced glycation end product (AGE, is considerably elevated in patients with schizophrenia; however, low levels of vitamin B6 [a detoxifier of reactive carbonyl compounds (RCOs] have also been reported in some patients with schizophrenia. Another study on peripheral markers of carbonyl stress in patients with schizophrenia revealed a correlation of higher levels of glyceraldehyde-derived AGEs with higher neurotoxicity and lower levels of soluble receptors capable of diminishing the effects of AGEs. Furthermore, studies on evoked microinflammation-related biomarkers (e.g., soluble tumor necrosis factor receptor 1 have reported relatively consistent results, suggesting the involvement of microinflammation in the pathophysiology of schizophrenia. We believe that our cross-sectional and longitudinal studies as well as various previous inflammation marker studies that could be interpreted from several perspectives, such as mild localized encephalitis and microvascular disturbance, highlighted the importance of early intervention as prevention and distinguished the possible

  19. Modelling intelligence-led policing to identify its potential

    NARCIS (Netherlands)

    Hengst-Bruggeling, M. den; Graaf, H.A.L.M. de; Scheepstal, P.G.M. van

    2014-01-01

    lntelligence-led policing is a concept of policing that has been applied throughout the world. Despite some encouraging reports, the effect of intelligence-led policing is largely unknown. This paper presents a method with which it is possible to identify intelligence-led policing's potential to

  20. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    Science.gov (United States)

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  1. APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    International Nuclear Information System (INIS)

    Petty, Russell D; Wang, Weiguang; Gilbert, Fiona; Semple, Scot; Collie-Duguid, Elaina SR; Samuel, Leslie M; Murray, Graeme I; MacDonald, Graham; O'Kelly, Terrence; Loudon, Malcolm; Binnie, Norman; Aly, Emad; McKinlay, Aileen

    2009-01-01

    5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets. Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified. APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set

  2. Application of Microarrays and qPCR to Identify Phylogenetic and Functional Biomarkers Diagnostic of Microbial Communities that Biodegrade Chlorinated Solvents to Ethene

    Science.gov (United States)

    2012-01-01

    appropriate and cost - effective biomarkers to assess, monitor, and optimize performance. Commonly, biomarker development has focused on identifying...field sites. Firmicutes (Mostly Clostridium spp.), Bacteroidetes (Mostly Bacteroides spp.), as well as Proteobacteria (Mostly sulfate-reducer, i.e...continuous-flow chemostat, and environmental samples from contaminated field sites. Firmicutes (Mostly Clostridium spp.), Bacteroidetes (Mostly

  3. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker.

    Directory of Open Access Journals (Sweden)

    Julien Textoris

    Full Text Available Preeclampsia is a placental disease characterized by hypertension and proteinuria in pregnant women, and it is associated with a high maternal and neonatal morbidity. However, circulating biomarkers that are able to predict the prognosis of preeclampsia are lacking. Thirty-eight women were included in the current study. They consisted of 19 patients with preeclampsia (13 with severe preeclampsia and 6 with non-severe preeclampsia and 19 gestational age-matched women with normal pregnancies as controls. We measured circulating factors that are associated with the coagulation pathway (including fibrinogen, fibronectin, factor VIII, antithrombin, protein S and protein C, endothelial activation (such as soluble endoglin and CD146, and the release of total and platelet-derived microparticles. These markers enabled us to discriminate the preeclampsia condition from a normal pregnancy but were not sufficient to distinguish severe from non-severe preeclampsia. We then used a microarray to study the transcriptional signature of blood samples. Preeclampsia patients exhibited a specific transcriptional program distinct from that of the control group of women. Interestingly, we also identified a severity-related transcriptional signature. Functional annotation of the upmodulated signature in severe preeclampsia highlighted two main functions related to "ribosome" and "complement". Finally, we identified 8 genes that were specifically upmodulated in severe preeclampsia compared with non-severe preeclampsia and the normotensive controls. Among these genes, we identified VSIG4 as a potential diagnostic marker of severe preeclampsia. The determination of this gene may improve the prognostic assessment of severe preeclampsia.

  4. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    Science.gov (United States)

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  5. Lacrimal proline rich 4 (LPRR4 protein in the tear fluid is a potential biomarker of dry eye syndrome.

    Directory of Open Access Journals (Sweden)

    Saijyothi Venkata Aluru

    Full Text Available Dry eye syndrome (DES is a complex, multifactorial, immune-associated disorder of the tear and ocular surface. DES with a high prevalence world over needs identification of potential biomarkers so as to understand not only the disease mechanism but also to identify drug targets. In this study we looked for differentially expressed proteins in tear samples of DES to arrive at characteristic biomarkers. As part of a prospective case-control study, tear specimen were collected using Schirmer strips from 129 dry eye cases and 73 age matched controls. 2D electrophoresis (2DE and Differential gel electrophoresis (DIGE was done to identify differentially expressed proteins. One of the differentially expressed protein in DES is lacrimal proline rich 4 protein (LPRR4. LPRR4 protein expression was quantified by enzyme immune sorbent assay (ELISA. LPRR4 was down regulated significantly in all types of dry eye cases, correlating with the disease severity as measured by clinical investigations. Further characterization of the protein is required to assess its therapeutic potential in DES.

  6. Transcriptional and Cytokine Profiles Identify CXCL9 as a Biomarker of Disease Activity in Morphea.

    Science.gov (United States)

    O'Brien, Jack C; Rainwater, Yevgeniya Byekova; Malviya, Neeta; Cyrus, Nika; Auer-Hackenberg, Lorenz; Hynan, Linda S; Hosler, Gregory A; Jacobe, Heidi T

    2017-08-01

    IFN-related pathways have not been studied in morphea, and biomarkers are needed. We sought to characterize morphea serum cytokine imbalance and IFN-related gene expression in blood and skin to address this gap by performing a case-control study of 87 participants with morphea and 26 healthy control subjects. We used multiplexed immunoassays to determine serum cytokine concentrations, performed transcriptional profiling of whole blood and lesional morphea skin, and used double-staining immunohistochemistry to determine the cutaneous cellular source of CXCL9. We found that CXCL9 was present at increased concentrations in morphea serum (P morphea skin (fold change = 30.6, P = 0.006), and preliminary transcriptional profiling showed little evidence for IFN signature in whole blood. Double-staining immunohistochemistry showed CXCL9 co-localized with CD68 + dermal macrophages. In summary, inflammatory morphea is characterized by T helper type 1 cytokine imbalance in serum, particularly CXCL9, which is associated with disease activity. CXCL9 expression in lesional macrophages implicates the skin as the source of circulating cytokines. CXCL9 is a promising biomarker of disease activity in morphea. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A GIS methodology to identify potential corn stover collection locations

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Monica A. [Department of Community and Regional Planning, 583 College of Design, Iowa State University, Ames, IA 50011-3095 (United States); Anderson, Paul F. [Department of Landscape Architecture, 481 College of Design, Iowa State University, Ames, IA 50011 (United States); Department of Agronomy, 481 College of Design, Iowa State University, Ames, IA 50011 (United States)

    2008-12-15

    In this study, we use geographic information systems technology to identify potential locations in a Midwestern region for collection and storage of corn stover for use as biomass feedstock. Spatial location models are developed to identify potential collection sites along an existing railroad. Site suitability analysis is developed based on two main models: agronomic productivity potential and environmental costs. The analysis includes the following steps: (1) elaboration of site selection criteria; (2) identification of the study region and service area based on transportation network analysis; (3) reclassification of input spatial layers based on common scales; (4) overlaying the reclassified spatial layers with equal weights to generate the two main models; and (5) overlaying the main models using different weights. A pluralistic approach is adopted, presenting three different scenarios as alternatives for the potential locations. Our results suggest that there is a significant subset of potential sites that meet site selection criteria. Additional studies are needed to evaluate potential sites through field visits, assess economic and social costs, and estimate the proportion of corn producers willing to sell and transport corn stover to collection facilities. (author)

  8. Identifying potential kidney donors using social networking web sites.

    Science.gov (United States)

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  9. Serum Metabolic Fingerprinting Identified Putatively Annotated Sphinganine Isomer as a Biomarker of Wolfram Syndrome.

    Science.gov (United States)

    Zmyslowska, Agnieszka; Ciborowski, Michal; Borowiec, Maciej; Fendler, Wojciech; Pietrowska, Karolina; Parfieniuk, Ewa; Antosik, Karolina; Pyziak, Aleksandra; Waszczykowska, Arleta; Kretowski, Adam; Mlynarski, Wojciech

    2017-11-03

    Wolfram syndrome (WFS) is an example of a rare neurodegenerative disease with coexisting endocrine symptoms including diabetes mellitus as the first clinical symptom. Treatment of WFS is still only symptomatic and associated with poor prognosis. Potential markers of disease progression that could be useful for possible intervention trials are not available. Metabolomics has potential to identify such markers. In the present study, serum fingerprinting by LC-QTOF-MS was performed in patients with WFS (n = 13) and in patients with T1D (n = 27). On the basis of the obtained results, aminoheptadecanediol (17:0 sphinganine isomer) (+50%, p = 0.02), as the most discriminatory metabolite, was selected for validation. The 17:0 sphinganine isomer level was determined using the LC-QQQ method in the samples from WFS patients at two time points and compared with samples obtained from patients with T1D (n = 24) and healthy controls (n = 24). Validation analysis showed higher 17:0 sphinganine isomer level in patients with WFS compared to patients with T1D (p = 0.0097) and control group (p < 0.0001) with progressive reduction of its level after two-year follow-up period. Patients with WFS show a unique serum metabolic fingerprint, differentiating them from patients with T1D. Sphinganine derivate seems to be a marker of the ongoing process of neurodegeneration in WFS patients.

  10. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    Science.gov (United States)

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0

  11. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential.

    Science.gov (United States)

    Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S

    2013-01-01

    There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery.

    Science.gov (United States)

    Quanico, Jusal; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle

    2017-01-01

    Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.

  13. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2011-09-01

    Full Text Available Abstract Background Acute pulmonary embolism (APE remains a diagnostic challenge due to a variable clinical presentation and the lack of a reliable screening tool. MicroRNAs (miRNAs regulate gene expression in a wide range of pathophysiologic processes. Circulating miRNAs are emerging biomarkers in heart failure, type 2 diabetes and other disease states; however, using plasma miRNAs as biomarkers for the diagnosis of APE is still unknown. Methods Thirty-two APE patients, 32 healthy controls, and 22 non-APE patients (reported dyspnea, chest pain, or cough were enrolled in this study. The TaqMan miRNA microarray was used to identify dysregulated miRNAs in the plasma of APE patients. The TaqMan-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate the dysregulated miRNAs. The receiver-operator characteristic (ROC curve analysis was conducted to evaluate the diagnostic accuracy of the miRNA identified as the candidate biomarker. Results Plasma miRNA-134 (miR-134 level was significantly higher in the APE patients than in the healthy controls or non-APE patients. The ROC curve showed that plasma miR-134 was a specific diagnostic predictor of APE with an area under the curve of 0.833 (95% confidence interval, 0.737 to 0.929; P Conclusions Our findings indicated that plasma miR-134 could be an important biomarker for the diagnosis of APE. Because of this finding, large-scale investigations are urgently needed to pave the way from basic research to clinical utilization.

  14. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.

    Science.gov (United States)

    Skotland, Tore; Ekroos, Kim; Kauhanen, Dimple; Simolin, Helena; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2017-01-01

    Exosomes have recently appeared as a novel source of noninvasive cancer biomarkers, since these nanovesicles contain molecules from cancer cells and can be detected in biofluids. We have here investigated the potential use of lipids in urinary exosomes as prostate cancer biomarkers. A high-throughput mass spectrometry quantitative lipidomic analysis was performed to reveal the lipid composition of urinary exosomes in prostate cancer patients and healthy controls. Control samples were first analysed to characterise the lipidome of urinary exosomes and test the reproducibility of the method. In total, 107 lipid species were quantified in urinary exosomes. Several differences, for example, in cholesterol and phosphatidylcholine, were found between urinary exosomes and exosomes derived from cell lines, thus showing the importance of in vivo studies for biomarker analysis. The 36 most abundant lipid species in urinary exosomes were then quantified in 15 prostate cancer patients and 13 healthy controls. Interestingly, the levels of nine lipids species were found to be significantly different when the two groups were compared. The highest significance was shown for phosphatidylserine (PS) 18:1/18:1 and lactosylceramide (d18:1/16:0), the latter also showed the highest patient-to-control ratio. Furthermore, combinations of these lipid species and PS 18:0-18:2 distinguished the two groups with 93% sensitivity and 100% specificity. Finally, in agreement with the reported dysregulation of sphingolipid metabolism in cancer cells, alteration in specific sphingolipid lipid classes were observed. This study shows for the first time the potential use of exosomal lipid species in urine as prostate cancer biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  16. Identifying product development crises: The potential of adaptive heuristics

    DEFF Research Database (Denmark)

    Münzberger, C.; Stingl, Verena; Oehmen, Josef

    2017-01-01

    This paper introduces adaptive heuristics as a tool to identify crises in design projects and highlights potential applications of these heuristics as decision support tool for crisis identification. Crises may emerge slowly or suddenly, and often have ambiguous signals. Thus the identification...... for the application of heuristics in design sciences. To achieve this, the paper compares crises to 'business as usual', and presents sixteen indicators for emerging crises. These indicators are potential cues for adaptive heuristics. Specifically three adaptive heuristics, One-single-cue, Fast-and-Frugal-Trees...

  17. Antiphosphatidylserine/prothrombin antibodies as biomarkers to identify severe primary antiphospholipid syndrome.

    Science.gov (United States)

    Hoxha, Ariela; Mattia, Elena; Tonello, Marta; Grava, Chiara; Pengo, Vittorio; Ruffatti, Amelia

    2017-05-01

    Anti-phosphatidylserine/prothrombin (aPS/PT) antibodies have begun to be considered potentional biomarkers for antiphospholipid syndrome (APS). This cohort study investigate the role of aPS/PT antibodies as a risk factor for severe APS by evaluating the association between those antibodies and clinical/laboratory profiles of APS. Plasma/serum samples from 197 APS patients, 100 healthy subjects and 106 patients with autoimmune diseases were collected. IgG/IgM aPS/PT antibodies were assayed using commercial ELISA kit. Prevalences of IgG and IgM aPS/PT (pantiphospholipid antibody patients than in double and single positivity ones (p<0.0001 for all). APS/PT antibodies were associated to severe thrombosis, severe pregnancy complications inducing prematurity, and vascular microangiopathy, all generally associated to high risk APS forms requiring strong therapy.

  18. The potential of pathological protein fragmentation in blood-based biomarker development for dementia – with emphasis on Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dilek eInekci

    2015-05-01

    Full Text Available The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early interven-tion. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates.The cerebrospinal fluid (CSF has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood-brain-barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.

  19. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Ashton Kevin J

    2011-05-01

    Full Text Available Abstract Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME is characterised by severe prolonged fatigue, and decreases in cognition and other physiological functions, resulting in severe loss of quality of life, difficult clinical management and high costs to the health care system. To date there is no proven pathomechanism to satisfactorily explain this disorder. Studies have identified abnormalities in immune function but these data are inconsistent. We investigated the profile of markers of immune function (including novel markers in CFS/ME patients. Methods We included 95 CFS/ME patients and 50 healthy controls. All participants were assessed on natural killer (NK and CD8+T cell cytotoxic activities, Th1 and Th2 cytokine profile of CD4+T cells, expression of vasoactive intestinal peptide receptor 2 (VPACR2, levels of NK phenotypes (CD56bright and CD56dim and regulatory T cells expressing FoxP3 transcription factor. Results Compared to healthy individuals, CFS/ME patients displayed significant increases in IL-10, IFN-γ, TNF-α, CD4+CD25+ T cells, FoxP3 and VPACR2 expression. Cytotoxic activity of NK and CD8+T cells and NK phenotypes, in particular the CD56bright NK cells were significantly decreased in CFS/ME patients. Additionally granzyme A and granzyme K expression were reduced while expression levels of perforin were significantly increased in the CFS/ME population relative to the control population. These data suggest significant dysregulation of the immune system in CFS/ME patients. Conclusions Our study found immunological abnormalities which may serve as biomarkers in CFS/ME patients with potential for an application as a diagnostic tool.

  20. Myeloid differentiation-2 is a potential biomarker for the amplification process of allergic airway sensitization in mice

    Directory of Open Access Journals (Sweden)

    Daisuke Koyama

    2015-09-01

    Conclusions: Our data suggest MD-2 is a critical regulator of the establishment of allergic airway sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of allergic sensitization and allergic inflammation.

  1. Biomarkers Associated with Cognitive Impairment in Treated Cancer Patients: Potential Predisposition and Risk Factors

    Science.gov (United States)

    Castel, Hélène; Denouel, Angeline; Lange, Marie; Tonon, Marie-Christine; Dubois, Martine; Joly, Florence

    2017-01-01

    Purpose: Cognitive impairment in cancer patients induced, at least in part, by treatment are frequently observed and likely have negative impacts on patient quality of life. Such cognitive dysfunctions can affect attention, executive functions, and memory and processing speed, can persist after treatment, and their exact causes remain unclear. The aim of this review was to create an inventory and analysis of clinical studies evaluating biological markers and risk factors for cognitive decline in cancer patients before, during, or after therapy. The ultimate objectives were to identify robust markers and to determine what further research is required to develop original biological markers to enable prevention or adapted treatment management of patients at risk. Method: This review was guided by the PRISMA statement and included a search strategy focused on three components: “cognition disorders,” “predictive factors”/“biological markers,” and “neoplasms,” searched in PubMed since 2005, with exclusion criteria concerning brain tumors, brain therapy, and imaging or animal studies. Results: Twenty-three studies meeting the criteria were analyzed. Potential associations/correlations were identified between cognitive impairments and specific circulating factors, cerebral spinal fluid constituents, and genetic polymorphisms at baseline, during, and at the end of treatment in cancer populations. The most significant results were associations between cognitive dysfunctions and genetic polymorphisms, including APOE-4 and COMT-Val; increased plasma levels of the pro-inflammatory cytokine, IL-6; anemia; and hemoglobin levels during chemotherapy. Plasma levels of specific hormones of the hypothalamo-pituitary-adrenal axis are also modified by treatment. Discussion: It is recognized in the field of cancer cognition that cancer and comorbidities, as well as chemotherapy and hormone therapy, can cause persistent cognitive dysfunction. A number of biological

  2. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers.

    Science.gov (United States)

    Zhang, Mo; Chen, Lizhu; Yuan, Zhengwei; Yang, Zeyu; Li, Yue; Shan, Liping; Yin, Bo; Fei, Xiang; Miao, Jianing; Song, Yongsheng

    2016-11-01

    Prostate cancer (PCa) is one of the most common malignant tumors and a major cause of cancer-related death for men worldwide. The aim of our study was to identify potential non-invasive serum and expressed prostatic secretion (EPS)-urine biomarkers for accurate diagnosis of PCa. Here, we performed a combined isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to compare protein profiles using pooled serum and EPS-urine samples from 4 groups of patients: benign prostate hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN), localized PCa and metastatic PCa. The differentially expressed proteins were rigorously selected and further validated in a large and independent cohort using classical ELISA and Western blot assays. Finally, we established a multiplex biomarker panel consisting of 3 proteins (serum PF4V1, PSA, and urinary CRISP3) with an excellent diagnostic capacity to differentiate PCa from BPH [area under the receiver operating characteristic curve (AUC) of 0.941], which showed an evidently greater discriminatory ability than PSA alone (AUC, 0.757) (P<0.001). Importantly, even when PSA level was in the gray zone (4-10 ng/mL), a combination of PF4V1 and CRISP3 could achieve a relatively high diagnostic efficacy (AUC, 0.895). Furthermore, their combination also had the potential to distinguish PCa from HGPIN (AUC, 0.934). Our results demonstrated that the combined application of serum and EPS-urine biomarkers can improve the diagnosis of PCa and provide a new prospect for non-invasive PCa detection.

  3. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma

    Science.gov (United States)

    WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU

    2016-01-01

    Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408

  4. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria

    Science.gov (United States)

    Adedosu, Taofik A.; Sonibare, Oluwadayo O.; Tuo, Jincai; Ekundayo, Olusegun

    2012-05-01

    Coal and carbonaceous shale samples were collected from two boreholes (BH 94 and BH 120) in Awgu formation of Middle Benue Trough, Nigeria. Source rock potentials of the samples were studied using biomarkers and carbon isotopic composition. Biomarkers in the aliphatic fractions in the samples were studied using Gas Chromatography-Mass Spectrometry (GC-MS). The Carbon isotope analysis of individual n-alkanes in the aliphatic fraction was performed using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (GC-IRMS). The abundance of hopanes, homohopanes (C31-C35), and C29 steranes in the samples indicate terrestrial plant, phytoplankton and cyanobacteria contributions to the organic matter that formed the coal. High (Pr/Ph) ratio (3.04-11.07) and isotopic distribution of individual alkanes showed that the samples consisted of mixed terrestrial/marine organic matter deposited under oxic condition in lacustrine-fluvial/deltaic depositional environment. The maturity parameters derived from biomarker distributions showed that the samples are in the main phase of oil window.

  5. Biomarkers as Potential Treatment Targets in Inflammatory Bowel Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Travis B Murdoch

    2015-01-01

    Full Text Available There is increasing interest in the concept of ‘treat-to-target’ in inflammatory bowel disease as a mechanism to standardize management and prevent complications. While clinical, radiographic and endoscopic treatment end points will figure prominently in this promising management paradigm, the role that noninvasive biomarkers will play is currently undefined. The goal of the present systematic review was to investigate the potential value of biomarkers as treatment targets in inflammatory bowel disease, with particular focus on those best studied: serum C-reactive protein (CRP and fecal calprotectin. In Crohn disease, elevated CRP levels at baseline predict response to anti-tumour necrosis factor agents, and normalization is usually associated with clinical and endoscopic remission. CRP and hemoglobin levels can be used to help predict clinical relapse in the context of withdrawal of therapy. Ultimately, the authors conclude that currently available biomarkers should not be used as treatment targets in inflammatory bowel disease because they have inadequate operational characteristics to make them safe surrogates for clinical, endoscopic and radiographic evaluation. However, CRP and fecal calprotectin are important adjunctive measures that help alert the clinician to pursue further investigation.

  6. Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic Encephalopathy.

    Science.gov (United States)

    Stern, Robert A; Tripodis, Yorghos; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Cantu, Robert C; Joyce, James A; Shah, Sahil; Ikezu, Tsuneya; Zhang, Jing; Gercel-Taylor, Cicek; Taylor, Douglas D

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports. Diagnosis is made through neuropathological examination. Many of the clinical features of CTE are common in the general population, with and without a history of head impact exposure, making clinical diagnosis difficult. As is now common in the diagnosis of other neurodegenerative disorders, such as Alzheimer's disease, there is a need for methods to diagnose CTE during life through objective biomarkers. The aim of this study was to examine tau-positive exosomes in plasma as a potential CTE biomarker. Subjects were 78 former National Football League (NFL) players and 16 controls. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. The NFL group had higher exosomal tau than the control group (p <  0.0001). Exosomal tau discriminated between the groups, with 82% sensitivity, 100% specificity, 100% positive predictive value, and 53% negative predictive value. Within the NFL group, higher exosomal tau was associated with worse performance on tests of memory (p = 0.0126) and psychomotor speed (p = 0.0093). These preliminary findings suggest that exosomal tau in plasma may be an accurate, noninvasive CTE biomarker.

  7. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    International Nuclear Information System (INIS)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk

    2011-01-01

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [ 18F ]fluorocyclo butane 1 carboxylic acid ([ 18F ]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [ 18F ]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [ 18F ]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging

  8. Urinary Exosomes: The Potential for Biomarker Utility, Intercellular Signaling and Therapeutics in Urological Malignancy.

    Science.gov (United States)

    Franzen, Carrie A; Blackwell, Robert H; Foreman, Kimberly E; Kuo, Paul C; Flanigan, Robert C; Gupta, Gopal N

    2016-05-01

    Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA with the potential to alter signaling pathways in recipient cells. While exosome research has flourished, few publications have specifically considered the role of genitourinary cancer shed exosomes in urine, their implication in disease progression and their usefulness as noninvasive biomarkers. In this review we examined the current literature on the role of exosomes in intercellular communication and as biomarkers, and their potential as delivery vehicles for therapeutic applications in bladder, prostate and renal cancer. We searched PubMed® and Google® with the key words prostate cancer, bladder cancer, kidney cancer, exosomes, microvesicles and urine. Relevant articles, including original research studies and reviews, were selected based on contents. A review of this literature was generated. Cancer exosomes can be isolated from urine using various techniques. Cancer cells have been found to secrete more exosomes than normal cells. These exosomes have a role in cellular communication by interacting with and depositing their cargo in target cells. Bladder, prostate and renal cancer exosomes have been shown to enhance migration, invasion and angiogenesis. These exosomes have also been shown to increase proliferation, confer drug resistance and promote immune evasion. Urinary exosomes can be isolated from bladder, kidney and prostate cancer. They serve as a potential reservoir for biomarker identification. Exosomes also have potential for therapeutics as siRNA or pharmacological agents can be loaded into exosomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    International Nuclear Information System (INIS)

    Dalmas, Deidre A.; Scicchitano, Marshall S.; Mullins, David; Hughes-Earle, Angela; Tatsuoka, Kay; Magid-Slav, Michal; Frazier, Kendall S.; Thomas, Heath C.

    2011-01-01

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid and high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip® analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan™) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: ► A gene panel was developed to help predict rat drug-induced mesenteric MAN. ► A gene panel was identified following treatment of rats with 28

  10. Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia.

    Directory of Open Access Journals (Sweden)

    Aneta Dobierzewska

    14:0 were significantly lower in first trimester plasma of PE patients when compared with their gestational-matched control samples (p = 0.009. Major plasma sphingomyelin species (SM 16:0, SM 18:1 and SM 24:0 tended to be higher in control pregnancies across gestation. However, in PE patients, SM 16:0, SM 18:0 and SM 18:1 showed significant up-regulation across gestation, pointing to atherogenic properties of the sphingomyelins and particularly the potential contribution of SM 18:0 to the disease development. In addition, two major sphingomyelins, SM 16:0 and SM 18:0, were significantly lower in first trimester plasma of PE patients versus first trimester samples of respective controls (p = 0.007 and p = 0.002, respectively.Cross-gestational analysis of maternal plasma of preeclamptic and normotensive women identifies differences in the biochemical profile of major sphingolipids (DH-S1P, sphingomyelins and ceramides between these two groups. In addition, first trimester maternal plasma sphingolipids (Cer 14:0, SM 16:0 and SM 18:0 may serve in the future as early biomarkers of PE occurrence and development.

  11. New approaches for identifying and testing potential new anti-asthma agents.

    Science.gov (United States)

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  12. Antibody Arrays Identify Potential Diagnostic Markers of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Brian J. Peter

    2008-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer deaths worldwide. Effective treatment of HCC patients is hampered by the lack of sensitive and specific diagnostic markers of HCC. Alpha-fetoprotein (AFP, the currently used HCC marker, misses 30%–50% of HCC patients, who therefore remain undiagnosed and untreated. In order to identify novel diagnostic markers that can be used individually or in combination with AFP, we used an antibody array platform to detect the levels of candidate proteins in the plasma of HCC patients (n = 48 and patients with chronic hepatitis B or C viral infections (n = 19 (both of which are the major risk factors of HCC. We identified 7 proteins that significantly differentiate HCC patients from hepatitis patients (p < 0.05 (AFP, CTNNB, CSF1, SELL, IGFBP6, IL6R, and VCAM1.Importantly, we also identified 8 proteins that significantly differentiate HCC patients with ‘normal’ levels of AFP (<20 ng/ml from hepatitis patients (p < 0.05 (IL1RN, IFNG, CDKN1A, RETN, CXCL14, CTNNB, FGF2, and SELL. These markers are potentially important complementary markers to AFP. Using an independent immunoassay method in an independent group of 23 HCC patients and 22 hepatitis patients, we validated that plasma levels of CTNNB were significantly higher in the HCC group (p = 0.020. In conclusion, we used an antibody array platform to identify potential circulating diagnostic markers of HCC, some of which may be valuable when used in combination with AFP. The clinical utility of these newly identified HCC diagnostic markers needs to be systematically evaluated.

  13. Metabolomic screening using ESI-FT MS identifies potential radiation-responsive molecules in mouse urine

    International Nuclear Information System (INIS)

    Iizuka, Daisuke; Yoshioka, Susumu; Kawai, Hidehiko; Izumi, Shunsuke; Suzuki, Fumio; Kamiya, Kenji

    2017-01-01

    The demand for establishment of high-throughput biodosimetric methods is increasing. Our aim in this study was to identify low-molecular-weight urinary radiation-responsive molecules using electrospray ionization Fourier transform mass spectrometry (ESI-FT MS), and our final goal was to develop a sensitive biodosimetry technique that can be applied in the early triage of a radiation emergency medical system. We identified nine metabolites by statistical comparison of mouse urine before and 8 h after irradiation. Time-course analysis showed that, of these metabolites, thymidine and either thymine or imidazoleacetic acid were significantly increased dose-dependently 8 h after radiation exposure; these molecules have already been reported as potential radiation biomarkers. Phenyl glucuronide was significantly decreased 8 h after radiation exposure, irrespective of the dose. Histamine and 1-methylhistamine were newly identified by MS/MS and showed significant, dose-dependent increases 72 h after irradiation. Quantification of 1-methylhistamine by enzyme-linked immunosorbent assay (ELISA) analysis also showed a significant increase 72 h after 4 Gy irradiation. These results suggest that urinary metabolomics screening using ESI-FT MS can be a powerful tool for identifying promising radiation-responsive molecules, and that urinary 1-methylhistamine is a potential radiation-responsive molecule for acute, high-dose exposure.

  14. Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging?

    Science.gov (United States)

    Pallis, Athanasios G; Hatse, Sigrid; Brouwers, Barbara; Pawelec, Graham; Falandry, Claire; Wedding, Ulrich; Lago, Lissandra Dal; Repetto, Lazzaro; Ring, Alistair; Wildiers, Hans

    2014-04-01

    Aging of an individual entails a progressive decline of functional reserves and loss of homeostasis that eventually lead to mortality. This process is highly individualized and is influenced by multiple genetic, epigenetic and environmental factors. This individualization and the diversity of factors influencing aging result in a significant heterogeneity among people with the same chronological age, representing a major challenge in daily oncology practice. Thus, many factors other than mere chronological age will contribute to treatment tolerance and outcome in the older patients with cancer. Clinical/comprehensive geriatric assessment can provide information on the general health status of individuals, but is far from perfect as a prognostic/predictive tool for individual patients. On the other hand, aging can also be assessed in terms of biological changes in certain tissues like the blood compartment which result from adaptive alterations due to past history of exposures, as well as intrinsic aging processes. There are major signs of 'aging' in lymphocytes (e.g. lymphocyte subset distribution, telomere length, p16INK4A expression), and also in (inflammatory) cytokine expression and gene expression patterns. These result from a combination of the above two processes, overlaying genetic predispositions which contribute significantly to the aging phenotype. These potential "aging biomarkers" might provide additional prognostic/predictive information supplementing clinical evaluation. The purpose of the current paper is to describe the most relevant potential "aging biomarkers" (markers that indicate the biological functional age of patients) which focus on the biological background, the (limited) available clinical data, and technical challenges. Despite their great potential interest, there is a need for much more (validated) clinical data before these biomarkers could be used in a routine clinical setting. This manuscript tries to provide a guideline on how

  15. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure.

    Science.gov (United States)

    Meder, Benjamin; Haas, Jan; Sedaghat-Hamedani, Farbod; Kayvanpour, Elham; Frese, Karen; Lai, Alan; Nietsch, Rouven; Scheiner, Christina; Mester, Stefan; Bordalo, Diana Martins; Amr, Ali; Dietrich, Carsten; Pils, Dietmar; Siede, Dominik; Hund, Hauke; Bauer, Andrea; Holzer, Daniel Benjamin; Ruhparwar, Arjang; Mueller-Hennessen, Matthias; Weichenhan, Dieter; Plass, Christoph; Weis, Tanja; Backs, Johannes; Wuerstle, Maximilian; Keller, Andreas; Katus, Hugo A; Posch, Andreas E

    2017-10-17

    Biochemical DNA modification resembles a crucial regulatory layer among genetic information, environmental factors, and the transcriptome. To identify epigenetic susceptibility regions and novel biomarkers linked to myocardial dysfunction and heart failure, we performed the first multi-omics study in myocardial tissue and blood of patients with dilated cardiomyopathy and controls. Infinium human methylation 450 was used for high-density epigenome-wide mapping of DNA methylation in left-ventricular biopsies and whole peripheral blood of living probands. RNA deep sequencing was performed on the same samples in parallel. Whole-genome sequencing of all patients allowed exclusion of promiscuous genotype-induced methylation calls. In the screening stage, we detected 59 epigenetic loci that are significantly associated with dilated cardiomyopathy (false discovery corrected P ≤0.05), with 3 of them reaching epigenome-wide significance at P ≤5×10 -8 . Twenty-seven (46%) of these loci could be replicated in independent cohorts, underlining the role of epigenetic regulation of key cardiac transcription regulators. Using a staged multi-omics study design, we link a subset of 517 epigenetic loci with dilated cardiomyopathy and cardiac gene expression. Furthermore, we identified distinct epigenetic methylation patterns that are conserved across tissues, rendering these CpGs novel epigenetic biomarkers for heart failure. The present study provides to our knowledge the first epigenome-wide association study in living patients with heart failure using a multi-omics approach. © 2017 American Heart Association, Inc.

  16. Biomarkers of PTSD: military applications and considerations

    Directory of Open Access Journals (Sweden)

    Amy Lehrner

    2014-08-01

    Full Text Available Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. Objective: This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Method: Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Results: Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Conclusions: Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  17. Biomarkers of PTSD: military applications and considerations.

    Science.gov (United States)

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  18. Three new potential ovarian cancer biomarkers detected in human urine with equalizer bead technology

    DEFF Research Database (Denmark)

    Petri, Anette Lykke; Simonsen, Anja Hviid; Yip, Tai-Tung

    2008-01-01

    samples were aliquotted and frozen at -80 degrees until the time of analysis. The urine was fractionated using equalizer bead technology and then analyzed with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Biomarkers were purified and identified using combinations...... of chromatographic techniques and tandem mass spectrometry. RESULTS: Benign and malignant ovarian cancer cases were compared; 21 significantly different peaks (p...OBJECTIVE: To examine whether urine can be used to measure specific ovarian cancer proteomic profiles and whether one peak alone or in combination with other peaks or CA125 has the sensitivity and specificity to discriminate between ovarian cancer pelvic mass and benign pelvic mass. METHODS...

  19. A Preliminary ToF-SIMS Assessment of Preservation Potential of Organic Biomarkers in Modern Siliceous Sinter and Core, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Guidry, S. A.; Chafetz, H. S.; Steele, A.; Toporski, J. K. W.

    2000-01-01

    Until recently, most biomarker work has focused on morphological body fossils. As a complement to this, three suites of siliceous precipitates were chosen for ToF-SIMS investigation in order to elucidate potential organic biomarkers.

  20. The potential of functional MRI as a biomarker in early Alzheimer’s disease

    OpenAIRE

    Sperling, Reisa

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is a relative newcomer in the field of biomarkers for Alzheimer’s disease (AD). fMRI has several potential advantages, particularly for clinical trials, as it is a non-invasive imaging technique that does not require the injection of contrast agent or radiation exposure and thus can be repeated many times during a longitudinal study. fMRI has relatively high spatial and reasonable temporal resolution, and can be acquired in the same session as stru...

  1. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    Science.gov (United States)

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  2. Plasma lysosphingomyelin demonstrates great potential as a diagnostic biomarker for Niemann-Pick disease type C in a retrospective study.

    Directory of Open Access Journals (Sweden)

    Richard W D Welford

    Full Text Available Niemann-Pick disease type C (NP-C is a devastating, neurovisceral lysosomal storage disorder which is characterised by variable manifestation of visceral signs, progressive neuropsychiatric deterioration and premature death, caused by mutations in the NPC1 and NPC2 genes. Due to the complexity of diagnosis and the availability of an approved therapy in the EU, improved detection of NP-C may have a huge impact on future disease management. At the cellular level dysfunction or deficiency of either the NPC1 or NPC2 protein leads to a complex intracellular endosomal/lysosomal trafficking defect, and organ specific patterns of sphingolipid accumulation. Lysosphingolipids have been shown to be excellent biomarkers of sphingolipidosis in several enzyme deficient lysosomal storage disorders. Additionally, in a recent study the lysosphingolipids, lysosphingomyelin (SPC and glucosylsphingosine (GlcSph, appeared to be elevated in the plasma of three adult NP-C patients. In order to investigate the clinical utility of SPC and GlcSph as diagnostic markers, an in-depth fit for purpose biomarker assay validation for measurement of these biomarkers in plasma by liquid chromatography-tandem mass spectrometry was performed. Plasma SPC and GlcSph are stable and can be measured accurately, precisely and reproducibly. In a retrospective analysis of 57 NP-C patients and 70 control subjects, median plasma SPC and GlcSph were significantly elevated in NP-C by 2.8-fold and 1.4-fold respectively. For miglustat-naïve NP-C patients, aged 2-50 years, the area under the ROC curve was 0.999 for SPC and 0.776 for GlcSph. Plasma GlcSph did not correlate with SPC levels in NP-C patients. The data indicate excellent potential for the use of lysosphingomyelin in NP-C diagnosis, where it could be used to identify NP-C patients for confirmatory genetic testing.

  3. Circulating plasmablasts/plasma cells: a potential biomarker for IgG4-related disease.

    Science.gov (United States)

    Lin, Wei; Zhang, Panpan; Chen, Hua; Chen, Yu; Yang, Hongxian; Zheng, Wenjie; Zhang, Xuan; Zhang, Fengxiao; Zhang, Wen; Lipsky, Peter E

    2017-02-10

    Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is a multisystem fibroinflammatory disease. We previously reported that a circulating cell population expressing CD19 + CD24 - CD38 hi was increased in patients with IgG4-RD. In this study, we aimed to document that this cell population represented circulating plasmablasts/plasma cells, to identify the detailed phenotype and gene expression profile of these IgG4-secreting plasmablasts/plasma cells, and to determine whether this B-cell lineage subset could be a biomarker in IgG4-related disease (IgG4-RD). A total of 42 untreated patients with IgG4-RD were evaluated. Peripheral B-cell subsets, including CD19 + CD24 - CD38 hi plasmablasts/plasma cells, CD19 + CD24 + CD38 - memory B cells, CD19 + CD24 int CD38 int naïve B cells, and CD19 + CD24 hi CD38 hi regulatory B cells, were assessed and sorted by flow cytometry. Microarray analysis was used to measure gene expression of circulating B-cell lineage subsets. Further characterization of CD19 + CD24 - CD38 hi plasmablasts/plasma cells was carried out by evaluating additional surface markers, including CD27, CD95, and human leukocyte antigen (HLA)-DR, by flow cytometric assay. In addition, various B-cell lineage subsets were cultured in vitro and IgG4 concentrations were measured by cytometric bead array. In untreated patients with IgG4-RD, the peripheral CD19 + CD24 - CD38 hi plasmablast/plasma cell subset was increased and positively correlated with serum IgG4 levels, the number of involved organs, and the IgG4-related Disease Responder Index. It decreased after treatment with glucocorticoids. Characterization of the plasmablast/plasma cell population by gene expression profiling documented a typical plasmablast/plasma cell signature with higher expression of X-box binding protein 1 and IFN regulatory factor 4, but lower expression of paired box gene 5 and B-cell lymphoma 6 protein. In addition, CD27, CD95, and HLA-DR were highly expressed on CD19 + CD24 - CD38 hi

  4. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease

    Directory of Open Access Journals (Sweden)

    Stewart Stephen

    2009-08-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD has a prevalence of over 20% in Western societies. Affected individuals are at risk of developing both cirrhosis and hepatocellular cancer (HCC. Presently there is no cost effective population based means of identifying cirrhotic individuals and even if there were, our ability to perform HCC surveillance in the at risk group is inadequate. We have performed a pilot proteomic study to assess this as a strategy for serum biomarker detection. Methods 2D Gel electrophoresis was performed on immune depleted sera from 3 groups of patients, namely those with (1 pre-cirrhotic NAFLD (2 cirrhotic NAFLD and (3 cirrhotic NAFLD with co-existing HCC. Five spots differentiating at least one of these three groups were characterised by mass spectroscopy. An ELISA assay was optimised and a cross sectional study assessing one of these serum spots was performed on serum from 45 patients with steatohepatitis related cirrhosis and HCC and compared to 77 patients with histologically staged steatohepatitis. Results Four of the spots identified were apolipoprotein isoforms, the pattern of which was able to differentiate the three groups. The 5th spot, seen in the serum of cirrhotic individuals and more markedly in those with HCC, was identified as CD5 antigen like (CD5L. By ELISA assay, although CD5L was markedly elevated in a number of cirrhotic individuals with HCC, its overall ability to distinguish non-cancer from cancer individuals as determined by AUC ROC analysis was poor. However, serum CD5L was dramatically increased, independently of age, sex, and the presence of necroinflammation, in the serum of individuals with NAFLD cirrhosis relative to those with pre-cirrhotic disease. Conclusion This novel proteomic strategy has identified a number of candidate biomarkers which may have benefit in the surveillance and diagnosis of individuals with chronic liver disease and/or HCC.

  5. Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers.

    Science.gov (United States)

    Cheng, Y-S L; Jordan, L; Chen, H-S; Kang, D; Oxford, L; Plemons, J; Parks, H; Rees, T

    2017-06-01

    More than 100 salivary constituents have been found to show levels significantly different in patients with oral squamous cell carcinoma (OSCC) from those found in healthy controls, and therefore have been suggested to be potential salivary biomarkers for OSCC detection. However, many of these potential OSCC salivary biomarkers are also involved in chronic inflammation, and whether the levels of these biomarkers could be affected by the presence of chronic periodontitis was not known. The objective of this pilot study was therefore to measure the levels of seven previously reported potential OSCC salivary mRNA biomarkers in patients with chronic periodontitis and compare them to levels found in patients with OSCC and healthy controls. The seven salivary mRNAs were interleukin (IL)-8, IL-1β, dual specificity phosphatase 1, H3 histone family 3A, ornithine decarboxylase antizyme 1, S100 calcium-binding protein P (S100P) and spermidine/spermine N1-acetyltransferase 1. Unstimulated whole saliva samples were collected from a total of 105 human subjects from the following four study groups: OSCC; CPNS (chronic periodontitis, moderate to severe degree, non-smokers); CPS (chronic periodontitis, moderate to severe degree, smokers); and healthy controls. Levels of each mRNA in patient groups (OSCC or chronic periodontitis) relative to the healthy controls were determined by a pre-amplification reverse transcription-quantitative polymerase chain reaction approach with nested gene-specific primers. Results were recorded and analyzed by the Bio-Rad CFX96 Real-Time System. Mean fold changes between each pair of patient vs. control groups were analyzed by the Mann-Whitney U-test with Bonferroni corrections. Only S100P showed significantly higher levels in patients with OSCC compared to both patients with CPNS (p = 0.003) and CPS (p = 0.007). The difference in S100P levels between patients with OSCC and healthy controls was also marginally significant (p = 0.009). There was no

  6. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  7. Newer Approaches to Identify Potential Untoward Effects in Functional Foods.

    Science.gov (United States)

    Marone, Palma Ann; Birkenbach, Victoria L; Hayes, A Wallace

    2016-01-01

    Globalization has greatly accelerated the numbers and variety of food and beverage products available worldwide. The exchange among greater numbers of countries, manufacturers, and products in the United States and worldwide has necessitated enhanced quality measures for nutritional products for larger populations increasingly reliant on functionality. These functional foods, those that provide benefit beyond basic nutrition, are increasingly being used for their potential to alleviate food insufficiency while enhancing quality and longevity of life. In the United States alone, a steady import increase of greater than 15% per year or 24 million shipments, over 70% products of which are food related, is regulated under the Food and Drug Administration (FDA). This unparalleled growth has resulted in the need for faster, cheaper, and better safety and efficacy screening methods in the form of harmonized guidelines and recommendations for product standardization. In an effort to meet this need, the in vitro toxicology testing market has similarly grown with an anticipatory 15% increase between 2010 and 2015 of US$1.3 to US$2.7 billion. Although traditionally occupying a small fraction of the market behind pharmaceuticals and cosmetic/household products, the scope of functional food testing, including additives/supplements, ingredients, residues, contact/processing, and contaminants, is potentially expansive. Similarly, as functional food testing has progressed, so has the need to identify potential adverse factors that threaten the safety and quality of these products. © The Author(s) 2015.

  8. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Kha Wai Hon

    2017-08-01

    Full Text Available The number of colorectal cancer (CRC cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.

  9. Acoustic and temporal analysis of speech: A potential biomarker for schizophrenia.

    LENUS (Irish Health Repository)

    Rapcan, Viliam

    2010-11-01

    Currently, there are no established objective biomarkers for the diagnosis or monitoring of schizophrenia. It has been previously reported that there are notable qualitative differences in the speech of schizophrenics. The objective of this study was to determine whether a quantitative acoustic and temporal analysis of speech may be a potential biomarker for schizophrenia. In this study, 39 schizophrenic patients and 18 controls were digitally recorded reading aloud an emotionally neutral text passage from a children\\'s story. Temporal, energy and vocal pitch features were automatically extracted from the recordings. A classifier based on linear discriminant analysis was employed to differentiate between controls and schizophrenic subjects. Processing the recordings with the algorithm developed demonstrated that it is possible to differentiate schizophrenic patients and controls with a classification accuracy of 79.4% (specificity=83.6%, sensitivity=75.2%) based on speech pause related parameters extracted from recordings carried out in standard office (non-studio) environments. Acoustic and temporal analysis of speech may represent a potential tool for the objective analysis in schizophrenia.

  10. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    Science.gov (United States)

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi, E-mail: Xi.Yang@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Salminen, William F., E-mail: Willie.Salminen@parexel.com [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Shi, Qiang, E-mail: Qiang.Shi@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Greenhaw, James, E-mail: James.Greenhaw@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Gill, Pritmohinder S., E-mail: PSGill@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Bhattacharyya, Sudeepa, E-mail: SBhattacharyya2@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Beger, Richard D., E-mail: Richard.Beger@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mendrick, Donna L., E-mail: Donna.Mendrick@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mattes, William B., E-mail: William.Mattes@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); and others

    2015-04-15

    Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n = 10), 2) hospitalized children receiving therapeutic doses of APAP (n = 10) and 3) children hospitalized for APAP overdose (n = 8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R = 0.94; p < 0.01) followed by miR-375 (R = 0.70; p = 0.05). Conclusion: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity. - Highlights: • Serum miR-122 and miR-375 levels were increased in children with APAP overdose. • Urine levels of miR-375 and miR-940 were increased in the APAP overdose group. • Peak serum miR-122 levels were correlated with peak serum APAP protein adducts.

  12. On the Potential Role of MRI Biomarkers of COPD to Guide Bronchoscopic Lung Volume Reduction.

    Science.gov (United States)

    Adams, Colin J; Capaldi, Dante P I; Di Cesare, Robert; McCormack, David G; Parraga, Grace

    2018-02-01

    In patients with severe emphysema and poor quality of life, bronchoscopic lung volume reduction (BLVR) may be considered and guided based on lobar emphysema severity. In particular, x-ray computed tomography (CT) emphysema measurements are used to identify the most diseased and the second-most diseased lobes as BLVR targets. Inhaled gas magnetic resonance imaging (MRI) also provides chronic obstructive pulmonary disease (COPD) biomarkers of lobar emphysema and ventilation abnormalities. Our objective was to retrospectively evaluate CT and MRI biomarkers of lobar emphysema and ventilation in patients with COPD eligible for BLVR. We hypothesized that MRI would provide complementary biomarkers of emphysema and ventilation that help determine the most appropriate lung lobar targets for BLVR in patients with COPD. We retrospectively evaluated 22 BLVR-eligible patients from the Thoracic Imaging Network of Canada cohort (diffusing capacity of the lung for carbon monoxide = 37 ± 12% predicted , forced expiratory volume in 1 second = 34 ± 7% predicted , total lung capacity = 131 ± 17% predicted , and residual volume = 216 ± 36% predicted ). Lobar CT emphysema, measured using a relative area of concept retrospective analysis, quantitative MRI ventilation and CT emphysema measurements provided different BLVR targets in over 30% of the patients. The presence of large MRI ventilation defects in lobes next to CT-targeted lobes might also change the decision to proceed or to guide BLVR to a different lobar target. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Belinda Brust

    Full Text Available BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452 as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent

  14. Urinary Nerve Growth Factor as a Potential Biomarker of Treatment Outcomes in Overactive Bladder Patients

    Directory of Open Access Journals (Sweden)

    Yoon Seok Suh

    2017-12-01

    Full Text Available Purpose The aim of this study was to investigate urinary nerve growth factor (NGF as a biomarker of treatment efficacy and recurrence in overactive bladder (OAB patients. Methods We enrolled 189 OAB subjects who visited our outpatient clinic from February 2010 to February 2015. All subjects with OAB received antimuscarinic treatment. A 3-day voiding diary and questionnaire were collected from each patient. Urinary levels of NGF were evaluated at baseline, the beginning of antimuscarinic treatment, and the end of antimuscarinic treatment. Urinary NGF was normalized to urine creatinine (Cr. Between-group comparisons of baseline characteristics were made using the Mann-Whitney U-test. Multivariate logistic regression analyses were used to predict responses to anticholinergic treatment and recurrence. The Wilcoxon signed-rank test with the Bonferroni correction was used for intragroup comparisons. A receiver operating characteristic curve was used to analyze the utility of this biomarker. Results Urinary levels of NGF/Cr tended to decrease in patients who responded to treatment (n=62, but this was not significant (P=0.260. Urinary NGF levels were higher at baseline in patients who did not experience recurrence than in those who did (P=0.047. In those who did not experience recurrence (n=29, urinary NGF/Cr decreased at the end of treatment compared to baseline, and this reduction was maintained at 12 weeks after the end of treatment (P<0.05. Conclusions Urinary NGF is a potential biomarker for predicting the outcome of antimuscarinic treatment in OAB patients. This may provide useful information when deciding to stop antimuscarinic treatment in responders.

  15. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  16. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).

    Science.gov (United States)

    Sinniger, Frederic; Reimer, James D; Pawlowski, Jan

    2008-12-01

    The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.

  17. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  18. Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer.

    Science.gov (United States)

    Alvarez, Hector; Corvalan, Alejandro; Roa, Juan C; Argani, Pedram; Murillo, Francisco; Edwards, Jennifer; Beaty, Robert; Feldmann, Georg; Hong, Seung-Mo; Mullendore, Michael; Roa, Ivan; Ibañez, Luis; Pimentel, Fernando; Diaz, Alfonso; Riggins, Gregory J; Maitra, Anirban

    2008-05-01

    Gallbladder cancer (GBC) is an uncommon neoplasm in the United States, but one with high mortality rates. This malignancy remains largely understudied at the molecular level such that few targeted therapies or predictive biomarkers exist. We built the first series of serial analysis of gene expression (SAGE) libraries from GBC and nonneoplastic gallbladder mucosa, composed of 21-bp long-SAGE tags. SAGE libraries were generated from three stage-matched GBC patients (representing Hispanic/Latino, Native American, and Caucasian ethnicities, respectively) and one histologically alithiasic gallbladder. Real-time quantitative PCR was done on microdissected epithelium from five matched GBC and corresponding nonneoplastic gallbladder mucosa. Immunohistochemical analysis was done on a panel of 182 archival GBC in high-throughput tissue microarray format. SAGE tags corresponding to connective tissue growth factor (CTGF) transcripts were identified as differentially overexpressed in all pairwise comparisons of GBC (P Cancer Genome Anatomy Project web site and should facilitate much needed research into this lethal neoplasm.

  19. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    DEFF Research Database (Denmark)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel

    2017-01-01

    and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer......, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266...... microRNAs were present at higher level in the TIF samples as compared to normal counterparts. Sixty-one of these microRNAs were present in > 75% of the serum samples and were subsequently tested in a validation set. Seven of the 61 microRNAs were associated with poor survival, while 23 were associated...

  20. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    copy number was also significantly associated with degree of hearing impairment (P=0.025 and audiogram configuration (P=0.022.Conclusion: The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of this condition. Keywords: age-related hearing impairment, presbycusis, biomarker, mtDNA

  1. Identifying amyloid pathology?related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study

    OpenAIRE

    Leung, Yuk Yee; Toledo, Jon B.; Nefedov, Alexey; Polikar, Robi; Raghavan, Nandini; Xie, Sharon X.; Farnum, Michael; Schultz, Tim; Baek, Young; Van Deerlin, Vivianna M.; Hu, William T.; Holtzman, David M.; Fagan, Anne M.; Perrin, Richard J.; Grossman, Murray

    2015-01-01

    Introduction The dynamic range of cerebrospinal fluid (CSF) amyloid ? (A?1?42) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important. Methods Proteins were profiled using a multianalyte platform by Rules Based Medicine (MAP-RBM). Due to underlying heterogeneity and unbalanced sample size, we combined subjects (344 AD ...

  2. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study

    Directory of Open Access Journals (Sweden)

    Antequera Desiree

    2010-11-01

    Full Text Available Abstract Background Simple, non-invasive tests for early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers for the early diagnosis of Alzheimer disease (AD are available. The clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. A biochemical marker that would support the clinical diagnosis and distinguish AD from other causes of dementia would therefore be of great value as a screening test. A total of 126 samples were obtained from subjects with AD, and age-sex-matched controls. Additionally, 51 Parkinson's disease (PD patients were used as an example of another neurodegenerative disorder. We analyzed saliva and plasma levels of β amyloid (Aβ using a highly sensitive ELISA kit. Results We found a small but statistically significant increase in saliva Aβ42 levels in mild AD patients. In addition, there were not differences in saliva concentration of Aβ42 between patients with PD and healthy controls. Saliva Aβ40 expression was unchanged within all the studied sample. The association between saliva Aβ42 levels and AD was independent of established risk factors, including age or Apo E, but was dependent on sex and functional capacity. Conclusions We suggest that saliva Aβ42 levels could be considered a potential peripheral marker of AD and help discrimination from other types of neurodegenerative disorders. We propose a new and promising biomarker for early AD.

  3. Synovial calprotectin: a potential biomarker to exclude a prosthetic joint infection.

    Science.gov (United States)

    Wouthuyzen-Bakker, M; Ploegmakers, J J W; Kampinga, G A; Wagenmakers-Huizenga, L; Jutte, P C; Muller Kobold, A C

    2017-05-01

    Recently, several synovial biomarkers have been introduced into the algorithm for the diagnosis of a prosthetic joint infection (PJI). Alpha defensin is a promising biomarker, with a high sensitivity and specificity, but it is expensive. Calprotectin is a protein that is present in the cytoplasm of neutrophils, is released upon neutrophil activation and exhibits anti-microbial activity. Our aim, in this study, was to determine the diagnostic potential of synovial calprotectin in the diagnosis of a PJI. In this pilot study, we prospectively collected synovial fluid from the hip, knee, shoulder and elbow of 19 patients with a proven PJI and from a control group of 42 patients who underwent revision surgery without a PJI. PJI was diagnosed according to the current diagnostic criteria of the Musculoskeletal Infection Society. Synovial fluid was centrifuged and the supernatant was used to measure the level of calprotectin after applying a lateral flow immunoassay. The median synovial calprotectin level was 991 mg/L (interquartile range (IQR) 154 to 1787) in those with a PJI and 11 mg/L (IQR 3 to 29) in the control group (p infection. With a lateral flow immunoassay, a relatively rapid quantitative diagnosis can be made. The measurement is cheap and is easy to use. Cite this article: Bone Joint J 2017;99-B:660-5. ©2017 The British Editorial Society of Bone & Joint Surgery.

  4. Obtaining subjects' consent to publish identifying personal information: current practices and identifying potential issues.

    Science.gov (United States)

    Yoshida, Akiko; Dowa, Yuri; Murakami, Hiromi; Kosugi, Shinji

    2013-11-25

    In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects' right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need to address issues around the study

  5. Obtaining subjects’ consent to publish identifying personal information: current practices and identifying potential issues

    Science.gov (United States)

    2013-01-01

    Background In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Methods Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Results Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects’ right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Conclusion Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need

  6. Exosomes are fingerprints of originating cells: potential biomarkers for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kobayashi M

    2015-03-01

    Full Text Available Miharu Kobayashi, Gregory E Rice, Jorge Tapia, Murray D Mitchell, Carlos Salomon Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. Abstract: The past decade has seen an extraordinary explosion of research in the field of extracellular vesicles, especially in a specific type of extracellular vesicles originating from endosomal compartments, called exosomes. Exosomes are a specific subtype of secreted vesicles that are defined as small (~30–120 nm but very stable membrane vesicles that are released from a wide range of cells, including normal and cancer cells. As the content of exosomes is cell type specific, it is believed that they are a "fingerprint" of the releasing cell and its metabolic status. We hypothesized that the exosomes and their specific exosomal content (eg, microribonucleic acid represent a precious biomedical tool and may be used as biomarkers for the diagnosis and prognosis of malignant tumors. In addition, exosomes may modify the phenotype of the parent and/or target cell by transferring pro-oncogenic molecules to induce cancerous phenotype of recipient cells and contribute to the formation of the premetastatic niche. The mechanism involved in these phenomena remains unclear; however, inclusion of signaling mediators into exosomes or exosome release may reduce their intracellular bioavailability in the parent cell, thereby altering cell phenotype and their metastatic potential. The aim of this review therefore is to analyze the biogenesis and role of exosomes from tumor cells, focusing primarily on ovarian cancer. Ovarian cancer is the most lethal gynecologic cancer, and an effective early diagnosis has the potential to improve patient survival. Ovarian cancer currently lacks a reliable method for early detection, however, exosomes have received great attention as potential biomarkers and mediators

  7. Eag1 channels as potential early-stage biomarkers of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chávez-López MG

    2016-09-01

    Full Text Available María de Guadalupe Chávez-López,1 Violeta Zúñiga-García,1 Julio Isael Pérez-Carreón,2 Arturo Avalos-Fuentes,3 Yesenia Escobar,4 Javier Camacho1 1Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2Instituto Nacional de Medicina Genómica, 3Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 4Centro de Investigación Clínica Acelerada Sc, Mexico City, Mexico Abstract: Hepatocellular carcinoma (HCC is a major cause of cancer death worldwide. HCC is usually asymptomatic at potential curative stages, and it has very poor prognosis if detected later. Thus, the identification of early biomarkers and novel therapies is essential to improve HCC patient survival. Ion channels have been proposed as potential tumor markers and therapeutic targets for several cancers including HCC. Especially, the ether à-go-go-1 (Eag1 voltage-gated potassium channel has been suggested as an early marker for HCC. Eag1 is overexpressed during HCC development from the cirrhotic and the preneoplastic lesions preceding HCC in a rat model. The channel is also overexpressed in human HCC. Astemizole has gained great interest as a potential anticancer drug because it targets several proteins involved in cancer including Eag1. Actually, in vivo studies have shown that astemizole may have clinical utility for HCC prevention and treatment. Here, we will review first some general aspects of HCC including the current biomarkers and therapies, and then we will focus on Eag1 channels as promising tools in the early diagnosis of HCC. Keywords: ion channels, Eag1, hepatocellular carcinoma, astemizole, diethylnitrosamine

  8. First-void urine: A potential biomarker source for triage of high-risk human papillomavirus infected women.

    Science.gov (United States)

    Van Keer, Severien; Pattyn, Jade; Tjalma, Wiebren A A; Van Ostade, Xaveer; Ieven, Margareta; Van Damme, Pierre; Vorsters, Alex

    2017-09-01

    Great interest has been directed towards the use of first-void urine as a liquid biopsy for high-risk human papillomavirus DNA testing. Despite the high correlations established between urinary and cervical infections, human papillomavirus testing is unable to distinguish between productive and transforming high-risk infections that have the tendency to progress to cervical cancer. Thus far, investigations have been primarily confined to the identification of biomarkers for triage of high-risk human papillomavirus-positive women in cervicovaginal specimens and tissue biopsies. This paper reviews urinary biomarkers for cervical cancer and triage of high-risk human papillomavirus infections and elaborates on the opportunities and challenges that have emerged regarding the use of first-void urine as a liquid biopsy for the analysis of both morphological- (conventional cytology and novel immunohistochemical techniques) and molecular-based (HPV16/18 genotyping, host/viral gene methylation, RNA, and proteins) biomarkers. A literature search was performed in PubMed and Web of Science for studies investigating the use of urine as a biomarker source for cervical cancer screening. Five studies were identified reporting on biomarkers that are still in preclinical exploratory or clinical assay development phases and on assessments of non-invasive (urine) samples. Although large-scale validation studies are still needed, we conclude that methylation of both host and viral genes in urine has been proven feasible for use as a molecular cervical cancer triage and screening biomarker in phase two studies. This is especially promising and underscores our hypothesis that human papillomavirus DNA and candidate human and viral biomarkers are washed away with the initial, first-void urine, together with exfoliated cells, debris and impurities that line the urethra opening. Similar to the limitations of self-collected cervicovaginal samples, first-void urine will likely not fulfil the

  9. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals.

    Science.gov (United States)

    Yang, Yongxin; Zheng, Nan; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Yang, Jinhui; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Zang, Changjiang; Wang, Jiaqi

    2016-03-16

    Several milk metabolites are associated with breeds or species of dairy animals. A better understanding of milk metabolites from different dairy animals would advance their use in evaluating milk traits and detecting milk adulteration. The objective of this study was to characterize the milk metabolite profiles of Chinese Holstein, Jersey, yak, buffalo, goat, camel, and horse and identify any differences using non-targeted metabolomic approaches. Milk samples were tested using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS). Data were analyzed using a multivariate analysis of variance and differences in milk metabolites between Holstein and the other dairy animals were assessed using orthogonal partial least-squares discriminant analysis. Differential metabolites were identified and some metabolites, such as choline and succinic acid, were used to distinguish Holstein milk from that of the other studied animals. Metabolic pathway analysis of different metabolites revealed that glycerophospholipid metabolism as well as valine, leucine, and isoleucine biosynthesis were shared in the other ruminant animals (Jersey, buffalo, yak, and goat), and biosynthesis of unsaturated fatty acids was shared in the non-ruminant animals (camel and horse). These results can be useful for gaining a better understanding of the differences in milk synthesis between Holstein and the other dairy animals. Copyright © 2016. Published by Elsevier B.V.

  10. Co-expression network analysis to identify pluripotency biomarkers in bovine and porcine embryos

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Freude, Karla Kristine; Hall, Vanessa Jane

    Differentiated somatic cells can be reprogrammed in induced pluripotent stem cells (iPSCs); a cell type with great potentials in regenerative medicine and in vitro disease modeling. In the pig, we have developed iPSCs, but proper culture conditions for maintaining pluripotency over time are still...... lacking. Hence, there is a need for a more fundamental dissection of the pluripotency apparatus in the pig as well as in cattle. The aim of this study is to analyze RNA-seq data to increase the knowledge about biological pathways in porcine and bovine embryonic pluripotent cell populations exploiting...... the mouse data as proof of principle. In particular we studied cell populations from three different stages of pluripotency after fertilization: the inner cell mass, the epithelial epiblast and the gastrulating epiblast. Reads quality was checked with FASTQC, then the reads were pre-processed using Prinseq...

  11. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers.

    Science.gov (United States)

    Jin, H; Wu, Y; Tan, X

    2017-08-01

    Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.

  12. Salivary micro RNA as a potential biomarker in oral potentially malignant disorders: A systematic review

    Directory of Open Access Journals (Sweden)

    T N Uma Maheswari

    2018-01-01

    Full Text Available Oral potentially malignant disorders (OPMD are oral mucosal disorders which have a high potential to turn into malignancy. A recent report suggests that 16%–62% of epithelial dysplasia cases of OPMD undergo malignant transformation, showing the need for early detection of malignancy in these disorders. Micro RNA (miRNA plays an important role in cellular growth, differentiation, apoptosis, and immune response, and hence, deregulation of miRNA is considered a signature of oral carcinogenesis. A search was done using MeSH terms in the PubMed, ScienceDirect databases, hand search, and finally, six studies were included in this systematic review. A total of 167 patients with oral cancer, 78 with OPMDs, 147 healthy controls, and 20 disease controls were analyzed for the expression of salivary miRNAs. Quality assessment based on the Quality Assessment of Diagnostic Accuracy Studies 2 tool was used to obtain a risk of bias chart using Revman 5.3 software and it was proved that the study done by Zahran et al. in 2015 had a low risk of bias. The results of this study revealed upregulated miRNA 184 with an area under the curve (AUC of 0.86 and miRNA 21 with an AUC of 0.73 and downregulated miRNA 145 with an AUC of 0.68, which proved that these miRNAs are significant in detecting early malignancy in OPMD and should be further analyzed in various populations. This systematic review explored the potential of expression of salivary miRNA in OPMD for future studies. This could pave the way to utilize saliva as a surrogate marker in diagnosing early malignant changes in OPMD.

  13. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    Science.gov (United States)

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  14. Prostate Cancer Associated Lipid Signatures in Serum Studied by ESI-Tandem Mass Spectrometryas Potential New Biomarkers.

    Science.gov (United States)

    Duscharla, Divya; Bhumireddy, Sudarshana Reddy; Lakshetti, Sridhar; Pospisil, Heike; Murthy, P V L N; Walther, Reinhard; Sripadi, Prabhakar; Ummanni, Ramesh

    2016-01-01

    Prostate cancer (PCa) is one amongst the most common cancersin western men. Incidence rate ofPCa is on the rise worldwide. The present study deals with theserum lipidome profiling of patients diagnosed with PCa to identify potential new biomarkers. We employed ESI-MS/MS and GC-MS for identification of significantly altered lipids in cancer patient's serum compared to controls. Lipidomic data revealed 24 lipids are significantly altered in cancer patinet's serum (n = 18) compared to normal (n = 18) with no history of PCa. By using hierarchical clustering and principal component analysis (PCA) we could clearly separate cancer patients from control group. Correlation and partition analysis along with Formal Concept Analysis (FCA) have identified that PC (39:6) and FA (22:3) could classify samples with higher certainty. Both the lipids, PC (39:6) and FA (22:3) could influence the cataloging of patients with 100% sensitivity (all 18 control samples are classified correctly) and 77.7% specificity (of 18 tumor samples 4 samples are misclassified) with p-value of 1.612×10-6 in Fischer's exact test. Further, we performed GC-MS to denote fatty acids altered in PCa patients and found that alpha-linolenic acid (ALA) levels are altered in PCa. We also performed an in vitro proliferation assay to determine the effect of ALA in survival of classical human PCa cell lines LNCaP and PC3. We hereby report that the altered lipids PC (39:6) and FA (22:3) offer a new set of biomarkers in addition to the existing diagnostic tests that could significantly improve sensitivity and specificity in PCa diagnosis.

  15. The potential biomarkers in predicting pathologic response of breast cancer to three different chemotherapy regimens: a case control study

    Directory of Open Access Journals (Sweden)

    Xu Chaoyang

    2009-07-01

    Full Text Available Abstract Background Preoperative chemotherapy (PCT has become the standard of care in locally advanced breast cancer. The identification of patient-specific tumor characteristics that can improve the ability to predict response to therapy would help optimize treatment, improve treatment outcomes, and avoid unnecessary exposure to potential toxicities. This study is to determine whether selected biomarkers could predict pathologic response (PR of breast tumors to three different PCT regimens, and to identify a subset of patients who would benefit from a given type of treatment. Methods 118 patients with primary breast tumor were identified and three PCT regimens including DEC (docetaxel+epirubicin+cyclophosphamide, VFC (vinorelbine/vincristine+5-fluorouracil+cyclophosphamide and EFC (epirubicin+5-fluorouracil+cyclophosphamide were investigated. Expression of steroid receptors, HER2, P-gp, MRP, GST-pi and Topo-II was evaluated by immunohistochemical scoring on tumor tissues obtained before and after PCT. The PR of breast carcinoma was graded according to Sataloff's classification. Chi square test, logistic regression and Cochran-Mantel-Haenszel assay were performed to determine the association between biomarkers and PR, as well as the effectiveness of each regimen on induction of PR. Results There was a clear-cut correlation between the expression of ER and decreased PR to PCT in all three different regimens (p p Conclusion ER is an independent predictive factor for PR to PCT regimens including DEC, VFC and EFC in primary breast tumors, while HER2 is only predictive for DEC regimen. Expression of PgR, Topo-II, P-gp, MRP and GST-pi are not predictive for PR to any PCT regimens investigated. Results obtained in this clinical study may be helpful for the selection of appropriate treatments for breast cancer patients.

  16. Circulating MicroRNAs as Potential Molecular Biomarkers in Pathophysiological Evolution of Pregnancy

    Directory of Open Access Journals (Sweden)

    Dragos Cretoiu

    2016-01-01

    Full Text Available MicroRNAs represent nonprotein coding small RNA molecules that are very stable to degradation and responsible for gene silencing in most eukaryotic cells. Increased evidence has been accumulating over the years about their potential value as biomarkers for several diseases. MicroRNAs were predicted to be involved in nearly all biological processes from development to oncogenesis. In this review, we address the importance of circulating microRNAs in different conditions associated with pregnancy starting with the implantation period to preeclampsia and we shortly describe the correlation between placental circulating miRNAs and pregnancy status. We also discuss the importance of microRNAs in recurrent abortion and ectopic pregnancy.

  17. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis

    DEFF Research Database (Denmark)

    Møllgaard, M; Degn, M; Sellebjerg, F

    2016-01-01

    : In a prospective cohort of 73 patients with ON as a first demyelinating episode and 26 age-matched healthy controls levels of CHI3L2 and chitotriosidase in CSF were explored by enzyme-linked immunosorbent assay. Associations with magnetic resonance imaging white matter lesions, CSF oligoclonal bands......BACKGROUND AND PURPOSE: The role of chitinases and chitinase-like proteins in multiple sclerosis (MS) is currently unknown; however, cerebrospinal fluid (CSF) levels of chitinase 3-like 1 (CHI3L1) predict prognosis in early MS. Whether this applies to other chitinases and chitinase-like proteins...... is yet to be established. Our objective was to investigate the potential of chitinase 3-like 2 (CHI3L2) and chitotriosidase as prognostic biomarkers in optic neuritis (ON) as the first demyelinating episode and to evaluate the ability of CHI3L2 to predict long-term MS risk and disability. METHODS...

  18. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C; Hardiman, Orla

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (pEEG has potential utility as a biomarker in ALS.

  19. A peripheral blood transcriptome biomarker test to diagnose functional recovery potential in advanced heart failure.

    Science.gov (United States)

    Deng, Mario C

    2018-05-08

    Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.

  20. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  1. From moderately severe to severe hypertriglyceridemia induced acute pancreatitis: circulating miRNAs play role as potential biomarkers.

    Directory of Open Access Journals (Sweden)

    Fangmei An

    Full Text Available The incidence of hypertriglyceridemia induced acute pancreatitis (HTAP continues to rise in China. It has systemic complications and high mortality, making the early assessment of the severity of this disease even more important. Circulating microRNAs (miRNAs could be novel, non-invasive biomarkers for disease progression judgment. This study aimed to identify the potential role of serum miRNAs as novel biomarkers of HTAP progression. HTAP patients were divided into two groups: moderately severe (HTMSAP and severe (HTSAP, healthy people were used as control group. The serum miRNA expression profiles of these three groups were determined by microarray and verified by qRT-PCR. The functions and pathways of the targeted genes of deregulated miRNAs were predicted, using bioinformatics analysis; miRNA-mRNA network was generated. Moreover, the correlation between miR-181a-5p and pancreatitis metabolism related substances were studied and the serum concentration of inflammatory cytokines and miRNAs at different time points during the MSAP and SAP were investigated, respectively. Finally, the receiver operating characteristic (ROC curve of miRNAs was studied. Significant changes in the serum concentration of the following miRNAs of HTAP patients (P<0.05 were discovered: miR24-3p, 361-5p, 1246, and 222-3p (constantly upregulated, and 181a-5p (constantly downregulated (P<0.05. Bioinformatics analysis predicted that 13 GOs and 36 pathways regulated by overlap miRNAs were involved in glucose, fat, calcium (Ca++, and insulin metabolism (P<0.001. miRNA-mRNA network revealed that the overlap miRNAs targeted genes participating in pancreas metabolism and miR-181a-5p, the only downregulated miRNA, had good negative correlation with triglyceride (TG, total cholesterol (TC, and fast blood glucose (FBG, but a positive correlation with Ca++. When compared with inflammatory cytokines, the changes of all five overlap miRNAs were more stable. It was found that when

  2. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Andrea Ganna

    2014-12-01

    Full Text Available Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD. We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up with validation in 1,670 individuals (282 events; 3.9 y. median follow-up. Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001, lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001, monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011 and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%. MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002 of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05 on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.

  3. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  4. Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood-Based Proteomic Assay to Identify Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    Full Text Available Despite significant advances in breast imaging, the ability to accurately detect Breast Cancer (BC remains a challenge. With the discovery of key biomarkers and protein signatures for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct to imaging. Research studies have shown that breast tumors are associated with systemic changes in levels of both serum protein biomarkers (SPB and tumor associated autoantibodies (TAAb. However, the independent contribution of SPB and TAAb expression data for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully investigated. This study evaluates these contributions using a retrospective cohort of pre-biopsy serum samples with known clinical outcomes collected from a single site, thus minimizing potential site-to-site variation and enabling direct assessment of SPB and TAAb contributions to identify BC. All serum samples (n = 210 were collected prior to biopsy. These specimens were obtained from 18 participants with no evidence of breast disease (ND, 92 participants diagnosed with Benign Breast Disease (BBD and 100 participants diagnosed with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and ND using expression data from SPB alone, TAAb alone, and a combination of SPB and TAAb. When SPB data was independently used for modeling, clinical sensitivity and specificity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was independently used, clinical sensitivity and specificity for detection of BC were 72.2% and 70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively. These data demonstrate the benefit of the integration of SPB and TAAb data and strongly support the further development of

  5. Proteomics mapping of cord blood identifies haptoglobin "switch-on" pattern as biomarker of early-onset neonatal sepsis in preterm newborns.

    Science.gov (United States)

    Buhimschi, Catalin S; Bhandari, Vineet; Dulay, Antonette T; Nayeri, Unzila A; Abdel-Razeq, Sonya S; Pettker, Christian M; Thung, Stephen; Zhao, Guomao; Han, Yiping W; Bizzarro, Matthew; Buhimschi, Irina A

    2011-01-01

    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth.

  6. Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Science.gov (United States)

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1st-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of “antenatal IAI exposure” as latent variable. This was then subjected to 2nd-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Conclusions/Significance Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the

  7. Interferon-gamma inducible protein-10 as a potential biomarker in localized scleroderma

    Science.gov (United States)

    2013-01-01

    Introduction The purpose of this study was to evaluate the presence and levels of interferon-gamma inducible protein-10 (IP-10) in the plasma and skin of pediatric localized scleroderma (LS) patients compared to those of healthy pediatric controls and to determine if IP-10 levels correlate to clinical disease activity measures. Methods The presence of IP-10 in the plasma was analyzed using a Luminex panel in 69 pediatric patients with LS and compared to 71 healthy pediatric controls. Of these patients, five had available skin biopsy specimens with concurrent clinical and serological data during the active disease phase, which were used to analyze the presence and location of IP-10 in the skin by immunohistochemistry (IHC). Results IP-10 levels were significantly elevated in the plasma of LS patients compared to that of healthy controls and correlated to clinical disease activity measures in LS. Immunohistochemistry staining of IP-10 was present in the dermal infiltrate of LS patients and was similar to that found in psoriasis skin specimens, the positive disease control. Conclusions Elevation of IP-10 levels in the plasma compared to those of healthy controls and the presence of IP-10 staining in the affected skin of LS patients indicates that IP-10 is a potential biomarker in LS. Furthermore, significant elevation of IP-10 in LS patients with active versus inactive disease and correlations between IP-10 levels and standardized disease outcome measures of activity in LS strongly suggest that IP-10 may be a biomarker for disease activity in LS. PMID:24499523

  8. POP load and vitamins as potential biomarkers in the Baltic seals

    Energy Technology Data Exchange (ETDEWEB)

    Routti, H.; Nyman, M.; Helle, E. [Finnish Game and Fisheries Research Inst., Helsinki (Finland); Backman, C. [National Veterinary and Food Research Inst. (Finland); Koistinen, J. [Div. of Environmental Health, National Public Health Inst. (Finland)

    2004-09-15

    Exceptionally high levels of polychlorinated biphenyls (PCB) and 1,1,1.trichloro- 2,2-bis[p-chlorophenyl]ethane (DDT) and its metabolites were reported in the Baltic seals in the late 1960s and early 1970s. PCB levels in ringed seals, in particular, are still high enough to threaten the well being of the animals. The observed difference in contaminant pattern between ringed and grey seals in the Baltic has not been explained, but could be partly due to species-specific food sources. Several pathological and biochemical changes observed in the Baltic seals correlate with the individual POP loads. Of the observed biochemical changes, elevated cytochrome P4501A (CYP1A) levels, decreased liver vitamin A stores and increased vitamin E levels in blubber or plasma, have been proposed as possible biomarkers of contaminant load in Baltic seals. However, as the vitamin A and E status of marine mammals also reflects the nutritional vitamin level, the lower vitamin A and elevated vitamin E levels observed in the Baltic seals could be a reflection of the levels of these vitamins in their food sources. The aim of this study was to investigate the contaminant load in the Baltic seals and to evaluate the utility level of potential exposure and effect biomarkers. Seals from less contaminated areas were used as reference material (Svalbard and Sable Island, Canada). In the present study, POP and vitamin levels were also studied in seal prey species in order to study the transfer of these compounds to grey and ringed seals from their main food sources.

  9. The potential use of biomarkers in predicting contrast-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Andreucci M

    2016-09-01

    Full Text Available Michele Andreucci,1 Teresa Faga,1 Eleonora Riccio,2 Massimo Sabbatini,2 Antonio Pisani,2 Ashour Michael,1 1Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, 2Department of Public Health, University of Naples Federico II, Naples, Italy Abstract: Contrast-induced acute kidney injury (CI-AKI is a problem associated with the use of iodinated contrast media, causing kidney dysfunction in patients with preexisting renal failure. It accounts for 12% of all hospital-acquired kidney failure and increases the length of hospitalization, a situation that is worsening with increasing numbers of patients with comorbidities, including those requiring cardiovascular interventional procedures. So far, its diagnosis has relied upon the rise in creatinine levels, which is a late marker of kidney damage and is believed to be inadequate. Therefore, there is an urgent need for biomarkers that can detect CI-AKI sooner and more reliably. In recent years, many new biomarkers have been characterized for AKI, and these are discussed particularly with their use in known CI-AKI models and studies and include neutrophil gelatinase-associated lipocalin, cystatin C (Cys-C, kidney injury molecule-1, interleukin-18, N-acetyl-β-d-glucosaminidase, and L-type fatty acid-binding protein (L-FABP. The potential of miRNA and metabolomic technology is also mentioned. Early detection of CI-AKI may lead to early intervention and therefore improve patient outcome, and in future any one or a combination of several of these markers together with development in technology for their analysis may prove effective in this respect. Keywords: radiocontrast media, acute renal failure, markers, renal injury

  10. Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer.

    Science.gov (United States)

    Husi, Holger; Skipworth, Richard J E; Cronshaw, Andrew; Stephens, Nathan A; Wackerhage, Henning; Greig, Carolyn; Fearon, Kenneth C H; Ross, James A

    2015-06-01

    Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Anti-p-benzoquinone antibody level as a prospective biomarker to identify smokers at risk for COPD

    Directory of Open Access Journals (Sweden)

    Banerjee S

    2017-06-01

    .935 for identifying smokers with COPD from their low antibody level. The antibody cutoff value of 29.4 mg/dL was constructed from the ROC coordinates to estimate the risk for COPD in smokers. While 90.3% of smokers with COPD had a low antibody value (≤29.4 mg/dL, the majority (86.4% of smokers without COPD had a high antibody value (>29.4 mg/dL; 13.6% of current smokers without COPD having an antibody level below this cutoff value (odds ratio [OR] =59.3, 95% CI: 34.15–101.99 were considered to be at risk for COPD.Conclusion and future directions: Our results indicate that serum anti-p-BQ antibody level may be used as a biomarker to identify asymptomatic smokers at risk for COPD for early intervention of the disease. Keywords: COPD, cigarette smoke, biomarker, anti-p-benzoquinone antibody, enzyme-linked immunosorbent assay (ELISA 

  12. Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer

    DEFF Research Database (Denmark)

    Larsen, Sarah L; Yde, Christina W; Laenkholm, Anne-Vibeke

    2015-01-01

    BACKGROUND: Resistance to antiestrogen therapy is a major clinical challenge in the treatment of estrogen receptor α (ER)-positive breast cancer. The aim of the study was to explore the growth promoting pathways of antiestrogen resistant breast cancer cells to identify biomarkers and novel treatm...

  13. SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yuen Yee Cheng

    2017-01-01

    Full Text Available Malignant pleural mesothelioma (MPM is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56% and SFRP5 (70% in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.

  14. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide.

    Science.gov (United States)

    Ueda, Koji; Tatsuguchi, Ayako; Saichi, Naomi; Toyama, Atsuhiko; Tamura, Kenji; Furihata, Mutsuo; Takata, Ryo; Akamatsu, Shusuke; Igarashi, Masahiro; Nakayama, Masato; Sato, Taka-Aki; Ogawa, Osamu; Fujioka, Tomoaki; Shuin, Taro; Nakamura, Yusuke; Nakagawa, Hidewaki

    2013-10-04

    In prostate cancer diagnosis, PSA test has greatly contributed to the early detection of prostate cancer; however, expanding overdiagnosis and unnecessary biopsies have emerged as serious issues. To explore plasma biomarkers complementing the specificity of PSA test, we developed a unique proteomic technology QUEST-MS (Quick Enrichment of Small Targets for Mass Spectrometry). The QUEST-MS method based on 96-well formatted sequential reversed-phase chromatography allowing efficient enrichment of <20 kDa proteins quickly and reproducibly. Plasma from 24 healthy controls, 19 benign prostate hypertrophy patients, and 73 prostate cancer patients were purified with QUEST-MS and analyzed by LC/MS/MS. Among 153 057 nonredundant peptides, 189 peptides showed prostate cancer specific detection pattern, which included a neurotransmitter polypeptide neuropeptide-Y (NPY). We further validated the screening results by targeted multiple reaction monitoring technology using independent sample set (n = 110). The ROC curve analysis revealed that logistic regression-based combination of NPY, and PSA showed 81.5% sensitivity and 82.2% specificity for prostate cancer diagnosis. Thus QUEST-MS technology allowed comprehensive and high-throughput profiling of plasma polypeptides and had potential to effectively uncover very low abundant tumor-derived small molecules, such as neurotransmitters, peptide hormones, or cytokines.

  15. Amyloidosis, synucleinopathy, and prion encephalopathy in a neuropathic lysosomal storage disease: the CNS-biomarker potential of peripheral blood.

    Directory of Open Access Journals (Sweden)

    Bartholomew J Naughton

    Full Text Available Mucopolysaccharidosis (MPS IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects. Importantly, many of the dysregulated genes are reported to be tissue-specific. Further analyses of multiple genes linked to major pathways of neurodegeneration demonstrated a strong brain-blood correlation in amyloidosis and synucleinopathy in MPS IIIB. We also detected prion protein (Prnp deposition in the CNS and Prnp dysregulation in the blood in MPS IIIB mice, suggesting the involvement of Prnp aggregation in neuropathology. Systemic delivery of trans-BBB-neurotropic rAAV9-hNAGLU vector mediated not only efficient restoration of functional α-N-acetylglucosaminidase and clearance of lysosomal storage pathology in the central nervous system (CNS and periphery, but also the correction of impaired neurodegenerative molecular pathways in the brain and blood. Our data suggest that molecular changes in blood may reflect pathological status in the CNS and provide a useful tool for identifying potential CNS-specific biomarkers for MPS IIIB and possibly other neurological diseases.

  16. Epigenome-Wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-Lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer.

    Science.gov (United States)

    Zhao, Shanshan; Geybels, Milan S; Leonardson, Amy; Rubicz, Rohina; Kolb, Suzanne; Yan, Qingxiang; Klotzle, Brandy; Bibikova, Marina; Hurtado-Coll, Antonio; Troyer, Dean; Lance, Raymond; Lin, Daniel W; Wright, Jonathan L; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L

    2017-01-01

    Aside from Gleason sum, few factors accurately identify the subset of prostate cancer patients at high risk for metastatic progression. We hypothesized that epigenetic alterations could distinguish prostate tumors with life-threatening potential. Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from a population-based (n = 430) and a replication (n = 80) cohort of prostate cancer patients followed prospectively for at least 5 years. Metastasis was confirmed by positive bone scan, MRI, CT, or biopsy, and death certificates confirmed cause of death. AUC, partial AUC (pAUC, 95% specificity), and P value criteria were used to select differentially methylated CpG sites that robustly stratify patients with metastatic-lethal from nonrecurrent tumors, and which were complementary to Gleason sum. Forty-two CpG biomarkers stratified patients with metastatic-lethal versus nonrecurrent prostate cancer in the discovery cohort, and eight of these CpGs replicated in the validation cohort based on a significant (P prostate cancer include CpGs in five genes (ALKBH5, ATP11A, FHAD1, KLHL8, and PI15) and three intergenic regions. In the validation dataset, the AUC for Gleason sum alone (0.82) significantly increased with the addition of four individual CpGs (range, 0.86-0.89; all P epigenetic biomarkers warrant further investigation as they may improve prognostic classification of patients with clinically localized prostate cancer and provide new insights on tumor aggressiveness. Clin Cancer Res; 23(1); 311-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. A tool for identifying potential Eucalyptus nitens seed orchard sites ...

    African Journals Online (AJOL)

    Shy seed production in orchards of Eucalyptus nitens is a major barrier to the deployment of genetic gain in South African plantations. A machine learning method was used to identify optimal sites for the establishment of E. nitens seed orchards within the plantation forestry landscape of the summer rainfall region of South ...

  18. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage.

    Science.gov (United States)

    Oberbauer, R

    2008-12-01

    Currently, the identification and validation of biomarkers of kidney injury is among the top priorities of many diagnostic biotechnology companies as well as academic research institutes. Specifically, in renal transplantation, validated biomarkers of tissue injury with good discriminatory power between the various renal compartments and the underlying pathophysiology are desired, because sequential allograft biopsies are limited in number and cannot be used as a screening tool. Given the high demands on these markers, it is not surprising that none of those currently under evaluation has been thoroughly validated for a specific entity. Published biomarker candidates for early tubular damage include neutrophil gelatinase-associated lipocalin (NGAL), interleukin (IL)-18, soluble CD30, perforin, and granzyme B. Recently, C4d flow panel reactive antibodies were evaluated as biomarkers for humoral alloimmune responses. Additional biomarkers such as FOXP3 and kidney injury molecule 1 have been studied in the maintenance phase of renal transplantation. Given the complex prerequisites, it is not surprising that no biomarker panel has been sufficiently validated for clinical use. However, in the near future a biomarker for use as an indicator of renal tubule cell injury will be available. Troponin T or transaminase of the kidney may then at least be used to differentiate between functional renal failure (equivalent to a rise in creatinine) and intrinsic kidney injury.

  19. NEW METHODOLOGY FOR IDENTIFYING POTENTIAL HUMAN BIOMARKERS BY COLLECTION AND CONCENTRATION OF EXHALED BREATH CONDENSATE

    Science.gov (United States)

    In many studies of human exposure, the measurement of pollutant chemicals in the environment (air, water, food, soil, etc.) is being supplemented by their additional measurement in biological media such as human breath, blood, and urine. This allows an unambiguous confirmation...

  20. Identifying Potential Weapon Systems That Can Be Divested

    Science.gov (United States)

    2016-04-08

    sustainment cost mitigation strategies include reduce supply chain by maximizing multi-role equipment, reduce divestiture obstacles/friction points...question. Extensive search of the internet government websites were used to find government information and open access articles related to the research...they did not use it, and if they use anything thing else to identify these low priority systems. The intent of the survey was not to get into

  1. Default mode network as a potential biomarker of chemotherapy-related brain injury

    Science.gov (United States)

    Kesler, Shelli R.

    2014-01-01

    Chronic medical conditions and/or their treatments may interact with aging to alter or even accelerate brain senescence. Adult onset cancer, for example, is a disease associated with advanced aging and emerging evidence suggests a profile of subtle but diffuse brain injury following cancer chemotherapy. Breast cancer is currently the primary model for studying these “chemobrain” effects. Given the widespread changes to brain structure and function as well as the common impairment of integrated cognitive skills observed following breast cancer chemotherapy, it is likely that large-scale brain networks are involved. Default mode network (DMN) is a strong candidate considering its preferential vulnerability to aging and sensitivity to toxicity and disease states. Additionally, chemotherapy is associated with several physiologic effects including increased inflammation and oxidative stress that are believed to elevate toxicity in the DMN. Biomarkers of DMN connectivity could aid in the development of treatments for chemotherapy-related cognitive decline. For example, certain nutritional interventions could potentially reduce the metabolic changes (e.g. amyloid beta toxicity) associated with DMN disruption. PMID:24913897

  2. Urinary Extracellular Vesicles: Potential Biomarkers of Renal Function in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Agnieszka Kamińska

    2016-01-01

    Full Text Available The aim of this study was to check the relationship between the density of urinary EVs, their size distribution, and the progress of early renal damage in type 2 diabetic patients (DMt2. Patients were enrolled to this study, and glycated hemoglobin (HbA1c below 7% was a threshold for properly controlled diabetic patients (CD and poorly controlled diabetic patients (UD. Patients were further divided into two groups: diabetic patients without renal failure (NRF and with renal failure (RF according to the Glomerular Filtration Rate. Density and diameter of EVs were determined by Tunable Resistive Pulse Sensing. Additionally, EVs were visualized by means of Transmission and Environmental Scanning Electron Microscopy. Nano-liquid chromatography coupled offline with mass spectrometry (MALDI-TOF-MS/MS was applied for proteomic analysis. RF had reduced density of EVs compared to NRF. The size distribution study showed that CD had larger EVs (mode than UD (115 versus 109 nm; p<0.05; nevertheless the mean EVs diameter was smaller in controls than in the CD group (123 versus 134 nm; p<0.05. It was demonstrated that EVs are abundant in urine. Albumin, uromodulin, and number of unique proteins related to cell stress and secretion were detected in the EVs fraction. Density and size of urinary EVs reflect deteriorated renal function and can be considered as potential renal damage biomarkers.

  3. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lipidomics analysis of follicular fluid by ESI-MS reveals potential biomarkers for ovarian endometriosis.

    Science.gov (United States)

    Cordeiro, Fernanda Bertuccez; Cataldi, Thais Regiani; Perkel, Kayla Jane; do Vale Teixeira da Costa, Lívia; Rochetti, Raquel Cellin; Stevanato, Juliana; Eberlin, Marcos Nogueira; Zylbersztejn, Daniel Suslik; Cedenho, Agnaldo Pereira; Turco, Edson Guimarães Lo

    2015-12-01

    The aim of the present study was to analyze the lipid profile of follicular fluid from patients with endometriosis and endometrioma who underwent in vitro fertilization treatment (IVF). The control group (n = 10) was composed of women with tubal factor or minimal male factor infertility who had positive pregnancy outcomes after IVF. The endometriosis group consisted of women with endometriosis diagnosed by videolaparoscopy (n = 10), and from the same patients, the endometriomas fluids were collected, which composed the endometrioma group (n = 10). From the follicular fluid and endometriomas, lipids were extracted by the Bligh and Dyer method, and the samples were analyzed by tandem mass spectrometry. We observed phosphatidylglycerol phosphate, phosphatidylcholine, phosphatidylserine, and phosphatidylnositol bisphosphate in the control group. In the endometriosis group, sphingolipids and phosphatidylcholines were more abundant, while in the endometrioma group, sphingolipids and phosphatidylcholines with different m/z from the endometriosis group were found in high abundance. This analysis demonstrated that there is a differential representation of these lipids according to their respective groups. In addition, the lipids found are involved in important mechanisms related to endometriosis progress in the ovary. Thus, the metabolomic approach for the study of lipids may be helpful in potential biomarker discovery.

  5. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    Science.gov (United States)

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  6. The Potential Biomarkers and Immunological Effects of Tumor-Derived Exosomes in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shamila D. Alipoor

    2018-04-01

    Full Text Available Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite considerable achievements in lung cancer diagnosis and treatment, the global control of the disease remains problematic. In this respect, greater understanding of the disease pathology is crucially needed for earlier diagnosis and more successful treatment to be achieved. Exosomes are nano-sized particles secreted from most cells, which allow cross talk between cells and their surrounding environment via transferring their cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-Derived Exosome or tumor-derived exosome (TEX. TEXs have gained attention for their immuno-modulatory activities, which strongly affect the tumor microenvironment and antitumor immune responses. The immunological activity of TEX influences both the innate and adaptive immune systems including natural killer cell activity and regulatory T-cell maturation as well as numerous anti-inflammatory responses. In the context of lung cancer, TEXs have been studied in order to better understand the mechanisms underlying tumor metastasis and progression. As such, TEX has the potential to act both as a biomarker for lung cancer diagnosis as well as the response to therapy.

  7. Serum proteomic analysis reveals potential serum biomarkers for occupational medicamentosa-like dermatitis caused by trichloroethylene.

    Science.gov (United States)

    Huang, Peiwu; Ren, Xiaohu; Huang, Zhijun; Yang, Xifei; Hong, Wenxu; Zhang, Yanfang; Zhang, Hang; Liu, Wei; Huang, Haiyan; Huang, Xinfeng; Wu, Desheng; Yang, Linqing; Tang, Haiyan; Zhou, Li; Li, Xuan; Liu, Jianjun

    2014-08-17

    Trichloroethylene (TCE) is an industrial solvent with widespread occupational exposure and also a major environmental contaminant. Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become one major hazard in China. In this study, sera from 3 healthy controls and 3 OMLDT patients at different disease stages were used for a screening study by 2D-DIGE and MALDI-TOF-MS/MS. Eight proteins including transthyretin (TTR), retinol binding protein 4 (RBP4), haptoglobin, clusterin, serum amyloid A protein (SAA), apolipoprotein A-I, apolipoprotein C-III and apolipoprotein C-II were found to be significantly altered among the healthy, acute-stage, healing-stage and healed-stage groups. Specifically, the altered expression of TTR, RBP4 and haptoglobin were further validated by Western blot analysis and ELISA. Our data not only suggested that TTR, RBP4 and haptoglobin could serve as potential serum biomarkers of OMLDT, but also indicated that measurement of TTR, RBP4 and haptoglobin or their combination could help aid in the diagnosis, monitoring the progression and therapy of the disease. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Rheumatic Diseases and Obesity: Adipocytokines as Potential Comorbidity Biomarkers for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Rossana Scrivo

    2013-01-01

    Full Text Available Inflammation has been recognized as a common trait in the pathogenesis of multifactorial diseases including obesity, where a low-grade inflammation has been established and may be responsible for the cardiovascular risk related to the disease. Obesity has also been associated with the increased incidence and a worse outcome of rheumatoid arthritis (RA and osteoarthritis (OA. RA is characterized by systemic inflammation, which is thought to play a key role in accelerated atherosclerosis and in the increased incidence of cardiovascular disease, an important comorbidity in patients with RA. The inflammatory process underlying the cardiovascular risk both in obesity and RA may be mediated by adipocytokines, a heterogeneous group of soluble proteins mainly secreted by the adipocytes. Many adipocytokines are mainly produced by white adipose tissue. Adipocytokines may also be involved in the pathogenesis of OA since a positive association with obesity has been found for weight-bearing and nonweight-bearing joints, suggesting that, in addition to local overload, systemic factors may contribute to joint damage. In this review we summarize the current knowledge on experimental models and clinical studies in which adipocytokines were examined in obesity, RA, and OA and discuss the potential of adipocytokines as comorbidity biomarkers for cardiovascular risk.

  9. Cerebrospinal Fluid Concentrations of Biogenic Amines: Potential Biomarkers for Diagnosis of Bacterial and Viral Meningitis

    Directory of Open Access Journals (Sweden)

    Aneela Taj

    2018-04-01

    Full Text Available Catecholamine and serotonin are biogenic amines (BAs that serve as neurotransmitters and play an important role in the regulation of cardinal functions that are mainly altered during central nervous system (CNS infections. A total 92 samples of cerebrospinal fluid (CSF were classified into 4 groups based on their etiology. In these samples, BAs/neurotransmitters i.e., dopamine (DA, 3,4-dihydroxyphenylacetic acid (DOPAC, homovanillic acid (HVA, and 5-hydroxyindoleacetic acid (5HIAA were detected and quantified by high performance liquid chromatography with electrochemical detection (HPLC-EC to determine the neurophysiology of the CNS infections by bacteria (Listeria monocytogenes (Lm and Neisseria meningitidis (Nm and herpes simplex virus (HSV. CSF concentration of DA, DOPAC, HVA, and 5HIAA were found significantly elevated in all test cohorts. Present study highlights that the analysis of BAs is pivotal for the early diagnosis of bacterial and viral meningitis. In addition, coinfections of varied etiology can also be diagnosed by their quantification. Thus, BAs can serve as potential biomarkers of these CNS infections.

  10. MicroRNA-367 is a potential diagnostic biomarker for patients with esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiangtao; Song, Kaifang; Feng, Xiaoshan, E-mail: xiaoshan.feng@aol.com; Gao, Shegan

    2016-04-29

    Purpose: In this study, we investigated whether microRNA-367 (miR-367) may serve as a circulating biomarker and tumor oncogene in esophageal squamous carcinoma (ESCC). Methods: Circulating serum miR-367 was compared by quantitative RT-PCR (qRT-PCR) between 35 ESCC patients and 35 normal control patients, as well paired ESCC tumor tissues and adjacent non-tumor esophageal epithelial tissues in 46 patients. The correlation between serum miR-367 and clinicopathological properties of ESCC patients was assessed. The overall survival (OS) was assessed by Kaplan–Meier method and compared by log-rank test between patients with high serum miR-367 and low serum miR-367. The possibility of miR-367 being independent prognostic factor for ESCC was also assessed. Furthermore, lentivirus-mediated miR-367 downregulation was conducted in ESCC cell lines Kyse30 and TE-1 cells to assess the possible oncogenic effect of miR-367 on ESCC proliferation and cell cycle transition in vitro. Results: MiR-367 was aberrantly upregulated in sera and tumors of ESCC patients, whereas downregulated in ESCC patients after the treatments of esophagectomy and chemotherapy. Serum miR-367 was found to be closely correlated with the clinicopathological properties of differentiation grades, clinical stage and tumor metastasis in ESCC patients. Serum miR-367 was also confirmed to be associated with OS, as well as serving independent prognostic factor in ESCC patients. Moreover, lentivirus-induced miR-367 downregulation inhibited cancer growth and cell cycle transition in Kyse30 and TE-1 cells. Conclusion: MiR-367 is a potential biomarker for ESCC and may act as an oncogene in regulating ESCC development. - Highlights: • MiR-367 was aberrantly upregulated in sera and tumors of ESCC patients. • MiR-367 was downregulated in ESCC patients after esophagectomy or chemotherapy. • Serum miR-367 was correlated with the clinicopathological properties of ESCC patients. • Serum miR-367 was associated

  11. Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients.

    Science.gov (United States)

    Wang, Jieru; Zhu, Xiaojie; Xiong, Xuekai; Ge, Pan; Liu, Han; Ren, Ningning; Khan, Farhan Anwar; Zhou, Xia; Zhang, Li; Yuan, Xu; Chen, Xi; Chen, Yingyu; Hu, Changmin; Robertson, Ian D; Chen, Huanchun; Guo, Aizhen

    2018-04-11

    This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.

  12. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/ gas chromatography mass spectrometry platform.

    Science.gov (United States)

    Callejón-Leblic, Belén; García-Barrera, Tamara; Grávalos-Guzmán, Jesús; Pereira-Vega, Antonio; Gómez-Ariza, José Luis

    2016-08-11

    Lung cancer is one of the ten most common causes of death worldwide, so that the search for early diagnosis biomarkers is a very challenging task. Bronchoalveolar lavage fluid (BALF) provides information on cellular and biochemical epithelial surface of the lower respiratory tract constituents and no previous metabolomic studies have been performed with BALF samples from patients with lung cancer. Therefore, this fluid has been explored looking for new contributions in lung cancer metabolism. In this way, two complementary metabolomics techniques based on direct infusion high resolution mass spectrometry (DI-ESI-QTOF-MS) and gas chromatography mass spectrometry (GC-MS) have been applied to compare statistically differences between lung cancer (LC) and control (C) BALF samples, using partial least square discriminant analysis (PLS-DA) in order to find and identify potential biomarkers of the disease. A total of 42 altered metabolites were found in BALF from LC. The metabolic pathway analysis showed that glutamate and glutamine metabolism pathway was mainly altered by this disease. In addition, we assessed the biomarker specificity and sensitivity according to the area under the receiver operator characteristic (ROC) curves, indicating that glycerol and phosphoric acid were potential sensitive and specific biomarkers for lung cancer diagnosis and prognosis. The search for early diagnosis of lung cancer is a very challenging task because of the high mortality associated to this disease and its critical linkage to the initiation of treatment. Bronchoalveolar lavage fluid provides information on cellular and biochemical epithelial surface of the lower respiratory tract constituents and no previous metabolomic studies have been performed with BALF samples from patients with lung cancer. Since BALF is in close interaction with lung tissue it is a more representative sample of lung status than other peripheral biofluids as blood or urine studied in previous works

  13. Identifying improvement potentials in cement production with life cycle assessment.

    Science.gov (United States)

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  14. Serum Glutamine Levels as a Potential Diagnostic Biomarker in Sepsis following Surgery for Peritonitis.

    Science.gov (United States)

    Yang, Chun-Ju; Huang, Ting-Shuo; Lee, Tung-Liang; Yang, Kang-Chung; Yuan, Shin-Sheng; Lu, Ruey-Hwa; Hsieh, Chung-Ho; Shyu, Yu-Chiau

    2017-12-31

    Few diagnostic biomarkers for sepsis after emergency peritonitis surgery are available to clinicians, and, thus, it is important to develop new biomarkers for patients undergoing this procedure. We investigated whether serum glutamine and selenium levels could be diagnostic biomarkers of sepsis in individuals recovering from emergency peritonitis surgery. From February 2012 to March 2013, patients who had peritonitis diagnosed at the emergency department and underwent emergency surgery were screened for eligibility. Serum glutamine and selenium levels were obtained at pre-operative, post-operative and recovery time points. The average level of pre-operation serum glutamine was significantly different from that on the recovery day (0.317 ± 0.168 vs. 0.532 ± 0.155 mM, P peritonitis. We recommend including glutamine as a biomarker for sepsis severity assessment in addition to the commonly used clinical indicators.

  15. Neuronal antibody biomarkers for Sydenham's chorea identify a new group of children with chronic recurrent episodic acute exacerbations of tic and obsessive compulsive symptoms following a streptococcal infection.

    Science.gov (United States)

    Singer, Harvey S; Mascaro-Blanco, Adda; Alvarez, Kathy; Morris-Berry, Christina; Kawikova, Ivana; Ben-Pazi, Hilla; Thompson, Carol B; Ali, Syed F; Kaplan, Edward L; Cunningham, Madeleine W

    2015-01-01

    Several autoantibodies (anti-dopamine 1 (D1R) and 2 (D2R) receptors, anti-tubulin, anti-lysoganglioside-GM1) and antibody-mediated activation of calcium calmodulin dependent protein kinase II (CaMKII) signaling activity are elevated in children with Sydenham's chorea (SC). Recognizing proposed clinical and autoimmune similarities between SC and PANDAS (pediatric autoimmune neuropsychiatric disorder associated with a streptococcal infection), we sought to identify serial biomarker changes in a slightly different population. Antineuronal antibodies were measured in eight children (mean 11.3 years) with chronic, dramatic, recurrent tics and obsessive-compulsive disorder (OCD) associated with a group A β-hemolytic streptococcal (GABHS) respiratory tract infection, but differing because they lacked choreiform movements. Longitudinal serum samples in most subjects included two pre-exacerbation samples, Exac), one midst Exac (abrupt recurrence of tic/OCD; temporally association with a GABHS infection in six of eight subjects), and two post-Exac. Controls included four groups of unaffected children (n = 70; mean 10.8 years) obtained at four different institutions and published controls. Clinical exacerbations were not associated with a significant rise in antineuronal antibody titers. CaMKII activation was increased at the GABHS exacerbation point in 5/6 subjects, exceeded combined and published control's 95th percentile at least once in 7/8 subjects, and median values were elevated at each time point. Anti-tubulin and anti-D2R titers did not differ from published or combined control group's 95th percentile or median values. Differences in anti-lysoganglioside-GM1 and anti-D1R titers were dependent on the selected control. Variances in antibody titers and CaMKII activation were identified among the institutional control groups. Based on comparisons to published studies, results identify two groups of PANDAS: 1) a cohort, represented by this study, which lacks choreiform

  16. Neuronal antibody biomarkers for Sydenham's chorea identify a new group of children with chronic recurrent episodic acute exacerbations of tic and obsessive compulsive symptoms following a streptococcal infection.

    Directory of Open Access Journals (Sweden)

    Harvey S Singer

    Full Text Available Several autoantibodies (anti-dopamine 1 (D1R and 2 (D2R receptors, anti-tubulin, anti-lysoganglioside-GM1 and antibody-mediated activation of calcium calmodulin dependent protein kinase II (CaMKII signaling activity are elevated in children with Sydenham's chorea (SC. Recognizing proposed clinical and autoimmune similarities between SC and PANDAS (pediatric autoimmune neuropsychiatric disorder associated with a streptococcal infection, we sought to identify serial biomarker changes in a slightly different population. Antineuronal antibodies were measured in eight children (mean 11.3 years with chronic, dramatic, recurrent tics and obsessive-compulsive disorder (OCD associated with a group A β-hemolytic streptococcal (GABHS respiratory tract infection, but differing because they lacked choreiform movements. Longitudinal serum samples in most subjects included two pre-exacerbation samples, Exac, one midst Exac (abrupt recurrence of tic/OCD; temporally association with a GABHS infection in six of eight subjects, and two post-Exac. Controls included four groups of unaffected children (n = 70; mean 10.8 years obtained at four different institutions and published controls. Clinical exacerbations were not associated with a significant rise in antineuronal antibody titers. CaMKII activation was increased at the GABHS exacerbation point in 5/6 subjects, exceeded combined and published control's 95th percentile at least once in 7/8 subjects, and median values were elevated at each time point. Anti-tubulin and anti-D2R titers did not differ from published or combined control group's 95th percentile or median values. Differences in anti-lysoganglioside-GM1 and anti-D1R titers were dependent on the selected control. Variances in antibody titers and CaMKII activation were identified among the institutional control groups. Based on comparisons to published studies, results identify two groups of PANDAS: 1 a cohort, represented by this study, which lacks

  17. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    Directory of Open Access Journals (Sweden)

    Anjali K Nath

    Full Text Available Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs. However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies.Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1 as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF samples from women carrying normal fetuses and those with CHDs.The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  18. Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder.

    Science.gov (United States)

    Du, Yuhui; Pearlson, Godfrey D; Lin, Dongdong; Sui, Jing; Chen, Jiayu; Salman, Mustafa; Tamminga, Carol A; Ivleva, Elena I; Sweeney, John A; Keshavan, Matcheri S; Clementz, Brett A; Bustillo, Juan; Calhoun, Vince D

    2017-05-01

    Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum Brain Mapp 38:2683-2708, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors.

    Science.gov (United States)

    Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-06-01

    Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adaptive regression modeling of biomarkers of potential harm in a population of U.S. adult cigarette smokers and nonsmokers

    Directory of Open Access Journals (Sweden)

    Mendes Paul E

    2010-03-01

    Full Text Available Abstract Background This article describes the data mining analysis of a clinical exposure study of 3585 adult smokers and 1077 nonsmokers. The analysis focused on developing models for four biomarkers of potential harm (BOPH: white blood cell count (WBC, 24 h urine 8-epi-prostaglandin F2α (EPI8, 24 h urine 11-dehydro-thromboxane B2 (DEH11, and high-density lipoprotein cholesterol (HDL. Methods Random Forest was used for initial variable selection and Multivariate Adaptive Regression Spline was used for developing the final statistical models Results The analysis resulted in the generation of models that predict each of the BOPH as function of selected variables from the smokers and nonsmokers. The statistically significant variables in the models were: platelet count, hemoglobin, C-reactive protein, triglycerides, race and biomarkers of exposure to cigarette smoke for WBC (R-squared = 0.29; creatinine clearance, liver enzymes, weight, vitamin use and biomarkers of exposure for EPI8 (R-squared = 0.41; creatinine clearance, urine creatinine excretion, liver enzymes, use of Non-steroidal antiinflammatory drugs, vitamins and biomarkers of exposure for DEH11 (R-squared = 0.29; and triglycerides, weight, age, sex, alcohol consumption and biomarkers of exposure for HDL (R-squared = 0.39. Conclusions Levels of WBC, EPI8, DEH11 and HDL were statistically associated with biomarkers of exposure to cigarette smoking and demographics and life style factors. All of the predictors togather explain 29%-41% of the variability in the BOPH.

  1. Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential

    Directory of Open Access Journals (Sweden)

    K. Atifi

    2017-01-01

    Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.

  2. Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-04-01

    Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.

  3. Chronic fatigue syndrome and impaired peripheral pulse characteristics on orthostasis–a new potential diagnostic biomarker

    International Nuclear Information System (INIS)

    Allen, John; Murray, Alan; Di Maria, Costanzo; Newton, Julia L

    2012-01-01

    Autonomic nervous system dysfunction is frequently reported in chronic fatigue syndrome (CFS) with orthostatic intolerance, a common symptom that can be objectively assessed. The frequent finding of autonomic dysfunction and symptoms on standing has the potential to provide a diagnostic biomarker in chronic fatigue. In this study we explored the clinical value of non-invasive optical multi-site photoplethysmography (PPG) technology to assess cardiovascular responses to standing. Multi-site PPG pulses were collected from tissue pads of the ears, fingers and toes of 14 patients with CFS and 14 age-matched sedentary subjects using a measurement protocol of a 10 min baseline (subject supine) followed by 3 min of tilting on a tilt table (head-up to 70°). Percentage change in pulse timing (pulse transit time, PTTf) and pulse amplitude (AMP) at each site were calculated using beat-to-beat pulse wave analysis. A significant reduction in the overall pulse timing response to controlled standing was found for the CFS group (using summed absolute percentage change in PTTf for ear, finger and toe sites, median change of 26% for CFS and 37% for control with p = 0.002). There were no significant differences between subject groups for the AMP measure at any site. Changes in AMP with tilt were, however, weakly significantly and negatively correlated with fatigue severity (p < 0.05). Receiver operating characteristic (ROC) analysis of timing measures produced an area under the curve of 0.81. Experimental linear discriminant classification analysis comparing both timing and amplitude measures produced an overall diagnostic accuracy of 82%. Pulse wave abnormalities have been observed in CFS and represent a potential objective measure to help differentiate between CFS patients and healthy controls. (paper)

  4. MicroRNAs as potential biomarkers in adrenocortical cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    Nadia eCHERRADI

    2016-01-01

    Full Text Available Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of adrenocortical carcinoma. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors such as the IGF2 pathway, the Wnt pathway and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation and microRNA profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. MicroRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated microRNAs to the pathogenesis of adrenocortical carcinoma is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some microRNAs have been shown to carry potential diagnostic and prognostic values while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne microRNAs signatures, analyses of small cohorts of patients with adrenocortical carcinoma suggest that circulating microRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the microRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating microRNAs in adrenocortical carcinoma patients, while emphasizing their potential significance in adrenocortical carcinoma pathogenic

  5. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds.

    Science.gov (United States)

    Min, Byung Hwa; Kim, Bo-Mi; Kim, Moonkoo; Kang, Jung-Hoon; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-08-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L -1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L -1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A

    Science.gov (United States)

    Ye, Guozhu; Chen, Yajie; Wang, Hong-Ou; Ye, Ting; Lin, Yi; Huang, Qiansheng; Chi, Yulang; Dong, Sijun

    2016-10-01

    Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.

  7. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis.

    Science.gov (United States)

    Xie, Xiaoyan; Jiang, Yuchen; Yuan, Yao; Wang, Peiqi; Li, Xinyi; Chen, Fangman; Sun, Chongkui; Zhao, Hang; Zeng, Xin; Jiang, Lu; Zhou, Yu; Dan, Hongxia; Feng, Mingye; Liu, Rui; Chen, Qianming

    2016-09-13

    Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.

  8. Identification of the soluble form of tyrosine kinase receptor Axl as a potential biomarker for intracranial aneurysm rupture.

    Science.gov (United States)

    Xu, Jing; Ma, Feiqiang; Yan, Wei; Qiao, Sen; Xu, Shengquan; Li, Yi; Luo, Jianhong; Zhang, Jianmin; Jin, Jinghua

    2015-03-05

    Subarachnoid hemorrhage caused by a ruptured intracranial aneurysm (RIA) is a devastating condition with significant morbidity and mortality. Despite the fact that RIAs can be prevented by microsurgical clipping or endovascular coiling, there are no reliable means of effectively predicting IA patients at risk for rupture. The purpose of our study was to discover differentially-expressed glycoproteins in IAs with or without rupture as potential biomarkers to predict rupture. Forty age/gender-matched patients with RIA, unruptured IA (UIA), healthy controls (HCs) and disease controls (DCs) (discovery cohort, n = 10 per group) were recruited and a multiplex quantitative proteomic method, iTRAQ (isobaric Tagging for Relative and Absolute protein Quantification), was used to quantify relative changes in the lectin-purified glycoproteins in CSF from RIAs and UIAs compared to HCs and DCs. Then we verified the proteomic results in an independent set of samples (validation cohort, n = 20 per group) by enzyme-linked immunosorbent assay. Finally, we evaluated the specificity and sensitivity of the candidate marker with receiver operating characteristic (ROC) curve methods. The proteomic findings identified 294 proteins, 40 of which displayed quantitative changes unique to RIA, 13 to UIA, and 20 to IA. One of these proteins, receptor tyrosine kinase Axl, was significantly increased in RIA, as confirmed in CSF from the discovery cohort as well as in CSF and plasma from the validation cohort (p IA.

  9. Metabolomics Approach to Male Lower Urinary Tract Symptoms: Identification of Possible Biomarkers and Potential Targets for New Treatments.

    Science.gov (United States)

    Mitsui, Takahiko; Kira, Satoru; Ihara, Tatsuya; Sawada, Norifumi; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Shimura, Hiroshi; Yokomichi, Hiroshi; Takeda, Masayuki

    2018-05-01

    We identified metabolites using a metabolomics approach and investigated the association between these metabolites and lower urinary tract symptoms. We used a 24-hour bladder diary and I-PSS (International Prostate Symptom Score) to assess micturition behavior and lower urinary tract symptoms in 58 male patients without apparent neurological disease. Lower urinary tract symptoms were defined as a total I-PSS score of 8 or greater. Patients with a score of 7 or less were placed in the control group. A comprehensive study of plasma metabolites was also performed by capillary electrophoresis time-of-flight mass spectrometry. Metabolites were compared between the lower urinary tract symptoms and control groups using the Mann-Whitney U test. Biomarkers of male lower urinary tract symptoms from the metabolites were analyzed using multivariable logistic regression analysis to determine the OR. Of the 58 men 32 were in the lower urinary tract symptoms group and the remaining 26 were in the control group. The 24-hour bladder diary showed that nocturnal urine volume, 24-hour micturition frequency, nocturnal micturition frequency and the nocturia index were significantly higher in the lower urinary tract symptoms group. Metabolomics analysis identified 60 metabolites from patient plasma. Multivariate analysis revealed that increased glutamate and decreased arginine, asparagine and inosine monophosphate were significantly associated with lower urinary tract symptoms in males. Decreases in citrulline and glutamine could also be associated with male lower urinary tract symptoms. Male lower urinary tract symptoms may develop due to abnormal metabolic processes in some pathways. Potential new treatments for lower urinary tract symptoms can be developed by identifying changes in the amino acid profiles. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. HPLC-UV Analysis Coupled with Chemometry to Identify Phenolic Biomarkers from Medicinal Plants, used as Ingredients in Two Food Supplement Formulas

    Directory of Open Access Journals (Sweden)

    Raluca Maria Pop

    2013-11-01

    Full Text Available . High performance liquid chromatography (HPLC with UV detection is nowadays the reference method to identify and quantify the biomarkers of quality and authenticity of plants and food supplements. Seven medicinal plants were collected from wild flora: Taraxacum officinalis (1, Cynara scolimus (2, Silybum marianum (3, Hypericum perforatum (4,  Chelidonium majus (5, Lycopodium clavatum (6 and  Hippophae rhamnoides (7  leaves and fruits.  Two products (A and B were obtained by mixing individual plant powders. Therefore product A was obtained by mixing dandelion, artichoke and milk thistle, 1:1:1 while product B by mixing St John’s wort, Celandine and Wolf’s claw, 1:1:1. The methanolic extracts of individual plants as well as three different extracts of products A and B (using acidulated water, neutral water and acidulated methanol were analyzed using HPLC-UV for their phenolics’ fingerprint and composition. The qualitative (untargeted analysis and quantitative (targeted analysis results were further compared using Principal Component Analysis (PCA in order to identify their specific biomarkers. Thus, quantitative evaluation of individual phenolics in case of individual plants and products A and B extracts, showed specific and significant differences of composition. Both products A and B contained elagic acid as major compound. For product A, good biomarkers were trans-cinnamic, chlorogenic, caffeic and p-coumaric acids, as well silymarin and silibine originating from milk thistle. For product B, good biomarkers were quercetin and kaempherol, gallic and protocatecuic acids, this product being rich in flavonoids. In conclusion, HPLC-UV coupled with PCA analysis proved to be a rapid and useful way to identify the main biomarkers of plants’ authentication, as well of final products’ quality and safety.

  11. Intravoxel Incoherent Motion Metrics as Potential Biomarkers for Survival in Glioblastoma.

    Directory of Open Access Journals (Sweden)

    Josep Puig

    Full Text Available Intravoxel incoherent motion (IVIM is an MRI technique with potential applications in measuring brain tumor perfusion, but its clinical impact remains to be determined. We assessed the usefulness of IVIM-metrics in predicting survival in newly diagnosed glioblastoma.Fifteen patients with glioblastoma underwent MRI including spin-echo echo-planar DWI using 13 b-values ranging from 0 to 1000 s/mm2. Parametric maps for diffusion coefficient (D, pseudodiffusion coefficient (D*, and perfusion fraction (f were generated for contrast-enhancing regions (CER and non-enhancing regions (NCER. Regions of interest were manually drawn in regions of maximum f and on the corresponding dynamic susceptibility contrast images. Prognostic factors were evaluated by Kaplan-Meier survival and Cox proportional hazards analyses.We found that fCER and D*CER correlated with rCBFCER. The best cutoffs for 6-month survival were fCER>9.86% and D*CER>21.712 x10-3mm2/s (100% sensitivity, 71.4% specificity, 100% and 80% positive predictive values, and 80% and 100% negative predictive values; AUC:0.893 and 0.857, respectively. Treatment yielded the highest hazard ratio (5.484; 95% CI: 1.162-25.88; AUC: 0.723; P = 0.031; fCER combined with treatment predicted survival with 100% accuracy.The IVIM-metrics fCER and D*CER are promising biomarkers of 6-month survival in newly diagnosed glioblastoma.

  12. Heat Shock Protein 90α Is a Potential Serological Biomarker of Acute Rejection after Renal Transplantation.

    Directory of Open Access Journals (Sweden)

    Takeshi Maehana

    Full Text Available Heat shock protein 90 (HSP90, a molecular chaperone associated with the activation of client proteins, was recently reported to play an important role in immunologic reactions. To date, the role of HSP90 in solid organ transplantations has remained unknown. The aim of this study was to evaluate the relationship between serum HSP90α levels and acute allograft rejection after organ and tissue transplantation using serum samples from kidney allograft recipients, an in vitro antibody-mediated rejection model, and a murine skin transplantation.Serum HSP90α levels were significantly higher in kidney recipients at the time of acute rejection (AR than in those with no evidence of rejection. In most cases with AR, serum HSP90 decreased to baseline after the treatment. On the other hand, serum HSP90α was not elevated as much in patients with chronic rejection, calcineurin inhibitor nephrotoxicity, or BK virus nephropathy as in AR patients. In vitro study showed that HSP90α concentration in the supernatant was significantly higher in the supernatant of human aortic endothelial cells cocultured with specific anti-HLA IgG under complement attack than in that of cells cocultured with nonspecific IgG. In mice receiving skin transplantation, serum HSP90α was elevated when the first graft was rejected and the level further increased during more severe rejection of the second graft.The results suggest that HSP90α is released into the serum by cell damage due to AR in organ and tissue transplantation, and it is potentially a new biomarker to help detect AR in kidney recipients.

  13. HumanMethylation450K Array–Identified Biomarkers Predict Tumour Recurrence/Progression at Initial Diagnosis of High-risk Non-muscle Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Mark O Kitchen

    2018-01-01

    Full Text Available Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC is a clinically unpredictable disease. Despite clinical risk estimation tools, many patients are undertreated with intra-vesical therapies alone, whereas others may be over-treated with early radical surgery. Molecular biomarkers, particularly DNA methylation, have been reported as predictive of tumour/patient outcomes in numerous solid organ and haematologic malignancies; however, there are few reports in HR-NMIBC and none using genome-wide array assessment. We therefore sought to identify novel DNA methylation markers of HR-NMIBC clinical outcomes that might predict tumour behaviour at initial diagnosis and help guide patient management. Patients and methods: A total of 21 primary initial diagnosis HR-NMIBC tumours were analysed by Illumina HumanMethylation450 BeadChip arrays and subsequently bisulphite Pyrosequencing. In all, 7 had not recurred at 1 year after resection and 14 had recurred and/or progressed despite intra-vesical BCG. A further independent cohort of 32 HR-NMIBC tumours (17 no recurrence and 15 recurrence and/or progression despite BCG were also assessed by bisulphite Pyrosequencing. Results: Array analyses identified 206 CpG loci that segregated non-recurrent HR-NMIBC tumours from clinically more aggressive recurrence/progression tumours. Hypermethylation of CpG cg11850659 and hypomethylation of CpG cg01149192 in combination predicted HR-NMIBC recurrence and/or progression within 1 year of diagnosis with 83% sensitivity, 79% specificity, and 83% positive and 79% negative predictive values. Conclusions: This is the first genome-wide DNA methylation analysis of a unique HR-NMIBC tumour cohort encompassing known 1-year clinical outcomes. Our analyses identified potential novel epigenetic markers that could help guide individual patient management in this clinically unpredictable disease.

  14. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  15. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    Science.gov (United States)

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  16. Reduced levels of potential circulating biomarkers of cardiovascular diseases in apparently healthy vegetarian men.

    Science.gov (United States)

    Navarro, Julio Acosta; de Gouveia, Luiza Antoniazzi; Rocha-Penha, Lilliam; Cinegaglia, Naiara; Belo, Vanessa; Castro, Michele Mazzaron de; Sandrim, Valeria Cristina

    2016-10-01

    Several evidences report that a vegetarian diet is protector against cardiovascular diseases. Few studies have demonstrated the circulating profile of cardiovascular biomarkers in vegetarians. Therefore, the aims of the current study were compared the plasma concentrations of myeloperoxidase (MPO), metalloproteinase (MMP)-9, MMP-2, tissue inhibitor of MMP (TIMP)-1 and TIMP-2 between healthy vegetarian (Veg) and healthy omnivorous (Omn). Using ELISA and multiplexed bead immunoassay, we measured in plasma from 43 Veg and 41 Omn the cardiovascular biomarkers concentrations cited above. We found significant lower concentrations of MPO, MMP-9, MMP-2 and MMP-9/TIMP-1 ratio in Veg compared to Omn (all Pvegetarian diet is associated with a healthier profile of cardiovascular biomarkers compared to omnivorous. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biomarkers to identify ILD and predict lung function decline in scleroderma lung disease or idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Kennedy, Barry; Branagan, Peter; Moloney, Fiachra; Haroon, Muhammad; O'Connell, Oisin J; O'Connor, Terence M; O'Regan, Kevin; Harney, Sinead; Henry, Michael T

    2015-09-14

    SSc-ILD and IPF demonstrate significant morbidity and mortality. Predicting disease progression is challenging in both diseases. We sought a serum biomarker that could identify patients with SSc-ILD or IPF and prospectively predict short-term decline in lung function in these patients. 10 healthy controls, 5 SSc w/o ILD, 6 SSc-ILD and 13 IPF patients underwent venesection. An array of cytokines including KL-6, SP-D and MMP7 were measured. PFTs were obtained at baseline and six months. Cytokine measurements were correlated with PFTs. KL-6 in IPF patients (633 ng/ml, IQR 492-1675) was significantly elevated compared to controls (198 ng/ml, IQR 52-360, p<0.01) and SSc w/o ILD patients (192 ng/ml, IQR 0-524, p<0.05); KL-6 in SSc-ILD patients (836 ng/ml, IQR 431-1303) was significantly higher than in controls (p<0.05). SP-D was significantly higher in IPF patients (542 ng/ml, IQR 305-577) compared to controls (137 ng/ml, IQR 97-284, p<0.01) or to SSc w/o ILD patients (169 ng/ml, IQR 137-219, p<0.05). In comparison with controls (0.0 ng/ml, IQR 0.0-0.6), MMP7 was significantly higher in both IPF patients (2.85 ng/ml, IQR 1.5-3.6, p<0.05) and SSc-ILD patients (5.41 ng/ml, IQR 2.6-7.2, p<0.001). Using a cut-off level of 459ng/ml for KL-6 and of 1.28 ng/ml for MMP7, 18 out of 19 patients with ILD had a serum value of either KL-6 or MMP7 above these thresholds. For all ILD patients, baseline serum SP-D correlated with ΔFVC %pred over six months (r=-0.63, p=0.005, 95% CI -0.85 to -0.24). Combining KL-6 with MMP7 may be a useful screening tool for patients at risk of ILD. SP-D may predict short-term decline in lung function.

  18. RBBP6: a potential biomarker of apoptosis induction in human cervical cancer cell lines

    Directory of Open Access Journals (Sweden)

    Moela P

    2016-07-01

    Full Text Available Pontsho Moela, Lesetja Raymond Motadi Department of Biochemistry, North-West University, Potchefstroom, South Africa Abstract: Overexpression of RBBP6 in cancers of the colon, lung, and esophagus makes it a potential target in anticancer therapy. This is especially important because RBBP6 associates with the tumor suppressor gene p53, the inactivation of which has been linked to over 50% of all cancer types. However, the expression of RBBP6 in cancer and its interaction with p53 are yet to be understood in order to determine whether or not RBBP6 is cancer promoting and therefore a potential biomarker. In this study, we manipulated RBBP6 expression levels followed by treatment with either camptothecin or γ-aminobutyric acid in cervical cancer cells to induce apoptosis or cell cycle arrest. We began by staining human cervical cancer tissue sections with anti-RBBP6 monoclonal antibody to evaluate the extent of expression of RBBP6 in patients’ specimens. We followed on with silencing the overexpression of RBBP6 and treatment with anticancer agents to evaluate how the specimens respond to combinational therapy. Apoptosis induction was evaluated through confocal microscope, and flow cytometry using annexin V staining, and also by checking the mitochondrial and caspase-3/7 activity. Cell cycle arrest was evaluated using flow cytometry through staining with propidium iodide. RBBP6 was highly expressed in cervical cancer tissue sections that were in stage II or III of development. Silencing RBBP6 followed by treatment with γ-aminobutyric acid and camptothecin seems to sensitize cells to apoptosis induction rather than cell cycle arrest. Overexpression of RBBP6 seems to promote S-phase in cell cycle and cell proliferation. These results predict a proliferative role of RBBP6 in cancer progression rather than as a cancer-causing gene. Furthermore, sensitization of cells to camptothecin-induced apoptosis by RBBP6 targeting suggests a promising tool for

  19. Proteomics Mapping of Cord Blood Identifies Haptoglobin ?Switch-On? Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    OpenAIRE

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A prote...

  20. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  1. The Identification of Circulating MiRNA in Bovine Serum and Their Potential as Novel Biomarkers of Early Mycobacterium avium subsp paratuberculosis Infection.

    Directory of Open Access Journals (Sweden)

    Damien Farrell

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP is the aetiological agent of Johne's disease (JD, a chronic enteritis in ruminants that causes substantial economic loses to agriculture worldwide. Current diagnostic assays are hampered by low sensitivity and specificity that seriously complicate disease control; a new generation of diagnostic and prognostic assays are therefore urgently needed. Circulating microRNAs (miRNAs have been shown to have significant potential as novel biomarkers for a range of human diseases, but their potential application in the veterinary sphere has been less well characterised. The aim of this study was therefore to apply RNA-sequencing approaches to serum from an experimental JD infection model as a route to identify novel diagnostic and prognostic miRNA biomarkers. Sera from experimental MAP-challenged calves (n = 6 and age-matched controls (n = 6 were used. We identified a subset of known miRNAs from bovine serum across all samples, with approximately 90 being at potentially functional abundance levels. The majority of known bovine miRNAs displayed multiple isomiRs that differed from the canonical sequences. Thirty novel miRNAs were identified after filtering and were found within sera from all animals tested. No significant differential miRNA expression was detected when comparing sera from MAP-challenged animals to their age-matched controls at six-month's post-infection. However, comparing sera from pre-infection bleeds to six-month's post-infection across all 12 animals did identify increased miR-205 (2-fold and decreased miR-432 (2-fold within both challenged and control groups, which suggests changes in circulating miRNA profiles due to ageing or development (P<0.00001. In conclusion our study has identified a range of novel miRNA in bovine serum, and shown the utility of small RNA sequencing approaches to explore the potential of miRNA as novel biomarkers for infectious disease in cattle.

  2. Circulating YKL-40 in myelofibrosis a potential novel biomarker of disease activity and the inflammatory state

    DEFF Research Database (Denmark)

    Bjørn, Mads Emil; Andersen, Christen Lykkegaard; Jensen, Morten Krogh

    2014-01-01

    Chronic myeloproliferative neoplasms (MPN), encompassing essential thrombocythaemia (ET), polycythaemia vera (PV) and myelofibrosis (PMF), are featured by a chronic inflammatory state which is pronounced in myelofibrosis The value of YKL-40 as a biomarker of disease burden has been demonstrated i...

  3. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    Science.gov (United States)

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation of direct and indirect ethanol biomarkers using a likelihood ratio approach to identify chronic alcohol abusers for forensic purposes.

    Science.gov (United States)

    Alladio, Eugenio; Martyna, Agnieszka; Salomone, Alberto; Pirro, Valentina; Vincenti, Marco; Zadora, Grzegorz

    2017-02-01

    The detection of direct ethanol metabolites, such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs), in scalp hair is considered the optimal strategy to effectively recognize chronic alcohol misuses by means of specific cut-offs suggested by the Society of Hair Testing. However, several factors (e.g. hair treatments) may alter the correlation between alcohol intake and biomarkers concentrations, possibly introducing bias in the interpretative process and conclusions. 125 subjects with various drinking habits were subjected to blood and hair sampling to determine indirect (e.g. CDT) and direct alcohol biomarkers. The overall data were investigated using several multivariate statistical methods. A likelihood ratio (LR) approach was used for the first time to provide predictive models for the diagnosis of alcohol abuse, based on different combinations of direct and indirect alcohol biomarkers. LR strategies provide a more robust outcome than the plain comparison with cut-off values, where tiny changes in the analytical results can lead to dramatic divergence in the way they are interpreted. An LR model combining EtG and FAEEs hair concentrations proved to discriminate non-chronic from chronic consumers with ideal correct classification rates, whereas the contribution of indirect biomarkers proved to be negligible. Optimal results were observed using a novel approach that associates LR methods with multivariate statistics. In particular, the combination of LR approach with either Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) proved successful in discriminating chronic from non-chronic alcohol drinkers. These LR models were subsequently tested on an independent dataset of 43 individuals, which confirmed their high efficiency. These models proved to be less prone to bias than EtG and FAEEs independently considered. In conclusion, LR models may represent an efficient strategy to sustain the diagnosis of chronic alcohol consumption

  5. MiRNA-155 and miRNA-132 as potential diagnostic biomarkers for pulmonary tuberculosis: A preliminary study.

    Science.gov (United States)

    Zheng, Meng-Li; Zhou, Nai-Kang; Luo, Cheng-Hua

    2016-11-01

    In our study, we aimed to profile a panel microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary tuberculosis (PTB) and to illuminate the molecular mechanisms in the development of PTB. Firstly, gene expression profile of E-GEOD-49951 was downloaded from ArrayExpress database, and quantile-adjusted conditional maximum likelihood method was utilized to identify statistical difference between miRNAs of Mycobacterium tuberculosis (MTB)-infected individuals and healthy subjects. Furthermore, in order to assess the performance of our methodology, random forest (RF) classification model was utilized to identify the top 10 miRNAs with better Area Under The Curve (AUC) using 10-fold cross-validation method. Additionally, Monte Carlo Cross-Validation was repeated 50 times to explore the best miRNAs. In order to learn more about the differentially-expressed miRNAs, the target genes of differentially-expressed miRNAs were retrieved from TargetScan database and Ingenuity Pathways Analysis (IPA) was used to screen out biological pathways where target genes were involved. After normalization, a total of 478 miRNAs with higher than 0.25-fold quantile average across all samples were required. Based on the differential expression analysis, 38 differentially expressed miRNAs were identified when the significance was set as false discovery rate (FDR) < 0.01. Among the top 10 differentially expressed miRNAs, miRNA-155 obtained a highest AUC value 0.976, showing a good performance between PTB and control groups. Similarly, miRNA-449a, miRNA-212 and miRNA-132 revealed also a good performance with AUC values 0.947, 0.931 and 0.930, respectively. Moreover, miRNA-155, miRNA-449a, miRNA-29b-1* and miRNA-132 appeared in 50, 49, 49 and 48 bootstraps. Thus, miRNA-155 and miRNA-132 might be important in the progression of PTB and thereby, might present potential signatures for diagnosis of PTB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Urine and plasma metabonomics coupled with UHPLC-QTOF/MS and multivariate data analysis on potential biomarkers in anemia and hematinic effects of herb pair Gui-Hong.

    Science.gov (United States)

    Li, Shujiao; Lin, Hang; Qu, Cheng; Tang, Yuping; Shen, Juan; Li, Weixia; Yue, Shijun; Kai, Jun; Shang, Guanxiong; Zhu, Zhenhua; Zhang, Changbin; Liu, Pei; Yan, Hui; Zhang, Li; Qian, Li; Qian, Dawei; Duan, Jin-ao

    2015-07-21

    The compatibility of Angelicae Sinensis Radix (Danggui) and Carthami Flos (Honghua), a famous herb pair Gui-Hong, can produce synergistic and complementary hematinic effects. Our previous studies have indicated that Gui-Hong has therapeutic potential treatment in hemolytic and aplastic anemia (HAA). The present study aimed to investigate the hematinic effects of Danggui, Honghua and Gui-Hong on HAA rats induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CP) and to explore the underlying hematinic regulation mechanisms. Rats were divided into 5 groups, and drugs were administered by oral gavage one time each day for continuous 7 days from the experiment began. Urine and plasma were analyzed by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Partial least-squares discriminate analysis (PLS-DA) models were built to evaluate the therapeutic effects of Danggui, Honghua and Gui-Hong. Pearson correlation matrix analysis method was used to discover the correlations between potential biomarkers and biochemical indicators of HAA rats. Seven potential biomarkers contribute to the separation of model group and control group were tentatively identified. The levels of l-kynurenine, phenylalanine, nicotinic acid and sphingosine increased significantly (Pmetabonomics method is a promising tool in the efficacy and mechanism research of traditional Chinese medicines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Ivan O Rosas

    2008-04-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression.We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins-MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A-that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%-100% and specificity of 98.1% (95% CI 89.9%-100%. Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%-100% and specificity of 87.2% (95% CI 72.6%-95.7%. We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD, as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC% and percent predicted carbon monoxide diffusing capacity (DLCO%.Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung

  8. Comprehensive Evaluation of TFF3 Promoter Hypomethylation and Molecular Biomarker Potential for Prostate Cancer Diagnosis and Prognosis

    DEFF Research Database (Denmark)

    Nørgaard, Maibritt; Haldrup, Christa; Storebjerg, Tine Maj

    2017-01-01

    Overdiagnosis and overtreatment of clinically insignificant tumors remains a major problem in prostate cancer (PC) due to suboptimal diagnostic and prognostic tools. Thus, novel biomarkers are urgently needed. In this study, we investigated the biomarker potential of Trefoil factor 3 (TFF3......) promoter methylation and RNA expression levels for PC. Initially, by quantitative methylation specific PCR (qMSP) analysis of a large radical prostatectomy (RP) cohort (n = 292), we found that the TFF3 promoter was significantly hypomethylated in PC compared to non-malignant (NM) prostate tissue samples (p....... 67 NM) analyzed by Illumina 450K DNA methylation arrays and/or RNA sequencing. TFF3 promoter methylation and transcriptional expression levels were inversely correlated, suggesting that epigenetic mechanisms contribute to the regulation of gene activity. Furthermore, low TFF3 expression...

  9. Urinary KIM-1 and AQP-1 in patients with clear renal cell carcinoma: Potential noninvasive biomarkers

    Directory of Open Access Journals (Sweden)

    Mijušković Mirjana

    2016-01-01

    Full Text Available Background/Aim. Kidney injury molecule-1 (KIM-1 and aquaporin-1 (AQP-1 are potential early urinary biomarkers of clear renal cell carcinoma (cRCC. The aim of this study was to ascertain relationship between the urine concentrations KIM-1 and AQP-1 with tumor size, grade, pT stage and type of operation (radical or partial nephrectomy in patients with cRCC. Methods. Urinary concentrations of urinary KIM-1 (uKIM-1 and urinary AQP-1 (uAQP-1 were determined by commercially available ELISA kits. The analysis included 40 patients undergoing partial or radical nephrectomy for cRCC and 40 age- and sex-matched healthy adult volunteers. Results. The median preoperative concentrations of KIM-1 in the cRCC group [0.724 ± 1.120 ng/mg urinary creatinine (Ucr] were significantly greater compared with controls (healthy volunteers (0.210 ± 0.082 ng/mgUcr (p = 0.0227. Postoperatively, uKIM-1 concentration decreased significantly to control values (0.177 ± 0.099 ng/mgUcr vs 0.210 ± 0.082 ng/mgUcr, respectively. The size, grade and stage of tumor were correlated positively with preoperative uKIM-1 concentrations. Contrary to these results, concentrations of uAQP-1 in the cRCC group were significantly lower (0.111 ± 0.092 ng/mgUcr compared with the control group (0.202 ± 0.078 ng/mgUcr (p = 0.0014. Postoperatively, the concentrations of uAQP-1 increased progressively up to control values, approximately. We find no significant correlation between preoperative uAQP-1 concentrations and tumor size, grade and stage. Conclusion. uKIM-1 was found to be a reliable diagnostic marker of cRCC, based on its significantly increased values before and decreased values after the nephrectomy. [Projekat Ministarstva nauke Republike Srbije, br. III41018

  10. DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Liu Wan; Zhou Qixing; Li Peijun; Gao Hairong; Han, Y.P.; Li, X.J.; Yang, Y.S.; Li Yanzhi

    2009-01-01

    In the current study, Arabidopsis seedlings were hydroponically grown on MS media containing cadmium (Cd) of 0-2.0 mg L -1 for 60 h of treatment. Gene expression profiles were used to relate exposure to Cd with some altered biological responses and/or specific growth effects. RT-PCR analysis was used to quantitate mRNA expression for seven genes known to be involved in DNA mismatch repair (MMR) system and cell division. Results indicated that Cd concentrations of 0.25-2.0 mg L -1 cause increased total soluble protein levels in shoots of Arabidopsis seedlings in an inverted U-shaped dose-response manner. Exposure to 0.25 and 0.5 mg L -1 of Cd dramatically induced expression of four genes (i.e. proliferating cell nuclear antigen 2 (atPCNA 2), MutL1 homolog (atMLH1), MutS 2 homolog (atMSH2) and atMSH3) and five genes (i.e. atPCNA1,2, atMLH1 and atMSH2,7), respectively, in shoots of Arabidopsis seedlings; Exposure to 1.0 mg L -1 of Cd significantly elevated expression of only two genes (atMSH6,7), but caused prominent inhibition in expression of three genes (atPCNA2, atMLH1 and atMSH3) in shoots of Arabidopsis seedlings. The expression alterations of the above genes were independent of any biological effects such as survival, fresh weight and chlorophyll level of shoots. However, shoots of Arabidopsis seedlings exposed to 2.0 mg L -1 of Cd exhibited statistically prominent repression in expression of these seven genes, and showed incipient reduction of fresh weight and chlorophyll level. This research provides data concerning sensitivity of expression profiles of atMLH1, atMSH2,3,6,7 and atPCNA1,2 genes in Arabidopsis seedlings to Cd exposure, as well as the potential use of these gene expression patterns as representative molecular biomarkers indicative of Cd exposure and related biological effects.

  11. IP-10 is a potential biomarker of cystic fibrosis acute pulmonary exacerbations.

    Directory of Open Access Journals (Sweden)

    George M Solomon

    Full Text Available Cystic fibrosis (CF is characterized by acute pulmonary exacerbations (APE. The CF nasal airway exhibits a similar ion transport defect as the lung, and colonization, infection, and inflammation within the nasal passages are common among CF patients. Nasal lavage fluid (NLF is a minimally invasive means to collect upper airway samples.We collected NLF at the onset and resolution of CF APE and compared a 27-plex cytokine profile to stable CF outpatients and normal controls. We also tested IP-10 levels in the bronchoalveolar lavage fluid (BALF of CF patients. Well-differentiated murine sinonasal monolayers were exposed to bacterial stimulus, and IP-10 levels were measured to test epithelial secretion.Subjects hospitalized for APE had elevated IP-10 (2582 pg/mL [95% CL of mean: 818,8165], N=13 which significantly decreased (647 pg/mL [357,1174], P<0.05, N =13 following antimicrobial therapy. Stable CF outpatients exhibited intermediately elevated levels (680 pg/mL [281,1644], N=13 that were less than CF inpatients upon admission (P=0.056 but not significantly different than normal controls (342 pg/mL [110,1061]; P=0.3, N=10. IP-10 was significantly increased in CF BALF (2673 pg/mL [1306,5458], N=10 compared to healthy post-lung transplant patients (8.4 pg/mL [0.03,2172], N=5, P<0.001. IP-10 levels from well-differentiated CF murine nasal epithelial monolayers exposed to Pseudomonas PAO-1 bacteria-free prep or LPS (100 nM apically for 24 hours were significantly elevated (1159 ± 147, P<0.001 for PAO-1; 1373 ± 191, P<0.001 for LPS vs. 305 ± 68 for vehicle controls. Human sino-nasal epithelial cells derived from CF patients had a similar response to LPS (34% increase, P<0.05, N=6.IP-10 is elevated in the nasal lavage of CF patients with APE and responds to antimicrobial therapy. IP-10 is induced by airway epithelia following stimulation with bacterial pathogens in a murine model. Additional research regarding IP-10 as a potential biomarker is

  12. Myostatin and insulin-like growth factor I: potential therapeutic biomarkers for pompe disease.

    Directory of Open Access Journals (Sweden)

    Yin-Hsiu Chien

    Full Text Available OBJECTIVE: Myostatin and insulin-like growth factor 1 (IGF-1 are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease - a muscle glycogen storage disease - is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT. DESIGN: A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6-23 months. Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group. RESULTS: Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010 and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075. After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047 and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013; these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%. CONCLUSION: The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular

  13. Microparticles in sputum of COPD patients: a potential biomarker of the disease?

    Directory of Open Access Journals (Sweden)

    Lacedonia D

    2016-03-01

    Full Text Available Donato Lacedonia,1,* Giovanna Elisiana Carpagnano,1,* Teresa Trotta,2 Grazia Pia Palladino,1 Maria Antonietta Panaro,3 Liugi Davide Zoppo,1 Maria Pia Foschino Barbaro,1 Chiara Porro21Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, 2Department of Clinical and Experimental Medicine, University of Foggia, Foggia, 3Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy*These authors contributed equally to this workBackground: Microparticles (MPs are small membrane vesicles of 0.1–1 µm which are released by cells following chemical, physical, and apoptotic stimuli. MPs represent more than a miniature version of the cell. Their composition and function depend not only on cellular origin, but also on stimuli. Chronic obstructive pulmonary disease (COPD is a lung disease characterized by nearly irreversible lung destruction which results in airway limitation.Purpose: We investigated the presence and source of MPs in sputum of COPD patients to evaluate if changes in MP number and origin may reflect the pathophysiological conditions of disease and may serve as potential biomarkers for diagnostic and prognostic use.Methods: Induced sputum samples were collected from 18 male subjects and liquefied with Sputasol. MPs obtained were immunolabeled for leukocyte (CD11a, granulocyte (CD66b, monocyte-macrophage (CD11b, platelets and megakaryocytic cells (CD41, endothelial cells (CD31, and red blood cells (CD235ab and analyzed by cytofluorimetry.Results: There was a negative correlation between CD31-MPs and forced expiratory volume in 1 second (R=−53, P<0.05 and CD66b-MP level was correlated with worse performance index of COPD such as the Body mass index airflow Obstruction, Dyspnea, and Exercise capacity (BODE; they were negatively correlated with 6-minute walking test: 0.65 and −0.64, respectively (P<0.05. CD235ab-MPs showed a negative correlation with body mass index (R=−0.86, P

  14. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens.

    Science.gov (United States)

    Zeitoun, H; Bahey-El-Din, M; Kassem, M A; Aboushleib, H M

    2017-12-01

    Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful

  15. An in vitro metabolomics approach to identify hepatotoxicity biomarkers in human L02 liver cells treated with pekinenal, a natural compound.

    Science.gov (United States)

    Shi, Jiexia; Zhou, Jing; Ma, Hongyue; Guo, Hongbo; Ni, Zuyao; Duan, Jin'ao; Tao, Weiwei; Qian, Dawei

    2016-02-01

    An in vitro cell metabolomics study was performed on human L02 liver cells to investigate the toxic biomarkers of pekinenal from the herb Euphorbia pekinensis Rupr. Pekinenal significantly induced L02 cell damage, which was characterised by necrosis and apoptosis. Metabolomics combined with data pattern recognition showed that pekinenal significantly altered the profiles of more than 1299 endogenous metabolites with variable importance in the projection (VIP) > 1. Further, screening correlation coefficients between the intensities of all metabolites and the extent of L02 cell damage (MTT) identified 12 biomarker hits: ten were downregulated and two were upregulated. Among these hits, LysoPC(18:1(9Z)/(11Z)), PC(22:0/15:0) and PC(20:1(11Z)/14:1(9Z)) were disordered, implying the initiation of inflammation and cell damage. Several fatty acids (FAs) (3-hydroxytetradecanedioic acid, pivaloylcarnitine and eicosapentaenoyl ethanolamide) decreased due to fatty acid oxidation. Dihydroceramide and Cer(d18:0/14:0) were also altered and are associated with apoptosis. Additional examination of the levels of intracellular reactive oxygen species (ROS) and two eicosanoids (PGE2, PGF2α) in the cell supernatant confirmed the fatty acid oxidation and arachidonic acid metabolism pathways, respectively. In summary, cell metabolomics is a highly efficient approach for identifying toxic biomarkers and helping understand toxicity mechanisms and predict herb-induced liver injury.

  16. Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis*

    Science.gov (United States)

    Dun, Matthew D.; Chalkley, Robert J.; Faulkner, Sam; Keene, Sheridan; Avery-Kiejda, Kelly A.; Scott, Rodney J.; Falkenby, Lasse G.; Cairns, Murray J.; Larsen, Martin R.; Bradshaw, Ralph A.; Hondermarck, Hubert

    2015-01-01

    Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation. PMID:26041846

  17. Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress

    OpenAIRE

    Satoko Suzuki; Yoshio Kodera; Tatsuya Saito; Kazumi Fujimoto; Akari Momozono; Akinori Hayashi; Yuji Kamata; Masayoshi Shichiri

    2016-01-01

    Oxidative stress contributes to the pathophysiology of a variety of diseases, and circulating biomarkers of its severity remains a topic of great interest for researchers. Our peptidomic strategy enables accurate and reproducible analysis of circulating proteins/peptides with or without post-translational modifications. Conventional wisdom holds that hydrophobic methionines exposed to an aqueous environment or experimental handling procedures are vulnerable to oxidation. However, we show that...

  18. Scavenger Receptor B1 is a Potential Biomarker of Human Nasopharyngeal Carcinoma and Its Growth is Inhibited by HDL-mimetic Nanoparticles

    Science.gov (United States)

    Zheng, Ying; Liu, Yanyan; Jin, Honglin; Pan, Shaotao; Qian, Yuan; Huang, Chuan; Zeng, Yixin; Luo, Qingming; Zeng, Musheng; Zhang, Zhihong

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC. PMID:23843895

  19. Human Biomonitoring of Engineered Nanoparticles: An Appraisal of Critical Issues and Potential Biomarkers

    Directory of Open Access Journals (Sweden)

    Enrico Bergamaschi

    2012-01-01

    Full Text Available The present paper deals with the applicability of biological monitoring to the assessment of exposure and possible effects deriving from exposure to engineered nanomaterials (NM. After establishing a conceptual framework in which human biomonitoring should be placed, the paper reviews the critical issues related to the unusual properties of NM affecting the implementation of biomonitoring activities for this new class of chemicals. Relying on the recent advances in the toxicogenomic, it is possible to assess whether specific biological pathways are activated or perturbed by specific NM. However, to evaluate if quantitative changes in these biomarkers can be used as indicators or predictors for toxicity in humans, validation on well characterised groups of exposed people is needed. At present, it appears more pragmatic to evolve NM-associated biomarker identification considering relevant biological responses found in environmental and occupational studies and assessing the early events associated with exposure to these NM. The battery of biochemical markers includes soluble molecules, antioxidant capacity, peroxidated lipids and carbonyl groups in serum proteins as a biomarkers of systemic inflammation and vascular adhesion molecules to assess endothelial activation/damage. Abnormalities in exhaled breath condensate chemistry reflecting intrinsic changes in the airway lining fluid and lung inflammation seem promising tools suitable for BM studies and are broadly discussed.

  20. Potential effects of vildagliptin on biomarkers associated with prothrombosis in diabetes mellitus.

    Science.gov (United States)

    Khan, Sana; Khan, Saba; Panda, Bibhu Prasad; Akhtar, Mohd; Najmi, Abul Kalam

    2015-01-01

    Diabetes mellitus (DM) is one of the risks linked with susceptibility of thrombosis. We tried to inspect the effect of a novel oral antidiabetic agent, vildagliptin, in preventing prothrombosis associated with DM. DM was produced by a dose of streptozotocin (STZ) or in albino wistar rats. Rats were treated orally with pioglitazone, standard treatment and vildagliptin alone and in combination for 3 weeks. Finally, the varied levels of coagulation biomarkers, including activated partial thromboplastin time (aPTT), prothrombin time (PT) and fibrinogen and inflammatory parameters, nitric oxide (NO), C-reactive protein (CRP) and TNF-α and lipid profile were estimated along with platelet count and total leukocyte count (TLC). In vitro fibrinolytic activity of both the drugs was also determined. Vildagliptin significantly reduced cholesterol, triglycerides, TLC, CRP and TNF-α and increased aPTT and NO levels in STZ diabetic rats. However, pioglitazone was more successful in reducing fibrinogen and platelet count. Nevertheless, combination of the drugs was also effective than pioglitazone or vildagliptin alone in improvising hypercoagulation and inflammatory biomarkers. It is evident from the present study that vildagliptin has an influence on the biomarkers linked to the progression of thrombosis and may delay thrombogenesis linked to DM. Hence, vildagliptin alone and in combination might prove as an encouraging therapy for DM-linked thrombosis marked by inflammation and hypercoagulation.

  1. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations.

    Science.gov (United States)

    Miura, Yuri; Endo, Tamao

    2016-08-01

    Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Predictive Potential of Twenty-Two Biochemical Biomarkers for Coronary Artery Disease in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Edimar Cristiano Pereira

    2015-01-01

    Full Text Available We investigated the potential of a panel of 22 biomarkers to predict the presence of coronary artery disease (CAD in type 2 diabetes mellitus (DM2 patients. The study enrolled 96 DM2 patients with (n = 75 and without (n = 21 evidence of CAD. We assessed a biochemical profile that included 22 biomarkers: total cholesterol, LDL, HDL, LDL/HDL, triglycerides, glucose, glycated hemoglobin, fructosamine, homocysteine, cysteine, methionine, reduced glutathione, oxidized glutathione, reduced glutathione/oxidized glutathione, L-arginine, asymmetric dimethyl-L-arginine, symmetric dimethyl-L-arginine, asymmetric dimethyl-L-arginine/L-arginine, nitrate plus nitrite, S-nitrosothiols, nitrotyrosine, and n-acetyl-β-glucosaminidase. Prediction models were built using logistic regression models. We found that eight biomarkers (methionine, nitratate plus nitrite, n-acetyl-β-glucosaminidase, BMI, LDL, HDL, reduced glutathione, and L-arginine/asymmetric dimethyl-L-arginine along with gender and BMI were significantly associated with the odds of CAD in DM2. These preliminary findings support the notion that emerging biochemical markers might be used for CAD prediction in patients with DM2. Our findings warrant further investigation with large, well-designed studies.

  3. Data for iTRAQ profiling of micro-vesicular plasma specimens: In search of potential prognostic circulatory biomarkers for Lacunar infarction

    Directory of Open Access Journals (Sweden)

    Arnab Datta

    2015-09-01

    Full Text Available To discover potential prognostic biomarkers of Lacunar infarction (LACI, here we present quantitative proteomics data of plasma microvesicle-enriched fraction derived by comparative isobaric profiling of three groups of prospectively followed-up LACI patients (LACI – no adverse outcome, LACI –recurrent vascular event and LACI – cognitive decline and a demographically matched control group. We confidently (unused prot score >3, FDR=1.1% identified 183 proteins, 43 out of which were significantly regulated (p-value<0.05 in at least one of the three LACI groups in comparison to control group. Bioinformatics analysis and data mining revealed upregulation of brain-specific proteins including myelin basic protein, proteins of coagulation cascade (e.g., fibrinogen alpha chain, fibrinogen beta chain and focal adhesion (e.g., integrin alpha-IIb, talin-1, and filamin-A while albumin was downregulated in both groups of patients with adverse outcome. The data of this study are also in line with our previously published article entitled “Discovery of prognostic biomarker candidates of Lacunar infarction by quantitative proteomics of microvesicles enriched plasma” by Datta et al. (2014. The raw data had been deposited to the ProteomeXchange consortium with identifier PXD000748.

  4. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers.

    Science.gov (United States)

    Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia

    2013-09-06

    Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.

  5. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gaora Peadar Ó

    2010-10-01

    analysis has the potential to generate novel transcriptome-based biomarkers of disease.

  6. Evidentiary requirements to identify potentially acceptable sites (PAS) in crystalline rock

    International Nuclear Information System (INIS)

    Comella, P.A.; Smith, B.H.

    1985-01-01

    This report contains information on the evidentiary requirements to identify potentially acceptable sites in crystalline rock for waste disposal. Topics addressed include: chronology, key regulatory assumptions, statutory framework for identifying potentially acceptable sites, application of 10 disqualifiers, consideration of favorable and potentially adverse conditions, a composite favorability analysis, and a proposed outline for PAS identification decision document

  7. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: Potential insights into biomarker development

    International Nuclear Information System (INIS)

    Sanchez, Brian C.; Ralston-Hooper, Kimberly J.; Kowalski, Kevin A.; Dorota Inerowicz, H.; Adamec, Jiri; Sepulveda, Maria S.

    2009-01-01

    Liver proteome response of largemouth bass (Micropterus salmoides) exposed to environmental contaminants was analyzed to identify novel biomarkers of exposure. Adult male bass were exposed to cadmium chloride (CdCl 2 ), atrazine, PCB 126, phenanthrene, or toxaphene via intraperitoneal injection with target body burdens of 0.00067, 3.0, 2.5, 50, and 100 μg/g, respectively. After a 96 h exposure, hepatic proteins were separated with two-dimensional gel electrophoresis and differentially expressed proteins (vs. controls) recognized and identified with MALDI-TOF/TOF mass spectrometry. We identified, 30, 18, eight, 19, and five proteins as differentially expressed within the CdCl 2 , atrazine, PCB 126, phenanthrene, and toxaphene treatments, respectively. Alterations were observed in the expression of proteins associated with cellular ion homeostasis (toxaphene), oxidative stress (phenanthrene, PCB 126), and energy production including glycolysis (CdCl 2 , atrazine) and ATP synthesis (atrazine). This work supports the further evaluation of several of these proteins as biomarkers of contaminant exposure in fish.

  8. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

    Science.gov (United States)

    Zou, Meng; Liu, Zhaoqi; Zhang, Xiang-Sun; Wang, Yong

    2015-10-15

    In prognosis and survival studies, an important goal is to identify multi-biomarker panels with predictive power using molecular characteristics or clinical observations. Such analysis is often challenged by censored, small-sample-size, but high-dimensional genomic profiles or clinical data. Therefore, sophisticated models and algorithms are in pressing need. In this study, we propose a novel Area Under Curve (AUC) optimization method for multi-biomarker panel identification named Nearest Centroid Classifier for AUC optimization (NCC-AUC). Our method is motived by the connection between AUC score for classification accuracy evaluation and Harrell's concordance index in survival analysis. This connection allows us to convert the survival time regression problem to a binary classification problem. Then an optimization model is formulated to directly maximize AUC and meanwhile minimize the number of selected features to construct a predictor in the nearest centroid classifier framework. NCC-AUC shows its great performance by validating both in genomic data of breast cancer and clinical data of stage IB Non-Small-Cell Lung Cancer (NSCLC). For the genomic data, NCC-AUC outperforms Support Vector Machine (SVM) and Support Vector Machine-based Recursive Feature Elimination (SVM-RFE) in classification accuracy. It tends to select a multi-biomarker panel with low average redundancy and enriched biological meanings. Also NCC-AUC is more significant in separation of low and high risk cohorts than widely used Cox model (Cox proportional-hazards regression model) and L1-Cox model (L1 penalized in Cox model). These performance gains of NCC-AUC are quite robust across 5 subtypes of breast cancer. Further in an independent clinical data, NCC-AUC outperforms SVM and SVM-RFE in predictive accuracy and is consistently better than Cox model and L1-Cox model in grouping patients into high and low risk categories. In summary, NCC-AUC provides a rigorous optimization framework to

  9. Diffusion Entropy: A Potential Neuroimaging Biomarker of Bipolar Disorder in the Temporal Pole.

    Science.gov (United States)

    Spuhler, Karl; Bartlett, Elizabeth; Ding, Jie; DeLorenzo, Christine; Parsey, Ramin; Huang, Chuan

    2018-02-01

    Despite much research, bipolar depression remains poorly understood, with no clinically useful biomarkers for its diagnosis. The paralimbic system has become a target for biomarker research, with paralimbic structural connectivity commonly reported to distinguish bipolar patients from controls in tractography-based diffusion MRI studies, despite inconsistent findings in voxel-based studies. The purpose of this analysis was to validate existing findings with traditional diffusion MRI metrics and investigate the utility of a novel diffusion MRI metric, entropy of diffusion, in the search for bipolar depression biomarkers. We performed group-level analysis on 9 un-medicated (6 medication-naïve; 3 medication-free for at least 33 days) bipolar patients in a major depressive episode and 9 matched healthy controls to compare: (1) average mean diffusivity (MD) and fractional anisotropy (FA) and; (2) MD and FA histogram entropy-a statistical measure of distribution homogeneity-in the amygdala, hippocampus, orbitofrontal cortex and temporal pole. We also conducted classification analyses with leave-one-out and separate testing dataset (N = 11) approaches. We did not observe statistically significant differences in average MD or FA between the groups in any region. However, in the temporal pole, we observed significantly lower MD entropy in bipolar patients; this finding suggests a regional difference in MD distributions in the absence of an average difference. This metric allowed us to accurately characterize bipolar patients from controls in leave-one-out (accuracy = 83%) and prediction (accuracy = 73%) analyses. This novel application of diffusion MRI yielded not only an interesting separation between bipolar patients and healthy controls, but also accurately classified bipolar patients from controls. © 2017 Wiley Periodicals, Inc.

  10. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age...... subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver...

  11. Exosomal miRNAs from Peritoneum Lavage Fluid as Potential Prognostic Biomarkers of Peritoneal Metastasis in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Motohiko Tokuhisa

    Full Text Available Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC and is associated with poor prognosis. Peritoneal lavage cytology, used to evaluate the risk of peritoneal metastasis, has low sensitivity. Here, we assessed the diagnostic potential of exosomal miRNA profiles in peritoneal fluid for the prediction of peritoneal dissemination in GC. Total RNA was extracted from exosomes isolated from six gastric malignant ascites (MA samples, 24 peritoneal lavage fluid (PLF samples, and culture supernatants (CM of two human gastric carcinoma cell lines that differ in their potential for peritoneal metastasis. Expression of exosomal miRNAs was evaluated with Agilent Human miRNA microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR. The microarray analysis indicated a low variability in the number and signal intensity of miRNAs detected among the samples. In the six MA fluids, miR-21 showed the highest signal intensity. We identified five miRNAs (miR-1225-5p, miR-320c, miR-1202, miR-1207-5p, and miR-4270 with high expression in MA samples, the PLF of serosa-invasive GC, and the CM of a highly metastatic GC cell line; these candidate miRNA species appear to be related to peritoneal dissemination. Differential expression of miR-21, miR-320c, and miR-1225-5p was validated in the PLF of serosa-invasive and non-invasive GC by qRT-PCR and miR-21 and miR-1225-5p were confirmed to be associated with serosal invasion in GC. PLF can be used to profile the expression of exosomal miRNAs. Our findings suggest that miR-21 and miR-1225-5p may serve as biomarkers of peritoneal recurrence after curative GC resection, thus providing a novel approach to early diagnosis of peritoneal dissemination of GC.

  12. Validation of standard operating procedures in a multicenter retrospective study to identify -omics biomarkers for chronic low back pain.

    Directory of Open Access Journals (Sweden)

    Concetta Dagostino

    Full Text Available Chronic low back pain (CLBP is one of the most common medical conditions, ranking as the greatest contributor to global disability and accounting for huge societal costs based on the Global Burden of Disease 2010 study. Large genetic and -omics studies provide a promising avenue for the screening, development and validation of biomarkers useful for personalized diagnosis and treatment (precision medicine. Multicentre studies are needed for such an effort, and a standardized and homogeneous approach is vital for recruitment of large numbers of participants among different centres (clinical and laboratories to obtain robust and reproducible results. To date, no validated standard operating procedures (SOPs for genetic/-omics studies in chronic pain have been developed. In this study, we validated an SOP model that will be used in the multicentre (5 centres retrospective "PainOmics" study, funded by the European Community in the 7th Framework Programme, which aims to develop new biomarkers for CLBP through three different -omics approaches: genomics, glycomics and activomics. The SOPs describe the specific procedures for (1 blood collection, (2 sample processing and storage, (3 shipping details and (4 cross-check testing and validation before assays that all the centres involved in the study have to follow. Multivariate analysis revealed the absolute specificity and homogeneity of the samples collected by the five centres for all genetics, glycomics and activomics analyses. The SOPs used in our multicenter study have been validated. Hence, they could represent an innovative tool for the correct management and collection of reliable samples in other large-omics-based multicenter studies.

  13. A plasma metabonomic analysis on potential biomarker in pyrexia induced by three methods using ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Liu, Ting; Li, Songhe; Tian, Xiumin; Li, Zhaoqin; Cui, Yue; Han, Fei; Zhao, Yunli; Yu, Zhiguo

    2017-09-15

    Pyrexia usually is a systemic pathological process that can lead to metabolic disorders. Metabonomics as a powerful tool not only can reveal the pathological mechanisms, but also can give insight into the progression of pyrexia from another angle. Thus, an ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) metabonomic approach was employed for the first time to investigate the plasma biochemical characteristics of pyrexia induced by three methods and to reveal subtle metabolic changes under the condition of pyrexia so as to explore its mechanism. The acquired metabolic data of the models were subjected to principal component analysis (PCA) for allowing the clear separation of the pyrexia rats from the control rats. Variable importance for project values (VIP) and Student's t-test were used to screen the significant metabolic changes caused by pyrexia. Fifty-two endogenous metabolites were identified and putatively identified as potential biomarkers primarily associated with phospholipid metabolism, sphingolipid metabolism, fatty acid oxidation metabolism, fatty acid amides metabolism and amino acid metabolism, and related to bile acid biosynthesis and glycerolipid catabolism. LysoPC (14:0), LysoPC (18:3), LysoPC (20:4), LysoPC (16:0), phytosphingosine, Cer (d18:0/12:0), N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]hexadecanamide, oleamide, fatty acid amide C22:1, tryptophan, acetylcarnitine, palmitoylcarnitine and stearoylcarnitine were considered as common potential biomarkers of pyrexia rats induced by three methods: Our results revealed that the UHPLC-FT-ICR-MS-based metabolomic method is helpful for finding new potential metabolic markers for pyrexia detection and offers a good perspective in pyrexia research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  16. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.

    Science.gov (United States)

    Mei, Zhu; Shao, Yang W; Lin, Peinan; Cai, Xiaomin; Wang, Biao; Ding, Yan; Ma, Xiangyuan; Wu, Xue; Xia, Yewei; Zhu, Dongqin; Shu, Yongqian; Fu, Zan; Gu, Yanhong

    2018-04-27

    Cetuximab, an anti-EGFR monoclonal antibody, is used in combination with chemotherapy in clinic to enhance the outcome in metastatic colorectal cancer (mCRC) patients with only ~ 20% response rate. To date only activating mutations in KRAS and NRAS have been identified as poor prognosis biomarkers in cetuximab-based treatment, which makes an urgent need for identification of novel prognosis biomarkers to precisely predict patients' response in order to maximize the benefit. In this study, we analysed the mutation profiles of 33 Chinese mCRC patients using comprehensive next-generation sequencing (NGS) targeting 416 cancer-relevant genes before cetuximab treatment. Upon receiving cetuximab-based therapy, patients were evaluated for drug response, and the progression-free survival (PFS) was monitored. The association of specific genetic alterations and cetuximab efficacy was analyzed. Patients carrying SMAD4 mutations (SMAD4 mut , n = 8) or NF1 mutations (NF1 mut , n = 4) had significantly shorter PFS comparing to those carrying wildtype SMAD4 (SMAD4 wt , n = 25) (P = 0.0081) or wildtype NF1 (NF1 wt , n = 29) (P = 0.0028), respectively. None of the SMAD4 mut or NF1 mut patients showed response to cetuximab when assessed at 12-week post-treatment. Interestingly, two patients carrying both SMAD4 mut and NF1 mut showed the shortest PFS among all the patients. Our results demonstrated that SMAD4 and NF1 mutations can serve as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese mCRC patients.

  17. Butyryl-cholinesterase is related to muscle mass and strength. A new biomarker to identify elderly subjects at risk of sarcopenia.

    Science.gov (United States)

    Cacciatore, Francesco; Della-Morte, David; Basile, Claudia; Curcio, Francesco; Liguori, Ilaria; Roselli, Mario; Gargiulo, Gaetano; Galizia, Gianluigi; Bonaduce, Domenico; Abete, Pasquale

    2015-01-01

    To determine the relationship between Butyryl-cholinesterase (α-glycoprotein synthesized in the liver, b-CHE) and muscle mass and strength. Muscle mass by bioimpedentiometer and muscle strength by grip strength were evaluated in 337 elderly subjects (mean age: 76.2 ± 6.7 years) admitted to comprehensive geriatric assessment. b-CHE levels were lower in sarcopenic than in nonsarcopenic elderly subjects (p elderly subjects. Thus, b-CHE may be considered to be a fair biomarker for identifying elderly subjects at risk of sarcopenia.

  18. Dehalococcoides as a Potential Biomarker Evidence for Uncharacterized Organohalides in Environmental Samples

    Directory of Open Access Journals (Sweden)

    Qihong Lu

    2017-09-01

    Full Text Available The massive production and improper disposal of organohalides resulted in worldwide contamination in soil and water. However, their environmental survey based on chromatographic methods was hindered by challenges in testing the extremely wide variety of organohalides. Dehalococcoides as obligate organohalide-respiring bacteria exclusively use organohalides as electron acceptors to support their growth, of which the presence could be coupled with organohalides and, therefore, could be employed as a biomarker of the organohalide pollution. In this study, Dehalococcoides was screened in various samples of bioreactors and subsurface environments, showing the wide distribution of Dehalococcoides in sludge and sediment. Further laboratory cultivation confirmed the dechlorination activities of those Dehalococcoides. Among those samples, Dehalococcoides accounting for 1.8% of the total microbial community was found in an anaerobic granular sludge sample collected from a full-scale bioreactor treating petroleum wastewater. Experimental evidence suggested that the influent wastewater in the bioreactor contained bromomethane which support the growth of Dehalococcoides. This study demonstrated that Dehalococcoides could be employed as a promising biomarker to test the present of organohalides in wastestreams or other environmental samples.

  19. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    Science.gov (United States)

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response

    Science.gov (United States)

    Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.

    1999-01-01

    The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.

  1. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential.

    Science.gov (United States)

    Shah, Palak; Bristow, Michael R; Port, J David

    2017-12-01

    Heart failure is increasing in prevalence with a lack of recently developed therapies that produce major beneficial effects on its associated mortality. MicroRNAs are small non-coding RNA molecules that regulate gene expression, are differentially regulated in heart failure, and are found in the circulation serving as a biomarker of heart failure. Data suggests that microRNAs may be used to detect allograft rejection in cardiac transplantation and may predict the degree of myocardial recovery in patients with a left ventricular assist device or treated with beta-blocker therapy. Given their role in regulating cellular function, microRNAs are an intriguing target for oligonucleotide therapeutics, designed to mimic or antagonize (antagomir) their biological effects. We review the current state of microRNAs as biomarkers of heart failure and associated conditions, the mechanisms by which microRNAs control cellular function, and how specific microRNAs may be targeted with novel therapeutics designed to treat heart failure.

  2. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  3. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS.

    Science.gov (United States)

    Li, Jing; Lin, Wensi; Lin, Weiwei; Xu, Peng; Zhang, Jianmei; Yang, Haisong; Ling, Xiaomei

    2015-05-01

    Despite the recent advances in understanding toxicity mechanism of cyclophosphamide (CTX), the development of biomarkers is still essential. CTX-induced immunotoxicity in rats by a metabonomics approach was investigated using high-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (HPLC-ESI-IT-TOF-MS). The rats were orally administered CTX (30 mg/kg/day) for five consecutive days, and on the fifth day samples of urine, thymus and spleen were collected and analyzed. A significant difference in metabolic profiling was observed between the CTX-treated group and the control group by partial least squares-discriminant analysis (PLS-DA), which indicated that metabolic disturbances of immunotoxicity in CTX-treated rats had occurred. One potential biomarker in spleen, three in urine and three in thymus were identified. It is suggested that the CTX-toxicity mechanism may involve the modulation of tryptophan metabolism, phospholipid metabolism and energy metabolism. This research can help to elucidate the CTX-influenced pathways at a low dose and can further help to indicate the patients' pathological status at earlier stages of toxicological progression after drug administration. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer.

    Science.gov (United States)

    Fan, Heng; Zhu, Jian-Hua; Yao, Xue-Qing

    2018-05-01

    Long non-coding RNA (lncRNA) plays a very important role in the occurrence and development of various tumors, and is a potential biomarker for cancer diagnosis and prognosis. The purpose of this study was to investigate the relationship between the expression of lncRNA plasmacytoma variant translocation 1 (PVT1) and the prognostic significance in patients with colorectal cancer. The expression of PVT1 was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in cancerous and adjacent tissues of 210 colorectal cancer patients. The disease-free survival and overall survival of colorectal cancer patients were evaluated by Kaplan-Meier analysis, and univariate and multivariate analysis were performed by Cox proportional-hazards model. Our results revealed that PVT1 expression in cancer tissues of colorectal cancer was significantly higher than that of adjacent tissues ( Pcolorectal cancer patients, whether at TNM I/II stage or at TNM III/IV stage. A multivariate Cox regression analysis demonstrated that high PVT1 expression was an independent predictor of poor prognosis in colorectal cancer patients. Our results suggest that high PVT1 expression might be a potential biomarker for assessing tumor recurrence and prognosis in colorectal cancer patients.

  5. Tumor necrosis factor-alpha is a potential diagnostic biomarker for chronic neuropathic pain after spinal cord injury.

    Science.gov (United States)

    Xu, Jun; E, Xiaoqiang; Liu, Huiyong; Li, Feng; Cao, Yanhui; Tian, Jun; Yan, Jinglong

    2015-05-19

    Neuropathic pain (NP) is one of the most common complications after spinal cord injury (SCI), but no protein biomarkers has ever been introduced into clinical diagnosis. Previous studies implicated that toll-like receptor (TLR) 4 played a critical role in the development of NP in animal SCI models. Here, a total of 140 participants were recruited, 70 of them were SCI-NP subject and the rest 70 controls did not show neuropathic symptoms. TLR4 was upregulated significantly in SCI-NP patients compared with SCI-noNP subjects. Furthermore, we measured the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), two TLR4 downstream pro-inflammatory cytokines, to assess their diagnostic values. Receiver operating characteristics (ROC) analysis revealed that TNF-α had great potential advantages to predict the progression of neuropathy, the risks of NP were strongly increased in SCI subjects with higher levels of TNF-α (odds ratio: 4.92; 95% confidence interval: 1.89-12.32). These results suggested neuro-immune activation contributed to the development of neuropathic disorder after SCI, and TNF-α could be a potential sensitive diagnostic biomarker for chronic neuropathic pain in SCI patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Identifying specific profiles in patients with different degrees of painful knee osteoarthritis based on serological biochemical and mechanistic pain biomarkers: a diagnostic approach based on cluster analysis.

    Science.gov (United States)

    Egsgaard, Line Lindhardt; Eskehave, Thomas Navndrup; Bay-Jensen, Anne C; Hoeck, Hans Christian; Arendt-Nielsen, Lars

    2015-01-01

    Biochemical and pain biomarkers can be applied to patients with painful osteoarthritis profiles and may provide more details compared with conventional clinical tools. The aim of this study was to identify an optimal combination of biochemical and pain biomarkers for classification of patients with different degrees of knee pain and joint damage. Such profiling may provide new diagnostic and therapeutic options. A total of 216 patients with different degrees of knee pain (maximal pain during the last 24 hours rated on a visual analog scale [VAS]) (VAS 0-100) and 64 controls (VAS 0-9) were recruited. Patients were separated into 3 groups: VAS 10 to 39 (N = 81), VAS 40 to 69 (N = 70), and VAS 70 to 100 (N = 65). Pressure pain thresholds, temporal summation to pressure stimuli, and conditioning pain modulation were measured from the peripatellar and extrasegmental sites. Biochemical markers indicative for autoinflammation and immunity (VICM, CRP, and CRPM), synovial inflammation (CIIIM), cartilage loss (CIIM), and bone degradation (CIM) were analyzed. WOMAC, Lequesne, and pain catastrophizing scores were collected. Principal component analysis was applied to select the optimal variable subset, and cluster analysis was applied to this subset to create distinctly different knee pain profiles. Four distinct knee pain profiles were identified: profile A (N = 27), profile B (N = 59), profile C (N = 85), and profile D (N = 41). Each knee pain profile had a unique combination of biochemical markers, pain biomarkers, physical impairments, and psychological factors that may provide the basis for mechanism-based diagnosis, individualized treatment, and selection of patients for clinical trials evaluating analgesic compounds. These results introduce a new profiling for knee OA and should be regarded as preliminary.

  7. Transcriptional Profiling of Immune-Related Genes in Leishmania infantum-Infected Mice: Identification of Potential Biomarkers of Infection and Progression of Disease

    Directory of Open Access Journals (Sweden)

    Eduardo Ontoria

    2018-06-01

    counteracts the Th1/M1 response. This large pool of data was also used to identify potential biomarkers of infection and parasitic burden in spleen, on the bases of two different regression models. Given the results, gene expression signature analysis appears as a useful tool to identify mechanisms involved in disease outcome and to establish a rational approach for the identification of potential biomarkers useful for monitoring disease progression, new therapies or vaccine development.

  8. MAY GLYPICAN-3 BE A NOVEL BIOMARKER AND POTENTIAL THERAPEUTIC TARGET IN HEPATOCELLULAR CANCER?

    Directory of Open Access Journals (Sweden)

    Irina I. Ivanova

    2018-03-01

    Full Text Available The burden of advanced chronic liver disease is increasing worldwide, despite the recent advances in the management of chronic hepatitis viral infections. The abdominal ultrasound is the only approved method for surveillance of patients with cirrhosis, a premalignant condition for hepatocellular cancer (HCC. Although alpha fetoprotein has been known as a tumour marker for HCC, it is not commonly used for screening due to suboptimal sensitivity and specificity. There is a need to introduce a novel biomarker for definition of HCC in early stage and for prognostic and therapeutic response assessment. A review of the current evidences, encouraging the use of glypican-3 in management of patients with cirrhosis and HCC is presented.

  9. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    Science.gov (United States)

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. [KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression].

    Science.gov (United States)

    Marchewka, Zofia; Tacik, Aneta; Piwowar, Agnieszka

    2016-04-18

    On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  11. KIM-1 and NGAL as potential biomarkers for the diagnosis and cancer progression

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2016-04-01

    Full Text Available On the basis of scientific literature, there is growing evidence that KIM-1 and NGAL are interesting and promising biomarkers not only in acute and chronic inflammatory processes but also in oncogenesis. There are a number of studies which investigate their possible use in diagnosis, treatment and monitoring of therapy effectiveness. The results of recent research suggests that they may play an important role in standard oncology practice. Simultaneous measurement of KIM-1 and NGAL in urine can play a crucial role in carcinogenesis assessment and cancer progression. In the future, they can become rapid diagnostic indicators, which allow one to determine cancer subtype leading to biopsy replacement and therapy improvement. In the present work, beside biochemical characteristics of KIM-1 and NGAL, we will also discuss their role in the diagnosis and assessment of development of cancer.

  12. Expression of NK cell and monocyte receptors in critically ill patients - potential biomarkers of sepsis

    DEFF Research Database (Denmark)

    Kjaergaard, A G; Nielsen, Jeppe Sylvest; Tønnesen, Else

    2015-01-01

    UNLABELLED: Sepsis is characterized by activation of both the innate and adaptive immune systems as a response to infection. During sepsis, the expression of surface receptors expressed on immune competent cells, such as NKG2D and NKp30 on NK cells and TLR4 and CD14 on monocytes, is partly...... regulated by pro- and anti-inflammatory mediators. In this observational study, we aimed to explore whether the expression of these receptors could be used as diagnostic and/or prognostic biomarkers in sepsis. Patients with severe sepsis or septic shock (n = 21) were compared with critically ill non...... were higher in the septic patients compared with the non-septic patients (P sepsis...

  13. Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2018-02-01

    Full Text Available We recently reported that progranulin (PGRN is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD (Jian et al., 2016a; Jian et al., 2018. To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1 as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16 ± 2.824 ng/ml vs 35.07 ± 2.099 ng/ml, p < 0.001. Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736 ± 152.1 pg/ml vs 684.7 ± 68.20 pg/ml, p < 0.001. Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56 ± 3.986 ng/ml vs 150.6 ± 4.501, p < 0.001. Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s.

  14. Resistin: A Potential Biomarker for Periodontitis Influenced Diabetes Mellitus and Diabetes Induced Periodontitis

    Directory of Open Access Journals (Sweden)

    Archana Devanoorkar

    2014-01-01

    Full Text Available Biomarkers are highly specific and sensitive indicators of disease activity. Resistin is a recently discovered adipocytokine, having a potent biomarker quality. Initially resistin was thought to be produced by adipocytes alone; however, emerging evidence suggests that it is also produced in abundance by various cells of the immunoinflammatory system, indicating its role in various chronic inflammatory diseases. Data suggests that resistin plays a role in obesity, insulin resistance, cardiovascular diseases, and periodontitis. Resistin derived its name from the original observation that it induced insulin resistance (resist-in: resist insulin in mice and is downregulated in mature murine adipocytes cultured in the presence of insulin sensitizing drugs like thiazolidinediones. It is well recognized that obesity, is associated with insulin resistance and diabetes. A three-way relationship has been established between diabetes, obesity and periodontitis. Recent evidence also suggests an association between obesity and increased risk for periodontitis. Our previous research showed incremental elevation of resistin with periodontal disease activity and a reduced level of resistin, after periodontal therapy. Thus resistin would be one of the molecular links connecting obesity, periodontitis, and diabetes and may serve as a marker that links periodontal disease with other systemic diseases. A Medline/PubMed search was carried out for keywords “Diabetes Mellitus,” “Periodontitis,” and “Resistin,” and all relevant research papers from 1990 in English were shortlisted and finalized based on their importance. This review provides an insight into the biological action of resistin and its possible role in periodontitis influenced diabetes mellitus and diabetes induced periodontitis.

  15. Plasma Nervonic Acid Is a Potential Biomarker for Major Depressive Disorder: A Pilot Study.

    Science.gov (United States)

    Kageyama, Yuki; Kasahara, Takaoki; Nakamura, Takemichi; Hattori, Kotaro; Deguchi, Yasuhiko; Tani, Munehide; Kuroda, Kenji; Yoshida, Sumiko; Goto, Yu-Ichi; Inoue, Koki; Kato, Tadafumi

    2018-03-01

    Diagnostic biomarkers of major depressive disorder, bipolar disorder, and schizophrenia are urgently needed, because none are currently available. We performed a comprehensive metabolome analysis of plasma samples from drug-free patients with major depressive disorder (n=9), bipolar disorder (n=6), schizophrenia (n=17), and matched healthy controls (n=19) (cohort 1) using liquid chromatography time-of-flight mass spectrometry. A significant effect of diagnosis was found for 2 metabolites: nervonic acid and cortisone, with nervonic acid being the most significantly altered. The reproducibility of the results and effects of psychotropic medication on nervonic acid were verified in cohort 2, an independent sample set of medicated patients [major depressive disorder (n=45), bipolar disorder (n=71), schizophrenia (n=115)], and controls (n=90) using gas chromatography time-of-flight mass spectrometry. The increased levels of nervonic acid in patients with major depressive disorder compared with controls and patients with bipolar disorder in cohort 1 were replicated in the independent sample set (cohort 2). In cohort 2, plasma nervonic acid levels were also increased in the patients with major depressive disorder compared with the patients with schizophrenia. In cohort 2, nervonic acid levels were increased in the depressive state in patients with major depressive disorder compared with the levels in the remission state in patients with major depressive disorder and the depressive state in patients with bipolar disorder. These results suggested that plasma nervonic acid is a good candidate biomarker for the depressive state of major depressive disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  16. Fetal hemoglobin, α1-microglobulin and hemopexin are potential predictive first trimester biomarkers for preeclampsia.

    Science.gov (United States)

    Anderson, Ulrik Dolberg; Gram, Magnus; Ranstam, Jonas; Thilaganathan, Basky; Kerström, Bo; Hansson, Stefan R

    2016-04-01

    Overproduction of cell-free fetal hemoglobin (HbF) in the preeclamptic placenta has been recently implicated as a new etiological factor of preeclampsia. In this study, maternal serum levels of HbF and the endogenous hemoglobin/heme scavenging systems were evaluated as predictive biomarkers for preeclampsia in combination with uterine artery Doppler ultrasound. Case-control study including 433 women in early pregnancy (mean 13.7weeks of gestation) of which 86 subsequently developed preeclampsia. The serum concentrations of HbF, total cell-free hemoglobin, hemopexin, haptoglobin and α1-microglobulin were measured in maternal serum. All patients were examined with uterine artery Doppler ultrasound. Logistic regression models were developed, which included the biomarkers, ultrasound indices, and maternal risk factors. There were significantly higher serum concentrations of HbF and α1-microglobulin and significantly lower serum concentrations of hemopexin in patients who later developed preeclampsia. The uterine artery Doppler ultrasound results showed significantly higher pulsatility index values in the preeclampsia group. The optimal prediction model was obtained by combining HbF, α1-microglobulin and hemopexin in combination with the maternal characteristics parity, diabetes and pre-pregnancy hypertension. The optimal sensitivity for all preeclampsia was 60% at 95% specificity. Overproduction of placentally derived HbF and depletion of hemoglobin/heme scavenging mechanisms are involved in the pathogenesis of preeclampsia. The combination of HbF and α1-microglobulin and/or hemopexin may serve as a prediction model for preeclampsia in combination with maternal risk factors and/or uterine artery Doppler ultrasound. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  17. Optical redox imaging of fixed unstained tissue slides to identify biomarkers for breast cancer diagnosis/prognosis: feasibility study

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Li, Yusheng; Feng, Min; Zhang, Paul; Quinn, William J.; Baur, Joseph A.; Li, Lin Z.

    2018-02-01

    We previously showed that optical redox imaging (ORI) of snap-frozen breast biopsies by the Chance redox scanner readily discriminates cancer from normal tissue. Moreover, indices of redox heterogeneity differentiate among tumor xenografts with different metastatic potential. These observations suggest that ORI of fluorescence of NADH and oxidized flavoproteins (Fp) may provide diagnostic/prognostic value for clinical applications. In this work, we investigate whether ORI of formalin-fixed-paraffin-embedded (FFPE) unstained clinical tissue slides of breast tumors is feasible and comparable to ORI of snap-frozen tumors. If ORI of FFPE is validated, it will enhance the versatility of ORI as a novel diagnostic/prognostic assay as FFPE samples are readily available. ORI of fixed tissue slides was performed using a fluorescence microscope equipped with a precision automated stage and appropriate optical filters. We developed a vignette correction algorithm to remove the tiling effect of stitched-images. The preliminary data from imaging fixed slides of breast tumor xenografts showed intratumor redox heterogeneity patterns similar to that of the frozen tissues imaged by the Chance redox scanner. From ORI of human breast tissue slides we identified certain redox differences among normal, ductal carcinoma in situ, and invasive carcinoma. We found paraformaldehyde fixation causes no change in NADH signals but enhances Fp signals of fresh muscle fibers. We also investigated the stability of the fluorescence microscope and reproducibility of tissue slide fluorescence signals. We plan to validate the diagnostic/prognostic value of ORI using clinically annotated breast cancer sample set from patients with long-term follow-up data.

  18. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease

    DEFF Research Database (Denmark)

    Inekci, Dilek; Svendsen Jonesco, Ditte; Kennard, Sophie

    2015-01-01

    biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer's disease and other dementia......, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development....

  19. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  20. An Ocean Basin of Dirt? Using Molecular Biomarkers and Radiocarbon to Identify Organic Carbon Sources and their Preservation in the Arctic Ocean

    Science.gov (United States)

    Harvey, H.; Belicka, L. L.

    2005-12-01

    In the modern Arctic Ocean, primary production in waters over the broad continental shelves and under ice contributes an estimated 250 Mt/yr of POC to Arctic waters. The delivery of terrestrial material from large rivers, ice transport and through coastal erosion adds at least an additional 12 Mt/yr of POC. Although the marine organic carbon signal in Arctic Ocean exceeds that of terrestrial carbon by an order or magnitude or more, recent evidence suggests that this balance is not maintained and significant fractions of terrestrial carbon is preserved in sediments. Using an integrated approach combining lipid biomarkers and radiocarbon dating in particles and sediments, the process of organic carbon recycling and historical changes in its sources and preservation has been examined. A suite of lipid biomarkers in particles and sediments of western Arctic shelves and basins were measured and principle components analysis (PCA) used to allow a robust comparison among the 120+ individual compounds to assign organic sources and relative inputs. Offshore particles from the chlorophyll maximum contained abundant algal markers (e.g. 20:5 and 22:6 FAMEs), low concentrations of terrestrial markers (amyrins and 24-ethylcholest-5-en-3b-ol), and reflected modern 14C values. Particles present in deeper halocline waters also reflect marine production, but a portion of older, terrestrial carbon accompanies the sinking of the spring bloom. Surface and deeper sediments of basins contain older organic carbon and low concentrations of algal biomarkers, suggesting that marine carbon produced in surface waters is rapidly recycled. Taken together, these observations suggest that marine derived organic matter produced in shallow waters fuels carbon cycling, but relatively small amounts are preserved in sediments. As a result, the organic carbon preserved in sediments contrasts sharply to that typically observed in lower latitudes, with an increasing terrestrial signature with distance

  1. Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers.

    Science.gov (United States)

    Lagathu, Claire; Cossarizza, Andrea; Béréziat, Véronique; Nasi, Milena; Capeau, Jacqueline; Pinti, Marcello

    2017-06-01

    : The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK

  2. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    Youwen Tan

    Full Text Available The identification of new high-sensitivity and high-specificity markers for HCC are essential. We aimed to identify serum microRNAs (miRNAs as biomarkers to be used in diagnosing hepatitis B virus (HBV -related hepatocellular carcinoma (HCC.We investigated serum miRNA expression in (261 HCC patients, 233 cirrhosis patients, and 173 healthy controls, recruited between August 2010 and June 2013. An initial screening of miRNA expression by Illumina sequencing was performed using serum samples pooled from HCC patients and controls. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR was used to evaluate the expression of selected miRNAs. A logistic regression model was constructed using a training cohort (n = 357 and then validated using an independent cohort (n = 241. The area under the receiver operating characteristic curve (AUC was used to evaluate the accuracy of the use of the biomarkers for disease diagnosis.We identified 8 miRNAs (hsa-miR-206, hsa-miR-141-3p, hsa-miR-433-3p, hsa-miR-1228-5p, hsa-miR-199a-5p, hsa-miR-122-5p, hsa-miR-192-5p, and hsa-miR-26a-5p and constructed an miRNA set that provided high diagnostic accuracy for HCC (AUC = 0.887 and 0.879 for training and validation sets, respectively. The miRNAs could also be used to differentiate HCC patients from healthy (AUC = 0.893 and cirrhosis (AUC = 0.892 patients.We identified a serum of miRNA panel that has considerable clinical value in HCC diagnosis.

  3. Measuring urinary N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (IPMA3) as a potential biomarker of isoprene exposure.

    Science.gov (United States)

    Alwis, K Udeni; Bailey, T Liz; Patel, Dhrusti; Wang, Liqun; Blount, Benjamin C

    2016-10-19

    Isoprene, the 2-methyl analog of 1,3-butadiene, is identified as a possible human carcinogen by the International Agency for Research on Cancer (IARC). Isoprene is ubiquitous in the environment with numerous natural and anthropogenic sources. Tobacco smoke is the main exogenous source of isoprene exposure in indoor environments. Among smoke constituents, isoprene is thought to contribute significantly to cancer risk; however, no selective urinary biomarkers of isoprene exposure have been identified for humans. In this manuscript, we measured the minor isoprene metabolite IPMA1 (mixture of N-acetyl-S-(1-[hydroxymethyl]-2-methyl-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-methyl-3-buten-1-yl)-L-cysteine), and we identified IPMA3 (N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine) as a major isoprene metabolite and novel isoprene exposure biomarker for humans. Urinary isoprene metabolites were measured using ultra high performance liquid chromatography coupled with electrospray ionization triple quad tandem mass spectrometry (UPLC/ESI-MSMS). The detection rates of IPMA1 and IPMA3 are <20% and 82%, respectively. The selectivity and abundance of IPMA3 make it a useful urinary biomarker of isoprene exposure. The limit of detection of IPMA3 in urine was 0.5 ng mL -1 . IPMA3 was stable under different storage temperatures and following ten freeze-thaw cycles. The average recovery of urine spiked with IPMA3 at three different levels was 99%. IPMA3 was measured in urine samples received from 75 anonymous subjects; the median (25th percentile, 75th percentile) IPMA3 level in smokers was 36.2 (18.2, 56.8) ng mL -1 and non-smokers 2.31 (2.31, 4.38) ng mL -1 . Application of this method to large population studies will help to characterize isoprene exposure and assess potential health impact. Published by Elsevier B.V.

  4. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis.

    Science.gov (United States)

    Zhang, Xing; Guo, Jing; Fan, Shufeng; Li, Yanyuan; Wei, Liliang; Yang, Xiuyun; Jiang, Tingting; Chen, Zhongliang; Wang, Chong; Liu, Jiyan; Ping, Zepeng; Xu, Dandan; Wang, Jiaxiong; Li, Zhongjie; Qiu, Yunqing; Li, Ji-Cheng

    2013-01-01

    It is very difficult to prevent pulmonary tuberculosis (TB) due to the lack of specific and diagnostic markers, which could lead to a high incidence of pulmonary TB. We screened the differentially expressed serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of pulmonary TB. In this study, serum miRNAs were screened using the Solexa sequencing method as the potential biomarkers for the diagnosis of pulmonary TB. The stem-loop quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was used to verify differentially expressed serum miRNAs. The receiver operating characteristic (ROC) curve and logistic regression model were used to analyze the sensitivity and specificity of the single miRNA and a combination of miRNAs for diagnosis, respectively. Using the predicted target genes, we constructed the regulatory networks of miRNAs and genes that were related to pulmonary TB. The Solexa sequencing data showed that 91 serum miRNAs were differentially expressed in pulmonary TB patients, compared to healthy controls. Following qRT-PCR confirmation, six serum miRNAs (hsa-miR-378, hsa-miR-483-5p, hsa-miR-22, hsa-miR-29c, hsa-miR-101 and hsa-miR-320b) showed significant difference among pulmonary TB patients, healthy controls (P<0.001) and differential diagnosis groups (including patients with pneumonia, lung cancer and chronic obstructive pulmonary disease) (P<0.05). The logistic regression analysis of a combination of six serum miRNAs revealed that the sensitivity and the specificity of TB diagnosis were 95.0% and 91.8% respectively. The miRNAs-gene regulatory networks revealed that several miRNAs may regulate some target genes involved in immune pathways and participate in the pathogenesis of pulmonary TB. Our study suggests that a combination of six serum miRNAs have great potential to serve as non-invasive biomarkers of pulmonary TB.

  5. Overview of Macrophage Migration Inhibitory Factor (MIF as a Potential Biomarker Relevant to Adiposity

    Directory of Open Access Journals (Sweden)

    Jun Nishihira

    2012-07-01

    Full Text Available The cytokine “macrophage migration inhibitory factor (MIF” is generally recognized as a proinflammatory cytokine, and MIF is involved in broad range of acute and chronic inflammatory states. With regard to glucose metabolism and insulin secretion, MIF is produced by pancreatic β cells and acts as a positive regulator of insulin secretion. In contrast, it is evident that MIF expressed in adipose tissues causes insulin resistance. Concerning MIF gene analysis, we found four alleles: 5-, 6-, 7-and 8-CATT at position −794 of MIF gene in a Japanese population. Genotypes without the 5-CATT allele were more common in the obese subjects than in the lean or overweight groups. It is conceivable that promoter polymorphism in the MIF gene is profoundly linked with obesity relevant to lifestyle diseases, such as diabetes. Obesity has become a serious social issue due to the inappropriate nutritional balance, and the consumption of functional foods (including functional foods to reduce fat mass is expected to overcome this issue. In this context, MIF would be a reliable quantitative biomarker to evaluate the effects of functional foods on adiposity.

  6. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    LENUS (Irish Health Repository)

    Coss, K P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg\\/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg\\/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  7. Inflammatory Cytokines: Potential Biomarkers of Immunologic Dysfunction in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Ningan Xu

    2015-01-01

    Full Text Available Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and interferon-γ (IFN-γ are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β, and granulocyte-macrophage colony-stimulating factor (GM-CSF, is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders.

  8. Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Ansaldo, Martin; Nahabedian, Daniel E.; Holmes-Brown, Eduardo; Agote, Marcos; Ansay, Cristina V.; Guerrero, Noemi R. Verrengia; Wider, Eva A.

    2006-01-01

    Biomphalaria glabrata, a freshwater gastropod mollusc, was tested as biondicator organism to assess cadmium, lead and arsenic exposure using acute laboratory bioassays. Modifications of glycogen levels were measured in different anatomical regions of B. glabrata in order to test the usefulness of this parameter as a general biomarker of chemical stress. The snails were exposed 96 h to different concentrations of the following contaminants: 0.1 and 0.05 mg Cd/L; 0.5, 0.1 and 0.05 mg Pb/L; 0.5, 0.1 and 0.05 mg As/L. Significant decreases in the polysaccharide content were observed in gonadal region for all treated animals. Arsenic and lead at 0.1 and 0.5 mg/L level of exposure were also able to decrease the levels of glycogen in the pulmonary and digestive gland region. Glycogen content in the cephalopedal region of treated animals presented a significant decrease (p < 0.05) when compared with control organisms only for arsenic at the highest level of exposure. To establish possible correlations between glycogen and contaminants accumulated by snails, analyses of the elements bioaccumulated in the different anatomical regions of B. glabrata were also performed. Cadmium and lead followed a similar pattern of bioaccumulation with highest values in the digestive gland region. Arsenic bioaccumulation, however, was highest in the gonadal region

  9. Exploring the Diagnostic Potential of Immune Biomarker Co-expression in Gulf War Illness.

    Science.gov (United States)

    Broderick, Gordon; Fletcher, Mary Ann; Gallagher, Michael; Barnes, Zachary; Vernon, Suzanne D; Klimas, Nancy G

    2018-01-01

    Complex disorders like Gulf War illness (GWI) often defy diagnosis on the basis of a single biomarker and may only be distinguishable by considering the co-expression of multiple markers measured in response to a challenge. We demonstrate the practical application of such an approach using an example where blood was collected from 26 GWI, 13 healthy control subjects, and 9 unhealthy controls with chronic fatigue at three points during a graded exercise challenge. A 3-way multivariate projection model based on 12 markers of endocrine and immune function was constructed using a training set of n = 10 GWI and n = 11 healthy controls. These groups were separated almost completely on the basis of two co-expression patterns. In a separate test set these same features allowed for discrimination of new GWI subjects (n = 16) from unhealthy (n = 9) and healthy control subjects with a sensitivity of 70% and a specificity of 90%.

  10. Serum S100B: a potential biomarker for suicidality in adolescents?

    Directory of Open Access Journals (Sweden)

    Tatiana Falcone

    Full Text Available BACKGROUND: Studies have shown that patients suffering from depression or schizophrenia often have immunological alterations that can be detected in the blood. Others reported a possible link between inflammation, a microgliosis and the blood-brain barrier (BBB in suicidal patients. Serum S100B is a marker of BBB function commonly used to study cerebrovascular wall function. METHODS: We measured levels of S100B in serum of 40 adolescents with acute psychosis, 24 adolescents with mood disorders and 20 healthy controls. Patients were diagnosed according to DSM-IV TR criteria. We evaluated suicidal ideation using the suicidality subscale of the Brief Psychiatric Rating Scale for Children (BPRS-C. RESULTS: Serum S100B levels were significantly higher (p<0.05 and correlated to severity of suicidal ideation in patients with psychosis or mood disorders, independent of psychiatric diagnosis. Patients with a BPRS-C suicidality subscores of 1-4 (low suicidality had mean serum S100B values +/- SEM of 0.152+/-0.020 ng/mL (n = 34 compared to those with BPRS-C suicidality subscores of 5-7 (high suicidality with a mean of 0.354+/-0.044 ng/mL (n = 30. This difference was statistically significant (p<0.05. CONCLUSION: Our data support the use of S100B as an adjunctive biomarker to assess suicidal risk in patients with mood disorders or schizophrenia.

  11. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  12. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N

    2016-08-22

    Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.

  13. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis.

    Science.gov (United States)

    Olkowicz, Mariola; Debski, Janusz; Jablonska, Patrycja; Dadlez, Michal; Smolenski, Ryszard T

    2017-09-29

    Calcific aortic valve stenosis (CAS) increasingly affects our ageing population, but the mechanisms of the disease and its biomarkers are not well established. Recently, plasma amino acid-related metabolite (AA) profiling has attracted attention in studies on pathology and development of biomarkers of cardiovascular diseases, but has not been studied in CAS. To evaluate the potential relationship between CAS and AA metabolome, a new ion-pairing reversed-phase liquid chromatography-tandem mass spectrometry (IP-RPLC-MS/MS) method has been developed and validated for simultaneous determination of 43 AAs in plasma of stenotic patients and age-matched control subjects. Furthermore, untargeted mass spectrometry-based proteomic analysis and confirmatory ELISA assays were performed. The method developed offered high accuracy (intra-assay imprecision averaged 4.4% for all compounds) and sensitivity (LOQ within 0.01-0.5μM). We found that 22 AAs and three AA ratios significantly changed in the CAS group as compared to control. The most pronounced differences were observed in urea cycle-related AAs and branched-chain AA (BCAA)-related AAs. The contents of asymmetric dimethylarginine (ADMA) and its monomethylated derivative (NMMA) were increased by 30-64% with CAS. The arginine/ADMA and Fischer's ratios as well as arginine, homoarginine, ADMA, symmetric dimethylarginine, hydroxyproline, betaine and 3-methylhistidine correlated with cardiac function-related parameters and concomitant systemic factors in the CAS patients. The results of proteomic analysis were consistent with involvement of inflammation, lipid abnormalities, hemostasis and extracellular matrix remodeling in CAS. In conclusion, changes in plasma AA profile and protein pattern that we identified in CAS provide information relevant to pathomechanisms and may deliver new biomarkers of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hypomethylated Fgf3 is a potential biomarker for early detection of oral cancer in mice treated with the tobacco carcinogen dibenzo[def,p]chrysene.

    Directory of Open Access Journals (Sweden)

    Yuan-Wan Sun

    Full Text Available Genetic and epigenetic alterations observed at end stage OSCC formation could be considered as a consequence of cancer development and thus changes in normal or premalignant tissues which had been exposed to oral carcinogens such as Dibenzo[def,p]chrysene (DBP may better serve as predictive biomarkers of disease development. Many types of DNA damage can induce epigenetic changes which can occur early and in the absence of evident morphological abnormalities. Therefore we used ERRBS to generate genome-scale, single-base resolution DNA methylomes from histologically normal oral tissues of mice treated with DBP under experimental conditions known to induce maximum DNA damage which is essential for the development of OSCC induced by DBP in mice. After genome-wide correction, 30 and 48 differentially methylated sites (DMS were identified between vehicle control and DBP treated mice using 25% and 10% differences in methylation, respectively. RT-PCR was further performed to examine the expressions of nine selected genes. Among them, Fgf3, a gene frequently amplified in head and neck cancer, showed most prominent and significant gene expression change (2.4× increases, despite the hypomethylation of Fgf3 was identified at >10kb upstream of transcription start site. No difference was observed in protein expression between normal oral tissues treated with DBP or vehicle as examined by immunohistochemistry. Collectively, our results indicate that Fgf3 hypomethylation and gene overexpression, but not protein expression, occurred in the early stage of oral carcinogenesis induced by DBP. Thus, Fgf3 hypomethylation may serve as a potential biomarker for early detection of OSCC.

  15. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2016-09-01

    Full Text Available Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ. We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF. By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA. The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.

  16. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    Science.gov (United States)

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-08-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the Medline, Embase and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, Pdigestive system cancers.

  17. The potential of lipopolysaccharide as a real-time biomarker of bacterial contamination in marine bathing water.

    Science.gov (United States)

    Sattar, Anas A; Jackson, Simon K; Bradley, Graham

    2014-03-01

    The use of total lipopolysaccharide (LPS) as a rapid biomarker for bacterial pollution was investigated at a bathing and surfing beach during the UK bathing season. The levels of faecal indicator bacteria Escherichia coli (E. coli), the Gram-positive enterococci, and organisms commonly associated with faecal material, such as total coliforms and Bacteroides, were culturally monitored over four months to include a period of heavy rainfall and concomitant pollution. Endotoxin measurement was performed using a kinetic Limulus Amebocyte Lysate (LAL) assay and found to correlate well with all indicators. Levels of LPS in excess of 50 Endotoxin Units (EU) mL(-1) were found to correlate with water that was unsuitable for bathing under the current European regulations. Increases in total LPS, mainly from Gram-negative indicator bacteria, are thus a potential real-time, qualitative method for testing bacterial quality of bathing waters.

  18. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-01-01

    Full Text Available Transient receptor potential (TRP ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.

  19. Slowed Prosaccades and Increased Antisaccade Errors As a Potential Behavioral Biomarker of Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Sarah H. Brooks

    2017-06-01

    Full Text Available Current clinical diagnostic tools are limited in their ability to accurately differentiate idiopathic Parkinson’s disease (PD from multiple system atrophy (MSA and other parkinsonian disorders early in the disease course, but eye movements may stand as objective and sensitive markers of disease differentiation and progression. To assess the use of eye movement performance for uniquely characterizing PD and MSA, subjects diagnosed with PD (N = 21, MSA (N = 11, and age-matched controls (C, N = 20 were tested on the prosaccade and antisaccade tasks using an infrared eye tracker. Twenty of these subjects were retested ~7 months later. Saccade latencies, error rates, and longitudinal changes in saccade latencies were measured. Both PD and MSA patients had greater antisaccade error rates than C subjects, but MSA patients exhibited longer prosaccade latencies than both PD and C patients. With repeated testing, antisaccade latencies improved over time, with benefits in C and PD but not MSA patients. In the prosaccade task, the normal latencies of the PD group show that basic sensorimotor oculomotor function remain intact in mid-stage PD, whereas the impaired latencies of the MSA group suggest additional degeneration earlier in the disease course. Changes in antisaccade latency appeared most sensitive to differences between MSA and PD across short time intervals. Therefore, in these mid-stage patients, increased antisaccade errors combined with slowed prosaccade latencies might serve as a useful marker for early differentiation between PD and MSA, and, antisaccade performance, a measure of MSA progression. Together, our findings suggest that eye movements are promising biomarkers for early differentiation and progression of parkinsonian disorders.

  20. p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker

    Directory of Open Access Journals (Sweden)

    Lockley Michelle

    2010-07-01

    Full Text Available Abstract The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015. We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1 to 0.03 pfu/cell (TOV21G. Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.

  1. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria

    2017-08-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Circulating MicroRNAs as Potential Biomarkers for Traumatic Brain Injury-Induced Hypopituitarism.

    Science.gov (United States)

    Taheri, Serpil; Tanriverdi, Fatih; Zararsiz, Gokmen; Elbuken, Gulsah; Ulutabanca, Halil; Karaca, Zuleyha; Selcuklu, Ahmet; Unluhizarci, Kursad; Tanriverdi, Kahraman; Kelestimur, Fahrettin

    2016-10-15

    Traumatic brain injury (TBI), a worldwide public health problem, has recently been recognized as a common cause of pituitary dysfunction. Circulating microRNAs (miRNAs) present in the sera are characteristically altered in many pathological conditions and have been used as diagnostic markers for specific diseases. It is with this goal that we planned to study miRNA expression in patients with TBI-induced hypopituitarism. Thirty-eight patients (27 male, 11 female; mean age, 43 ± 18 years) who had been admitted to the neurosurgery intensive care unit due to TBI were included in the acute phase of the study. In the chronic phase, miRNA expression profile blood samples were drawn from 25 patients who had suffered TBI 5 years ago. In the acute phase (on Days 1, 7, and 28), a substantial amount of patients (26%, 40%, and 53%; respectively) had hypopituitarism (acute adrenocorticotropic hormone deficiency). In the chronic phase eight of 25 patients (32%) had TBI-induced-hypopituitarism. Forty-seven age-gender-similar healthy controls (25 male, 22 female, mean age: 41 ± 14 years) were included in the study. In order to identify potential candidate miRNA/miRNAs whose levels had been altered in response to TBI-induced hypopituitarism, 740 miRNA expression analyses were performed in the sera of TBI patients by high throughput real-time polymerase chain reaction. Statistical analyses showed that miRNA-126-3p (miR-126-3p) and miRNA-3610 (miR-3610) were detected in the sera of patients who developed hypopituitarism on the 1st, 7th, and 28th days, and in the 5th year following TBI. In addition, miRNA-3907 showed statistically significant and constant dynamic changes on the 1st, 7th, and 28th days, and in the 5th year in the patients with TBI. Our results indicated that altered expression of miR-126-3p and miR-3610 may play an important role in the development of TBI-induced hypopituitarism.

  3. Diagnosis of Lynch Syndrome: Genetic Testing Identifies a Potentially Deadly Hereditary Disease

    Science.gov (United States)

    ... of Lynch Syndrome Follow us A Diagnosis of Lynch Syndrome Genetic testing identifies a potentially deadly hereditary disease ... helped Jack learn what was wrong. Jack had Lynch Syndrome—an inherited disorder. Lynch Syndrome increases the risk ...

  4. Closed Loop Deep Brain Stimulation for PTSD, Addiction, and Disorders of Affective Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms

    Directory of Open Access Journals (Sweden)

    Robert W. Bina

    2018-05-01

    Full Text Available The treatment of psychiatric diseases with Deep Brain Stimulation (DBS is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open Loop DBS (OLDBS system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed Loop DBS (CLDBS promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate

  5. Expression and Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Matilde Cirnigliaro

    2017-08-01

    Full Text Available Given its prevalence and social impact, Autism Spectrum Disorder (ASD is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome, complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs. Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively. ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008 and show a linear relationship (p = 0.002. Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1 ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%; (2 ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%; (3 ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%. Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy.

  6. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  7. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Huarong Xu

    2016-08-01

    Full Text Available Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography—tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50 and liver cancer patients (n = 50 were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  8. Assessment of hair cortisol as a potential biomarker for possible adrenal suppression due to inhaled corticosteroid use in children with asthma: A retrospective observational study.

    Science.gov (United States)

    Smy, Laura; Shaw, Kaitlyn; Amstutz, Ursula; Staub, Michelle; Chaudhry, Shahnaz; Smith, Anne; Carleton, Bruce; Koren, Gideon

    2018-06-01

    Inhaled corticosteroids (ICS) are the recommended long-term control therapy for asthma in children. However, concern exists regarding potential adrenal suppression with chronic ICS use. Our pilot study reported that hair cortisol in children was 50% lower during ICS therapy than prior to therapy, suggestive of adrenal suppression. To evaluate hair cortisol concentration (HCC) as a potential biomarker for possible adrenal suppression from ICS use in children with asthma. A retrospective observational study was performed at asthma clinics in Vancouver, Winnipeg, and Toronto, Canada. Children (n = 586) were recruited from July 2012 to December 2014 inclusive of those without asthma, with asthma not using ICS, and with asthma using ICS. The most recent three-month HCC was measured by enzyme immunoassay and compared among the groups. Quantile regression analysis was performed to identify factors potentially affecting HCC. The median HCC was not significantly different among the children: No ICS (n = 47, 6.7 ng/g, interquartile range (IQR) 3.7-9.8 ng/g), ICS Treated (n = 360, 6.5 ng/g, IQR 3.8-14.3 ng/g), and Controls (n = 53, 5.8 ng/g, IQR 4.6-16.7 ng/g). 5.6% of the children using ICS had hair cortisol <2.0 ng/g compared to none in the control groups (P < .05, comparing ICS Treated (20/360) to all Controls combined (0/100)) and only half had been exposed to systemic corticosteroids. Age, sex, BMI, and intranasal corticosteroid use were significantly associated with HCC. Results suggest HCC may be a potential biomarker for adrenal suppression as a population of children using ICS with HCC < 2.0 ng/g was identified compared to none in the control groups. Further research is needed to determine if those children have or are at risk of adrenal suppression or insufficiency. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Polycyclic aromatic hydrocarbons (PAHs) and hopanes in stranded tar-balls on the coasts of peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution

    International Nuclear Information System (INIS)

    Zakaria, Mohamad Pauzi; Okuba, Tomoaki; Takada, Hideshige

    2001-01-01

    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and offshore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analysed for hopanes and polycylic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east cost seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photo-oxidation. (Author)

  10. Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution.

    Science.gov (United States)

    Zakaria, M P; Okuda, T; Takada, H

    2001-12-01

    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.

  11. Peroxiredoxin I protein, a potential biomarker of hydronephrosis in fetal mice exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui

    2014-06-01

    In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  12. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  13. Protein S100B in umbilical cord blood as a potential biomarker of hypoxic-ischemic encephalopathy in asphyxiated newborns.

    Science.gov (United States)

    Zaigham, Mehreen; Lundberg, Fredrik; Olofsson, Per

    2017-09-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating condition resulting from a sustained lack of oxygen during birth. The interest in identifying a relevant biomarker of HIE has thrown into limelight the role of protein S100B as a clinical diagnostic marker of hypoxic brain damage in neonates. To evaluate the diagnostic value of protein S100B, measured in umbilical cord blood immediately after birth, as a useful biomarker in the diagnosis of HIE Sarnat stages II-III as well as a marker for long-term mortality and morbidity. Protein S100B was analyzed in cord blood sampled at birth from 13 newborns later diagnosed with stage II-III HIE and compared with 21 healthy controls. S100B concentrations were related to cord artery pH, amplitude-integrated electroencephalography (aEEG), stage of HIE, and death/sequelae up to an age of 6years. Both parametric and non-parametric statistics were used with a two-sided P<0.05 considered significant. The difference in S100B concentration was marginally statistically significant between HIE cases and controls (P=0.056). Cord blood acidosis (P=0.046), aEEG pattern severity (P=0.030), HIE severity (P=0.027), and condition at 6-year follow-up (healthy/permanent sequelae/death; P=0.027) were all related to an increase in S100B concentration. Protein S100B in neonates suffering from HIE stages II-III appeared elevated in umbilical cord blood at birth. The S100B concentrations were positively associated to the severity of disease and the risk of suffering from neurodevelopmental sequelae and even death. Copyright © 2017. Published by Elsevier B.V.

  14. New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianli; Lu, Jianghai; Wu, Yun; Wang, Xiaobing; Xu, Youxuan; Zhang, Yinong; Wang, Yan

    2016-09-24

    In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.

  15. Urine Kidney Injury Molecule-1: A Potential Non-invasive Biomarker for Patients with Renal Cell Carcinoma

    Science.gov (United States)<