WorldWideScience

Sample records for identifying pharmacological targets

  1. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    International Nuclear Information System (INIS)

    Sarró, Eduard; Jacobs-Cachá, Conxita; Itarte, Emilio; Meseguer, Anna

    2012-01-01

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  2. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Itarte, Emilio, E-mail: emili.itarte@uab.es [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Meseguer, Anna, E-mail: ana.meseguer@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  3. Structural systems pharmacology: a new frontier in discovering novel drug targets.

    Science.gov (United States)

    Tan, Hepan; Ge, Xiaoxia; Xie, Lei

    2013-08-01

    The modern target-based drug discovery process, characterized by the one-drug-one-gene paradigm, has been of limited success. In contrast, phenotype-based screening produces thousands of active compounds but gives no hint as to what their molecular targets are or which ones merit further research. This presents a question: What is a suitable target for an efficient and safe drug? In this paper, we argue that target selection should take into account the proteome-wide energetic and kinetic landscape of drug-target interactions, as well as their cellular and organismal consequences. We propose a new paradigm of structural systems pharmacology to deconvolute the molecular targets of successful drugs as well as to identify druggable targets and their drug-like binders. Here we face two major challenges in structural systems pharmacology: How do we characterize and analyze the structural and energetic origins of drug-target interactions on a proteome scale? How do we correlate the dynamic molecular interactions to their in vivo activity? We will review recent advances in developing new computational tools for biophysics, bioinformatics, chemoinformatics, and systems biology related to the identification of genome-wide target profiles. We believe that the integration of these tools will realize structural systems pharmacology, enabling us to both efficiently develop effective therapeutics for complex diseases and combat drug resistance.

  4. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-01-01

    Full Text Available Comprehensively understanding pharmacological functions of natural products is a key issue to be addressed for the discovery of new drugs. Unlike some single-target drugs, natural products always exert diverse therapeutic effects through acting on a “network” that consists of multiple targets, making it necessary to develop a systematic approach, e.g., network pharmacology, to reveal pharmacological functions of natural products and infer their mechanisms of action. In this work, to identify the “network target” of a natural product, we perform a functional analysis of matrine, a marketed drug in China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis. Here, the network target of matrine was firstly predicted by drugCIPHER, a genome-wide target prediction method. Based on the network target of matrine, we performed a functional gene set enrichment analysis to computationally identify the potential pharmacological functions of matrine, most of which are supported by the literature evidence, including neurotoxicity and neuropharmacological activities of matrine. Furthermore, computational results demonstrated that matrine has the potential for the induction of macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed that the large vesicles induced by matrine are consistent with the typical characteristics of macropinosome. Our verification results also suggested that matrine could decrease cellular ATP level. These findings demonstrated the availability and effectiveness of the network target strategy for identifying the comprehensive pharmacological functions of natural products.

  5. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  6. Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology.

    Science.gov (United States)

    Gu, Jiangyong; Li, Li; Wang, Dongmei; Zhu, Wei; Han, Ling; Zhao, Ruizhi; Xu, Xiaojie; Lu, Chuanjian

    2018-06-01

    Psoriasis vulgaris is a chronic inflammatory and immune-mediated skin disease. 44 metabonomics biomarkers were identified by high-throughput liquid chromatography coupled to mass spectrometry in our previous work, but the roles of metabonomics biomarkers in the pathogenesis of psoriasis is unclear. The metabonomics biomarker-enzyme network was constructed. The key metabonomics biomarkers and enzymes were screened out by network analysis. The binding affinity between each metabonomics biomarker and target was calculated by molecular docking. A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways. Long-chain fatty acids, phospholipids, Estradiol and NADH were the most important metabonomics biomarkers. Most key enzymes belonged hydrolase, thioesterase and acyltransferase. Six proteins (TNF-alpha, MAPK3, iNOS, eNOS, COX2 and mTOR) were extensively involved in inflammatory reaction, immune response and cell proliferation, and might be drug targets for psoriasis. PI3K-Akt signaling pathway and five other pathways had close correlation with the pathogenesis of psoriasis and could deserve further research. The inflammatory reaction, immune response and cell proliferation are mainly involved in psoriasis. Network pharmacology provide a new insight into the relationships between metabonomics biomarkers and the pathogenesis of psoriasis. KEY MESSAGES   • Network pharmacology was adopted to identify key metabonomics biomarkers and enzymes.   • Six proteins were screened out as important drug targets for psoriasis.   • A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways.

  7. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches

    Directory of Open Access Journals (Sweden)

    Luiza R. Nazario

    2017-11-01

    Full Text Available Parkinson's disease (PD is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.

  8. DMPD: Toll-like receptors: novel pharmacological targets for the treatment ofneurological diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17974478 Toll-like receptors: novel pharmacological targets for the treatment ofneu...png) (.svg) (.html) (.csml) Show Toll-like receptors: novel pharmacological targets for the treatment ofneur...ological diseases. PubmedID 17974478 Title Toll-like receptors: novel pharmacological target

  9. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  10. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes

    Directory of Open Access Journals (Sweden)

    Hansen eWang

    2015-02-01

    Full Text Available Autism spectrum disorders (ASDs are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.

  11. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes

    Science.gov (United States)

    Wang, Hansen; Pati, Sandipan; Pozzo-Miller, Lucas; Doering, Laurie C.

    2015-01-01

    Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases. PMID:25767435

  12. Searching for new pharmacological targets for the treatment of Alzheimer's disease in Down syndrome.

    Science.gov (United States)

    Caraci, Filippo; Iulita, M Florencia; Pentz, Rowan; Flores Aguilar, Lisi; Orciani, Chiara; Barone, Concetta; Romano, Corrado; Drago, Filippo; Cuello, A Claudio

    2017-12-15

    Individuals with Down syndrome are at increased risk of developing Alzheimer's disease due to increase gene dosage resulting from chromosome 21 triplication. Although virtually all adults with Down syndrome will exhibit the major neuropathological hallmarks that define Alzheimer's disease, not all of them will develop the clinical symptoms associated with this disorder (i.e. dementia). Therefore, a good understanding of the pathophysiology of Alzheimer's disease in Down syndrome will be crucial for the identification of novel pharmacological targets to develop disease-modifying therapies for the benefit of Down syndrome individuals and for Alzheimer's sufferers alike. The study of biomarkers will also be essential for the development of better screening tools to identify dementia at its incipient stages. This review discusses the best-validated pharmacological targets for the treatment of cognitive impairment and Alzheimer's disease in Down syndrome. We further examine the relevance of newly discovered biological markers for earlier dementia diagnosis in this population. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  14. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  15. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    Science.gov (United States)

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected pneratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  16. Identifying problematic drugs based on the characteristics of their targets.

    Science.gov (United States)

    Lopes, Tiago J S; Shoemaker, Jason E; Matsuoka, Yukiko; Kawaoka, Yoshihiro; Kitano, Hiroaki

    2015-01-01

    Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  17. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  18. Process Pharmacology: A Pharmacological Data Science Approach to Drug Development and Therapy.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-04-01

    A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs' targets and their functional genomics is proposed. In "process pharmacology", drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  19. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids.

    Science.gov (United States)

    Zeng, Liuting; Yang, Kailin; Liu, Huiping; Zhang, Guomin

    2017-11-01

    To investigate the pharmacological mechanism of Guizhi Fuling Wan (GFW) in the treatment of uterine fibroids, a network pharmacology approach was used. Information on GFW compounds was collected from traditional Chinese medicine (TCM) databases, and input into PharmMapper to identify the compound targets. Genes associated with uterine fibroids genes were then obtained from the GeneCards and Online Mendelian Inheritance in Man databases. The interaction data of the targets and other human proteins was also collected from the STRING and IntAct databases. The target data were input into the Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and pathway enrichment analyses. Networks of the above information were constructed and analyzed using Cytoscape. The following networks were compiled: A compound-compound target network of GFW; a herb-compound target-uterine fibroids target network of GWF; and a compound target-uterine fibroids target-other human proteins protein-protein interaction network, which were subjected to GO and pathway enrichment analyses. According to this approach, a number of novel signaling pathways and biological processes underlying the effects of GFW on uterine fibroids were identified, including the negative regulation of smooth muscle cell proliferation, apoptosis, and the Ras, wingless-type, epidermal growth factor and insulin-like growth factor-1 signaling pathways. This network pharmacology approach may aid the systematical study of herbal formulae and make TCM drug discovery more predictable.

  20. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing.

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    Full Text Available The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research.

  1. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets

    NARCIS (Netherlands)

    Hendriksen, Erik; Olivier, Berend; Oosting, Ronald S

    2014-01-01

    The development of new pharmacological therapies starts with target discovery. Finding new therapeutic targets for anxiety disorders is a difficult process. Most of the currently described drugs for post-traumatic stress disorder (PTSD) are based on the inhibition of serotonin reuptake. The

  2. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo Orchioides in the Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan

    2017-10-27

    BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.

  3. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Potential functional and pathological side effects related to off-target pharmacological activity.

    Science.gov (United States)

    Lynch, James J; Van Vleet, Terry R; Mittelstadt, Scott W; Blomme, Eric A G

    2017-09-01

    Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Pharmacological effects and potential therapeutic targets of DT-13.

    Science.gov (United States)

    Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li

    2018-01-01

    DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of

  6. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

    Science.gov (United States)

    Zhao, Zheng; Martin, Che; Fan, Raymond; Bourne, Philip E; Xie, Lei

    2016-02-18

    The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.

  7. Pharmacologic Management of Duchenne Muscular Dystrophy: Target Identification and Preclinical Trials

    Science.gov (United States)

    Kornegay, Joe N.; Spurney, Christopher F.; Nghiem, Peter P.; Brinkmeyer-Langford, Candice L.; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets. PMID:24936034

  8. Targeting HIV latency: pharmacologic strategies toward eradication

    Science.gov (United States)

    Xing, Sifei; Siliciano, Robert F.

    2013-01-01

    The latent reservoir for HIV-1 in resting CD4+ T cells remains a major barrier to HIV-1 eradication, even though highly active antiretroviral therapy (HAART) can successfully reduce plasma HIV-1 levels to below the detection limit of clinical assays and reverse disease progression. Proposed eradication strategies involve reactivation of this latent reservoir. Multiple mechanisms are believed to be involved in maintaining HIV-1 latency, mostly through suppression of transcription. These include cytoplasmic sequestration of host transcription factors and epigenetic modifications such as histone deacetylation, histone methylation and DNA methylation. Therefore, strategies targeting these mechanisms have been explored for reactivation of the latent reservoir. In this review, we discuss current pharmacological approaches toward eradication, focusing on small molecule latency-reversing agents, their mechanisms, advantages and limitations. PMID:23270785

  9. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  10. Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers.

    Science.gov (United States)

    Praseetha, Sugathan; Bandaru, Srinivas; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2016-01-01

    Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

  11. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  12. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity?

    Science.gov (United States)

    Bianchi, Matt T; Botzolakis, Emmanuel J

    2010-03-02

    The traditional emphasis on developing high specificity pharmaceuticals ("magic bullets") for the treatment of Neurological and Psychiatric disorders is being challenged by emerging pathophysiology concepts that view disease states as abnormal interactions within complex networks of molecular and cellular components. So-called network pharmacology focuses on modifying the behavior of entire systems rather than individual components, a therapeutic strategy that would ideally employ single pharmacological agents capable of interacting with multiple targets ("magic shotguns"). For this approach to be successful, however, a framework for understanding pharmacological "promiscuity"--the ability of individual agents to modulate multiple molecular targets--is needed. Pharmacological promiscuity is more often the rule than the exception for drugs that target the central nervous system (CNS). We hypothesize that promiscuity is an important contributor to clinical efficacy. Modulation patterns of existing therapeutic agents may provide critical templates for future drug discovery in Neurology and Psychiatry. To demonstrate the extent of pharmacological promiscuity and develop a framework for guiding drug screening, we reviewed the ability of 170 therapeutic agents and endogenous molecules to directly modulate neurotransmitter receptors, a class of historically attractive therapeutic targets in Neurology and Psychiatry. The results are summarized in the form of 1) receptor-centric maps that illustrate the degree of promiscuity for GABA-, glycine-, serotonin-, and acetylcholine-gated ion channels, and 2) drug-centric maps that illustrated how characterization of promiscuity can guide drug development. Developing promiscuity maps of approved neuro-pharmaceuticals will provide therapeutic class-based templates against which candidate compounds can be screened. Importantly, compounds previously rejected in traditional screens due to poor specificity could be reconsidered in this

  13. Network Pharmacology-Based Approach to Investigate the Analgesic Efficacy and Molecular Targets of Xuangui Dropping Pill for Treating Primary Dysmenorrhea

    Directory of Open Access Journals (Sweden)

    Jihan Huang

    2017-01-01

    Full Text Available This study aimed to evaluate the clinical analgesic efficacy and identify the molecular targets of XGDP for treating primary dysmenorrhea (PD by a network pharmacology approach. Analysis of pain disappearance rate of XGDP in PD treatment was conducted based on data from phase II and III randomized, double-blind, double-simulation, and positive parallel controlled clinical trials. The bioactive compounds were obtained by the absorption, distribution, metabolism, and excretion processes with oral bioavailability (OB and drug-likeness (DL evaluation. Subsequently, target prediction, pathway identification, and network construction were employed to clarify the mechanisms of the analgesic effect of XGDP on PD. The pain disappearance rates in phase II and III clinical trials of XGDP in PD treatment were 62.5% and 55.8%, respectively, yielding a significant difference (P<0.05 when compared with the control group using Tongjingbao granules (TJBG. Among 331 compounds, 53 compounds in XGDP were identified as the active compounds related to PD through OB, DL, and target prediction. The active compounds and molecular targets of XGDP were identified, and our study showed that XGDP may exert its therapeutic effects on PD through the regulation of the targets related to anti-inflammation analgesia and central analgesia and relieving smooth muscle contraction.

  14. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Anthony M. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Cheung, Pamela [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Swartz, Talia H.; Li, Hongru [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Tsibane, Tshidi [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Durham, Natasha D. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Basler, Christopher F. [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Felsenfeld, Dan P. [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chen, Benjamin K., E-mail: benjamin.chen@mssm.edu [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States)

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  15. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    International Nuclear Information System (INIS)

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-01-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  16. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Network pharmacology-based identification of key pharmacological pathways of Yin-Huang-Qing-Fei capsule acting on chronic bronchitis.

    Science.gov (United States)

    Yu, Guohua; Zhang, Yanqiong; Ren, Weiqiong; Dong, Ling; Li, Junfang; Geng, Ya; Zhang, Yi; Li, Defeng; Xu, Haiyu; Yang, Hongjun

    2017-01-01

    For decades in China, the Yin-Huang-Qing-Fei capsule (YHQFC) has been widely used in the treatment of chronic bronchitis, with good curative effects. Owing to the complexity of traditional Chinese herbal formulas, the pharmacological mechanism of YHQFC remains unclear. To address this problem, a network pharmacology-based strategy was proposed in this study. At first, the putative target profile of YHQFC was predicted using MedChem Studio, based on structural and functional similarities of all available YHQFC components to the known drugs obtained from the DrugBank database. Then, an interaction network was constructed using links between putative YHQFC targets and known therapeutic targets of chronic bronchitis. Following the calculation of four topological features (degree, betweenness, closeness, and coreness) of each node in the network, 475 major putative targets of YHQFC and their topological importance were identified. In addition, a pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes pathway database indicated that the major putative targets of YHQFC are significantly associated with various pathways involved in anti-inflammation processes, immune responses, and pathological changes caused by asthma. More interestingly, eight major putative targets of YHQFC (interleukin [IL]-3, IL-4, IL-5, IL-10, IL-13, FCER1G, CCL11, and EPX) were demonstrated to be associated with the inflammatory process that occurs during the progression of asthma. Finally, a molecular docking simulation was performed and the results exhibited that 17 pairs of chemical components and candidate YHQFC targets involved in asthma pathway had strong binding efficiencies. In conclusion, this network pharmacology-based investigation revealed that YHQFC may attenuate the inflammatory reaction of chronic bronchitis by regulating its candidate targets, which may be implicated in the major pathological processes of the asthma pathway.

  18. Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting

    International Nuclear Information System (INIS)

    Schlom, J.; Hand, P.H.; Greiner, J.W.; Colcher, D.; Shrivastav, S.; Carrasquillo, J.A.; Reynolds, J.C.; Larson, S.M.; Raubitschek, A.

    1990-01-01

    Tumor targeting by monoclonal antibodies (MAbs) can be enhanced by (a) increasing the percentage of injected dose taken up by the tumor and/or (b) increasing the tumor:nontumor ratios. Several groups have demonstrated that one can increase tumor to nontumor ratios by the use of antibody fragments or the administration of second antibodies. Several other modalities are also possible: (a) the use of recombinant interferons to up-regulate the expression of specific tumor associated antigens such as carcinoembryonic antigen or TAG-72 on the surface of carcinoma cells and thus increase MAb tumor binding has proved successful in both in vitro and in vivo studies; (b) the intracavitary administration of MAbs. Recent studies have demonstrated that when radiolabeled B72.3 is administered i.p. to patients with carcinoma of the peritoneal cavity, it localizes tumor masses with greater efficiency than does concurrent i.v. administered antibody. Studies involving the comparative pharmacology of intracavitary administration of radiolabeled MAb in patients and several animal models will be discussed; (c) it has been reported that prior exposure of hepatoma to external beam radiation will increase radiolabeled MAb tumor targeting. We and others have not been able to duplicate this phenomenon with a human colon cancer xenograft model and radiolabeled MAbs to two different colon carcinoma associated antigens. The possible reasons for these differences will be discussed; (d) the cloning and expression of recombinant MAbs with human constant regions and subsequent size modification constructs will also undoubtedly alter the pharmacology of MAb tumor binding in both diagnostic and therapeutic applications. 66 references

  19. Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Shoude Zhang

    2014-01-01

    Full Text Available During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we excavated all of the targets of green tea polyphenolics (GTPs though literature mining and target calculation and analyzed the multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200 Homo sapiens targets were identified for fifteen GTPs. These targets were classified into six groups according to their related disease, which included cancer, diabetes, neurodegenerative disease, cardiovascular disease, muscular disease, and inflammation. Moreover, these targets mapped into 143 KEGG pathways, 26 of which were more enriched, as determined though pathway enrichment analysis and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by analyzing the corresponding “drug-target-pathway-disease” interaction network.

  20. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.

    Science.gov (United States)

    Weihrauch, Martin; Handschin, Christoph

    2018-01-01

    Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Anesthetic pharmacology

    National Research Council Canada - National Science Library

    Evers, Alex S; Maze, M; Kharasch, Evan D

    2011-01-01

    ...: Section 1 introduces the principles of drug action, Section 2 presents the molecular, cellular and integrated physiology of the target organ/functional system and Section 3 reviews the pharmacology...

  2. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia.

    Science.gov (United States)

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R; Herrmann, Harald; Sison, Edward A; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J; Johns, Christopher; Chicas, Agustin; Mulloy, James C; Kogan, Scott C; Brown, Patrick; Valent, Peter; Bradner, James E; Lowe, Scott W; Vakoc, Christopher R

    2011-08-03

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.

  3. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer.

    Science.gov (United States)

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2016-09-27

    Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC.

  4. Study Identifies New Lymphoma Treatment Target

    Science.gov (United States)

    NCI researchers have identified new therapeutic targets for diffuse large B-cell lymphoma. Drugs that hit these targets are under clinical development and the researchers hope to begin testing them in clinical trials of patients with DLBCL.

  5. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, A S

    2007-05-21

    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5\\' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49\\/79 primary prostate adenocarcinoma and 7\\/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5\\/37 benign prostatic hyperplasia (P < 0.0001) and in 0\\/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.

  6. Pharmacological targeting of Mdm2: Rationale and perspectives for radiosensitization; Ciblage pharmacologique de Mdm2: bases biologiques et perspectives de radiosensibilisation

    Energy Technology Data Exchange (ETDEWEB)

    Chargari, C. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Service d' oncologie radiotherapie, hopital d' instruction des armees du Val-de-Grace, 74, boulevard de Port-Royal, 75230 Paris cedex 5 (France); Leteur, C.; Ferte, C.; Deberne, M.; Lahon, B.; Rivera, C. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Bourhis, J.; Deutsch, E. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, universite Paris-Sud 11, 114, rue edouard-Vaillant, 94805 Villejuif (France)

    2011-07-15

    The central role of p53 after exposure to ionizing radiation has been widely demonstrated. Mdm2, the main cellular regulator of p53, is a promising target for radiosensitizing purposes. In this article, we review the most recent data on the pharmacological targeting of Mdm2, with focus on strategies of radiosensitization. Antitumor activity of Mdm2 inhibitors has been related with activation of p53-dependant apoptosis, action on DNA repair systems, and anti-angiogenic activity. Preliminary data suggested a synergic interaction between Mdm2 inhibitors and ionizing radiations. However, no clinical data has been published yet on the pharmacological targeting of Mdm2. Given their new mechanisms of action, these new molecules should be subject to careful clinical assessment. Although promising, these strategies expose to unexpected toxicities. (authors)

  7. Axonal voltage-gated ion channels as pharmacological targets for pain

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette

    2013-01-01

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become...... maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which...... ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage...

  8. NADPH oxidases as novel pharmacologic targets against influenza A virus infection.

    Science.gov (United States)

    Vlahos, Ross; Selemidis, Stavros

    2014-12-01

    Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Angiotensin receptors in Dupuytren's disease: a target for pharmacological treatment?

    Science.gov (United States)

    Stephen, Christopher; Touil, Leila; Vaiude, Partha; Singh, Jaipaul; McKirdy, Stuart

    2018-02-01

    Attempts at the pharmacological treatment of Dupuytren's disease have so far been unsuccessful, and the disease is not yet fully understood on a cellular level. The Renin-Angiotensin System has long been understood to play a circulating hormonal role. However, there is much evidence showing Angiotensin II to play a local role in wound healing and fibrosis, with ACE inhibitors being widely used as an anti-fibrotic agent in renal and cardiac disease. This study was designed to investigate the presence of Angiotensin II receptors 1 (AT1) and 2 (AT2) in Dupuytren's tissue to form a basis for further study into the pharmacological treatment of this condition. Tissue was harvested from 11 patients undergoing surgery for Dupuytren's disease. Each specimen was processed into frozen sections and immunostaining was employed to identify AT1 and AT2 receptors. Immunostaining for AT1 receptors was mildly positive in one patient and negative in all the remaining patients. However, all specimens stained extensively for AT2 receptors. This suggests that the expression of AT2 receptors is more prominent than AT1 receptors in Dupuytren's disease. These findings have opened a new avenue for future research involving ACE inhibitors, AT2 agonists, and AT2 antagonists in Dupuytren's disease.

  10. Vascular Endothelial Dysfunction in Inflammatory Bowel Diseases: Pharmacological and Nonpharmacological Targets

    Directory of Open Access Journals (Sweden)

    Antonietta Gerarda Gravina

    2018-01-01

    Full Text Available Inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, are chronic inflammatory conditions involving primarily the gastrointestinal tract. However, they may be also associated with systemic manifestations and comorbidities. The relationship between chronic inflammation and endothelial dysfunction has been extensively demonstrated. Mucosal immunity and gastrointestinal physiology are modified in inflammatory bowel diseases, and these modifications are mainly sustained by alterations of endothelial function. The key elements involved in this process are cytokines, inflammatory cells, growth factors, nitric oxide, endothelial adhesion molecules, and coagulation cascade factors. In this review, we discuss available data in literature concerning endothelial dysfunction in patients affected by inflammatory bowel disease and we focus our attention on both pharmacological and nonpharmacological therapeutic targets.

  11. Pharmacological Targeting Of Neuronal Kv7.2/3 Channels: A Focus On Chemotypes And Receptor Sites.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; Manocchio, Laura; Medoro, Alessandro; Mosca, Ilaria; Taglialatela, Maurizio

    2017-10-12

    The Kv7 (KCNQ) subfamily of voltage-gated potassium channels consists of 5 members (Kv7.1-5) each showing a characteristic tissue distribution and physiological roles. Given their functional heterogeneity, Kv7 channels represent important pharmacological targets for development of new drugs for neuronal, cardiac and metabolic diseases. In the present manuscript, we focus on describing the pharmacological relevance and the potential therapeutic applications of drugs acting on neuronally-expressed Kv7.2/3 channels, placing particular emphasis on the different modulator chemotypes, and highlighting their pharmacodynamic and, whenever possible, pharmacokinetic peculiarities. The present work is based on an in-depth search of the currently available scientific literature, and on our own experience and knowledge in the field of neuronal Kv7 channel pharmacology. Space limitations impeded to describe the full pharmacological potential of Kv7 channels; thus, we have chosen to focus on neuronal channels composed of Kv7.2 and Kv7.3 subunits, and to mainly concentrate on their involvement in epilepsy. An astonishing heterogeneity in the molecular scaffolds exploitable to develop Kv7.2/3 modulators is evident, with important structural/functional peculiarities of distinct compound classes. In the present work we have attempted to show the current status and growing potential of the Kv7 pharmacology field. We anticipate a bright future for the field, and we express our hopes that the efforts herein reviewed will result in an improved treatment of hyperexcitability (or any other) diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Network pharmacology-based identification of key pharmacological pathways of Yin–Huang–Qing–Fei capsule acting on chronic bronchitis

    Directory of Open Access Journals (Sweden)

    Yu GH

    2016-12-01

    Full Text Available Guohua Yu,1,2,* Yanqiong Zhang,2,* Weiqiong Ren,3 Ling Dong,1 Junfang Li,2,4 Ya Geng,2,5 Yi Zhang,2 Defeng Li,2 Haiyu Xu,2 Hongjun Yang2 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, 2Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 3The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 4School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 5School of Basic Medicine, Shandong University of Chinese Medicine, Jinan, China *These authors contributed equally to this work Abstract: For decades in China, the Yin–Huang–Qing–Fei capsule (YHQFC has been widely used in the treatment of chronic bronchitis, with good curative effects. Owing to the complexity of traditional Chinese herbal formulas, the pharmacological mechanism of YHQFC remains unclear. To address this problem, a network pharmacology-based strategy was proposed in this study. At first, the putative target profile of YHQFC was predicted using MedChem Studio, based on structural and functional similarities of all available YHQFC components to the known drugs obtained from the DrugBank database. Then, an interaction network was constructed using links between putative YHQFC targets and known therapeutic targets of chronic bronchitis. Following the calculation of four topological features (degree, betweenness, closeness, and coreness of each node in the network, 475 major putative targets of YHQFC and their topological importance were identified. In addition, a pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes pathway database indicated that the major putative targets of YHQFC are significantly associated with various pathways involved in anti-inflammation processes, immune responses, and pathological changes caused by asthma. More interestingly, eight major putative targets of YHQFC (interleukin [IL]-3, IL-4, IL

  13. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs

    KAUST Repository

    Naveed, Hammad

    2015-08-18

    Motivation: The inherent promiscuity of small molecules towards protein targets impedes our understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for the pharmaceutical industry as identifying all protein targets is important to assess (side) effects and repositioning opportunities for a drug. Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering, and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of eleven drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the nuclear receptor PPARγ and the oncogene Bcl-2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development.

  14. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management : Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente (DIALECT)

    NARCIS (Netherlands)

    Gant, Christina M.; Binnenmars, S. Heleen; van den Berg, Else; Bakker, Stephan J. L.; Navis, Gerjan; Laverman, Gozewijn D.

    2017-01-01

    Cardiovascular risk management is an integral part of treatment in Type 2 Diabetes Mellitus (T2DM), and requires pharmacological as well as nutritional management. We hypothesize that a systematic assessment of both pharmacological and nutritional management can identify targets for the improvement

  15. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians).

    Science.gov (United States)

    Guo, Yingying; Ding, Yan; Xu, Feifei; Liu, Baoyue; Kou, Zinong; Xiao, Wei; Zhu, Jingbo

    2015-05-13

    Sea cucumber, a kind of marine animal, have long been utilized as tonic and traditional remedies in the Middle East and Asia because of its effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation. In this study, an overall study performed on sea cucumber was used as an example to show drug discovery from marine resource by using systems pharmacology model. The value of marine natural resources has been extensively considered because these resources can be potentially used to treat and prevent human diseases. However, the discovery of drugs from oceans is difficult, because of complex environments in terms of composition and active mechanisms. Thus, a comprehensive systems approach which could discover active constituents and their targets from marine resource, understand the biological basis for their pharmacological properties is necessary. In this study, a feasible pharmacological model based on systems pharmacology was established to investigate marine medicine by incorporating active compound screening, target identification, and network and pathway analysis. As a result, 106 candidate components of sea cucumber and 26 potential targets were identified. Furthermore, the functions of sea cucumber in health improvement and disease treatment were elucidated in a holistic way based on the established compound-target and target-disease networks, and incorporated pathways. This study established a novel strategy that could be used to explore specific active mechanisms and discover new drugs from marine sources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    Science.gov (United States)

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-10-01

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pharmacologic Targeting of Chromatin Modulators As Therapeutics of Acute Myeloid Leukemia.

    Science.gov (United States)

    Lu, Rui; Wang, Gang Greg

    2017-01-01

    Acute myeloid leukemia (AML), a common hematological cancer of myeloid lineage cells, generally exhibits poor prognosis in the clinic and demands new treatment options. Recently, direct sequencing of samples from human AMLs and pre-leukemic diseases has unveiled their mutational landscapes and significantly advanced the molecular understanding of AML pathogenesis. The newly identified recurrent mutations frequently "hit" genes encoding epigenetic modulators, a wide range of chromatin-modifying enzymes and regulatory factors involved in gene expression regulation, supporting aberration of chromatin structure and epigenetic modification as a main oncogenic mechanism and cancer-initiating event. Increasing body of evidence demonstrates that chromatin modification aberrations underlying the formation of blood cancer can be reversed by pharmacological targeting of the responsible epigenetic modulators, thus providing new mechanism-based treatment strategies. Here, we summarize recent advances in development of small-molecule inhibitors specific to chromatin factors and their potential applications in the treatment of genetically defined AMLs. These compounds selectively inhibit various subclasses of "epigenetic writers" (such as histone methyltransferases MLL/KMT2A, G9A/KMT1C, EZH2/KMT6A, DOT1L/KMT4, and PRMT1), "epigenetic readers" (such as BRD4 and plant homeodomain finger proteins), and "epigenetic erasers" (such as histone demethylases LSD1/KDM1A and JMJD2C/KDM4C). We also discuss about the molecular mechanisms underpinning therapeutic effect of these epigenetic compounds in AML and favor their potential usage for combinational therapy and treatment of pre-leukemia diseases.

  18. Pharmacologic Targeting of Chromatin Modulators As Therapeutics of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Rui Lu

    2017-10-01

    Full Text Available Acute myeloid leukemia (AML, a common hematological cancer of myeloid lineage cells, generally exhibits poor prognosis in the clinic and demands new treatment options. Recently, direct sequencing of samples from human AMLs and pre-leukemic diseases has unveiled their mutational landscapes and significantly advanced the molecular understanding of AML pathogenesis. The newly identified recurrent mutations frequently “hit” genes encoding epigenetic modulators, a wide range of chromatin-modifying enzymes and regulatory factors involved in gene expression regulation, supporting aberration of chromatin structure and epigenetic modification as a main oncogenic mechanism and cancer-initiating event. Increasing body of evidence demonstrates that chromatin modification aberrations underlying the formation of blood cancer can be reversed by pharmacological targeting of the responsible epigenetic modulators, thus providing new mechanism-based treatment strategies. Here, we summarize recent advances in development of small-molecule inhibitors specific to chromatin factors and their potential applications in the treatment of genetically defined AMLs. These compounds selectively inhibit various subclasses of “epigenetic writers” (such as histone methyltransferases MLL/KMT2A, G9A/KMT1C, EZH2/KMT6A, DOT1L/KMT4, and PRMT1, “epigenetic readers” (such as BRD4 and plant homeodomain finger proteins, and “epigenetic erasers” (such as histone demethylases LSD1/KDM1A and JMJD2C/KDM4C. We also discuss about the molecular mechanisms underpinning therapeutic effect of these epigenetic compounds in AML and favor their potential usage for combinational therapy and treatment of pre-leukemia diseases.

  19. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  20. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  1. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots

    International Nuclear Information System (INIS)

    Rzigalinski, Beverly A.; Strobl, Jeannine S.

    2009-01-01

    The field of nanotechnology is rapidly expanding with the development of novel nanopharmaceuticals that have potential for revolutionizing medical treatment. The rapid pace of expansion in this field has exceeded the pace of pharmacological and toxicological research on the effects of nanoparticles in the biological environment. The development of cadmium-containing nanoparticles, known as quantum dots, show great promise for treatment and diagnosis of cancer and targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. However, information on pharmacology and toxicology of quantum dots needs much further development, making it difficult to assess the risks associated with this new nanotechnology. Further, nanotechnology poses yet another risk for toxic cadmium, which will now enter the biological realm in nano-form. In this review, we discuss cadmium-containing quantum dots and their physicochemical properties at the nano-scale. We summarize the existing work on pharmacology and toxicology of cadmium-containing quantum dots and discuss perspectives in their utility in disease treatment. Finally, we identify critical gaps in our knowledge of cadmium quantum dot toxicity, and how these gaps need to be assessed to enable quantum dot nanotechnology to transit safely from bench to bedside.

  2. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy

    Science.gov (United States)

    Spinazzola, Janelle M.; Kunkel, Louis M.

    2016-01-01

    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  3. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.

    Science.gov (United States)

    Ru, Jinlong; Li, Peng; Wang, Jinan; Zhou, Wei; Li, Bohui; Huang, Chao; Li, Pidong; Guo, Zihu; Tao, Weiyang; Yang, Yinfeng; Xu, Xue; Li, Yan; Wang, Yonghua; Yang, Ling

    2014-01-01

    Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski's rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.

  4. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway.

    Science.gov (United States)

    Wagatsuma, Akira; Takayama, Yuzo; Hoshino, Takayuki; Shiozuka, Masataka; Yamada, Shigeru; Matsuda, Ryoichi; Mabuchi, Kunihiko

    2017-12-16

    We have shown that pharmacological inhibition of HSP90 ATPase activity induces apoptosis of myoblasts during their differentiation. However, the signaling pathways remain not fully characterized. We report that pharmacological targeting of HSP90 with 17-AAG activates the intrinsic pathway including caspase-dependent and caspase-independent pathways. 17-AAG induces the typical apoptotic phenotypes including PARP cleavage, chromatin condensation, and nuclear fragmentation with mitochondrial release of cytochrome c, Smac/DIABLO, procaspase-9 processing, and caspase-3 activation. AIF and EndoG redistribute from the mitochondria into the cytosol and are partially translocated to the nucleus in 17-AAG-treated cells. These results suggest that caspase-dependent and caspase-independent pathways should be considered in apoptosis of myogenic cells induced by inhibition of HSP90 ATPase activity.

  5. Systems Pharmacology-Based Approach of Connecting Disease Genes in Genome-Wide Association Studies with Traditional Chinese Medicine.

    Science.gov (United States)

    Kim, Jihye; Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kang, Jaewoo; Tan, Aik Choon

    2018-01-01

    Traditional Chinese medicine (TCM) originated in ancient China has been practiced over thousands of years for treating various symptoms and diseases. However, the molecular mechanisms of TCM in treating these diseases remain unknown. In this study, we employ a systems pharmacology-based approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. We studied 102 TCM components and their target genes by analyzing microarray gene expression experiments. We constructed disease-gene networks from 2558 GWAS studies. We applied a systems pharmacology approach to prioritize disease-target genes. Using this bioinformatics approach, we analyzed 14,713 GWAS disease-TCM-target gene pairs and identified 115 disease-gene pairs with q value < 0.2. We validated several of these GWAS disease-TCM-target gene pairs with literature evidence, demonstrating that this computational approach could reveal novel indications for TCM. We also develop TCM-Disease web application to facilitate the traditional Chinese medicine drug repurposing efforts. Systems pharmacology is a promising approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. The computational approaches described in this study could be easily expandable to other disease-gene network analysis.

  6. Huntington's disease: current epidemiology and pharmacological management in UK primary care.

    Science.gov (United States)

    Sackley, Catherine; Hoppitt, Thomas J; Calvert, Melanie; Gill, Paramjit; Eaton, Benjamin; Yao, Guiqing; Pall, Hardev

    2011-01-01

    Recent debate suggests Huntington's disease (HD) may be more prevalent than previously reported. In addition, relatively little is known about current disease management. This study aims to provide epidemiological data and describe the pharmacological management of HD in the United Kingdom. A primary care research database was accessed to identify incident and prevalent HD cases between January 1, 2004, and December 31, 2008. Patients with Read codes denoting a definite diagnosis or possible diagnosis, and undiagnosed patients with a positive family history were identified. A subset of patients with a definite diagnosis and prescribed medication indicating symptom onset was also identified. Epidemiological data were estimated. Pharmacological prescriptions to HD patients from 2004 to 2008 were identified, and prescription frequencies were grouped according to the British National Formulary categories. HD incidence estimates ranged from 0.44 to 0.78 per 100,000 person-years, and HD prevalence ranged from 5.96 to 6.54 per 100,000 of the population. Forty-four percent of pharmacological prescriptions targeted the central nervous system. Nearly half of the HD patients were prescribed antidepressants, and over 40% were prescribed analgesics. Although prevalence estimates fell short of figures suggested in recent debate, it is feasible that the true prevalence may be much higher than previously reported. Pharmacological management appears to rely heavily on central nervous system drugs and nutrition support. Many of these drugs are prescribed to HD patients for reasons other than the medication's primary use. Further work is required to evaluate the impact of alternative management strategies, such as therapist intervention, counselling, and organisation support, on the patients' quality of life. Copyright © 2011 S. Karger AG, Basel.

  7. Syndecans as modulators and potential pharmacological targets in cancer progression

    Directory of Open Access Journals (Sweden)

    Despoina eBarbouri

    2014-02-01

    Full Text Available Extracellular matrix (ECM components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs, a family of transmembrane heparan sulfate proteoglycans (HSPGs. Specifically, heparan sulfate (HS chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs, ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.

  8. Pharmacological chaperoning: a primer on mechanism and pharmacology.

    Science.gov (United States)

    Leidenheimer, Nancy J; Ryder, Katelyn G

    2014-05-01

    Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast

  9. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management: Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente (DIALECT

    Directory of Open Access Journals (Sweden)

    Christina M. Gant

    2017-07-01

    Full Text Available Cardiovascular risk management is an integral part of treatment in Type 2 Diabetes Mellitus (T2DM, and requires pharmacological as well as nutritional management. We hypothesize that a systematic assessment of both pharmacological and nutritional management can identify targets for the improvement of treatment quality. Therefore, we analysed blood pressure (BP management in the DIAbetes and LifEstyle Cohort Twente (DIALECT. DIALECT is an observational cohort from routine diabetes care, performed at the ZGT Hospital (Almelo and Hengelo, The Netherlands. BP was measured for 15 minutes with one minute intervals. Sodium and potassium intake was derived from 24-hour urinary excretion. We determined the adherence to pharmacological and non-pharmacological guidelines in patients with BP on target (BP-OT and BP not on target (BP-NOT. In total, 450 patients were included from August 2009 until January 2016. The mean age was 63 ± 9 years, and the majority was male (58%. In total, 53% had BP-OT. In those with BP-NOT, pharmacological management was suboptimal (zero to two antihypertensive drugs in 62% of patients, and nutritional guideline adherence was suboptimal in 100% of patients (only 8% had a sodium intake on target, 66% had a potassium intake on target, 3% had a sodium-to-potassium ratio on target, and body mass index was <30 kg/m2 in 35%. These data show pharmacological undertreatment and a low adherence to nutritional guidelines. Uncontrolled BP is common in T2DM, and our data show a window of opportunity for improving BP control, especially in nutritional management. To improve treatment quality, we advocate to incorporate the integrated monitoring of nutritional management in quality improvement cycles in routine care.

  10. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued.

    Science.gov (United States)

    van Lith, Sanne A M; Roodink, Ilse; Verhoeff, Joost J C; Mäkinen, Petri I; Lappalainen, Jari P; Ylä-Herttuala, Seppo; Raats, Jos; van Wijk, Erwin; Roepman, Ronald; Letteboer, Stef J; Verrijp, Kiek; Leenders, William P J

    2016-11-01

    Diffuse gliomas are primary brain cancers that are characterised by infiltrative growth. Whereas high-grade glioma characteristically presents with perinecrotic neovascularisation, large tumor areas thrive on pre-existent vasculature as well. Clinical studies have revealed that pharmacological inhibition of the angiogenic process does not improve survival of glioblastoma patients. Direct targeting of tumor vessels may however still be an interesting therapeutic approach as it allows pinching off the blood supply to tumor cells. Such tumor vessel targeting requires the identification of tumor-specific vascular targeting agents (TVTAs).Here we describe a novel TVTA, C-C7, which we identified via in vivo biopanning of a llama nanobody phage display library in an orthotopic mouse model of diffuse glioma. We show that C-C7 recognizes a subpopulation of tumor blood vessels in glioma xenografts and clinical glioma samples. Additionally, C-C7 recognizes macrophages and activated endothelial cells in atherosclerotic lesions. By using C-C7 as bait in yeast-2-hybrid (Y2H) screens we identified dynactin-1-p150Glued as its binding partner. The interaction was confirmed by co-immunostainings with C-C7 and a commercial anti-dynactin-1-p150Glued antibody, and via co-immunoprecipitation/western blot studies. Normal brain vessels do not express dynactin-1-p150Glued and its expression is reduced under anti-VEGF therapy, suggesting that dynactin-1-p150Glued is a marker for activated endothelial cells.In conclusion, we show that in vivo phage display combined with Y2H screenings provides a powerful approach to identify tumor-targeting nanobodies and their binding partners. Using this combination of methods we identify dynactin-1-p150Glued as a novel targetable protein on activated endothelial cells and macrophages.

  11. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  12. Cell-derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation?

    Science.gov (United States)

    Baron, Morgane; Boulanger, Chantal M; Staels, Bart; Tailleux, Anne

    2012-07-01

    Cardiovascular diseases remain an important cause of morbi-mortality. Atherosclerosis, which predisposes to cardiovascular disorders such as myocardial infarction and stroke, develops silently over several decades. Identification of circulating biomarkers to evaluate cardiovascular event risk and pathology prognosis is of particular importance. Microparticles (MPs) are small vesicles released from cells upon apoptosis or activation. Microparticles are present in blood of healthy individuals. Studies showing a modification of their concentrations in patients with cardiovascular risk factors and after cardiovascular events identify MPs as potential biomarkers of disease. Moreover, the pathophysiological properties of MPs may contribute to atherosclerosis development. In addition, pharmacological compounds, used in the treatment of cardiovascular disease, can reduce plasma MP concentrations. Nevertheless, numerous issues remain to be solved before MP measurement can be applied as routine biological tests to improve cardiovascular risk prediction. In particular, prospective studies to identify the predictive values of MPs in pathologies such as cardiovascular diseases are needed to demonstrate whether MPs are useful biomarkers for the early detection of the disease and its progression. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA.

    Science.gov (United States)

    Wen, Chao; Wang, Dongshan; Li, Xing; Huang, Tao; Huang, Cheng; Hu, Kaifeng

    2018-02-20

    The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The genus Cordia: botanists, ethno, chemical and pharmacological aspects

    Directory of Open Access Journals (Sweden)

    Edinardo Fagner Ferreira Matias

    Full Text Available ABSTRACTSpecies of the genus Cordia, Boraginaceae, are widely studied with regard to the various ethnobotanical and ethnopharmacological aspects. They are found principally in tropical and subtropical regions of the American, Asian and African continents, where they occur in various countries. In the genus Cordia, there are many species cultivated for ornamental plants, wood and medicinal applications, where they are extensively utilized by traditional communities. In the last decades, scientific studies of Cordia species have intensified, demonstrating the great interest in phytochemical, biological and pharmacological studies. In this review, we describe the principal botanical aspects, ethnopharmacological information and evaluation of the bioactive and pharmacological properties of Cordia, its phytochemical constituents and the most common classes of secondary metabolites identified. The information reported in this work contributes scientifically to recognizing the importance of the genus Cordia as a target in the search for new biotechnological investments.

  15. Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist

    Directory of Open Access Journals (Sweden)

    John D. Chan

    2016-12-01

    Full Text Available 5-hydroxytryptamine (5-HT is a key regulator of muscle contraction in parasitic flatworms. In Schistosoma mansoni, the myoexcitatory action of 5-HT is effected through activation of a serotonergic GPCR (Sm.5HTRL, prioritizing pharmacological characterization of this target for anthelmintic drug discovery. Here, we have examined the effects of several aporphine alkaloids on the signaling activity of a heterologously expressed Sm.5HTRL construct using a cAMP biosensor assay. Four structurally related natural products – nuciferine, D-glaucine, boldine and bulbocapnine – were demonstrated to block Sm.5HTRL evoked cAMP generation with the potency of GPCR blockade correlating well with the ability of each drug to inhibit contractility of schistosomule larvae. Nuciferine was also effective at inhibiting both basal and 5-HT evoked motility of adult schistosomes. These data advance our understanding of structure-affinity relationships at Sm.5HTRL, and demonstrate the effectiveness of Sm.5HTRL antagonists as hypomotility-evoking drugs across different parasite life cycle stages.

  16. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish

    Directory of Open Access Journals (Sweden)

    David Zada

    2016-11-01

    Full Text Available Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS, a psychomotor retardation associated with mutations in the thyroid-hormone (TH transporter MCT8 (monocarboxylate transporter 8. AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8−/− zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8−/− larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8−/− larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8−/− larvae. Intriguingly, triiodothyronine (T3 treatment rescued hypomyelination in mct8−/− embryos before the maturation of the blood–brain barrier (BBB, but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8−/− larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.

  17. Systems Pharmacology in Small Molecular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-02-01

    Full Text Available Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity, target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  18. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  19. A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea disease.

    Science.gov (United States)

    Zheng, Chunli; Pei, Tianli; Huang, Chao; Chen, Xuetong; Bai, Yaofei; Xue, Jun; Wu, Ziyin; Mu, Jiexin; Li, Yan; Wang, Yonghua

    2016-10-30

    Due to the large direct and indirect productivity losses in the livestock industry caused by bovine viral diarrhea (BVD) and the lack of effective pharmacological therapies, developing an efficient treatment is extremely urgent. Traditional Chinese medicines (TCMs) that simultaneously address multiple targets have been proven to be effective therapies for BVD. However, the potential molecular action mechanisms of TCMs have not yet been systematically explored. In this work, take the example of a herbal remedy Huangqin Zhizi (HQZZ) for BVD treatment in China, a systems pharmacology approach combining with the pharmacokinetics and pharmacodynamics evaluation was developed to screen out the active ingredients, predict the targets and analyze the networks and pathways. Results show that 212 active compounds were identified. Utilizing these lead compounds as probes, we predicted 122 BVD related-targets. And in vitro experiments were conducted to evaluate the reliability of some vital active compounds and targets. Network and pathway analysis displayed that HQZZ was effective in the treatment of BVD by inhibiting inflammation, enhancing immune responses in hosts toward virus infection. In summary, the analysis of the complete profile of the pharmacological activities, as well as the elucidation of targets, networks and pathways can further elucidate the underlying anti-inflammatory, antiviral and immune regulation mechanisms of HQZZ against BVD. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Network pharmacology-based screening of the active ingredients and potential targets of the genus of Pithecellobium marthae (Britton & Killip) Niezgoda & Nevl for application to Alzheimer's disease.

    Science.gov (United States)

    Zhang, Han; Yan, Zhi-Yang; Wang, Yu-Xi; Bai, Ming; Wang, Xiao-Bo; Huang, Xiao-Xiao; Song, Shao-Jiang

    2018-02-16

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with synaptic dysfunction, pathological accumulation of β-amyloid (Aβ), and neuronal loss. Given the prevalence of AD and the lack of effective long-term therapies, there is a pressing need to discover viable leads that can be developed into clinically approved drugs with disease-modifying effects. The analysis of current reported literatures confirms the importance of the plants of Pithecellobium genus as candidate against AD. Hence, it is necessary to identify selective anti-dementia agents from this genus. To explore potential compounds with marked effect on AD in Pithecellobium genus, a compound database based on the methods of network pharmacology prediction was established in this paper by constructing the compound-disease target network. The result showed that the most effective compound in the plants of this genus might be (7'R,8'R)-7'-methoxyl strebluslignanol, and the most potential target might be Macrophage colony-stimulating factor 1 receptor.

  1. The neurobiology and pharmacology of depression: A comparative ...

    African Journals Online (AJOL)

    Background. Over the past decade, targeted drug design has led to significant advances in the pharmacological management of depression. A serendipitous approach to drug discovery has therefore been replaced by the development of drugs acting on predetermined neurobiological targets recognised to be involved in ...

  2. Pharmacologic and non-pharmacologic treatments for chronic pain in individuals with HIV: a systematic review

    Science.gov (United States)

    Merlin, Jessica S.; Bulls, Hailey W.; Vucovich, Lee A.; Edelman, E. Jennifer; Starrels, Joanna L.

    2016-01-01

    Chronic pain occurs in as many as 85% of individuals with HIV and is associated with substantial functional impairment. Little guidance is available for HIV providers seeking to address their patients’ chronic pain. We conducted a systematic review to identify clinical trials and observational studies that examined the impact of pharmacologic or non-pharmacologic interventions on pain and/or functional outcomes among HIV-infected individuals with chronic pain in high-development countries. Eleven studies met inclusion criteria and were mostly low or very low quality. Seven examined pharmacologic interventions (gabapentin, pregabalin, capsaicin, analgesics including opioids) and four examined non-pharmacologic interventions (cognitive behavioral therapy, self-hypnosis, smoked cannabis). The only controlled studies with positive results were of capsaicin and cannabis, and had short-term follow-up (≤12 weeks). Among the seven studies of pharmacologic interventions, five had substantial pharmaceutical industry sponsorship. These findings highlight several important gaps in the HIV/chronic pain literature that require further research. PMID:27267445

  3. Disrupting reconsolidation: pharmacological and behavioral manipulations

    NARCIS (Netherlands)

    Soeter, M.; Kindt, M.

    2011-01-01

    We previously demonstrated that disrupting reconsolidation by pharmacological manipulations "deleted" the emotional expression of a fear memory in humans. If we are to target reconsolidation in patients with anxiety disorders, the disruption of reconsolidation should produce content-limited

  4. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, P; Frølund, B; Frydenvang, Karla Andrea

    2000-01-01

    demonstrated that neuronal and glial GABA transport mechanisms have dissimilar substrate specificities. With GABA transport mechanisms as pharmacological targets, strategies for pharmacological interventions with the purpose of stimulating GABA neurotransmission seem to be (1) effective blockade of neuronal......, tiagabine (49) containing (R)-nipecotic acid (24) as the GABA transport carrier-recognizing structure element, is now marketed as an antiepileptic agent....

  5. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures.

    Science.gov (United States)

    Gertsch, Jürg

    2011-07-01

    For centuries the science of pharmacognosy has dominated rational drug development until it was gradually substituted by target-based drug discovery in the last fifty years. Pharmacognosy stems from the different systems of traditional herbal medicine and its "reverse pharmacology" approach has led to the discovery of numerous pharmacologically active molecules and drug leads for humankind. But do botanical drugs also provide effective mixtures? Nature has evolved distinct strategies to modulate biological processes, either by selectively targeting biological macromolecules or by creating molecular promiscuity or polypharmacology (one molecule binds to different targets). Widely claimed to be superior over monosubstances, mixtures of bioactive compounds in botanical drugs allegedly exert synergistic therapeutic effects. Despite evolutionary clues to molecular synergism in nature, sound experimental data are still widely lacking to support this assumption. In this short review, the emerging concept of network pharmacology is highlighted, and the importance of studying ligand-target networks for botanical drugs is emphasized. Furthermore, problems associated with studying mixtures of molecules with distinctly different pharmacodynamic properties are addressed. It is concluded that a better understanding of the polypharmacology and potential network pharmacology of botanical drugs is fundamental in the ongoing rationalization of phytotherapy. © Georg Thieme Verlag KG Stuttgart · New York.

  6. A Network-Based Pharmacology Study of the Herb-Induced Liver Injury Potential of Traditional Hepatoprotective Chinese Herbal Medicines.

    Science.gov (United States)

    Hong, Ming; Li, Sha; Tan, Hor Yue; Cheung, Fan; Wang, Ning; Huang, Jihan; Feng, Yibin

    2017-04-14

    Herbal medicines are widely used for treating liver diseases and generally regarded as safe due to their extensive use in Traditional Chinese Medicine practice for thousands of years. However, in recent years, there have been increased concerns regarding the long-term risk of Herb-Induced Liver Injury (HILI) in patients with liver dysfunction. Herein, two representative Chinese herbal medicines: one-Xiao-Chai-Hu-Tang (XCHT)-a composite formula, and the other- Radix Polygoni Multiflori (Heshouwu) -a single herb, were analyzed by network pharmacology study. Based on the network pharmacology framework, we exploited the potential HILI effects of XCHT and Heshouwu by predicting the molecular mechanisms of HILI and identified the potential hepatotoxic ingredients in XCHT and Heshouwu . According to our network results, kaempferol and thymol in XCHT and rhein in Heshouwu exhibit the largest number of liver injury target connections, whereby CASP3, PPARG and MCL1 may be potential liver injury targets for these herbal medicines. This network pharmacology assay might serve as a useful tool to explore the underlying molecular mechanism of HILI. Based on the theoretical predictions, further experimental verification should be performed to validate the accuracy of the predicted interactions between herbal ingredients and protein targets in the future.

  7. Pharmacologic therapy for acute pancreatitis

    Science.gov (United States)

    Kambhampati, Swetha; Park, Walter; Habtezion, Aida

    2014-01-01

    While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis. PMID:25493000

  8. A side-effect free method for identifying cancer drug targets.

    Science.gov (United States)

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  9. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    Science.gov (United States)

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  10. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs

    KAUST Repository

    Naveed, Hammad; Hameed, Umar Farook Shahul; Harrus, Deborah; Bourguet, William; Arold, Stefan T.; Gao, Xin

    2015-01-01

    Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering, and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of eleven drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the nuclear receptor PPARγ and the oncogene Bcl-2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development.

  11. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Li-Ching Fan

    2015-09-01

    Full Text Available STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC. Our previous data demonstrated that regorafenib (Stivarga is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1 that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038. Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029. In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC.

  12. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  13. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  14. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  15. Species-specific pharmacology of antiestrogens: role of metabolism

    International Nuclear Information System (INIS)

    Jordan, V.C.; Robinson, S.P.

    1987-01-01

    The nonsteroidal antiestrogen tamoxifen exhibits a paradoxial space species pharmacology. The drug is a full estrogen in the mouse, a partial estrogen/antiestrogen in humans and the rat, and an antiestrogen in the chick oviduct. Inasmuch as tamoxifen has antiestrogenic effects in vitro, differential metabolism of tamoxifen to estrogens might occur in the species in which it has antiestrogen pharmacology. Tamoxifen or its metabolite 4-hydroxytamoxifen could lose the alkylaminoethane side chain to form the estrogenic compound metabolite E of bisphenol. Sensitive metabolic studies with [ 3 H]tamoxifen in chicks, rats, and mice identified 4-hydroxytamoxifen as the major metabolite. Athymic mice with transplanted human breast tumors can be used to study the ability of tamoxifen to stimulate tissue or tumor growth. Estradiol caused the growth of transplanted breast cancer cells into solid tumors and a uterotrophic response. However, tamoxifen does not support tumor growth when administered alone, although it stimulates uterines growth. Since a similar profile of metabolites is sequestered in human mouse tissues, these studies strongly support the concept that the drug can selectively stimulate or inhibit events in the target tissues of different species without hometabolic intervention

  16. Molecular Pharmacology of CXCR4 inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Rosenkilde, Mette Marie

    2012-01-01

    pharmacology of well-known CXCR4 antagonists in order to augment the potency and affinity and to increase the specificity of future CXCR4-targeting compounds. In this chapter, binding modes of CXCR4 antagonists that have been shown to mobilize stem cells are discussed. In addition, comparisons between results...

  17. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth

    Science.gov (United States)

    Al-Ali, Hassan; Lee, Do-Hun; Danzi, Matt C.; Nassif, Houssam; Gautam, Prson; Wennerberg, Krister; Zuercher, Bill; Drewry, David H.; Lee, Jae K.; Lemmon, Vance P.; Bixby, John L.

    2016-01-01

    Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multi-target drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown to mediate drug resistance. PMID:26056718

  18. Systems pharmacology for traditional Chinese medicine with application to cardio-cerebrovascular diseases

    Directory of Open Access Journals (Sweden)

    Yingxue Fu

    2014-10-01

    Full Text Available Identified as a treasure of natural herbal products, traditional Chinese medicine (TCM has attracted extensive attention for their moderate treatment effect and lower side effect. Cardio-cerebrovascular diseases (CCVD are a leading cause of death. TCM is used in China to prevent and treat CCVD. However, the complexity of TCM poses challenges in understanding the mechanisms of herbs at a systems-level, thus hampering the modernization and globalization of TCM. A novel model, termed traditional Chinese medicine systems pharmacology (TCMSP analysis platform, which relies on the theory of systems pharmacology and integrates absorption, distribution, metabolism, excretion and toxicity (ADME/T evaluation, target prediction and network/pathway analysis, was proposed to address these problems. Here, we review the development of systems pharmacology, the TCMSP approach and its applications in the investigations of CCVD and compare it with other methods. TCMSP assists in uncovering the mechanisms of action of herbal formulas used in treating CCVD. It can also be applied in ascertaining the different syndrome patterns of coronary artery disease, decoding the multi-scale mechanisms of herbs, and in understanding the mechanisms of herbal synergism.

  19. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.

    Science.gov (United States)

    Barneh, Farnaz; Jafari, Mohieddin; Mirzaie, Mehdi

    2016-11-01

    Network pharmacology elucidates the relationship between drugs and targets. As the identified targets for each drug increases, the corresponding drug-target network (DTN) evolves from solely reflection of the pharmaceutical industry trend to a portrait of polypharmacology. The aim of this study was to evaluate the potentials of DrugBank database in advancing systems pharmacology. We constructed and analyzed DTN from drugs and targets associations in the DrugBank 4.0 database. Our results showed that in bipartite DTN, increased ratio of identified targets for drugs augmented density and connectivity of drugs and targets and decreased modular structure. To clear up the details in the network structure, the DTNs were projected into two networks namely, drug similarity network (DSN) and target similarity network (TSN). In DSN, various classes of Food and Drug Administration-approved drugs with distinct therapeutic categories were linked together based on shared targets. Projected TSN also showed complexity because of promiscuity of the drugs. By including investigational drugs that are currently being tested in clinical trials, the networks manifested more connectivity and pictured the upcoming pharmacological space in the future years. Diverse biological processes and protein-protein interactions were manipulated by new drugs, which can extend possible target combinations. We conclude that network-based organization of DrugBank 4.0 data not only reveals the potential for repurposing of existing drugs, also allows generating novel predictions about drugs off-targets, drug-drug interactions and their side effects. Our results also encourage further effort for high-throughput identification of targets to build networks that can be integrated into disease networks. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology?

    Science.gov (United States)

    Yuan, Haidan; Ma, Qianqian; Cui, Heying; Liu, Guancheng; Zhao, Xiaoyan; Li, Wei; Piao, Guangchun

    2017-07-07

    Many prescriptions of traditional medicines (TMs), whose efficacy has been tested in clinical practice, have great therapeutic value and represent an excellent resource for drug discovery. Research into single compounds of TMs, such as artemisinin from Artemisia annua L., has achieved great success; however, it has become evident that a TM prescription (which frequently contains various herbs or other components) has a synergistic effect in effecting a cure or reducing toxicity. Network pharmacology targets biological networks and analyzes the links among drugs, targets, and diseases in those networks. Comprehensive, systematic research into network pharmacology is consistent with the perspective of holisticity, which is a main characteristic of many TMs. By means of network pharmacology, research has demonstrated that many a TM show a synergistic effect by acting at different levels on multiple targets and pathways. This approach effectively bridges the gap between modern medicine and TM, and it greatly facilitates studies into the synergistic actions of TMs. There are different kinds of synergistic effects with TMs, such as synergy among herbs, effective parts, and pure compounds; however, for various reasons, new drug discovery should at present focus on synergy among pure compounds.

  1. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians.

    Science.gov (United States)

    Qaseem, Amir; Wilt, Timothy J; Kansagara, Devan; Horwitch, Carrie; Barry, Michael J; Forciea, Mary Ann

    2018-04-17

    The American College of Physicians developed this guidance statement to guide clinicians in selecting targets for pharmacologic treatment of type 2 diabetes. The National Guideline Clearinghouse and the Guidelines International Network library were searched (May 2017) for national guidelines, published in English, that addressed hemoglobin A1c (HbA1c) targets for treating type 2 diabetes in nonpregnant outpatient adults. The authors identified guidelines from the National Institute for Health and Care Excellence and the Institute for Clinical Systems Improvement. In addition, 4 commonly used guidelines were reviewed, from the American Association of Clinical Endocrinologists and American College of Endocrinology, the American Diabetes Association, the Scottish Intercollegiate Guidelines Network, and the U.S. Department of Veterans Affairs and Department of Defense. The AGREE II (Appraisal of Guidelines for Research and Evaluation II) instrument was used to evaluate the guidelines. Clinicians should personalize goals for glycemic control in patients with type 2 diabetes on the basis of a discussion of benefits and harms of pharmacotherapy, patients' preferences, patients' general health and life expectancy, treatment burden, and costs of care. Clinicians should aim to achieve an HbA1c level between 7% and 8% in most patients with type 2 diabetes. Clinicians should consider deintensifying pharmacologic therapy in patients with type 2 diabetes who achieve HbA1c levels less than 6.5%. Clinicians should treat patients with type 2 diabetes to minimize symptoms related to hyperglycemia and avoid targeting an HbA1c level in patients with a life expectancy less than 10 years due to advanced age (80 years or older), residence in a nursing home, or chronic conditions (such as dementia, cancer, end-stage kidney disease, or severe chronic obstructive pulmonary disease or congestive heart failure) because the harms outweigh the benefits in this population.

  3. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris.

    Science.gov (United States)

    Zhu, Wenyi; Du, Yijie; Meng, Hong; Dong, Yinmao; Li, Li

    2017-07-11

    Tribulus terrestris L. (TT) is an annual plant of the family Zygophyllaceae that has been used for generations to energize, vitalize, and improve sexual function and physical performance in men. The fruits and roots of TT have been used as a folk medicine for thousands of years in China, India, Sudan, and Pakistan. Numerous bioactive phytochemicals, such as saponins and flavonoids, have been isolated and identified from TT that are responsible alone or in combination for various pharmacological activities. This review provides a comprehensive overview of the traditional applications, phytochemistry, pharmacology and overuse of TT and provides evidence for better medicinal usage of TT.

  4. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  5. Pharmacologic pre- and postconditioning for stroke: Basic mechanisms and translational opportunity

    Directory of Open Access Journals (Sweden)

    Elga Esposito

    2015-01-01

    Full Text Available Beyond reperfusion therapies, there are still no widely effective therapies for ischemic stroke. Although much progress has been made to define the molecular pathways involved, targeted neuroprotective strategies have often failed in clinical trials. An emerging hypothesis suggests that focusing on single targets and mechanisms may not work since ischemic stroke triggers multiple pathways in multiple cell types. In this review, we briefly survey and assess the opportunities that may be afforded by pre- and postconditioning therapies, with particular attention to pharmacologic pre- and postconditioning. Pharmacologic conditioning may be defined as the use of chemical agents either before or shortly after stroke onset to trigger mechanisms of endogenous tolerance that are thought to involve evolutionarily conserved signals that offer broad protection against ischemia. Importantly, many of the pharmacologic agents may also have been previously used in humans, thus providing hope for translating basic mechanisms into clinical applications.

  6. Behavioural and new pharmacological treatments for constipation: getting the balance right

    Science.gov (United States)

    Camilleri, Michael; Bharucha, Adil E

    2011-01-01

    Chronic constipation affects almost one in six adults and is even more frequent in the elderly. In the vast majority of patients, there is no obstructive mucosal or structural cause for constipation and, after excluding relatively rare systemic diseases (commonest of which is hypothyroidism), the differential diagnosis is quickly narrowed down to three processes: evacuation disorder of the spastic (pelvic floor dyssynergia, anismus) or flaccid (descending perineum syndrome) varieties, and normal or slow transit constipation. Treatment of chronic constipation based on identifying the underlying pathophysiology is generally successful with targeted therapy. The aims of this review are to discuss targeted therapy for chronic constipation: behavioural treatment for outlet dysfunction and pharmacological treatment for constipation not associated with outlet dysfunction. In particular, we shall review the evidence that behavioural treatment works for evacuation disorders, describe the new treatment options for constipation not associated with evacuation disorder, and demonstrate how `targeting therapy' to the underlying diagnosis results in a balanced approach to patients with these common disorders. PMID:20801775

  7. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  8. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  9. Pharmacology profiling of chemicals and proteins

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl

    between pharmaceuticals and proteins in vivo potential leads to unwanted adverse effects, toxicity and reduced half-life, but can also lead to novel therapeutic effects of already approved pharmaceuticals. Hence identification of in vivo targets is of importance in discovery, development and repurposing....... This limitation complicates adverse effect assessment in the early drug-development phase, thus contributing to drugattrition. Prediction models offer the possibility to close these gaps and provide more complete pharmacology profiles, however improvements in performances are required for these tools to serve...... to its nonself origin, which potentially alters the pharmacology profile of the substance. The neutralization of biopharmaceuticals by antidrug antibodies (ADAs) is an important element in the immune response cascade, however studies of ADA binding site on biopharmaceuticals, referred to as B...

  10. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    Science.gov (United States)

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  11. Approaches in studying the pharmacology of Chinese Medicine formulas: bottom-up, top-down-and meeting in the middle.

    Science.gov (United States)

    Huang, Tao; Zhong, Linda L D; Lin, Chen-Yuan; Zhao, Ling; Ning, Zi-Wan; Hu, Dong-Dong; Zhang, Man; Tian, Ke; Cheng, Chung-Wah; Bian, Zhao-Xiang

    2018-01-01

    Investigating the pharmacology is key to the modernization of Chinese Medicine (CM) formulas. However, identifying which are the active compound(s) of CM formulas, which biological entities they target, and through which signaling pathway(s) they act to modify disease symptoms, are still difficult tasks for researchers, even when equipped with an arsenal of advanced modern technologies. Multiple approaches, including network pharmacology, pharmaco-genomics, -proteomics, and -metabolomics, have been developed to study the pharmacology of CM formulas. They fall into two general categories in terms of how they tackle a problem: bottom-up and top-down. In this article, we compared these two different approaches in several dimensions by using the case of MaZiRenWan (MZRW, also known as Hemp Seed Pill), a CM herbal formula for functional constipation. Multiple hypotheses are easy to be proposed in the bottom-up approach (e.g. network pharmacology); but these hypotheses are usually false positives and hard to be tested. In contrast, it is hard to suggest hypotheses in the top-down approach (e.g. pharmacometabolomics); however, once a hypothesis is proposed, it is much easier to be tested. Merging of these two approaches could results in a powerful approach, which could be the new paradigm for the pharmacological study of CM formulas.

  12. Holistic Management of Schizophrenia Symptoms Using Pharmacological and Non-pharmacological Treatment.

    Science.gov (United States)

    Ganguly, Pronab; Soliman, Abdrabo; Moustafa, Ahmed A

    2018-01-01

    Individuals with schizophrenia lead a poor quality of life, due to poor medical attention, homelessness, unemployment, financial constraints, lack of education, and poor social skills. Thus, a review of factors associated with the holistic management of schizophrenia is of paramount importance. The objective of this review is to improve the quality of life of individuals with schizophrenia, by addressing the factors related to the needs of the patients and present them in a unified manner. Although medications play a role, other factors that lead to a successful holistic management of schizophrenia include addressing the following: financial management, independent community living, independent living skill, relationship, friendship, entertainment, regular exercise for weight gained due to medication administration, co-morbid health issues, and day-care programmes for independent living. This review discusses the relationship between different symptoms and problems individuals with schizophrenia face (e.g., homelessness and unemployment), and how these can be managed using pharmacological and non-pharmacological methods. Thus, the target of this review is the carers of individuals with schizophrenia, public health managers, counselors, case workers, psychiatrists, and clinical psychologists aiming to enhance the quality of life of individuals with schizophrenia.

  13. A Historical View and Vision into the Future of the Field of Safety Pharmacology.

    Science.gov (United States)

    Bass, Alan S; Hombo, Toshiyasu; Kasai, Chieko; Kinter, Lewis B; Valentin, Jean-Pierre

    2015-01-01

    Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract

  14. BPS Pharmacology 2014 - Drug Discovery Pathways symposium Report

    OpenAIRE

    Marsh, Andrew

    2015-01-01

    Report on BPS Pharmacology 2014, BPS Industry Committe and Learned Societies Drug Discovery Pathways Group symposium: "Realizing the potential of new approaches to target identification and validation" by Dr Andrew Marsh Associate Professor Department of Chemistry University of Warwick go.warwick.ac.uk/marshgroup Twitter @marshgroup

  15. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Science.gov (United States)

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  16. Identifying non-pharmacological risk factors for falling in older adults with type 2 diabetes mellitus: a systematic review.

    Science.gov (United States)

    Gravesande, Janelle; Richardson, Julie

    2017-07-01

    To identify the non-pharmacological risk factors for falling in older adults with type 2 diabetes mellitus (DM2). A systematic review of randomized controlled trials, prospective cohort studies, cross-sectional studies and before/after studies was conducted. Eligible studies identified non-pharmacological risk factors for falling in older adults with DM2. Medline, Embase, Pubmed and CINAHL were searched for relevant studies published through December 2015. Reference lists were also searched for relevant studies. Search terms were DM2, risk factors, falls and falling, older adults, aging, non-insulin dependent diabetes mellitus, accidental falls and trip. Publication language was restricted to English. Thirteen studies met the inclusion criteria: four cross-sectional, six prospective cohorts, two randomized controlled trials and one before/after study. These studies included a total of 13,104 participants, ≥50 years. The most common risk factors for falling were impaired balance, reduced walking velocity, peripheral neuropathy and comorbid conditions. However, lower extremity pain, being overweight and comorbid conditions had the greatest impact on fall risk. Interventions to reduce falling in older adults with type 2 diabetes mellitus should focus on reducing lower extremity pain, reducing body weight and managing comorbid conditions. Implications for Rehabilitation    Diabetes mellitus:   • Older adults with type 2 diabetes mellitus (DM2) have a higher risk for falling than older adults without.   • Older adults with DM2 are more likely to suffer serious injuries when they fall.   • Comprehensive risk factor identification is necessary for rehabilitation professionals to accurately determine whether their clients are at risk for falling.   • Rehabilitation professionals also need to tailor interventions based on the client's risk factors in order to effectively reduce falls and fall-related injuries.

  17. Integrative biology approach identifies cytokine targeting strategies for psoriasis.

    Science.gov (United States)

    Perera, Gayathri K; Ainali, Chrysanthi; Semenova, Ekaterina; Hundhausen, Christian; Barinaga, Guillermo; Kassen, Deepika; Williams, Andrew E; Mirza, Muddassar M; Balazs, Mercedesz; Wang, Xiaoting; Rodriguez, Robert Sanchez; Alendar, Andrej; Barker, Jonathan; Tsoka, Sophia; Ouyang, Wenjun; Nestle, Frank O

    2014-02-12

    Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.

  18. Targeting Homologous Recombination by Pharmacological Inhibitors Enhances the Killing Response of Glioblastoma Cells Treated with Alkylating Drugs.

    Science.gov (United States)

    Berte, Nancy; Piée-Staffa, Andrea; Piecha, Nadine; Wang, Mengwan; Borgmann, Kerstin; Kaina, Bernd; Nikolova, Teodora

    2016-11-01

    Malignant gliomas exhibit a high level of intrinsic and acquired drug resistance and have a dismal prognosis. First- and second-line therapeutics for glioblastomas are alkylating agents, including the chloroethylating nitrosoureas (CNU) lomustine, nimustine, fotemustine, and carmustine. These agents target the tumor DNA, forming O 6 -chloroethylguanine adducts and secondary DNA interstrand cross-links (ICL). These cross-links are supposed to be converted into DNA double-strand breaks, which trigger cell death pathways. Here, we show that lomustine (CCNU) with moderately toxic doses induces ICLs in glioblastoma cells, inhibits DNA replication fork movement, and provokes the formation of DSBs and chromosomal aberrations. Since homologous recombination (HR) is involved in the repair of DSBs formed in response to CNUs, we elucidated whether pharmacologic inhibitors of HR might have impact on these endpoints and enhance the killing effect. We show that the Rad51 inhibitors RI-1 and B02 greatly ameliorate DSBs, chromosomal changes, and the level of apoptosis and necrosis. We also show that an inhibitor of MRE11, mirin, which blocks the formation of the MRN complex and thus the recognition of DSBs, has a sensitizing effect on these endpoints as well. In a glioma xenograft model, the Rad51 inhibitor RI-1 clearly enhanced the effect of CCNU on tumor growth. The data suggest that pharmacologic inhibition of HR, for example by RI-1, is a reasonable strategy for enhancing the anticancer effect of CNUs. Mol Cancer Ther; 15(11); 2665-78. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Neuroscience of behavioral and pharmacological treatments for addictions

    Science.gov (United States)

    Potenza, Marc N.; Sofuoglu, Mehmet; Carroll, Kathleen M.; Rounsaville, Bruce J.

    2011-01-01

    Summary Although substantial advances have been made in behavioral and pharmacological treatments for addictions, moving treatment development to the next stage may require novel ways of approaching addictions, particularly those derived from new findings regarding of the neurobiological underpinnings of addictions, while assimilating and incorporating relevant information from earlier approaches. In this review, we first briefly review theoretical and biological models of addiction and then describe existing behavioral and pharmacologic therapies for the addictions within this framework. We then propose new directions for treatment development and targets that are informed by recent evidence regarding the heterogeneity of addictions and the neurobiological contributions to these disorders. PMID:21338880

  20. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.

    Science.gov (United States)

    Peach, Chloe J; Mignone, Viviane W; Arruda, Maria Augusta; Alcobia, Diana C; Hill, Stephen J; Kilpatrick, Laura E; Woolard, Jeanette

    2018-04-23

    Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGF xxx a or VEGF xxx b isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF 165 a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.

  1. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach.

    Science.gov (United States)

    Chen, Meimei; Yang, Fafu; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-12-16

    Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)-a famous traditional Chinese medicine formula-has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  2. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Meimei Chen

    2016-12-01

    Full Text Available Metabolic syndrome (MS is becoming a worldwide health problem. Wendan decoction (WDD—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  3. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2010-01-01

    Full Text Available Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  4. Network Understanding of Herb Medicine via Rapid Identification of Ingredient-Target Interactions

    Science.gov (United States)

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  5. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  6. Geriatric pharmacology and pharmacotherapy education for health professionals and students: a systematic review

    Science.gov (United States)

    Keijsers, Carolina J P W; van Hensbergen, Larissa; Jacobs, Lotte; Brouwers, Jacobus R B J; de Wildt, Dick J; ten Cate, Olle Th J; Jansen, Paul A F

    2012-01-01

    AIMS Given the reported high rates of medication errors, especially in elderly patients, we hypothesized that current curricula do not devote enough time to the teaching of geriatric pharmacology. This review explores the quantity and nature of geriatric pharmacology education in undergraduate and postgraduate curricula for health professionals. METHODS Pubmed, Embase and PsycINFO databases were searched (from 1 January 2000 to 11 January 2011), using the terms ‘pharmacology’ and ‘education’ in combination. Articles describing content or evaluation of pharmacology education for health professionals were included. Education in general and geriatric pharmacology was compared. RESULTS Articles on general pharmacology education (252) and geriatric pharmacology education (39) were included. The number of publications on education in general pharmacology, but not geriatric pharmacology, has increased over the last 10 years. Articles on undergraduate and postgraduate education for 12 different health disciplines were identified. A median of 24 h (from 15 min to 4956 h) devoted to pharmacology education and 2 h (1–935 h) devoted to geriatric pharmacology were reported. Of the articles on education in geriatric pharmacology, 61.5% evaluated the teaching provided, mostly student satisfaction with the course. The strength of findings was low. Similar educational interventions were not identified, and evaluation studies were not replicated. CONCLUSIONS Recently, interest in pharmacology education has increased, possibly because of the high rate of medication errors and the recognized importance of evidence-based medical education. Nevertheless, courses on geriatric pharmacology have not been evaluated thoroughly and none can be recommended for use in training programmes. Suggestions for improvements in education in general and geriatric pharmacology are given. PMID:22416832

  7. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor.

    Science.gov (United States)

    Zuccarini, Mariachiara; Giuliani, Patricia; Ziberi, Sihana; Carluccio, Marzia; Iorio, Patrizia Di; Caciagli, Francesco; Ciccarelli, Renata

    2018-02-17

    Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely "cancer stem cells", are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.

  8. Deciphering the Mechanism of Action of Wrightia tinctoria for Psoriasis Based on Systems Pharmacology Approach.

    Science.gov (United States)

    Sundarrajan, Sudharsana; Lulu, Sajitha; Arumugam, Mohanapriya

    2017-11-01

    Psoriasis is a chronic immune-mediated disorder of the skin. The disease manifests itself with red or silvery scaly plaques distributing over the lower back, scalp, and extensor aspects of limbs. Several medications are available for the treatment of psoriasis; however, high rates of remission and side-effects still persist as a major concern. Siddha, one of the traditional systems of Indian medicine offers cure to many dermatological conditions, including psoriasis. The oil prepared from the leaves of Wrightia tinctoria is prescribed by many healers for the treatment of psoriasis. This work aims to decipher the mechanism of action of the W. tinctoria in curing psoriasis and its associated comorbidities. The work integrates various pharmacology approaches such as drug-likeness evaluation, oral bioavailability predictions, and network pharmacology approaches to understand the roles of various bioactive components of the herb. This work identified 67 compounds of W. tinctoria interacting with 238 protein targets. The compounds were found to act through synergistic mechanism in reviving the disrupted process in the diseased state. The results of this work not only shed light on the pharmacological action of the herb but also validate the usage of safe herbal drugs.

  9. Development of responder criteria for multicomponent non-pharmacological treatment in fibromyalgia

    NARCIS (Netherlands)

    Vervoort, V.M.; Vriezekolk, J.E.; Ende, C.H.M. van den

    2017-01-01

    OBJECTIVES: There is a need to identify individual treatment success in patients with fibromyalgia (FM) who received non-pharmacological treatment. The present study described responder criteria for multicomponent non-pharmacological treatment in FM, and estimated and compared their sensitivity and

  10. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  11. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  12. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: focus on pharmacology and preclinical translational models

    OpenAIRE

    Harvey, Brian H.; Shahid, Mohammed

    2012-01-01

    Anxiety disorders are amongst the most common and disabling of psychiatric illnesses and have severe health and socio-economic implications. Despite the availability of a number of treatment options there is still a strong medical need for novel and improved pharmacological approaches in treating these disorders. New developments at the forefront of preclinical research have begun to identify the therapeutic potential of molecular entities integral to the biological response to ad...

  13. A Review of Pharmacologic Treatment for Compulsive Buying Disorder.

    Science.gov (United States)

    Soares, Célia; Fernandes, Natália; Morgado, Pedro

    2016-04-01

    At present, no treatment recommendations can be made for compulsive buying disorder. Recent studies have found evidence for the efficacy of psychotherapeutic options, but less is known regarding the best pharmacologic treatment. The purpose of this review is to present and analyze the available published evidence on the pharmacological treatment of compulsive buying disorder. To achieve this, we conducted a review of studies focusing on the pharmacological treatment of compulsive buying by searching the PubMed/MEDLINE database. Selection criteria were applied, and 21 studies were identified. Pharmacological classes reported included antidepressants, mood stabilizers, opioid antagonists, second-generation antipsychotics, and N-methyl-D-aspartate receptor antagonists. We found only placebo-controlled trials for fluvoxamine; none showed effectiveness against placebo. Three open-label trials reported clinical improvement with citalopram; one was followed by a double-blind discontinuation. Escitalopram was effective in an open-label trial but did not show efficacy in the double-blind phase. Memantine was identified as effective in a pilot open-label study. Fluoxetine, bupropion, nortriptyline, clomipramine, topiramate and naltrexone were only reported to be effective in clinical cases. According to the available literature, there is no evidence to propose a specific pharmacologic agent for compulsive buying disorder. Future research is required for a better understanding of both pathogenesis and treatment of this disorder.

  14. Providing data science support for systems pharmacology and its implications to drug discovery.

    Science.gov (United States)

    Hart, Thomas; Xie, Lei

    2016-01-01

    The conventional one-drug-one-target-one-disease drug discovery process has been less successful in tracking multi-genic, multi-faceted complex diseases. Systems pharmacology has emerged as a new discipline to tackle the current challenges in drug discovery. The goal of systems pharmacology is to transform huge, heterogeneous, and dynamic biological and clinical data into interpretable and actionable mechanistic models for decision making in drug discovery and patient treatment. Thus, big data technology and data science will play an essential role in systems pharmacology. This paper critically reviews the impact of three fundamental concepts of data science on systems pharmacology: similarity inference, overfitting avoidance, and disentangling causality from correlation. The authors then discuss recent advances and future directions in applying the three concepts of data science to drug discovery, with a focus on proteome-wide context-specific quantitative drug target deconvolution and personalized adverse drug reaction prediction. Data science will facilitate reducing the complexity of systems pharmacology modeling, detecting hidden correlations between complex data sets, and distinguishing causation from correlation. The power of data science can only be fully realized when integrated with mechanism-based multi-scale modeling that explicitly takes into account the hierarchical organization of biological systems from nucleic acid to proteins, to molecular interaction networks, to cells, to tissues, to patients, and to populations.

  15. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fitzpatrick

    2009-11-01

    Full Text Available Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis.Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes, which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no

  16. Emerging drugs which target the renin-angiotensin-aldosterone system.

    Science.gov (United States)

    Steckelings, Ulrike Muscha; Paulis, Ludovit; Unger, Thomas; Bader, Michael

    2011-12-01

    The renin-angiotensin-aldosterone system (RAAS) is already the most important target for drugs in the cardiovascular system. However, still new developments are underway to interfere with the system on different levels. The novel strategies to interfere with RAAS aim to reduce the synthesis of the two major RAAS effector hormones, angiotensin (Ang) II and aldosterone, or interfere with their receptors, AT1 and mineralocorticoid receptor, respectively. Moreover, novel targets have been identified in RAAS, such as the (pro)renin receptor, and molecules, which counteract the classical actions of Ang II and are therefore beneficial in cardiovascular diseases. These include the AT2 receptor and the ACE2/Ang-(1-7)/Mas axis. The search for drugs activating these tissue-protective arms of RAAS is therefore the most innovative field in RAAS pharmacology. Most of the novel pharmacological strategies to inhibit the classical RAAS need to prove their superiority above the existing treatment in clinical trials and then have to compete against these now quite cheap drugs in a competitive market. The newly discovered targets have functions beyond the cardiovascular system opening up novel therapeutic areas for drugs interfering with RAAS components.

  17. A Biomedical Investigation of the Hepatoprotective Effect of Radix salviae miltiorrhizae and Network Pharmacology-Based Prediction of the Active Compounds and Molecular Targets

    Directory of Open Access Journals (Sweden)

    Ming Hong

    2017-03-01

    Full Text Available Radix salviae miltiorrhizae (Danshen in Chinese, a classic traditional Chinese medicine (TCM herb, has been used for centuries to treat liver diseases. In this study, the preventive and curative potential of Danshen aqueous extract on acute/chronic alcoholic liver disease (ALD and non-alcoholic fatty liver disease (NAFLD was studied. The in vivo results indicated that Danshen could alleviate hepatic inflammation, fatty degeneration, and haptic fibrogenesis in ALD and NAFLD models. In the aspect of mechanism of action, the significant reduction in MDA levels in both ALD and NAFLD models implies the decreased levels of oxidative stress by Danshen. However, Danshen treatment could not activate the internal enzymatic antioxidant system in ALD and NAFLD models. To further explore the hepatoprotective mechanism of Danshen, an in silico-based network pharmacology approach was employed in the present study. The pharmacological network analysis result revealed that six potential active ingredients such as tanshinone iia, salvianolic acid b, and Danshensu may contribute to the hepatoprotective effects of Danshen on ALD and NAFLD. The action mechanism may relate with regulating the intracellular molecular targets such as PPARα, CYP1A2, and MMP2 for regulation of lipid metabolism, antioxidant and anti-fibrogenesis by these potential active ingredients. Our studies suggest that the combination of network pharmacology strategy with in vivo experimental study may provide a forceful tool for exploring the mechanism of action of traditional Chinese medicine (TCM herb and developing novel bioactive ingredients.

  18. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  19. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  20. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets.

    Science.gov (United States)

    Prakash, Atish; Kalra, Jaspreet; Mani, Vasudevan; Ramasamy, Kalavathy; Majeed, Abu Bakar Abdul

    2015-01-01

    Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.

  1. A Systems-Pharmacology Analysis of Herbal Medicines Used in Health Improvement Treatment: Predicting Potential New Drugs and Targets

    Directory of Open Access Journals (Sweden)

    Jianling Liu

    2013-01-01

    Full Text Available For thousands of years, tonic herbs have been successfully used all around the world to improve health, energy, and vitality. However, their underlying mechanisms of action in molecular/systems levels are still a mystery. In this work, two sets of tonic herbs, so called Qi-enriching herbs (QEH and Blood-tonifying herbs (BTH in TCM, were selected to elucidate why they can restore proper balance and harmony inside body, organ and energy system. Firstly, a pattern recognition model based on artificial neural network and discriminant analysis for assessing the molecular difference between QEH and BTH was developed. It is indicated that QEH compounds have high lipophilicity while BTH compounds possess high chemical reactivity. Secondly, a systematic investigation integrating ADME (absorption, distribution, metabolism, and excretion prediction, target fishing and network analysis was performed and validated on these herbs to obtain the compound-target associations for reconstructing the biologically-meaningful networks. The results suggest QEH enhance physical strength, immune system and normal well-being, acting as adjuvant therapy for chronic disorders while BTH stimulate hematopoiesis function in body. As an emerging approach, the systems pharmacology model might facilitate to understand the mechanisms of action of the tonic herbs, which brings about new development for complementary and alternative medicine.

  2. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Cromer, Brett A.; Dufour, Vanessa

    2014-01-01

    Pharmacological targeting of glutamate-gated chloride channels (GluCls) is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs...

  3. The Role of Pharmacology in Ureteral Physiology and Expulsive Therapy

    Science.gov (United States)

    Jerde, Travis J.; Nakada, Stephen Y.

    2007-04-01

    Research in the field of ureteral physiology and pharmacology has traditionally been directed toward relaxation of ureteral spasm as a mechanism of analgesia during painful ureteral obstruction, most often stone-induced episodes. However, interest in this field has expanded greatly in recent years with the expanded use of alpha-blocker therapy for inducing stone passage, a usage now termed "medical expulsive therapy". While most clinical reports involving expulsive therapy have focused on alpha receptor or calcium channel blockade, there are diverse studies investigating pharmacological ureteral relaxation with novel agents including cyclooxygenase inhibitors, small molecule beta receptor agonists, neurokinin antagonists, and phosphodiesterase inhibitors. In addition, cutting edge molecular biology research is revealing promising potential therapeutic targets aimed at specific molecular changes that occur during the acute obstruction that accompanies stone disease. The purpose of this report is to review the use of pharmacological agents as ureteral smooth muscle relaxants clinically, and to look into the future of expulsive therapy by reviewing the available literature of ureteral physiology and pharmacology research.

  4. Identifying The Target Market For a New Floatation Therapy Service, Flowtion

    OpenAIRE

    Varpomaa, Jerry

    2016-01-01

    The purpose of this thesis was to probe and identify the most potential target market for a new kind of wellness-service for Flowtion, a state-of-the-art floatation therapy center, focusing on floatation tanks. To accomplish the main goal for this thesis, a survey was conducted using “Google Forms”. The survey was spread through social media (Facebook), and as a result 41 people answered. The survey helps Flowtion to define their most potential target segment, their behaviour and profile vari...

  5. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  6. In Silico Systems Pharmacology to Assess Drug's Therapeutic and Toxic Effects

    DEFF Research Database (Denmark)

    Orozco, Alejandro Aguayo; Audouze, Karine; Brunak, Soren

    2016-01-01

    For many years, the "one target, one drug" paradigm has been the driving force behind developments in pharmaceutical research. With the recent advances in molecular biology and genomics technologies, the focus is shifting toward "drug-holistic" systems based approaches (i.e. systems pharmacology......). The integration of large and diverse amount of data from chemistry and biology coupled with the development and the application of network-based approaches to cope with these data is the next paradigm of drug discovery. Systems pharmacology offers a novel way of approaching drug discovery by developing models...

  7. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  8. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  9. Clinical Pharmacology of Kinase Inhibitors in Oncology : Personalized and Optimzed Dosing

    NARCIS (Netherlands)

    Verheijen, Remy B.

    2017-01-01

    Kinase inhibitors are an important category of molecularly targeted therapies used for cancer. Verheijen’s doctoral thesis describes several clinical pharmacological studies to optimize and personalize the treatment of cancer with kinase inhibitors, using pharmacokinetics, molecular imaging and

  10. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2017-01-01

    -obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend...

  11. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia Essential Oil on Central Nervous System Targets

    Directory of Open Access Journals (Sweden)

    Víctor López

    2017-05-01

    Full Text Available Lavender essential oil is traditionally used and approved by the European Medicines Agency (EMA as herbal medicine to relieve stress and anxiety. Some animal and clinical studies reveal positive results in models of anxiety and depression although very little research has been done on molecular mechanisms. Our work consisted of evaluating the effects of lavender (Lavandula angustifolia essential oil on central nervous system well-established targets, such as MAO-A, SERT, GABAAand NMDA receptors as well as in vitro models of neurotoxicity. The results showed that lavender essential oil and its main components exert affinity for the glutamate NMDA-receptor in a dose-dependent manner with an IC50 value of 0.04 μl/mL for lavender oil. In addition, lavender and linalool were also able to bind the serotonin transporter (SERT whereas they did not show affinity for GABAA-benzodiazepine receptor. In three different models of neurotoxicity, lavender did not enhance the neurotoxic insult and improved viability of SH-SY5Y cells treated with hydrogen peroxide. According to our data, the anxiolytic and antidepressant-like effects attributed to lavender may be due to an antagonism on the NMDA-receptor and inhibition of SERT. This study suggests that lavender essential oil may exert pharmacological properties via modulating the NMDA receptor, the SERT as well as neurotoxicity induced by hydrogen peroxide.

  12. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets

    Science.gov (United States)

    López, Víctor; Nielsen, Birgitte; Solas, Maite; Ramírez, Maria J.; Jäger, Anna K.

    2017-01-01

    Lavender essential oil is traditionally used and approved by the European Medicines Agency (EMA) as herbal medicine to relieve stress and anxiety. Some animal and clinical studies reveal positive results in models of anxiety and depression although very little research has been done on molecular mechanisms. Our work consisted of evaluating the effects of lavender (Lavandula angustifolia) essential oil on central nervous system well-established targets, such as MAO-A, SERT, GABAAand NMDA receptors as well as in vitro models of neurotoxicity. The results showed that lavender essential oil and its main components exert affinity for the glutamate NMDA-receptor in a dose-dependent manner with an IC50 value of 0.04 μl/mL for lavender oil. In addition, lavender and linalool were also able to bind the serotonin transporter (SERT) whereas they did not show affinity for GABAA-benzodiazepine receptor. In three different models of neurotoxicity, lavender did not enhance the neurotoxic insult and improved viability of SH-SY5Y cells treated with hydrogen peroxide. According to our data, the anxiolytic and antidepressant-like effects attributed to lavender may be due to an antagonism on the NMDA-receptor and inhibition of SERT. This study suggests that lavender essential oil may exert pharmacological properties via modulating the NMDA receptor, the SERT as well as neurotoxicity induced by hydrogen peroxide. PMID:28579958

  13. Tinnitus: Network pathophysiology-network pharmacology

    Directory of Open Access Journals (Sweden)

    Ana Belen eElgoyhen

    2012-01-01

    Full Text Available Tinnitus, the phantom perception of sound, is a prevalent disorder. One in 10 adults has clinically significant subjective tinnitus, and for 1 in 100, tinnitus severely affects their quality of life. Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single FDA-approved drug on the market. The search for drugs that target tinnitus is hampered by the lack of a deep knowledge of the underlying neural substrates of this pathology. Recent studies are increasingly demonstrating that, as described for other central nervous system disorders, tinnitus is a pathology of brain networks. The application of graph theoretical analysis to brain networks has recently provided new information concerning their topology, their robustness and their vulnerability to attacks. Moreover, the philosophy behind drug design and pharmacotherapy in central nervous system pathologies is changing from that of magic bullets that target individual chemoreceptors or disease-causing genes into that of magic shotguns, promiscuous or dirty drugs that target disease-causing networks, also known as network pharmacology. In the present work we provide some insight into how this knowledge could be applied to tinnitus pathophysiology and pharmacotherapy.

  14. Tinnitus: network pathophysiology-network pharmacology.

    Science.gov (United States)

    Elgoyhen, Ana B; Langguth, Berthold; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus, the phantom perception of sound, is a prevalent disorder. One in 10 adults has clinically significant subjective tinnitus, and for one in 100, tinnitus severely affects their quality of life. Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single Food and Drug Administration (FDA)-approved drug on the market. The search for drugs that target tinnitus is hampered by the lack of a deep knowledge of the underlying neural substrates of this pathology. Recent studies are increasingly demonstrating that, as described for other central nervous system (CNS) disorders, tinnitus is a pathology of brain networks. The application of graph theoretical analysis to brain networks has recently provided new information concerning their topology, their robustness and their vulnerability to attacks. Moreover, the philosophy behind drug design and pharmacotherapy in CNS pathologies is changing from that of "magic bullets" that target individual chemoreceptors or "disease-causing genes" into that of "magic shotguns," "promiscuous" or "dirty drugs" that target "disease-causing networks," also known as network pharmacology. In the present work we provide some insight into how this knowledge could be applied to tinnitus pathophysiology and pharmacotherapy.

  15. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review.

    Science.gov (United States)

    Peng, Wei; Qin, Rongxin; Li, Xiaoli; Zhou, Hong

    2013-07-30

    Polygonum cuspidatum Sieb. et Zucc. (Polygonum cuspidatum), also known as Reynoutria japonica Houtt and Huzhang in China, is a traditional and popular Chinese medicinal herb. Polygonum cuspidatum with a wide spectrum of pharmacological effects has been used for treatment of inflammation, favus, jaundice, scald, and hyperlipemia, etc. The present paper reviews the traditional applications as well as advances in botany, phytochemistry, pharmacodynamics, pharmacokinetics and toxicology of this plant. Finally, the tendency and perspective for future investigation of this plant are discussed, too. A systematic review of literature about Polygonum cuspidatum is carried out using resources including classic books about Chinese herbal medicine, and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science and others. Polygonum cuspidatum is widely distributed in the world and has been used as a traditional medicine for a long history in China. Over 67 compounds including quinones, stilbenes, flavonoids, counmarins and ligans have been isolated and identified from this plant. The root of this plant is used as the effective agent in pre-clinical and clinical practice for regulating lipids, anti-endotoxic shock, anti-infection and anti-inflammation, anti-cancer and other diseases in China and Japan. As an important traditional Chinese medicine, Polygonum cuspidatum has been used for treatment of hyperlipemia, inflammation, infection and cancer, etc. Because there is no enough systemic data about the chemical constituents and their pharmacological effects or toxicities, it is important to investigate the pharmacological effects and molecular mechanisms of this plant based on modern realization of diseases' pathophysiology. Drug target-guided and bioactivity-guided isolation and purification of the chemical constituents from this plant and subsequent evaluation of their pharmacologic effects will promote the development of new drug and make sure which

  16. Pharmacological targeting of chemokine (C-X-C motif) receptor 4 in porcine polytrauma and hemorrhage models

    Science.gov (United States)

    Bach, Harold H.; Wong, Yee M.; LaPorte, Heather M.; Gamelli, Richard L.; Majetschak, Matthias

    2016-01-01

    BACKGROUND Recent evidence suggests that chemokine receptor CXCR4 regulates vascular α1-adrenergic receptor function and that the noncognate CXCR4 agonist ubiquitin has therapeutic potential after trauma/hemorrhage. Pharmacologic properties of ubiquitin in large animal trauma models, however, are poorly characterized. Thus, the aims of the present study were to determine the effects of CXCR4 modulation on resuscitation requirements after polytrauma, to assess whether ubiquitin influences survival times after lethal polytrauma-hemorrhage, and to characterize its dose-effect profile in porcine models. METHODS Anesthetized pigs underwent polytrauma (PT, femur fractures/lung contusion) alone (Series 1) or PT/hemorrhage (PT/H) to a mean arterial blood pressure of 30 mmHg with subsequent fluid resuscitation (Series 2 and 3) or 40% blood volume hemorrhage within 15 minutes followed by 2.5% blood volume hemorrhage every 15 minutes without fluid resuscitation (Series 4). In Series 1, ubiquitin (175 and 350 nmol/kg), AMD3100 (CXCR4 antagonist, 350 nmol/kg), or vehicle treatment 60 minutes after PT was performed. In Series 2, ubiquitin (175, 875, and 1,750 nmol/kg) or vehicle treatment 60 minutes after PT/H was performed. In Series 3, ubiquitin (175 and 875 nmol/kg) or vehicle treatment at 60 and 180 minutes after PT/H was performed. In Series 4, ubiquitin (875 nmol/kg) or vehicle treatment 30 minutes after hemorrhage was performed. RESULTS In Series 1, resuscitation fluid requirements were significantly reduced by 40% with 350-nmol/kg ubiquitin and increased by 25% with AMD3100. In Series 2, median survival time was 190 minutes with vehicle, 260 minutes with 175-nmol/kg ubiquitin, and longer than 420 minutes with 875-nmol/kg and 1,750-nmol/kg ubiquitin (p 0.05). CONCLUSION These findings further suggest CXCR4 as a drug target after PT/H. Ubiquitin treatment reduces resuscitation fluid requirements and provides survival benefits after PT/H. The pharmacological effects of

  17. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  18. The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis

    OpenAIRE

    Taylor, Johanna; Stubbs, Brendon; Hewitt, Catherine; Ajjan, Ramzi A.; Alderson, Sarah L.; Gilbody, Simon; Holt, Richard I. G.; Hosali, Prakash; Hughes, Tom; Kayalackakom, Tarron; Kellar, Ian; Lewis, Helen; Mahmoodi, Neda; McDermid, Kirstine; Smith, Robert D.

    2017-01-01

    People with severe mental illness (SMI) have reduced life expectancy compared with the general population, which can be explained partly by their increased risk of diabetes. We conducted a meta-analysis to determine the clinical effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in people with SMI (PROSPERO registration: CRD42015015558). A systematic literature search was performed on 30/10/2015 to identify randomised controlled trials (RCTs...

  19. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Siersbaek, Majken S; Chen, Li

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  20. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties

    Directory of Open Access Journals (Sweden)

    Mohamed Yousif Ibrahim

    2016-05-01

    Full Text Available Over the past decades, various studies have highlighted the pure natural compound, α-mangostin as their main topic. The compound’s pre-clinical and pharmacological properties have been recognized and defined in these studies. α-Mangostin shows strong pharmacological effects in in vitro and in vivo model systems by targeting a number of vital cellular factors through various mechanisms of action. Despite its important molecular versatility, the α-mangostin still has limited clinical application. In order to optimize the conditions of this compound as a chemotherapeutic and chemopreventive agent, for instance in diseases such as cancer, obesity, diabetes as well as inflammatory disorders, the recent tendency is to limit the range of its pharmacological properties. The present work reviews recent studies on the central and potential pharmacological principles as well as the preclinical applications of the α-mangostin.

  1. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  2. Quality management of pharmacology and safety pharmacology studies

    DEFF Research Database (Denmark)

    Spindler, Per; Seiler, Jürg P

    2002-01-01

    to safety pharmacology studies, and, when indicated, to secondary pharmacodynamic studies, does not influence the scientific standards of studies. However, applying formal GLP standards will ensure the quality, reliability and integrity of studies, which reflect sound study management. It is important...... to encourage a positive attitude among researchers and academics towards these lines, whenever possible. GLP principles applied to the management of non-clinical safety studies are appropriate quality standards when studies are used in the context of protecting public health, and these quality standards...... of pharmacology studies (ICH S7A): primary pharmacodynamic, secondary pharmacodynamic and safety pharmacology studies, and guidance on the quality standards (expectations for GLP conformity) for these study types have been provided. Primary pharmacodynamic studies are the only study types that are fully exempt...

  3. PDTCM: a systems pharmacology platform of traditional Chinese medicine for psoriasis.

    Science.gov (United States)

    Wang, Dongmei; Gu, Jiangyong; Zhu, Wei; Luo, Fang; Chen, Lirong; Xu, Xiaojie; Lu, Chuanjian

    2017-12-01

    Psoriasis is a refractory skin disorder, and usually requires a lifetime control. Traditional Chinese medicine (TCM) is effective and safe for this disease. However, the cellular and molecular mechanisms of TCM remedies for psoriasis are still not fully understood. TCM contains numerous natural products. Natural products have historically been invaluable as a resource of therapeutic agents. Yet, there is no integrated information about active compounds of TCM for psoriasis. We use systems pharmacology methods to develop the Psoriasis Database of Traditional Chinese Medicine (PDTCM). The database covered a number of psoriasis-related information (formulas, TCM, compounds, target proteins, diseases and biomarkers). With these data information, an online platform was constructed Results: PDTCM comprises 38 empirical therapeutic formulas, 34373 compounds from 1424 medicinal plants, 44 psoriasis-related proteins and 76 biomarkers from 111 related diseases. On this platform, users can screen active compounds for a psoriasis-related target and explore molecular mechanisms of TCM. Accordingly, users can also download the retrieved structures and data information with a defined value set. In addition, it helps to get a better understanding of Chinese prescriptions in disease treatment. With the systems pharmacology-based data, PDTCM would become a valuable resource for TCM in psoriasis-related research. Key messages PDTCM platform comprises a great deal of data on TCM and psoriasis. On this platform, users can retrieve and get needed information with systems pharmacology methods, such as active compounds screening, target prediction and molecular mechanisms exploration. It is a tool for psoriasis-related research on natural drugs systematically.

  4. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    International Nuclear Information System (INIS)

    Fitzgerald, Kent; Bergeron, Marcelle; Willits, Christopher; Bowers, Simeon; Aubele, Danielle L.; Goldbach, Erich; Tonn, George; Ness, Daniel; Olaharski, Andrew

    2013-01-01

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the number of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646 decreased

  5. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Kent, E-mail: Kent.fitzgerald@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Bergeron, Marcelle, E-mail: Marcelle.bergeron@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Willits, Christopher, E-mail: Chris.willits@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Bowers, Simeon, E-mail: Simeon.bowers@elan.com [Chemistry, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Aubele, Danielle L., E-mail: Danielle.aubele@elan.com [Chemistry, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Goldbach, Erich, E-mail: Erich.goldbach@elan.com [Drug Metabolism and Pharmacokinetics, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Tonn, George, E-mail: George.tonn@elan.com [Drug Metabolism and Pharmacokinetics, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Ness, Daniel, E-mail: Dan.ness@elan.com [Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Olaharski, Andrew, E-mail: andrew.olaharski@agios.com [Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States)

    2013-05-15

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the number of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646

  6. Pharmacological targeting of native CatSper channels reveals a required role in maintenance of sperm hyperactivation.

    Directory of Open Access Journals (Sweden)

    Anne E Carlson

    2009-08-01

    Full Text Available The four sperm-specific CatSper ion channel proteins are required for hyperactivated motility and male fertility, and for Ca(2+ entry evoked by alkaline depolarization. In the absence of external Ca(2+, Na(+ carries current through CatSper channels in voltage-clamped sperm. Here we show that CatSper channel activity can be monitored optically with the [Na(+](i-reporting probe SBFI in populations of intact sperm. Removal of external Ca(2+ increases SBFI signals in wild-type but not CatSper2-null sperm. The rate of the indicated rise of [Na(+](i is greater for sperm alkalinized with NH(4Cl than for sperm acidified with propionic acid, reflecting the alkaline-promoted signature property of CatSper currents. In contrast, the [Na(+](i rise is slowed by candidate CatSper blocker HC-056456 (IC(50 approximately 3 microM. HC-056456 similarly slows the rise of [Ca(2+](i that is evoked by alkaline depolarization and reported by fura-2. HC-056456 also selectively and reversibly decreased CatSper currents recorded from patch-clamped sperm. HC-056456 does not prevent activation of motility by HCO(3 (- but does prevent the development of hyperactivated motility by capacitating incubations, thus producing a phenocopy of the CatSper-null sperm. When applied to hyperactivated sperm, HC-056456 causes a rapid, reversible loss of flagellar waveform asymmetry, similar to the loss that occurs when Ca(2+ entry through the CatSper channel is terminated by removal of external Ca(2+. Thus, open CatSper channels and entry of external Ca(2+ through them sustains hyperactivated motility. These results indicate that pharmacological targeting of the CatSper channel may impose a selective late-stage block to fertility, and that high-throughput screening with an optical reporter of CatSper channel activity may identify additional selective blockers with potential for male-directed contraception.

  7. Identifying MicroRNAs and Transcript Targets in Jatropha Seeds

    Science.gov (United States)

    Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério

    2014-01-01

    MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031

  8. Identifying Drug-Target Interactions with Decision Templates.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu

    2018-01-01

    During the development process of new drugs, identification of the drug-target interactions wins primary concerns. However, the chemical or biological experiments bear the limitation in coverage as well as the huge cost of both time and money. Based on drug similarity and target similarity, chemogenomic methods can be able to predict potential drug-target interactions (DTIs) on a large scale and have no luxurious need about target structures or ligand entries. In order to reflect the cases that the drugs having variant structures interact with common targets and the targets having dissimilar sequences interact with same drugs. In addition, though several other similarity metrics have been developed to predict DTIs, the combination of multiple similarity metrics (especially heterogeneous similarities) is too naïve to sufficiently explore the multiple similarities. In this paper, based on Gene Ontology and pathway annotation, we introduce two novel target similarity metrics to address above issues. More importantly, we propose a more effective strategy via decision template to integrate multiple classifiers designed with multiple similarity metrics. In the scenarios that predict existing targets for new drugs and predict approved drugs for new protein targets, the results on the DTI benchmark datasets show that our target similarity metrics are able to enhance the predictive accuracies in two scenarios. And the elaborate fusion strategy of multiple classifiers has better predictive power than the naïve combination of multiple similarity metrics. Compared with other two state-of-the-art approaches on the four popular benchmark datasets of binary drug-target interactions, our method achieves the best results in terms of AUC and AUPR for predicting available targets for new drugs (S2), and predicting approved drugs for new protein targets (S3).These results demonstrate that our method can effectively predict the drug-target interactions. The software package can

  9. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  10. Delirium in the elderly: A systematic review of pharmacological and non-pharmacological treatments

    Directory of Open Access Journals (Sweden)

    Cecília Carboni Tardelli Cerveira

    Full Text Available ABSTRACT Delirium is a common disorder associated with poor prognosis, especially in the elderly. The impact of different treatment approaches for delirium on morbimortality and long-term welfare is not completely understood. OBJECTIVE: To determine the efficacy of pharmacological and non-pharmacological treatments in elderly patients with delirium. METHODS: This systematic review compared pharmacological and non-pharmacological treatments in patients over 60 years old with delirium. Databases used were: MEDLINE (PubMed, EMBASE, Cochrane CENTRAL and LILACS from inception to January 6th, 2016. RESULTS: A total of ten articles were selected. The six non-pharmacological intervention studies showed no impact on duration of delirium, mortality or institutionalization, but a decrease in severity of delirium and improvement in medium-term cognitive function were observed. The most commonly used interventions were temporal-spatial orientation, orientation to self and others, early mobilization and sleep hygiene. The four studies with pharmacological interventions found that rivastigmine reduced the duration of delirium, improved cognitive function and reduced caregiver burden; olanzapine and haloperidol decreased the severity of delirium; droperidol reduced length of hospitalization and improved delirium remission rate. CONCLUSION: Although the pharmacological approach has been used in the treatment of delirium among elderly, there have been few studies assessing its efficacy, involving a small number of patients. However, the improvements in delirium duration and severity suggest these drugs are effective in treating the condition. Once delirium has developed, non-pharmacological treatment seems less effective in controlling symptoms, and there is a lack of studies describing different non-pharmacological interventions.

  11. Ethnomedicinal uses and pharmacological activities of Croton ...

    African Journals Online (AJOL)

    Abstract. Purpose: To provide an overview of the ethnomedicinal uses and ... calls for detailed phytochemical and pharmacological properties of the species aimed at identifying the ... urban communities throughout its native ... sized, densely leafy tree reaching 15 m tall [17] ..... Williams College, United States; 1998; p 133.

  12. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  13. Pharmacology Portal: An Open Database for Clinical Pharmacologic Laboratory Services.

    Science.gov (United States)

    Karlsen Bjånes, Tormod; Mjåset Hjertø, Espen; Lønne, Lars; Aronsen, Lena; Andsnes Berg, Jon; Bergan, Stein; Otto Berg-Hansen, Grim; Bernard, Jean-Paul; Larsen Burns, Margrete; Toralf Fosen, Jan; Frost, Joachim; Hilberg, Thor; Krabseth, Hege-Merete; Kvan, Elena; Narum, Sigrid; Austgulen Westin, Andreas

    2016-01-01

    More than 50 Norwegian public and private laboratories provide one or more analyses for therapeutic drug monitoring or testing for drugs of abuse. Practices differ among laboratories, and analytical repertoires can change rapidly as new substances become available for analysis. The Pharmacology Portal was developed to provide an overview of these activities and to standardize the practices and terminology among laboratories. The Pharmacology Portal is a modern dynamic web database comprising all available analyses within therapeutic drug monitoring and testing for drugs of abuse in Norway. Content can be retrieved by using the search engine or by scrolling through substance lists. The core content is a substance registry updated by a national editorial board of experts within the field of clinical pharmacology. This ensures quality and consistency regarding substance terminologies and classification. All laboratories publish their own repertoires in a user-friendly workflow, adding laboratory-specific details to the core information in the substance registry. The user management system ensures that laboratories are restricted from editing content in the database core or in repertoires within other laboratory subpages. The portal is for nonprofit use, and has been fully funded by the Norwegian Medical Association, the Norwegian Society of Clinical Pharmacology, and the 8 largest pharmacologic institutions in Norway. The database server runs an open-source content management system that ensures flexibility with respect to further development projects, including the potential expansion of the Pharmacology Portal to other countries. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  14. Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J

    2014-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive...... to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability...

  15. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  16. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: Drug Discovery Targeting Allosteric Sites†

    Science.gov (United States)

    2015-01-01

    The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure–activity relationships, species differences, “molecular switches”), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship (LindsleyC. W.Adventures in allosteric drug discovery. Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013; The 2013 Portoghese Lectureship), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization. PMID:25180768

  17. PDTD: a web-accessible protein database for drug target identification

    Directory of Open Access Journals (Sweden)

    Gao Zhenting

    2008-02-01

    unique repository of drug targets. Integrated with TarFisDock, PDTD is a useful resource to identify binding proteins for active compounds or existing drugs. Its potential applications include in silico drug target identification, virtual screening, and the discovery of the secondary effects of an old drug (i.e. new pharmacological usage or an existing target (i.e. new pharmacological or toxic relevance, thus it may be a valuable platform for the pharmaceutical researchers. PDTD is available online at http://www.dddc.ac.cn/pdtd/.

  18. Interrupting the natural history of diabetes mellitus: lifestyle, pharmacological and surgical strategies targeting disease progression.

    Science.gov (United States)

    Khavandi, Kaivan; Brownrigg, Jack; Hankir, Mohammed; Sood, Harpreet; Younis, Naveed; Worth, Joy; Greenstein, Adam; Soran, Handrean; Wierzbicki, Anthony; Goldsmith, David J

    2014-01-01

    In recent decades we have seen a surge in the incidence of diabetes in industrialized nations; a threat which has now extended to the developing world. Type 2 diabetes is associated with significant microvascular and macrovascular disease, with considerable impact on morbidity and mortality. Recent evidence has cast uncertainty on the benefits of very tight glycaemic goals in these individuals. The natural history of disease follows an insidious course from disordered glucose metabolism in a pre-diabetic state, often with metabolic syndrome and obesity, before proceeding to diabetes mellitus. In the research setting, lifestyle, pharmacological and surgical intervention targeted against obesity and glycaemia has shown that metabolic disturbances can be halted and indeed regressed if introduced at an early stage of disease. In addition to traditional anti-diabetic medications such as the glinides, sulphonylureas and the glitazones, novel therapies manipulating the endocannabinoid system, neurotransmitters, intestinal absorption and gut hormones have shown dual benefit in weight loss and glycaemic control normalisation. Whilst these treatments will not and should not replace lifestyle change, they will act as invaluable adjuncts for weight loss and aid in normalising the metabolic profile of individuals at risk of diabetes. Utilizing novel therapies to prevent diabetes should be the focus of future research, with the aim of preventing the challenging microvascular and macrovascular complications, and ultimately cardiovascular death.

  19. Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets

    Directory of Open Access Journals (Sweden)

    Deepika Kanojia

    2017-11-01

    Full Text Available Abstract Background Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management. Methods Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial. Results Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model. Conclusions Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.

  20. Factor Analysis of Therapist-Identified Treatment Targets in Community-Based Children's Mental Health.

    Science.gov (United States)

    Love, Allison R; Okado, Izumi; Orimoto, Trina E; Mueller, Charles W

    2018-01-01

    The present study used exploratory and confirmatory factor analyses to identify underlying latent factors affecting variation in community therapists' endorsement of treatment targets. As part of a statewide practice management program, therapist completed monthly reports of treatment targets (up to 10 per month) for a sample of youth (n = 790) receiving intensive in-home therapy. Nearly 75 % of youth were diagnosed with multiple co-occurring disorders. Five factors emerged: Disinhibition, Societal Rules Evasion, Social Engagement Deficits, Emotional Distress, and Management of Biodevelopmental Outcomes. Using logistic regression, primary diagnosis predicted therapist selection of Disinhibition and Emotional Distress targets. Client age predicted endorsement of Societal Rules Evasion targets. Practice-to-research implications are discussed.

  1. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery.

    Science.gov (United States)

    Brunner, Nathan; de Jesus Perez, Vinicio A; Richter, Alice; Haddad, François; Denault, André; Rojas, Vanessa; Yuan, Ke; Orcholski, Mark; Liao, Xiaobo

    2014-03-01

    Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.

  2. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  3. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers?

    Science.gov (United States)

    Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Pérez-Capote, Kamil; Ferré, Sergi; Lluis, Carmen; Franco, Rafael; Canela, Enric I

    2009-11-01

    G protein-coupled receptors (GPCR) are targeted by many therapeutic drugs marketed to fight against a variety of diseases. Selection of novel lead compounds are based on pharmacological parameters obtained assuming that GPCR are monomers. However, many GPCR are expressed as dimers/oligomers. Therefore, drug development may consider GPCR as homo- and hetero-oligomers. A two-state dimer receptor model is now available to understand GPCR operation and to interpret data obtained from drugs interacting with dimers, and even from mixtures of monomers and dimers. Heteromers are distinct entities and therefore a given drug is expected to have different affinities and different efficacies depending on the heteromer. All these concepts would lead to broaden the therapeutic potential of drugs targeting GPCRs, including receptor heteromer-selective drugs with a lower incidence of side effects, or to identify novel pharmacological profiles using cell models expressing receptor heteromers.

  4. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    (-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  5. Targets of curcumin

    Science.gov (United States)

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  6. Common pitfalls in preclinical cancer target validation.

    Science.gov (United States)

    Kaelin, William G

    2017-07-01

    An alarming number of papers from laboratories nominating new cancer drug targets contain findings that cannot be reproduced by others or are simply not robust enough to justify drug discovery efforts. This problem probably has many causes, including an underappreciation of the danger of being misled by off-target effects when using pharmacological or genetic perturbants in complex biological assays. This danger is particularly acute when, as is often the case in cancer pharmacology, the biological phenotype being measured is a 'down' readout (such as decreased proliferation, decreased viability or decreased tumour growth) that could simply reflect a nonspecific loss of cellular fitness. These problems are compounded by multiple hypothesis testing, such as when candidate targets emerge from high-throughput screens that interrogate multiple targets in parallel, and by a publication and promotion system that preferentially rewards positive findings. In this Perspective, I outline some of the common pitfalls in preclinical cancer target identification and some potential approaches to mitigate them.

  7. [Application progress of proteomic in pharmacological study of Chinese medicinal formulae].

    Science.gov (United States)

    Liu, Yu-Qian; Zhan, Shu-Yu; Ruan, Yu-Er; Zuo, Zhi-Yan; Ji, Xiao-Ming; Wang, Shuai-Jie; Ding, Bao-Yue

    2017-10-01

    Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae. Copyright© by the Chinese Pharmaceutical Association.

  8. Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines.

    Science.gov (United States)

    Suckow, Arthur T; Briscoe, Celia P

    2017-01-01

    The identification of fatty acids as ligands for the G-protein coupled free fatty acid (FFA) receptor family over 10 years ago led to intensive chemistry efforts to find small-molecule ligands for this class of receptors. Identification of potent, selective modulators of the FFA receptors and their utility in medicine has proven challenging, in part due to their complex pharmacology. Nevertheless, ligands have been identified that are sufficient for exploring the therapeutic potential of this class of receptors in rodents and, in the case of FFA1, FFA2, FFA4, and GPR84, also in humans. Expression profiling, the phenotyping of FFA receptor knockout mice, and the results of studies exploring the effects of these ligands in rodents have uncovered a number of indications where engagement of one or a combination of FFA receptors might provide some clinical benefit in areas including diabetes, inflammatory bowel syndrome, Alzheimer's, pain, and cancer. In this chapter, we will review the clinical potential of modulating FFA receptors based on preclinical and in some cases clinical studies with synthetic ligands. In particular, key aspects and challenges associated with small-molecule ligand identification and FFA receptor pharmacology will be addressed with a view of the hurdles that need to be overcome to fully understand the potential of the receptors as therapeutic targets.

  9. The glutamate and the immune systems: new targets for the pharmacological treatment of OCD.

    Science.gov (United States)

    Marazziti, Donatella; Albert, Umberto; Mucci, Federico; Piccinni, Armando

    2017-11-08

    In the last decades the pharmacological treatment of obsessive-compulsive disorder (OCD) has been significantly promoted by the effectiveness of selective serotonin (5-HT) reuptake inhibitors (SSRIs) and the subsequent development of the 5-HT hypothesis of OCD. However, since a large majority of patients (between 40% and 60 %) do not respond to SSRIs or strategies based on the modulation of the 5-HT system, it is now essential to search for other possible therapeutic targets. The aim of this paper was to review current literature through a PubMed and Google Scholar search of novel hypotheses and related compounds for the treatment of OCD, with a special focus on the glutammate and the immune systems. The literature would indicate that glutamate, the main excitatory neurotransmitter, might play an important role in the pathophysiology of OCD. In addition, a series of clinical study would also support the potential efficacy of drugs modulating the glutamate system. The role of the immune system alterations in OCD in both children and adults needs to be more deeply elucidated. In children, it has been widely described a subtype of OCD resulting from infections driven by group A streptococcus β-hemolitic and belonging to the so-called "pediatric autoimmune neuropsychiatric disorders associated with streptococcus" (PANDAS). In adults, available findings are meager and controversial, although interesting. The glutamate and the immune systems represent two intriguing topics of research that hold promises of development of open novel treatment strategies in OCD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology.

    Science.gov (United States)

    Liao, Maoliang; Shang, Haihua; Li, Yazhuo; Li, Tian; Wang, Miao; Zheng, Yanan; Hou, Wenbin; Liu, Changxiao

    2018-06-01

    Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines. Copyright © 2018. Published by Elsevier GmbH.

  11. Randomised controlled trials of psychological & pharmacological treatments for body dysmorphic disorder: A systematic review.

    Science.gov (United States)

    Phillipou, Andrea; Rossell, Susan L; Wilding, Helen E; Castle, David J

    2016-11-30

    Treatment for body dysmorphic disorder (BDD) often involves a combination of psychological and pharmacological interventions. However, only a small number of randomised controlled trials (RCTs) have been undertaken examining the efficacy of different therapeutic interventions. The aim of this study was to systematically review the RCTs involving psychological and pharmacological interventions for the treatment of BDD. The literature was searched to June 2015, and studies were included if they were written in English, empirical research papers published in peer-review journals, specifically assessed BDD patients, and involved a RCT assessing BDD symptoms pre- and post-intervention. Nine studies were identified: six involving psychological and three involving pharmacological interventions. Cognitive behaviour therapy, metacognitive therapy and selective serotonin reuptake inhibitors were identified as treatments with potential benefit. The small number of RCTs and the heterogeneity of findings emphasises the need for more high quality RCTs assessing both psychological and pharmacological interventions for BDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. C3 rho-inhibitor for targeted pharmacological manipulation of osteoclast-like cells.

    Directory of Open Access Journals (Sweden)

    Andrea Tautzenberger

    Full Text Available The C3 toxins from Clostridium botulinum (C3bot and Clostridium limosum (C3lim as well as C3-derived fusion proteins are selectively taken up into the cytosol of monocytes/macrophages where the C3-catalyzed ADP-ribosylation of Rho results in inhibition of Rho-signalling and characteristic morphological changes. Since the fusion toxin C2IN-C3lim was efficiently taken up into and inhibited proliferation of murine macrophage-like RAW 264.7 cells, its effects on RAW 264.7-derived osteoclasts were investigated. C2IN-C3lim was taken up into differentiated osteoclasts and decreased their resorption activity. In undifferentiated RAW 264.7 cells, C2IN-C3lim-treatment significantly decreased their differentiation into osteoclasts as determined by counting the multi-nucleated, TRAP-positive cells. This inhibitory effect was concentration- and time-dependent and most efficient when C2IN-C3lim was applied in the early stage of osteoclast-formation. A single-dose application of C2IN-C3lim at day 0 and its subsequent removal at day 1 reduced the number of osteoclasts in a comparable manner while C2IN-C3lim-application at later time points did not reduce the number of osteoclasts to a comparable degree. Control experiments with an enzymatically inactive C3 protein revealed that the ADP-ribosylation of Rho was essential for the observed effects. In conclusion, the results indicate that Rho-activity is crucial during the early phase of osteoclast-differentiation. Other bone cell types such as pre-osteoblastic cells were not affected by C2IN-C3lim. Due to their cell-type selective and specific mode of action, C3 proteins and C3-fusions might be valuable tools for targeted pharmacological manipulation of osteoclast formation and activity, which could lead to development of novel therapeutic strategies against osteoclast-associated diseases.

  13. Non-pharmacological strategies to decrease anxiety in cardiac catheterization: integrative review

    Directory of Open Access Journals (Sweden)

    Natany da Costa Ferreira

    2015-12-01

    Full Text Available ABSTRACT Objective: to identify and review the literature on non-pharmacological strategies used for reducing anxiety in patients receiving cardiac catheterization. Method: this study was an integrative literature review. The research was conducted using the databases LILACS, SciELO, Medline (through BVS and PubMed and Scopus. Studies were analyzed according to their objective, method, instruments used for evaluating patients' anxiety, and the results obtained. Results: the most used strategy for reducing anxiety in patients receiving cardiac catheterization was music therapy. However, no study identifying the most appropriate time for this intervention (before, during and/or after the procedure was found. Other strategies identified in this review were educational videos, massage, and palm therapy. Conclusion: the results found suggest that anxiety can be reduced using non-pharmacological strategies.

  14. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    Science.gov (United States)

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  15. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of responder criteria for multicomponent non-pharmacological treatment in fibromyalgia.

    Science.gov (United States)

    Vervoort, Vera M; Vriezekolk, Johanna E; van den Ende, Cornelia H

    2017-01-01

    There is a need to identify individual treatment success in patients with fibromyalgia (FM) who received non-pharmacological treatment. The present study described responder criteria for multicomponent non-pharmacological treatment in FM, and estimated and compared their sensitivity and specificity. Candidate responder sets were 1) identified in literature; and 2) formulated by expert group consensus. All candidate responder sets were tested in a cohort of 129 patients with FM receiving multicomponent non-pharmacological treatment. We used two gold standards (both therapist's and patient's perspective), assessed at six months after the start of treatment. Seven responder sets were defined (three identified in literature and four formulated by expert group consensus), and comprised combinations of domains of 1) pain; 2) fatigue; 3) patient global assessment (PGA); 4) illness perceptions; 5) limitations in activities of daily living (ADL); and 6) sleep. The sensitivity and specificity of literature-based responder sets (n=3) ranged between 17%-99% and 15%-95% respectively, whereas the expert-based responder sets (n=4) performed slightly better with regard to sensitivity (range 41%-81%) and specificity (range 50%-96%). Of the literature-based responder sets the OMERACT-OARSI responder set with patient's gold standard performed best (sensitivity 63%, specificity 75% and ROC area = 0.69). Overall, the expert-based responder set comprising the domains illness perceptions and limitations in ADL with patient's gold standard performed best (sensitivity 47%, specificity 96% and ROC area = 0.71). We defined sets of responder criteria for multicomponent non-pharmacological treatment in fibromyalgia. Further research should focus on the validation of those sets with acceptable performance.

  17. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology.

    Directory of Open Access Journals (Sweden)

    Haiyu Xu

    Full Text Available Traditional Chinese medicine (TCM is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME, and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment.

  18. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  19. Exploring the Therapeutic Mechanism of Desmodium styracifolium on Oxalate Crystal-Induced Kidney Injuries Using Comprehensive Approaches Based on Proteomics and Network Pharmacology

    Directory of Open Access Journals (Sweden)

    Jiebin Hou

    2018-06-01

    Full Text Available Purpose: As a Chinese medicinal herb, Desmodium styracifolium (Osb. Merr (DS has been applied clinically to alleviate crystal-induced kidney injuries, but its effective components and their specific mechanisms still need further exploration. This research first combined the methods of network pharmacology and proteomics to explore the therapeutic protein targets of DS on oxalate crystal-induced kidney injuries to provide a reference for relevant clinical use.Methods: Oxalate-induced kidney injury mouse, rat, and HK-2 cell models were established. Proteins differentially expressed between the oxalate and control groups were respectively screened using iTRAQ combined with MALDI-TOF-MS. The common differential proteins of the three models were further analyzed by molecular docking with DS compounds to acquire differential targets. The inverse docking targets of DS were predicted through the platform of PharmMapper. The protein–protein interaction (PPI relationship between the inverse docking targets and the differential proteins was established by STRING. Potential targets were further validated by western blot based on a mouse model with DS treatment. The effects of constituent compounds, including luteolin, apigenin, and genistein, were investigated based on an oxalate-stimulated HK-2 cell model.Results: Thirty-six common differentially expressed proteins were identified by proteomic analysis. According to previous research, the 3D structures of 15 major constituents of DS were acquired. Nineteen differential targets, including cathepsin D (CTSD, were found using molecular docking, and the component-differential target network was established. Inverse-docking targets including p38 MAPK and CDK-2 were found, and the network of component-reverse docking target was established. Through PPI analysis, 17 inverse-docking targets were linked to differential proteins. The combined network of component-inverse docking target-differential proteins was

  20. Omen: identifying potential spear-phishing targets before the email is sent.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Jeremy Daniel.

    2013-07-01

    We present the results of a two year project focused on a common social engineering attack method called "spear phishing". In a spear phishing attack, the user receives an email with information specifically focused on the user. This email contains either a malware-laced attachment or a link to download the malware that has been disguised as a useful program. Spear phishing attacks have been one of the most effective avenues for attackers to gain initial entry into a target network. This project focused on a proactive approach to spear phishing. To create an effective, user-specific spear phishing email, the attacker must research the intended recipient. We believe that much of the information used by the attacker is provided by the target organization's own external website. Thus when researching potential targets, the attacker leaves signs of his research in the webserver's logs. We created tools and visualizations to improve cybersecurity analysts' abilities to quickly understand a visitor's visit patterns and interests. Given these suspicious visitors and log-parsing tools, analysts can more quickly identify truly suspicious visitors, search for potential spear-phishing targeted users, and improve security around those users before the spear phishing email is sent.

  1. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  2. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation.

    Science.gov (United States)

    Sriram, Chandra Shekhar; Jangra, Ashok; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Bezbaruah, Babul Kumar

    2014-10-01

    The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Data-intensive drug development in the information age: applications of Systems Biology/Pharmacology/Toxicology.

    Science.gov (United States)

    Kiyosawa, Naoki; Manabe, Sunao

    2016-01-01

    Pharmaceutical companies continuously face challenges to deliver new drugs with true medical value. R&D productivity of drug development projects depends on 1) the value of the drug concept and 2) data and in-depth knowledge that are used rationally to evaluate the drug concept's validity. A model-based data-intensive drug development approach is a key competitive factor used by innovative pharmaceutical companies to reduce information bias and rationally demonstrate the value of drug concepts. Owing to the accumulation of publicly available biomedical information, our understanding of the pathophysiological mechanisms of diseases has developed considerably; it is the basis for identifying the right drug target and creating a drug concept with true medical value. Our understanding of the pathophysiological mechanisms of disease animal models can also be improved; it can thus support rational extrapolation of animal experiment results to clinical settings. The Systems Biology approach, which leverages publicly available transcriptome data, is useful for these purposes. Furthermore, applying Systems Pharmacology enables dynamic simulation of drug responses, from which key research questions to be addressed in the subsequent studies can be adequately informed. Application of Systems Biology/Pharmacology to toxicology research, namely Systems Toxicology, should considerably improve the predictability of drug-induced toxicities in clinical situations that are difficult to predict from conventional preclinical toxicology studies. Systems Biology/Pharmacology/Toxicology models can be continuously improved using iterative learn-confirm processes throughout preclinical and clinical drug discovery and development processes. Successful implementation of data-intensive drug development approaches requires cultivation of an adequate R&D culture to appreciate this approach.

  4. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a in Mice

    Directory of Open Access Journals (Sweden)

    Rosie Z Yu

    2016-01-01

    Full Text Available Triantennary N-acetyl galactosamine (GalNAc3-conjugated antisense oligonucleotides (ASOs have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2′-O-(2-methoxyethyl-modified ASO conjugated with GalNAc3 (ISIS 681257 together with its unmodified congener (ISIS 494372 targeting human apolipoprotein (a (apo(a, were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a mRNA and plasma apo(a protein levels. Following subcutaneous (SC dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7–8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound, which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies.

  5. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    Science.gov (United States)

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  6. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications.

    Science.gov (United States)

    Capece, Bettencourt P S; Virkel, Guillermo L; Lanusse, Carlos E

    2009-09-01

    Albendazole and fenbendazole are methylcarbamate benzimidazole anthelmintics extensively used to control gastrointestinal parasites in domestic animals. These parent compounds are metabolised to albendazole sulfoxide and fenbendazole sulfoxide (oxfendazole), respectively. Both sulfoxide derivatives are anthelmintically active and are manufactured for use in animals. They metabolites have an asymmetric centre on their chemical structures and two enantiomeric forms of each sulfoxide have been identified in plasma, tissues of parasite location and within target helminths. Both the flavin-monooxygenase and cytochrome P450 systems are involved in the enantioselective biotransformation of these anthelmintic compounds in ruminant species. A relevant progress on the understanding of the relationship among enantioselective metabolism and systemic availability of each enantiomeric form has been achieved. This article reviews the current knowledge on the pharmacological implications of the enantiomeric behaviour of albendazole sulfoxide and oxfendazole in domestic animals.

  7. Only connect: the merger of BMC Pharmacology and BMC Clinical Pharmacology.

    Science.gov (United States)

    Moylan, Elizabeth C; Morrey, Christopher; Appleford-Cook, Joanne M

    2012-08-13

    This editorial celebrates the launch of BMC Pharmacology and Toxicology within the BMC series of journals published by BioMed Central. The scope of the journal is interdisciplinary encompassing toxicology, experimental and clinical pharmacology including clinical trials. In this editorial we discuss the origins of this new journal and the ethos and policies under which it will operate.

  8. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  9. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

    Directory of Open Access Journals (Sweden)

    Lihua J Zhu

    Full Text Available CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General

  10. Non-adherence to pharmacological treatment in schizophrenia and schizophrenia spectrum disorders

    DEFF Research Database (Denmark)

    Ljungdalh, P. M.

    2017-01-01

    Background and objectives The primary treatment for schizophrenia and schizophrenia-spectrum disorders is antipsychotic medication. One of the many public health challenges in mental illness, is to identify contributing factors to non-adherence to pharmacological treatment. The objective...... of this study was to perform an updated systematic review of risk factors for non-adherence to pharmacological treatment in schizophrenia in a European and American context. Methods The study was a systematic literature review of studies that included at least two measurements of pharmacological adherence...... of illness, alcohol or drug abuse and unspecified younger age. Conclusions The findings in this systematic literature review are consistent with previous reviews on non-adherence and schizophrenia. It stresses the methodological challenges in psychiatric adherence research and establishes the need for more...

  11. The targets of curcumin.

    Science.gov (United States)

    Zhou, Hongyu; Beevers, Christopher S; Huang, Shile

    2011-03-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.

  12. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  13. Drug repurposing: translational pharmacology, chemistry, computers and the clinic.

    Science.gov (United States)

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2013-01-01

    The process of discovering a pharmacological compound that elicits a desired clinical effect with minimal side effects is a challenge. Prior to the advent of high-performance computing and large-scale screening technologies, drug discovery was largely a serendipitous endeavor, as in the case of thalidomide for erythema nodosum leprosum or cancer drugs in general derived from flora located in far-reaching geographic locations. More recently, de novo drug discovery has become a more rationalized process where drug-target-effect hypotheses are formulated on the basis of already known compounds/protein targets and their structures. Although this approach is hypothesis-driven, the actual success has been very low, contributing to the soaring costs of research and development as well as the diminished pharmaceutical pipeline in the United States. In this review, we discuss the evolution in computational pharmacology as the next generation of successful drug discovery and implementation in the clinic where high-performance computing (HPC) is used to generate and validate drug-target-effect hypotheses completely in silico. The use of HPC would decrease development time and errors while increasing productivity prior to in vitro, animal and human testing. We highlight approaches in chemoinformatics, bioinformatics as well as network biopharmacology to illustrate potential avenues from which to design clinically efficacious drugs. We further discuss the implications of combining these approaches into an integrative methodology for high-accuracy computational predictions within the context of drug repositioning for the efficient streamlining of currently approved drugs back into clinical trials for possible new indications.

  14. Psychosocial and pharmacological management of pain in pediatric sickle cell disease.

    Science.gov (United States)

    Hildenbrand, Aimee K; Nicholls, Elizabeth G; Daly, Brian P; Marsac, Meghan L; Tarazi, Reem; Deepti, Raybagkar

    2014-03-01

    For children with sickle cell disease (SCD), pain is associated with significant current and future morbidity and mortality. Unfortunately, few evidence-based guidelines exist for the management of pain episodes in children with SCD. To inform empirically based treatment strategies for pain management in pediatric SCD, this review integrates and evaluates the extant literature on psychosocial and pharmacological approaches to the management of pain. Findings reveal a paucity of rigorous investigations of psychosocial and pharmacological pain management interventions in children with SCD. Psychosocial interventions included were primarily cognitive-behavioral in nature, whereas pharmacological approaches targeted non-opioid analgesics (ie, nonsteroidal anti-inflammatory drugs and corticosteroids) and opioid medications (ie, morphine and oxycodone). However, to date there is not a "gold standard" for pain management among children with SCD. Because psychosocial and physiological processes each play a role in the etiology and experience of pain, effective pain management requires multidimensional, comprehensive treatment approaches. Considering the significant impact of pain on functional outcomes and quality of life among children with SCD, additional clinical trials are warranted to ensure that interventions are safe and efficacious.

  15. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  16. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.

    Science.gov (United States)

    Manguso, Robert T; Pope, Hans W; Zimmer, Margaret D; Brown, Flavian D; Yates, Kathleen B; Miller, Brian C; Collins, Natalie B; Bi, Kevin; LaFleur, Martin W; Juneja, Vikram R; Weiss, Sarah A; Lo, Jennifer; Fisher, David E; Miao, Diana; Van Allen, Eliezer; Root, David E; Sharpe, Arlene H; Doench, John G; Haining, W Nicholas

    2017-07-27

    Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.

  17. Kampo medicine: Evaluation of the pharmacological activity of 121 herbal drugs on GABA(A and 5 HT3A receptors

    Directory of Open Access Journals (Sweden)

    Katrin M Hoffmann

    2016-07-01

    Full Text Available Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM. During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and its constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, we performed a broad screening of Kampo remedies to look for pharmacologically relevant 5 HT3A and GABA(A receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness or insomnia. Therefore, we analyzed the pharmacological effects of 121 herbal drugs from Kampo medicine as ethanol tinctures on heterologously expressed 5 HT3A and GABA(A receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix and Leonurus japonicus (herba were the most effective inhibitory compounds on the 5 HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5 HT3A receptor antagonist. We also identified several potentiating herbs (e.g., Magnolia officinalis (cortex, Syzygium aromaticum (flos and Panax ginseng (radix for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects, for instance Salvia miltiorrhiza (radix were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing a better understanding of their physiological effects and clinical applications.

  18. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities.

    Science.gov (United States)

    Venkatakrishnan, K; Friberg, L E; Ouellet, D; Mettetal, J T; Stein, A; Trocóniz, I F; Bruno, R; Mehrotra, N; Gobburu, J; Mould, D R

    2015-01-01

    Despite advances in biomedical research that have deepened our understanding of cancer hallmarks, resulting in the discovery and development of targeted therapies, the success rates of oncology drug development remain low. Opportunities remain for objective dose selection informed by exposure-response understanding to optimize the benefit-risk balance of novel therapies for cancer patients. This review article discusses the principles and applications of modeling and simulation approaches across the lifecycle of development of oncology therapeutics. Illustrative examples are used to convey the value gained from integration of quantitative clinical pharmacology strategies from the preclinical-translational phase through confirmatory clinical evaluation of efficacy and safety. © 2014 American Society for Clinical Pharmacology and Therapeutics.

  19. A behavioral paradigm to evaluate hippocampal performance in aged rodents for pharmacological and genetic target validation.

    Directory of Open Access Journals (Sweden)

    Hilary Gerstein

    Full Text Available Aged-related cognitive ability is highly variable, ranging from unimpaired to severe impairments. The Morris water maze (a reliable tool for assessing memory has been used to distinguish aged rodents that are superior learners from those that are learning impaired. This task, however, is not practical for pre- and post-pharmacological treatment, as the memory of the task is long lasting. In contrast, the object location memory task, also a spatial learning paradigm, results in a less robust memory that decays quickly. We demonstrate for the first time how these two paradigms can be used together to assess hippocampal cognitive impairments before and after pharmacological or genetic manipulations in rodents. Rats were first segregated into superior learning and learning impaired groups using the object location memory task, and their performance was correlated with future outcome on this task and on the Morris water maze. This method provides a tool to evaluate the effect of treatments on cognitive impairment associated with aging and neurodegenerative disorders.

  20. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    Science.gov (United States)

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization

  1. Pharmacological treatment of diabetic neuropathic pain.

    Science.gov (United States)

    Smith, Howard S; Argoff, Charles E

    2011-03-26

    Neuropathic pain continues to be a difficult and challenging clinical issue to deal with effectively. Painful diabetic polyneuropathy is a complex pain condition that occurs with reasonable frequency in the population and it may be extremely difficult for clinicians to provide patients with effective analgesia. Chronic neuropathic pain may occur in approximately one of every four diabetic patients. The pain may be described as burning or a deep-seated ache with sporadic paroxysms of lancinating painful exacerbations. The pain is often constant, moderate to severe in intensity, usually primarily involves the feet and generally tends to worsen at night. Treatment may be multimodal but largely involves pharmacological approaches. Pharmacological therapeutic options include antidepressants (tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors), α2δ ligands and topical (5%) lidocaine patch. Other agents may be different antiepileptic drugs (carbamazepine, lamotrigine, topiramate), topical capsaicin, tramadol and other opioids. Progress continues with respect to understanding various mechanisms that may contribute to painful diabetic neuropathy. Agents that may hold some promise include neurotrophic factors, growth factors, immunomodulators, gene therapy and poly (adenosine diphosphate-ribose) polymerase inhibitors. It is hoped that in the future clinicians will be able to assess patient pathophysiology, which may help them to match optimal therapeutic agents to target individual patient aberrant mechanisms.

  2. Botany, ethnomedicines, phytochemistry and pharmacology of Himalayan paeony (Paeonia emodi Royle.).

    Science.gov (United States)

    Ahmad, Mushtaq; Malik, Khafsa; Tariq, Akash; Zhang, Guolin; Yaseen, Ghulam; Rashid, Neelam; Sultana, Shazia; Zafar, Muhammad; Ullah, Kifayat; Khan, Muhammad Pukhtoon Zada

    2018-06-28

    Himalayan paeony (Paeonia emodi Royle.) is an important species used to treat various diseases. This study aimed to compile the detailed traditional medicinal uses, phytochemistry, pharmacology and toxicological investigations on P. emodi. This study also highlights taxonomic validity, quality of experimental designs and shortcomings in previously reported information on Himalayan paeony. The data was extracted from unpublished theses (Pakistan, China, India and Nepal), and different published research articles confined to pharmacology, phytochemistry and antimicrobial activities using different databases through specific keywords. The relevant information regarding medicinal uses, taxonomic/common names, part used, collection and identification source, authentication, voucher specimen number, plant extracts and their characterization, isolation and identification of phytochemicals, methods of study in silico, in vivo or in vitro, model organism used, dose and duration, minimal active concentration, zone of inhibition (antimicrobial study), bioactive compound(s), mechanism of action on single or multiple targets, and toxicological information. P. emodi is reported for diverse medicinal uses with pharmacological properties like antioxidant, nephroprotective, lipoxygenase inhibitory, cognition and oxidative stress release, cytotoxic, anti-inflammatory, antiepileptic, anticonvulsant, haemaglutination, alpha-chymotrypsin inhibitory, hepatoprotective, hepatic chromes and pharmacokinetics of carbamazepine expression, β-glucuronidase inhibitory, spasmolytic and spasmogenic, and airway relaxant. Data confined to its taxonomic validity, shows 10% studies with correct taxonomic name while 90% studies with incorrect taxonomic, pharmacopeial and common names. The literature reviewed, shows lack of collection source (11 reports), without proper source of identification (15 reports), 33 studies without voucher specimen number, 26 reports lack information on authentic herbarium

  3. Metabolites of alectinib in human: their identification and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Mika Sato-Nakai

    2017-07-01

    Full Text Available Two metabolites (M4 and M1b in plasma and four metabolites (M4, M6, M1a and M1b in faeces were detected through the human ADME study following a single oral administration of [14C]alectinib, a small-molecule anaplastic lymphoma kinase inhibitor, to healthy subjects. In the present study, M1a and M1b, which chemical structures had not been identified prior to the human ADME study, were identified as isomers of a carboxylate metabolite oxidatively cleaved at the morpholine ring. In faeces, M4 and M1b were the main metabolites, which shows that the biotransformation to M4 and M1b represents two main metabolic pathways for alectinib. In plasma, M4 was a major metabolite and M1b was a minor metabolite. The contribution to in vivo pharmacological activity of these circulating metabolites was assessed from their in vitro pharmacological activity and plasma protein binding. M4 had a similar cancer cell growth inhibitory activity and plasma protein binding to that of alectinib, suggesting its contribution to the antitumor activity of alectinib, whereas the pharmacological activity of M1b was insignificant.

  4. Alternative pharmacological treatment options for agitation in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2015-11-01

    Full Text Available In patients with dementia and Alzheimer’s disease (AD, treatment of neuropsychiatric symptoms (NPS is a major concern in the management of these devastating diseases. Among NPS in AD, agitation and aggression are common with earlier institutionalization, increased morbidity and mortality, and greater caregiver burden. Pharmacological treatments for AD-related agitation, specifically off-label use of atypical antipsychotics, showed only modest improvements, with increased side-effect burden and risk of mortality. Non-pharmacological treatment approaches have become the preferred firstline option. However, when such treatments fail, pharmacological options are often used. Therefore, there is an urgent need to identify effective and safe pharmacological treatments for agitation/aggression in AD and dementia. Unfortunately, progresses have been slow, with a small number of methodologically heterogeneous randomized controlled trials (RCTs, with disappointing results. However, evidence coming from recently completed RCTs on novel or repositioned drugs (mibampator, dextromethorphan/ quinidine, cannabinoids, and citalopram showed some promise in treating agitation in AD, but still with safety concerns. Further evidence will come from ongoing Phase II and III trials on promising novel drugs for treating these distressing symptoms in patients with AD and dementia.

  5. Fuzzy pharmacology: theory and applications.

    Science.gov (United States)

    Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan

    2002-09-01

    Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.

  6. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites

    Directory of Open Access Journals (Sweden)

    Thomas J Cradick

    2014-01-01

    Full Text Available Precise genome editing using engineered nucleases can significantly facilitate biological studies and disease treatment. In particular, clustered regularly interspaced short palindromic repeats (CRISPR with CRISPR-associated (Cas proteins are a potentially powerful tool for modifying a genome by targeted cleavage of DNA sequences complementary to designed guide strand RNAs. Although CRISPR/Cas systems can have on-target cleavage rates close to the transfection rates, they may also have relatively high off-target cleavage at similar genomic sites that contain one or more base pair mismatches, and insertions or deletions relative to the guide strand. We have developed a bioinformatics-based tool, COSMID (CRISPR Off-target Sites with Mismatches, Insertions, and Deletions that searches genomes for potential off-target sites (http://crispr.bme.gatech.edu. Based on the user-supplied guide strand and input parameters, COSMID identifies potential off-target sites with the specified number of mismatched bases and insertions or deletions when compared with the guide strand. For each site, amplification primers optimal for the chosen application are also given as output. This ranked-list of potential off-target sites assists the choice and evaluation of intended target sites, thus helping the design of CRISPR/Cas systems with minimal off-target effects, as well as the identification and quantification of CRISPR/Cas induced off-target cleavage in cells.

  7. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  8. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    Science.gov (United States)

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p  13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evidence for tankyrases as antineoplastic targets in lung cancer

    International Nuclear Information System (INIS)

    Busch, Alexander M; Johnson, Kevin C; Stan, Radu V; Sanglikar, Aarti; Ahmed, Yashi; Dmitrovsky, Ethan; Freemantle, Sarah J

    2013-01-01

    New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex. This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls. Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models. Findings reported here uncovered deregulation of specific components of the Wnt pathway in both

  10. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  11. The pharmacology of regenerative medicine.

    Science.gov (United States)

    Christ, George J; Saul, Justin M; Furth, Mark E; Andersson, Karl-Erik

    2013-07-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.

  12. Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery

    Science.gov (United States)

    Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.

    1993-04-01

    Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.

  13. HIV Persistence in Gut-Associated Lymphoid Tissues: Pharmacological Challenges and Opportunities.

    Science.gov (United States)

    Thompson, Corbin G; Gay, Cynthia L; Kashuba, Angela D M

    2017-06-01

    An increasing amount of evidence suggests that HIV replication persists in gut-associated lymphoid tissues (GALT), despite treatment with combination antiretroviral therapy (cART). Residual replication in this compartment may propagate infection at other sites in the body and contribute to sustained immune dysregulation and delayed immune recovery. Therefore, it is important to focus efforts on eliminating residual replication at this site. There are several challenges to accomplishing this goal, including low antiretroviral (ARV) exposure at specific tissue locations within GALT, which might be overcome by using the tools of clinical pharmacology. Here, we summarize the evidence for GALT as a site of residual HIV replication, highlight the consequences of persistent infection in tissues, identify current pharmacologic knowledge of drug exposure in GALT, define the challenges that hinder eradication from this site, and propose several avenues for pharmacologic intervention.

  14. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase.

    Science.gov (United States)

    Liu, Xiao; Pichulik, Tica; Wolz, Olaf-Oliver; Dang, Truong-Minh; Stutz, Andrea; Dillen, Carly; Delmiro Garcia, Magno; Kraus, Helene; Dickhöfer, Sabine; Daiber, Ellen; Münzenmayer, Lisa; Wahl, Silke; Rieber, Nikolaus; Kümmerle-Deschner, Jasmin; Yazdi, Amir; Franz-Wachtel, Mirita; Macek, Boris; Radsak, Markus; Vogel, Sebastian; Schulte, Berit; Walz, Juliane Sarah; Hartl, Dominik; Latz, Eicke; Stilgenbauer, Stephan; Grimbacher, Bodo; Miller, Lloyd; Brunner, Cornelia; Wolz, Christiane; Weber, Alexander N R

    2017-10-01

    The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1β processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1β release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1β processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK. Copyright © 2017 American Academy of Allergy

  15. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  16. Using Copy Number Alterations to Identify New Therapeutic Targets for Bladder Carcinoma

    Directory of Open Access Journals (Sweden)

    Donatella Conconi

    2016-02-01

    Full Text Available Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs and muscle-invasive bladder cancers (MIBCs. MIBCs have a poor outcome with a common progression to metastasis. Despite improvements in knowledge, treatment has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of the limitations of current therapeutic options, the greater challenge will be to identify biomarkers for clinical application. For this reason, we compared our array comparative genomic hybridization (array-CGH results with those reported in literature for invasive bladder tumors and, in particular, we focused on the evaluation of copy number alterations (CNAs present in biopsies and retained in the corresponding cancer stem cell (CSC subpopulations that should be the main target of therapy. According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results provide precious advice for further study on bladder therapy; however, the clinical importance of these results should be explored.

  17. The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Taylor, Johanna; Stubbs, Brendon; Hewitt, Catherine; Ajjan, Ramzi A.; Gilbody, Simon; Holt, Richard I. G.; Hughes, Tom; Kellar, Ian; Mahmoodi, Neda; Smith, Robert D.; Wright, Judy M.; Siddiqi, Najma

    2017-01-01

    People with severe mental illness (SMI) have reduced life expectancy compared with the general population, which can be explained partly by their increased risk of diabetes. We conducted a meta-analysis to determine the clinical effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in people with SMI (PROSPERO registration: CRD42015015558). A systematic literature search was performed on 30/10/2015 to identify randomised controlled trials (RCTs) in adults with SMI, with or without a diagnosis of diabetes that measured fasting blood glucose or glycated haemoglobin (HbA1c). Screening and data extraction were carried out independently by two reviewers. We used random effects meta-analysis to estimate effectiveness, and subgroup analysis and univariate meta-regression to explore heterogeneity. The Cochrane Collaboration’s tool was used to assess risk of bias. We found 54 eligible RCTs in 4,392 adults (40 pharmacological, 13 behavioural, one mixed intervention). Data for meta-analysis were available from 48 RCTs (n = 4052). Both pharmacological (mean difference (MD), -0.11mmol/L; 95% confidence interval (CI), [-0.19, -0.02], p = 0.02, n = 2536) and behavioural interventions (MD, -0.28mmol//L; 95% CI, [-0.43, -0.12], pfasting glucose, but not HbA1c (pharmacological MD, -0.03%; 95% CI, [-0.12, 0.06], p = 0.52, n = 1515; behavioural MD, 0.18%; 95% CI, [-0.07, 0.42], p = 0.16, n = 140) compared with usual care or placebo. In subgroup analysis of pharmacological interventions, metformin and antipsychotic switching strategies improved HbA1c. Behavioural interventions of longer duration and those including repeated physical activity had greater effects on fasting glucose than those without these characteristics. Baseline levels of fasting glucose explained some of the heterogeneity in behavioural interventions but not in pharmacological interventions. Although the strength of the evidence is limited by inadequate trial design

  18. New approaches in analyzing the pharmacological properties of herbal extracts.

    Science.gov (United States)

    Hamburger, Matthias

    2007-01-01

    Herbal extracts are widely used and accepted in the population. The pharmacological characterization of such products meets some specific challenges, given the chemical complexity of the active ingredient. An overview is given on modern methods and approaches that can be used for that purpose. In particular, HPLC-based activity profiling is discussed as a means to identify pharmacologically active compounds in an extract, and expression profiling is described as a means for global assessment of effects exerted by multi-component mixtures such as extracts. These methods are illustrated with selected axamples from our labs, including woad (Isatis tinctoria), the traditional Chinese herb Danshen (Salvia miltiorrhiza) and black cohosh (Cimicifuga racemosa).

  19. A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2012-05-01

    Full Text Available Abstract Background The efficacy of chemotherapy regimens in breast cancer patients is variable and unpredictable. Whether individual patients either achieve long-term remission or suffer recurrence after therapy may be dictated by intrinsic properties of their breast tumors including genetic lesions and consequent aberrant transcriptional programs. Global gene expression profiling provides a powerful tool to identify such tumor-intrinsic transcriptional programs, whose analyses provide insight into the underlying biology of individual patient tumors. For example, multi-gene expression signatures have been identified that can predict the likelihood of disease reccurrence, and thus guide patient prognosis. Whereas such prognostic signatures are being introduced in the clinical setting, similar signatures that predict sensitivity or resistance to chemotherapy are not currently clinically available. Methods We used gene expression profiling to identify genes that were co-expressed with genes whose transcripts encode the protein targets of commonly used chemotherapeutic agents. Results Here, we present target based expression indices that predict breast tumor response to anthracycline and taxane based chemotherapy. Indeed, these signatures were independently predictive of chemotherapy response after adjusting for standard clinic-pathological variables such as age, grade, and estrogen receptor status in a cohort of 488 breast cancer patients treated with adriamycin and taxotere/taxol. Conclusions Importantly, our findings suggest the practicality of developing target based indices that predict response to therapeutics, as well as highlight the possibility of using gene signatures to guide the use of chemotherapy during treatment of breast cancer patients.

  20. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.

    Science.gov (United States)

    Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří

    2015-07-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Evolving Knowledge in Pharmacologic Treatments of Age-Related Macular Degeneration.

    Science.gov (United States)

    Soubrane Daguet, Gisèle; Risard-Gasiorowski, Sarah; Massamba, Nathalie

    2016-01-01

    Modern retinal drug therapy is a result of the recent challenges and breakthroughs in chemistry, physics, genetics, cell biology and biotechnologies. Specific pharmaceutical and pharmacokinetic characteristics of a drug are of major importance and contribute to its ability to penetrate targeted ocular tissues in order to result in effective therapeutic concentrations. In addition, the drugs should maintain a prolonged time of activity and be safe with minimal local and systemic toxicity. The transporter vehicle or drug delivery system is crucial in order to enhance ocular tissue penetration and establish controlled drug release. Administration methods should be local, thereby reducing systemic side effects, and, ideally, treatment should be noninvasive. Within the group of so-called classic therapies, the use of pharmacologic treatments has become widespread for most severe retinal diseases. Thereby, ocular therapy of diseases like exudative age-related macular degeneration has improved markedly. Moreover, new metabolic pathways have been identified, new molecules have emerged, new synthesis technologies have been discovered, and new formulae conceived. These developments have opened new avenues for limiting disease progression. © 2016 S. Karger AG, Basel.

  2. Transorbital target localization in the porcine model

    Science.gov (United States)

    DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.

    2013-03-01

    Current pharmacological therapies for the treatment of chronic optic neuropathies such as glaucoma are often inadequate due to their inability to directly affect the optic nerve and prevent neuron death. While drugs that target the neurons have been developed, existing methods of administration are not capable of delivering an effective dose of medication along the entire length of the nerve. We have developed an image-guided system that utilizes a magnetically tracked flexible endoscope to navigate to the back of the eye and administer therapy directly to the optic nerve. We demonstrate the capabilities of this system with a series of targeted surgical interventions in the orbits of live pigs. Target objects consisted of NMR microspherical bulbs with a volume of 18 μL filled with either water or diluted gadolinium-based contrast, and prepared with either the presence or absence of a visible coloring agent. A total of 6 pigs were placed under general anesthesia and two microspheres of differing color and contrast content were blindly implanted in the fat tissue of each orbit. The pigs were scanned with T1-weighted MRI, image volumes were registered, and the microsphere containing gadolinium contrast was designated as the target. The surgeon was required to navigate the flexible endoscope to the target and identify it by color. For the last three pigs, a 2D/3D registration was performed such that the target's coordinates in the image volume was noted and its location on the video stream was displayed with a crosshair to aid in navigation. The surgeon was able to correctly identify the target by color, with an average intervention time of 20 minutes for the first three pigs and 3 minutes for the last three.

  3. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  4. Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation

    Science.gov (United States)

    Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791

  5. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia

    Science.gov (United States)

    Wen, Qiang; Goldenson, Benjamin; Silver, Serena J.; Schenone, Monica; Dancik, Vladimir; Huang, Zan; Wang, Ling-Zhi; Lewis, Timothy; An, W. Frank; Li, Xiaoyu; Bray, Mark-Anthony; Thiollier, Clarisse; Diebold, Lauren; Gilles, Laure; Vokes, Martha S.; Moore, Christopher B.; Bliss-Moreau, Meghan; VerPlank, Lynn; Tolliday, Nicola J.; Mishra, Rama; Vemula, Sasidhar; Shi, Jianjian; Wei, Lei; Kapur, Reuben; Lopez, Cécile K.; Gerby, Bastien; Ballerini, Paola; Pflumio, Francoise; Gilliland, D. Gary; Goldberg, Liat; Birger, Yehudit; Izraeli, Shai; Gamis, Alan S.; Smith, Franklin O.; Woods, William G.; Taub, Jeffrey; Scherer, Christina A.; Bradner, James; Goh, Boon-Cher; Mercher, Thomas; Carpenter, Anne E.; Gould, Robert J.; Clemons, Paul A.; Carr, Steven A.; Root, David E.; Schreiber, Stuart L.; Stern, Andrew M.; Crispino, John D.

    2012-01-01

    Summary The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. We found that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. A broadly applicable, highly integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora A kinase (AURKA), which has not been studied extensively in megakaryocytes. Moreover, we discovered that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in AMKL blasts and displayed potent anti-AMKL activity in vivo. This research provides the rationale to support clinical trials of MLN8237 and other inducers of polyploidization in AMKL. Finally, we have identified five networks of kinases that regulate the switch to polyploidy. PMID:22863010

  6. Local analgesia in paediatric dentistry: a systematic review of techniques and pharmacologic agents.

    Science.gov (United States)

    Klingberg, G; Ridell, K; Brogårdh-Roth, S; Vall, M; Berlin, H

    2017-10-01

    To evaluate the evidence supporting effects and adverse effects of local analgesia using different pharmacological agents and injection techniques during dental treatment in children and adolescents aged 3-19 years. A systematic literature search of databases including PubMed, Cochrane, and Scopus was conducted in November 2016. The PRISMA-statement was followed. Two review authors independently assessed the selected randomised control trials for risk of bias and quality. 725 scientific papers were identified. 89 papers were identified to be read in full text of which 80 were excluded. Finally, 9 papers were evaluated for quality and risk of bias. Many of the included papers had methodological shortcomings affecting the possibility to draw conclusions. Information about ethical clearance and consent were missing in some of the included papers. No alarming adverse effects were identified. One study was assessed as having low risk of bias. This reported inferior alveolar nerve block to be more effective than buccal infiltration for dental treatment of mandibular molars, while no differences were found regarding pharmacological agents. At present, there is insufficient evidence in support of any pharmacologic agent or injection technique as being superior compared to others. There is a need for more rigorous studies which also handle the ethical issues of including children in potentially painful studies.

  7. [Study on pharmacologic action characteristics of traditional Chinese medicines distributed along liver meridian based on medicinal properties combinations].

    Science.gov (United States)

    Guo, Hong-Ling; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang

    2014-07-01

    To establish a characterization system of traditional Chinese medicinal properties in line with modern scientific cognition regularity, in order to reveal properties of traditional Chinese medicines distributed along liver meridian and relations of effects of medicinal properties. By collecting data about traditional Chinese medicinal properties recorded in the Pharmacopoeia of the People's Republic of China (2005 Edition), literature and data about pharmacological effects of traditional Chinese medicines recorded in the Chinese Materia Medica, by using the method of association rules, the authors dug pharmacological effect rules corresponds to relevant medicinal property combinations, with the medicinal property combination of traditional Chinese medicines distributed along liver meridian as the target. It was found that either obvious different pharmacological effects or identical pharmacological characteristics existed in traditional Chinese medicines distributed along liver meridian. With the aim to explore the correlations between traditional Chinese medicine medicinal properties and pharmacological effects, the authors linked the traditional Chinese medicine theory with modern research achievements, in order to provide the ideas and methods for interpreting mechanisms of medicinal properties.

  8. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Yuming Wang

    2016-03-01

    Full Text Available Cockayne syndrome (CS is a severe neurodevelopmental disorder characterized by growth abnormalities, premature aging, and photosensitivity. Mutation of Cockayne syndrome B (CSB affects neuronal gene expression and differentiation, so we attempted to bypass its function by expressing downstream target genes. Intriguingly, ectopic expression of Synaptotagmin 9 (SYT9, a key component of the machinery controlling neurotrophin release, bypasses the need for CSB in neuritogenesis. Importantly, brain-derived neurotrophic factor (BDNF, a neurotrophin implicated in neuronal differentiation and synaptic modulation, and pharmacological mimics such as 7,8-dihydroxyflavone and amitriptyline can compensate for CSB deficiency in cell models of neuronal differentiation as well. SYT9 and BDNF are downregulated in CS patient brain tissue, further indicating that sub-optimal neurotrophin signaling underlies neurological defects in CS. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for pharmacological intervention, these data suggest an important role for SYT9 in neuronal differentiation.

  9. PMI: a ΔΨm independent pharmacological regulator of mitophagy.

    Science.gov (United States)

    East, Daniel A; Fagiani, Francesca; Crosby, James; Georgakopoulos, Nikolaos D; Bertrand, Hélène; Schaap, Marjolein; Fowkes, Adrian; Wells, Geoff; Campanella, Michelangelo

    2014-11-20

    Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy.

  10. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  11. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  12. Neuropathic pain in people with cancer (part 2): pharmacological and non-pharmacological management.

    Science.gov (United States)

    Taverner, Tarnia

    2015-08-01

    The aim of this paper is to provide an overview of the management of neuropathic pain associated with cancer and to provide helpful clinical advice for nurses working with patients who may have neuropathic pain. While cancer pain is a mixed-mechanism pain, this article will focus only on neuropathic pain management. The impact of neuropathic pain on patients' quality of life is great and while many patients recover from their cancer, a significant number continue to suffer from a neuropathic pain syndrome. Management of neuropathic pain is significantly different from management of nociceptive pain with respect to pharmacological and non-pharmacological strategies. Neuropathic pain is complex, and as such requires complex management using pharmacological as well as non-pharmacological approaches. Specific drugs for neuropathic pain may be effective for some patients, but not all; therefore, ongoing and comprehensive assessment and management are required. Furthermore, these patients may require trials of several drugs before they find one that works for them. It is important for nurses to understand neuropathic pain, its manifestation, impact on quality of life and management when nursing patients with neuropathic pain associated with cancer.

  13. [Adherence to pharmacological treatment in adult patients undergoing hemodialysis].

    Science.gov (United States)

    Sgnaolin, Vanessa; Figueiredo, Ana Elizabeth Prado Lima

    2012-06-01

    Adherence to treatment in patients on hemodialysis is not a simple process. Strategies to promote adherence will meet the need for improvements in the process of orientation concerning the disease and its pharmacological treatment. To identify compliance with pharmacological treatment of patients on hemodialysis and the main factors related to it we used the Adherence Scale. Observational, descriptive and cross-sectional study. Interviews were conducted to collect socioeconomic, pharmacological data, as well as those regarding self-reported adherence to drug. Out of the 65 participants, 55.4% showed non-compliance. The mean number of drugs used was 4.1 ± 2.5 (self-report) and 6.2 ± 3.0 (prescription). Statistical analysis showed significant differences concerning compliance at different ages (> 60 years are more adherent). A significant proportion of patients have difficulty to comply with treatment and the main factor was forgetfulness. Regarding age, elderly patients are more adherent to treatment. The low level of knowledge about the used drugs may be one of the reasons for the lack of adherence, and the patient's orientation process by a team of multiprofessionals involved in assisting is a strategy to promote adherence.

  14. Interprofessional education in pharmacology using high-fidelity simulation.

    Science.gov (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  16. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    Science.gov (United States)

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  17. Pharmacological stress agents in nuclear cardiology

    International Nuclear Information System (INIS)

    Buscombe, J.R.

    2004-01-01

    Treadmill test combined with myocardial perfusion scintigraphy (MPS) is a commonly used technique in the assessment of coronary artery disease. However there are a group of patients who may not be able to undergo treadmill tests. Patients with underlying conditions like neuromuscular disease, musculoskeletal disorder, heart failure and end-stage renal disease (ESRD) on renal dialysis would find it difficult to perform exercise on a treadmill or bicycle ergometer. These conditions prevent them from performing adequate exercise. Such patients would benefit from pharmacological stress procedures combined with MPS. Nuclear medicine departments use various pharmacological agents while performing stress tests on cardiac patients. The most commonly used pharmacological agents for cardiac stress are coronary vasodilators and catecholamines. In addition to these agents, adjuvant use of nitrates and atropine is also a common practice in nuclear cardiology. This review addresses various physiological and pharmacological properties of the commonly used pharmacological stress agents in MPS and critically analyses their advantages and disadvantages, as well as their safety and efficacy. (author)

  18. Pharmacometrics and systems pharmacology of immune checkpoint inhibitor nivolumab in cancer translational medicine

    Directory of Open Access Journals (Sweden)

    Sujit Nair

    2016-02-01

    Full Text Available Nivolumab, a fully human immunoglobulin G4 (IgG4 monoclonal antibody (mAb that targets the programmed cell death-1 (PD-1 inhibitory receptor expressed on lymphocytes and dendritic cells, has been approved for metastatic melanoma, advanced squamous non-small cell lung cancer (NSCLC and metastatic renal cell carcinoma. In this review, pharmacology and pharmacometrics systems of this immunopharmaceutical are discussed. Mechanistic actions of T-cell biology with respect to both “priming phase” (anti-cytotoxic T-lymphocyte associated antigen 4 (anti-CTLA-4 mAb; ipilimumab and “effector phase” (anti-PD-1 mAb; nivolumab was discussed, respectively. Key pharmacometric variables in anticancer efficacy of nivolumab such as target engagement, metabolism, pharmacology systems and clearance are elucidated with an emphasis on current knowledge from pre-clinical as well as phase 1, 2 and 3 clinical trials information, including the data presented at the American Society of Clinical Oncology (ASCO 2015 and European Cancer Congress 2015. Nivolumab biomarkers, safety, and synergistic combination immunotherapies are delineated. Nivolumab, administered via intravenous infusion, has an acceptable safety profile and good efficacy. Indeed, the way forward to leverage maximum benefits for the cancer patient may be to synergize anti-PD-1 blockade with complementary targets in immune checkpoint pathways or other oncogenic signal transduction pathways. The encouraging results with nivolumab lend credence to the promise of immune checkpoint blockade as a therapeutic strategy that has been come-of-age in clinical oncology. Of necessity, the burden of “financial toxicity” on cancer patients and families must be factored in considering nivolumab therapy. The problem of ligand PD-L1 being a weak biomarker in clinical practice was discussed. Appropriate patient selection methods including immunopharmacogenomics may be used to identify those patients who are most

  19. Pharmacological treatment for memory disorder in multiple sclerosis.

    Science.gov (United States)

    He, Dian; Zhang, Yun; Dong, Shuai; Wang, Dongfeng; Gao, Xiangdong; Zhou, Hongyu

    2013-12-17

    This is an update of the Cochrane review "Pharmacologic treatment for memory disorder in multiple sclerosis" (first published in The Cochrane Library 2011, Issue 10).Multiple sclerosis (MS) is a chronic immune-mediated, inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS) and can cause both neurological and neuropsychological disability. Both demyelination and axonal and neuronal loss are believed to contribute to MS-related cognitive impairment. Memory disorder is one of the most frequent cognitive dysfunctions and presents a considerable burden to people with MS and to society due to the negative impact on function. A number of pharmacological agents have been evaluated in many existing randomised controlled trials for their efficacy on memory disorder in people with MS but the results were not consistent. To assess the absolute and comparative efficacy, tolerability and safety of pharmacological treatments for memory disorder in adults with MS. We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Register (24 July 2013), PsycINFO (January 1980 to 26 June 2013) and CBMdisc (1978 to 24 June 2013), and checked reference lists of identified articles, searched some relevant journals manually, registers of clinical trials and published abstracts of conference proceedings. All double-blind, randomised controlled parallel trials on pharmacological treatment versus placebo or one or more pharmacological treatments in adults with MS who had at least mild memory impairment (at 0.5 standard deviations below age- and sex-based normative data on a validated memory scale). We placed no restrictions regarding dose, route of administration and frequency; however, we only included trials with an administration duration of 12 weeks or greater. Two review authors independently assessed trial quality and extracted data. We discussed disagreements and resolved them by consensus among review

  20. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation.

    Directory of Open Access Journals (Sweden)

    Cong-Hui Yao

    2018-03-01

    Full Text Available It has been suggested that some cancer cells rely upon fatty acid oxidation (FAO for energy. Here we show that when FAO was reduced approximately 90% by pharmacological inhibition of carnitine palmitoyltransferase I (CPT1 with low concentrations of etomoxir, the proliferation rate of various cancer cells was unaffected. Efforts to pharmacologically inhibit FAO more than 90% revealed that high concentrations of etomoxir (200 μM have an off-target effect of inhibiting complex I of the electron transport chain. Surprisingly, however, when FAO was reduced further by genetic knockdown of CPT1, the proliferation rate of these same cells decreased nearly 2-fold and could not be restored by acetate or octanoic acid supplementation. Moreover, CPT1 knockdowns had altered mitochondrial morphology and impaired mitochondrial coupling, whereas cells in which CPT1 had been approximately 90% inhibited by etomoxir did not. Lipidomic profiling of mitochondria isolated from CPT1 knockdowns showed depleted concentrations of complex structural and signaling lipids. Additionally, expression of a catalytically dead CPT1 in CPT1 knockdowns did not restore mitochondrial coupling. Taken together, these results suggest that transport of at least some long-chain fatty acids into the mitochondria by CPT1 may be required for anabolic processes that support healthy mitochondrial function and cancer cell proliferation independent of FAO.

  1. The pharmacological management of metabolic syndrome.

    Science.gov (United States)

    Rask Larsen, Julie; Dima, Lorena; Correll, Christoph U; Manu, Peter

    2018-04-01

    The metabolic syndrome includes a constellation of several well-established risk factors, which need to be aggressively treated in order to prevent overt type 2 diabetes and cardiovascular disease. While recent guidelines for the treatment of individual components of the metabolic syndrome focus on cardiovascular benefits as resulted from clinical trials, specific recent recommendations on the pharmacological management of metabolic syndrome are lacking. The objective of present paper was to review the therapeutic options for metabolic syndrome and its components, the available evidence related to their cardiovascular benefits, and to evaluate the extent to which they should influence the guidelines for clinical practice. Areas covered: A Medline literature search was performed to identify clinical trials and meta-analyses related to the therapy of dyslipidemia, arterial hypertension, glucose metabolism and obesity published in the past decade. Expert commentary: Our recommendation for first-line pharmacological are statins for dyslipidemia, renin-angiotensin-aldosteron system inhibitors for arterial hypertension, metformin or sodium/glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists (GLP-1RAs) for glucose intolerance, and the GLP-1RA liraglutide for achieving body weight and waist circumference reduction.

  2. Neuro-pharmacological functional MRI of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji [Okayama Univ. (Japan). School of Medicine; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-03-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  3. Neuro-pharmacological functional MRI of epilepsy

    International Nuclear Information System (INIS)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-01-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  4. Pharmacological Approach for Managing Pain in Irritable Bowel Syndrome: A Review Article

    OpenAIRE

    Chen, Longtu; Ilham, Sheikh J.; Feng, Bin

    2017-01-01

    Context Visceral pain is a leading symptom for patients with irritable bowel syndrome (IBS) that affects 10% - 20 % of the world population. Conventional pharmacological treatments to manage IBS-related visceral pain is unsatisfactory. Recently, medications have emerged to treat IBS patients by targeting the gastrointestinal (GI) tract and peripheral nerves to alleviate visceral pain while avoiding adverse effects on the central nervous system (CNS). Several investigational drugs for IBS also...

  5. Pills or push-ups? Effectiveness and public perception of pharmacological and non-pharmacological cognitive enhancement

    Directory of Open Access Journals (Sweden)

    Lucius eCaviola

    2015-12-01

    Full Text Available We review work on the effectiveness of different forms of cognitive enhancement, both pharmacological and non-pharmacological. We consider caffeine, methylphenidate, and modafinil for pharmacological cognitive enhancement (PCE and computer training, physical exercise, and sleep for non-pharmacological cognitive enhancement (NPCE. We find that all of the techniques described can produce significant beneficial effects on cognitive performance. However, effect sizes are moderate, and consistently dependent on individual and situational factors as well as the cognitive domain in question. Although meta-analyses allowing a quantitative comparison of effectiveness across techniques are lacking to date, we can conclude that PCE is not more effective than NPCE. We discuss the physiological reasons for this limited effectiveness.We then propose that even though their actual effectiveness seems similar, in the general public PCE is perceived as fundamentally different from NPCE, in terms of effectiveness, but also in terms of acceptability. We illustrate the potential consequences such a misperception of PCE can have.

  6. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411.

    Science.gov (United States)

    Geneste, Clara C; Massey, Andrew J

    2018-02-01

    Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC 50 values were 43- and 19-fold greater than the autophosphorylation IC 50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC 50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC 50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.

  7. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles

    DEFF Research Database (Denmark)

    Serafimova, Iana M; Pufall, Miles A; Krishnan, Shyam

    2012-01-01

    Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we...... of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted...

  8. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences

    Science.gov (United States)

    Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří

    2015-01-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580

  9. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  10. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  11. Beyond reverse pharmacology: Mechanism-based screening of Ayurvedic drugs.

    Science.gov (United States)

    Lele, R D

    2010-10-01

    This paper reviews the pharmacology of Indian medicinal plants, starting with the historical background of European work on the subject beginning as early as the 17th century, and tracing its history through the work of Sen and Bose in the 1930's, and Vakhil's historic 1949 paper on Sarpaghanda. The often crucial role of patient feedback in early discoveries is highlighted, as is the time lag between proof of pharmacological action and identification of the active principle, and subsequent elucidation of mechanism of action. In the case of Indian plants in the 20th century this process sometimes took almost 50 years. Reserpine and its mechanisms are given in detail, and its current relevance to public health discussed. The foundation of present day methods of pharmacology is briefly presented so the complexity of methods used to identify properties of Ayurveda derived drugs like forskolin and baicalein, and their bioavailability, may be better appreciated. Ayurveda derived anti-oxidants and their levels of action, immuno-modulators, particularly with respect to the NF-kB pathway and its implications for cancer control, are all considered. The example of curcumin derived from turmeric is explained in more detail, because of its role in cancer prevention. Finally, the paper emphasizes the importance of Ayurveda's concepts of rasayana as a form of dietary chemo-prevention; the significance of ahar, diet, in Ayurveda's aspiration to prevent disease and restore health thus becomes clear. Understood in this light, Ayurveda may transcend pharmacology as a treatment paradigm.

  12. Beyond reverse pharmacology: Mechanism-based screening of Ayurvedic drugs

    Directory of Open Access Journals (Sweden)

    R D Lele

    2010-01-01

    Full Text Available This paper reviews the pharmacology of Indian medicinal plants, starting with the historical background of European work on the subject beginning as early as the 17th century, and tracing its history through the work of Sen and Bose in the 1930′s, and Vakhil′s historic 1949 paper on Sarpaghanda. The often crucial role of patient feedback in early discoveries is highlighted, as is the time lag between proof of pharmacological action and identification of the active principle, and subsequent elucidation of mechanism of action. In the case of Indian plants in the 20th century this process sometimes took almost 50 years. Reserpine and its mechanisms are given in detail, and its current relevance to public health discussed. The foundation of present day methods of pharmacology is briefly presented so the complexity of methods used to identify properties of Ayurveda derived drugs like forskolin and baicalein, and their bioavailability, may be better appreciated. Ayurveda derived anti-oxidants and their levels of action, immuno-modulators, particularly with respect to the NF-kB pathway and its implications for cancer control, are all considered. The example of curcumin derived from turmeric is explained in more detail, because of its role in cancer prevention. Finally, the paper emphasizes the importance of Ayurveda′s concepts of rasayana as a form of dietary chemo-prevention; the significance of ahar, diet, in Ayurveda′s aspiration to prevent disease and restore health thus becomes clear. Understood in this light, Ayurveda may transcend pharmacology as a treatment paradigm.

  13. Combining systems pharmacology, transcriptomics, proteomics, and metabolomics to dissect the therapeutic mechanism of Chinese herbal Bufei Jianpi formula for application to COPD

    Directory of Open Access Journals (Sweden)

    Zhao P

    2016-03-01

    Full Text Available Peng Zhao,1,2 Liping Yang,1,2 Jiansheng Li,1,2 Ya Li,1,2 Yange Tian,1,2 Suyun Li2,3 1Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, 2Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, 3Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People’s Republic of China Abstract: Bufei Jianpi formula (BJF has long been used as a therapeutic agent in the treatment of COPD. Systems pharmacology identified 145 active compounds and 175 potential targets of BJF in a previous study. Additionally, BJF was previously shown to effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production, in vivo. However, the system-level mechanism of BJF for the treatment of COPD is still unclear. The aim of this study was to gain insight into its system-level mechanisms by integrating transcriptomics, proteomics, and metabolomics together with systems pharmacology datasets. Using molecular function, pathway, and network analyses, the genes and proteins regulated in COPD rats and BJF-treated rats could be mainly attributed to oxidoreductase activity, antioxidant activity, focal adhesion, tight junction, or adherens junction. Furthermore, a comprehensive analysis of systems pharmacology, transcript, protein, and metabolite datasets is performed. The results showed that a number of genes, proteins, metabolites regulated in BJF-treated rats and potential target proteins of BJF were involved in lipid metabolism, cell junction, oxidative stress, and inflammatory response, which might be the system-level therapeutic mechanism of BJF treatment. Keywords: Bufei Jianpi formula, system-level therapeutic mechanism, transcriptomic, proteomic

  14. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms

    Directory of Open Access Journals (Sweden)

    Dong Shang

    2017-04-01

    Full Text Available Acute pancreatitis (AP is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.

  15. Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism.

    Science.gov (United States)

    De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C

    2017-06-01

    GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein-coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents.

  16. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety

    Czech Academy of Sciences Publication Activity Database

    Magarkar, Aniket; Róg, T.; Bunker, A.

    2017-01-01

    Roč. 103, SI (2017), s. 128-135 ISSN 0928-0987 Institutional support: RVO:61388963 Keywords : polyoxazolines * targeted delivery * PEGylation * liposome * nanomedicine * molecular dynamics Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.756, year: 2016

  17. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  18. [Contribution of animal experimentation to pharmacology].

    Science.gov (United States)

    Sassard, Jean; Hamon, Michel; Galibert, Francis

    2009-11-01

    Animal experimentation is of considerable importance in pharmacology and cannot yet be avoided when studying complex, highly integrated physiological functions. The use of animals has been drastically reduced in the classical phases of pharmacological research, for example when comparing several compounds belonging to the same pharmacological class. However, animal experiments remain crucial for generating and validating new therapeutic concepts. Three examples of such research, conducted in strict ethical conditions, will be used to illustrate the different ways in which animal experimentation has contributed to human therapeutics.

  19. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  20. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  1. Using Caenorhabditis elegans as a Model for Obesity Pharmacology Development.

    Science.gov (United States)

    Zheng, Jolene; Vasselli, Joseph R; King, Jason F; King, Michael L; We, Wenqian; Fitzpatrick, Zachary; Johnson, William D; Finley, John W; Martin, Roy J; Keenan, Michael J; Enright, Frederic M; Greenway, Frank L

    The Caenorhabditis elegans model is a rapid and inexpensive method to address pharmacologic questions. We describe the use of C. elegans to explore 2 pharmacologic questions concerning candidate antiobesity drugs and illustrate its potential usefulness in pharmacologic research: (1) to determine a ratio of betahistine-olanzapine that blocks the olanzapine-induced intestinal fat deposition (IFD) as detected by Nile red staining and (2) to identify the mechanism of action of a pharmaceutical candidate AB-101 that reduces IFD. Olanzapine (53 μg/mL) increased the IFD (12.1 ± 0.1%, P < 0.02), which was blocked by betahistine (763 μg/mL, 39.3 ± 0.01%, P < 0.05) in wild-type C. elegans (N2). AB-101 (1.0%) reduced the IFD in N2 (P < 0.05), increased the pharyngeal pumping rate (P < 0.05), and reversed the elevated IFD induced by protease inhibitors atazanavir and ritonavir (P < 0.05). AB-101 did not affect IFD in a ACS null mutant strain acs-4(ok2872) III/hT2[bli-4(e937) let-?(q782) qIs48](I;III) suggesting an involvement of the lipid oxidation pathway and an upregulation of CPT-1. Our studies suggest that C. elegans may be used as a resource in pharmacologic research. This article is intended to stimulate a greater appreciation of its value in the development of new pharmaceutical interventions.

  2. Non Pharmacological Cognitive Enhancers - Current Perspectives.

    Science.gov (United States)

    Sachdeva, Ankur; Kumar, Kuldip; Anand, Kuljeet Singh

    2015-07-01

    Cognition refers to the mental processes involved in thinking, knowing, remembering, judging, and problem solving. Cognitive dysfunctions are an integral part of neuropsychiatric disorders as well as in healthy ageing. Cognitive Enhancers are molecules that help improve aspects of cognition like memory, intelligence, motivation, attention and concentration. Recently, Non Pharmacological Cognitive Enhancers have gained popularity as effective and safe alternative to various established drugs. Many of these Non Pharmacological Cognitive Enhancers seem to be more efficacious compared to currently available Pharmacological Cognitive Enhancers. This review describes and summarizes evidence on various Non Pharmacological Cognitive Enhancers such as physical exercise, sleep, meditation and yoga, spirituality, nutrients, computer training, brain stimulation, and music. We also discuss their role in ageing and different neuro-psychiatric disorders, and current status of Cochrane database recommendations. We searched the Pubmed database for the articles and reviews having the terms 'non pharmacological and cognitive' in the title, published from 2000 till 2014. A total of 11 results displayed, out of which 10 were relevant to the review. These were selected and reviewed. Appropriate cross-references within the articles along with Cochrane reviews were also considered and studied.

  3. Transcript profiling of Elf5+/- mammary glands during pregnancy identifies novel targets of Elf5.

    Directory of Open Access Journals (Sweden)

    Renee L Rogers

    Full Text Available BACKGROUND: Elf5, an epithelial specific Ets transcription factor, plays a crucial role in the pregnancy-associated development of the mouse mammary gland. Elf5(-/- embryos do not survive, however the Elf5(+/- mammary gland displays a severe pregnancy-associated developmental defect. While it is known that Elf5 is crucial for correct mammary development and lactation, the molecular mechanisms employed by Elf5 to exert its effects on the mammary gland are largely unknown. PRINCIPAL FINDINGS: Transcript profiling was used to investigate the transcriptional changes that occur as a result of Elf5 haploinsufficiency in the Elf5(+/- mouse model. We show that the development of the mouse Elf5(+/- mammary gland is delayed at a transcriptional and morphological level, due to the delayed increase in Elf5 protein in these glands. We also identify a number of potential Elf5 target genes, including Mucin 4, whose expression, is directly regulated by the binding of Elf5 to an Ets binding site within its promoter. CONCLUSION: We identify novel transcriptional targets of Elf5 and show that Muc4 is a direct target of Elf5, further elucidating the mechanisms through which Elf5 regulates proliferation and differentiation in the mammary gland.

  4. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects

    Directory of Open Access Journals (Sweden)

    Atsuo Tahara

    2016-03-01

    Full Text Available The sodium-glucose cotransporter (SGLT 2 offer a novel approach to treating type 2 diabetes by reducing hyperglycaemia via increased urinary glucose excretion. In the present study, the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six SGLT2 inhibitors commercially available in Japan were investigated and compared. Based on findings in normal and diabetic mice, the six drugs were classified into two categories, long-acting: ipragliflozin and dapagliflozin, and intermediate-acting: tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin. Long-acting SGLT2 inhibitors exerted an antihyperglycemic effect with lower variability of blood glucose level via a long-lasting increase in urinary glucose excretion. In addition, ipragliflozin and luseogliflozin exhibited superiority over the others with respect to fast onset of pharmacological effect. Duration and onset of the pharmacologic effects seemed to be closely correlated with the pharmacokinetic properties of each SGLT2 inhibitor, particularly with respect to high distribution and long retention in the target organ, the kidney. While all six SGLT2 inhibitors were significantly effective in increasing urinary glucose excretion and reducing hyperglycemia, our findings suggest that variation in the quality of daily blood glucose control associated with duration and onset of pharmacologic effects of each SGLT2 inhibitor might cause slight differences in rates of improvement in type 2 diabetes.

  5. Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Peng Cheng

    2015-05-01

    Full Text Available Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs were recently identified: mesenchymal (MES and proneural (PN. To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  6. Pharmacological and Non-pharmacological Therapies of Cognitive Impairment in Multiple Sclerosis.

    Science.gov (United States)

    Miller, Elzbieta; Morel, Agnieszka; Redlicka, Justyna; Miller, Igor; Saluk, Joanna

    2018-01-01

    Cognitive impairment is one of the most important clinical features of neurodegenerative disorders including multiple sclerosis (MS). Conducted research shows that up to 65 percent of MS patients have cognitive deficits such as episodic memory, sustained attention, reduced verbal fluency; however, the cognitive MS domain is information processing speed. It is the first syndrome of cognitive dysfunction and the most widely affected in MS. Occasionally these impairments occur even before the appearance of physical symptoms. Therefore, this review focused on the current status of our knowledge about possible methods of treatment cognitive impairment in MS patients including novel strategies. Research and online content was performed using Medline and EMBASE databases. The most recent research suggests that cognitive impairment is correlated with brain lesion volume and brain atrophy. The examination of the cognitive impairment is usually based on particular neuropsychological batteries. However, it can be not enough to make a precise diagnosis. This creates a demand to find markers that might be useful for identifying patients with risk of cognitive impairment at an early stage of the disease. Currently the most promising methods consist of neuroimaging indicators, such as diffusion tensor imaging, the magnetization transfer ratio, and N-acetyl aspartate levels. Diagnosis problems are strictly connected with treatment procedures. There are two main cognitive therapies: pharmacological (disease modifying drugs (DMD), symptomatic treatments) and non-pharmacological interventions that are focused on psychological and physical rehabilitation. Some trials have shown a positive association between physical activity and the cognitive function. This article is an overview of the current state of knowledge related to cognition impairment treatment in MS. Additionally, novel strategies for cognitive impairments such as cryostimulation and other complementary methods are

  7. "Real-life" treatment of chronic pain: Targets and goals.

    Science.gov (United States)

    Ablin, Jacob N; Buskila, Dan

    2015-02-01

    Treating chronic pain is a complex challenge. While textbooks and medical education classically categorize pain as originating from peripheral (nociceptive), neuropathic, or centralized origins, in real life each and every patient may present a combination of various pain sources, types, and mechanisms. Moreover, individual patients may evolve and develop differing types of pain throughout their clinical follow-up, further emphasizing the necessity to maintain clinical diligence during the evaluation and follow-up of these patients. Rational treatment of patients suffering from chronic pain must attempt at deconstructing complex pain cases, identifying variegate pain generators, and targeting them with appropriate interventions, while incorporating both pharmacological and non-pharmacological strategies, rather than focusing on the total pain level, which represents an integral of all pain types. Failing to recognize the coexistence of different types of pain in an individual patient and escalating medications only on the basis of total pain intensity are liable to lead to both ineffective control of pain and increased untoward effects. In the current review, we outline strategies for deconstructing complex pain and therapeutic suggestions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  9. Blended learning for reinforcing dental pharmacology in the clinical years: A qualitative analysis.

    Science.gov (United States)

    Eachempati, Prashanti; Kiran Kumar, K S; Sumanth, K N

    2016-10-01

    Blended learning has become the method of choice in educational institutions because of its systematic integration of traditional classroom teaching and online components. This study aims to analyze student's reflection regarding blended learning in dental pharmacology. A cross-sectional study was conducted in Faculty of Dentistry, Melaka-Manipal Medical College among 3 rd and 4 th year BDS students. A total of 145 dental students, who consented, participate in the study. Students were divided into 14 groups. Nine online sessions followed by nine face-to-face discussions were held. Each session addressed topics related to oral lesions and orofacial pain with pharmacological applications. After each week, students were asked to reflect on blended learning. On completion of 9 weeks, reflections were collected and analyzed. Qualitative analysis was done using thematic analysis model suggested by Braun and Clarke. The four main themes were identified, namely, merits of blended learning, skill in writing prescription for oral diseases, dosages of drugs, and identification of strengths and weakness. In general, the participants had a positive feedback regarding blended learning. Students felt more confident in drug selection and prescription writing. They could recollect the doses better after the online and face-to-face sessions. Most interestingly, the students reflected that they are able to identify their strength and weakness after the blended learning sessions. Blended learning module was successfully implemented for reinforcing dental pharmacology. The results obtained in this study enable us to plan future comparative studies to know the effectiveness of blended learning in dental pharmacology.

  10. Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    R. Dey-Rao

    2017-08-01

    Full Text Available The microarray dataset attached to this report is related to the research article with the title: “A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia” (Dey-Rao and Sinha, 2017 [1]. Male-pattern hair loss that is induced by androgens (testosterone in genetically predisposed individuals is known as androgenetic alopecia (AGA. The raw dataset is being made publicly available to enable critical and/or extended analyses. Our related research paper utilizes the attached raw dataset, for genome-wide gene-expression associated investigations. Combined with several in silico bioinformatics-based analyses we were able to delineate five strategic molecular elements as potential novel targets towards future AGA-therapy.

  11. The Dutch vision of clinical pharmacology

    NARCIS (Netherlands)

    Schellens, J H M; Grouls, R; Guchelaar, H J; Touw, D J; Rongen, G A; de Boer, A; Van Bortel, L M

    Recent position papers addressing the profession of clinical pharmacology have expressed concerns about the decline of interest in the field among clinicians and medical educators in the United Kingdom and other Western countries, whether clinical pharmacology is actually therapeutics, and whether

  12. The effect of pharmacological treatment on gait biomechanics in peripheral arterial disease patients

    Science.gov (United States)

    2010-01-01

    Background Pharmacological treatment has been advocated as a first line therapy for Peripheral Arterial Disease (PAD) patients suffering from intermittent claudication. Previous studies document the ability of pharmacological treatment to increase walking distances. However, the effect of pharmacological treatment on gait biomechanics in PAD patients has not been objectively evaluated as is common with other gait abnormalities. Methods Sixteen patients were prescribed an FDA approved drug (Pentoxifylline or Cilostazol) for the treatment of symptomatic PAD. Patients underwent baseline gait testing prior to medication use which consisted of acquisition of ground reaction forces and kinematics while walking in a pain free state. After three months of treatment, patients underwent repeat gait testing. Results Patients with symptomatic PAD had significant gait abnormalities at baseline during pain free walking as compared to healthy controls. However, pharmacological treatment did not produce any identifiable alterations on the biomechanics of gait of the PAD patients as revealed by the statistical comparisons performed between pre and post-treatment and between post-treatment and the healthy controls. Conclusions Pharmacological treatment did not result in statistically significant improvements in the gait biomechanics of patients with symptomatic PAD. Future studies will need to further explore different cohorts of patients that have shown to improve significantly their claudication distances and/or their muscle fiber morphology with the use of pharmacological treatment and determine if this is associated with an improvement in gait biomechanics. Using these methods we may distinguish the patients who benefit from pharmacotherapy and those who do not. PMID:20529284

  13. A new strategy for choosing “Q-markers” via network pharmacology, application to the quality control of a Chinese medical preparation

    Directory of Open Access Journals (Sweden)

    Wei Xiang

    2018-04-01

    Full Text Available Due to its chemical complexity, proper quality control for a Chinese medical preparation (CMP has been a great challenge. Choosing the appropriate quality markers (Q-markers for quality control of CMP is an important work. Best of all, the chosen Q-markers are the main chemical compounds from the herbals as well as the active constituents of this CMP. Only in this way the established quality control system can really achieve the purpose of controlling the quality of CMP and ensuring the safely and effectively use of CMP. To achieve the purpose, network pharmacology combined with the contents of chemical compounds in the CMP has been used in this research. We took an anti-arrhythmic CMP, Shenxian-Shengmai oral liquid (SSOL, as an example. Firstly, UPLC-QTOF-MS/MS method was used to analyze the main components of SSOL. A total of 64 compounds were unambiguously or tentatively identified and 32 of them were further validated by reference compounds. Secondly, the network was constructed based on the identified compounds to predict the effective compounds related to cardiac arrhythmias. Based on the existing database and the operation method of topology, a method of double network analysis (DNAA was proposed, from which 10 important targets in the pathway of arrhythmia were screened out, and 26 compounds had good antiarrhythmic activity. Based on the prediction results of network pharmacology along with the contents of the compounds in this CMP, ten representative compounds were chosen as the Q-markers for the quality control of SSOL. We find that five of these ten compounds, including danshensu, rosmarinic acid, salvianolic acid A, epimedin A and icariin, have antiarrhythmic activity. Then, the UPLC-DAD method was established as the control method for SSOL. Keywords: Quality marker, Network pharmacology, Quality control, Shenxian Shengmai oral liquid

  14. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies

    Directory of Open Access Journals (Sweden)

    Adam R. Smith

    2016-06-01

    Full Text Available Alzheimer's disease is a complex neurodegenerative disorder. A large number of genome-wide association studies have been performed, which have been supplemented more recently by the first epigenome-wide association studies, leading to the identification of a number of novel loci altered in disease. Twin studies have shown monozygotic twin discordance for Alzheimer's disease (Gatz et al., 2006, leading to the conclusion that a combination of genetic and epigenetic mechanisms is likely to be involved in disease etiology (Lunnon & Mill, 2013. This review focuses on identifying overlapping pathways between published genome-wide association studies and epigenome-wide association studies, highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial, and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic studies will aid our understanding of disease mechanisms and identify potential novel targets for pharmacological intervention.

  15. On the Pharmacology of Farnesoid X Receptor Agonists: Give me an “A”, Like in “Acid”

    Directory of Open Access Journals (Sweden)

    Eva Hambruch

    2016-06-01

    Full Text Available The Farnesoid X Receptor (FXR has recently moved into the spotlight through the release of clinical data using Obeticholic Acid, an FXR agonist, that demonstrated effectiveness of this bile acid-like drug in patients with Primary Biliary Cirrhosis and Non-alcoholic Steatohepatitis (NASH. FXR holds the promise to become an attractive drug target for various conditions, from Non-alcoholic Fatty Liver Disease (NAFLD, NASH, liver cirrhosis, portal hypertension and a variety of cholestatic disorders to intestinal diseases including inflammatory bowel disease and bile acid diarrhea. Despite the wide therapeutic potential, surprisingly little is known about the pharmacology, pharmacokinetics and tissue distribution properties of drugs targeting FXR. Are tissue specific FXR agonists preferable for different indications, or might one type of ligand fit all purposes? This review aims to summarize the sparse data which are available on this clinically and pharmacologically relevant topic and provides a mechanistic model for understanding tissue-specific effects in vivo.

  16. Pharmacological treatment and therapeutic perspectives of metabolic syndrome.

    Science.gov (United States)

    Lim, Soo; Eckel, Robert H

    2014-12-01

    Metabolic syndrome is a disorder based on insulin resistance. Metabolic syndrome is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressures, elevated glucose, high triglycerides, and low high-density lipoprotein-cholesterol (HDL-C) levels. Clinical implication of metabolic syndrome is that it increases the risk of developing type 2 diabetes and cardiovascular diseases. Prevalence of the metabolic syndrome has increased globally, particularly in the last decade, to the point of being regarded as an epidemic. The prevalence of metabolic syndrome in the USA is estimated to be 34% of adult population. Moreover, increasing rate of metabolic syndrome in developing countries is dramatic. One can speculate that metabolic syndrome is going to induce huge impact on our lives. The metabolic syndrome cannot be treated with a single agent, since it is a multifaceted health problem. A healthy lifestyle including weight reduction is likely most effective in controlling metabolic syndrome. However, it is difficult to initiate and maintain healthy lifestyles, and in particular, with the recidivism of obesity in most patients who lose weight. Next, pharmacological agents that deal with obesity, diabetes, hypertension, and dyslipidemia can be used singly or in combination: anti-obesity drugs, thiazolidinediones, metformin, statins, fibrates, renin-angiotensin system blockers, glucagon like peptide-1 agonists, sodium glucose transporter-2 inhibitors, and some antiplatelet agents such as cilostazol. These drugs have not only their own pharmacologic targets on individual components of metabolic syndrome but some other properties may prove beneficial, i.e. anti-inflammatory and anti-oxidative. This review will describe pathophysiologic features of metabolic syndrome and pharmacologic agents for the treatment of metabolic syndrome, which are currently available.

  17. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  18. A consequence index approach to identifying radiological sabotage targets

    International Nuclear Information System (INIS)

    Altman, W.D.; Hockert, J.W.

    1988-01-01

    One of the threats to concern to facilities using significant quantities of radioactive material is radiological sabotage. Both the Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission have issued guidance to facilities for radiological sabotage protection. At those facilities where the inventories of radioactive materials change frequently, there is an operational need for a technically defensible method of determining whether or not the inventory of radioactive material at a given facility poses a potential radiological sabotage risk. In order to determine quickly whether a building is a potential radiological sabotage target, Lawrence Livermore National Loaboratory (LLNL) has developed a radiological sabotage consequence index that provides a conservative estimate of the maximum potential off-site consequences of a radiological sabotage attempt involving the facility. This radiological sabotage consequence index can be used by safeguards and security staff to rapidly determine whether a change in building operations poses a potential radiological sabotage risk. In those cases where such a potential risk is identified, a more detailed radiological sabotage vulnerability analysis can be performed

  19. Pharmacological treatment of chronic constipation: a literature review

    Directory of Open Access Journals (Sweden)

    Roshanak Salari

    2016-07-01

    Full Text Available Chronic constipation is a very common disease that is particularly commonplace among members of the elderly population. It is one of the most widespread bowel disorders, and it causes significant pain and discomfort; as such, it usually requires medical attention. The major causes of constipation are slow colonic movements and/or functional gastrointestinal disorders. This review aimed to examine the pharmacological treatments that are currently available for chronic constipation. To develop insights into the causes and treatments of chronic constipation, relevant review articles that were published on the Pubmed, Cochrane database, and Embase websites, were examined. The outputs of these studies indicated that high daily intake of fibers and fluids in addition to regular exercise can be very helpful in avoiding and treating constipation. The pharmacological treatments that are administered to treat this disease typically increase the water content of the bowel lumen, and this leads to more regular bowel movements. Novel drugs have been introduced to treat constipation, and many of these are now subject to formal research studies. Since constipation can facilitate the development of other gastrointestinal diseases, it is important that we develop an understanding the therapeutic treatments that are available with the intention of identifying which of these may represent the most effective method for treating this disease. With that objective in mind, this review was undertaken to review the clinical effectiveness of the different pharmacological treatments that are employed to treat or prevent constipation.

  20. [Ginseng prescription rules and molecular mechanism in treating coronary heart disease based on data mining and integrative pharmacology].

    Science.gov (United States)

    Li, Sen; Tang, Shi-Huan; Liu, Jin-Ling; Su, Jin; He, Fu-Yuan

    2018-04-01

    The ancient dragon Materia Medica, Compendium of Materia Medica and other works recorded that the main effect of ginseng is tonifying qi. It is reported that the main active ingredient of ginseng is ginsenoside. Modern studies have found that ginseng mono saponins are effective for cardiovascular related diseases. This paper preliminary clarified the efficacy of traditional ginseng-nourishing qi and cardiovascular disease through the traditional Chinese medicine (TCM) inheritance auxiliary platform and integration platform of association of pharmacology. With the help of TCM inheritance auxiliary platform-analysis of "Chinese medicine database", Chinese medicine treatment of modern diseases that ginseng rules, so the traditional effect associated with modern medicine and pharmacology; application integration platform enrichment analysis on the target of drug and gene function, metabolic pathway, to further explore the molecular mechanism of ginseng in the treatment of coronary heart disease, aimed at mining the molecular mechanism of ginseng in the treatment of coronary heart disease. Chinese medicine containing ginseng 307 prescriptions, 87 kinds of disease indications, western medicine disease Chinese medicine therapy for ginseng main coronary heart disease; analysis of molecular mechanism of ginseng pharmacology integration platform for the treatment of coronary heart disease. Ginsenosides(Ra₁, Ra₂, Rb₁, Rb₂, Rg₁, Ro) bind these targets, PRKAA1, PRKAA2, NDUFA4, COX5B, UQCRC1, affect chemokines, non-alcoholic fatty liver, gonadotropin, carbon metabolism, glucose metabolism and other pathways to treat coronary heart disease indirectly. The molecular mechanism of Panax ginseng's multi-component, multi-target and synergistic action is preliminarily elucidated in this paper. Copyright© by the Chinese Pharmaceutical Association.

  1. A Network Pharmacology Approach to Uncover the Multiple Mechanisms of Hedyotis diffusa Willd. on Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xinkui Liu

    2018-01-01

    Full Text Available Background. As one of the most frequently diagnosed cancer diseases globally, colorectal cancer (CRC remains an important cause of cancer-related death. Although the traditional Chinese herb Hedyotis diffusa Willd. (HDW has been proven to be effective for treating CRC in clinical practice, its definite mechanisms have not been completely deciphered. Objective. The aim of our research is to systematically explore the multiple mechanisms of HDW on CRC. Methods. This study adopted the network pharmacology approach, which was mainly composed of active component gathering, target prediction, CRC gene collection, network analysis, and gene enrichment analysis. Results. The network analysis showed that 10 targets might be the therapeutic targets of HDW on CRC, namely, HRAS, PIK3CA, KRAS, TP53, APC, BRAF, GSK3B, CDK2, AKT1, and RAF1. The gene enrichment analysis implied that HDW probably benefits patients with CRC by modulating pathways related to cancers, infectious diseases, endocrine system, immune system, nervous system, signal transduction, cellular community, and cell motility. Conclusions. This study partially verified and predicted the pharmacological and molecular mechanism of HDW against CRC from a holistic perspective, which will also lay a foundation for the further experimental research and clinical rational application of HDW.

  2. Pharmacological treatment of refugees with trauma-related disorders

    DEFF Research Database (Denmark)

    Sonne, Charlotte; Carlsson, Jessica; Bech, Per

    2017-01-01

    traumatic stress disorder (PTSD). We conducted a systematic review of published treatment outcome studies on PTSD and depression among refugees. Fifteen studies were identified and reviewed. Most studies focused on the use of antidepressants. Included studies differed widely in method and quality....... The majority were observational studies and case studies. Small sample sizes limited the statistical power. Few studies reported effect sizes, confidence intervals, and statistical significance of findings. No specific pharmacological treatment for PTSD among refugees can be recommended on the basis...

  3. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models.

    Science.gov (United States)

    Ng, Samuel Y; Yoshida, Noriaki; Christie, Amanda L; Ghandi, Mahmoud; Dharia, Neekesh V; Dempster, Joshua; Murakami, Mark; Shigemori, Kay; Morrow, Sara N; Van Scoyk, Alexandria; Cordero, Nicolas A; Stevenson, Kristen E; Puligandla, Maneka; Haas, Brian; Lo, Christopher; Meyers, Robin; Gao, Galen; Cherniack, Andrew; Louissaint, Abner; Nardi, Valentina; Thorner, Aaron R; Long, Henry; Qiu, Xintao; Morgan, Elizabeth A; Dorfman, David M; Fiore, Danilo; Jang, Julie; Epstein, Alan L; Dogan, Ahmet; Zhang, Yanming; Horwitz, Steven M; Jacobsen, Eric D; Santiago, Solimar; Ren, Jian-Guo; Guerlavais, Vincent; Annis, D Allen; Aivado, Manuel; Saleh, Mansoor N; Mehta, Amitkumar; Tsherniak, Aviad; Root, David; Vazquez, Francisca; Hahn, William C; Inghirami, Giorgio; Aster, Jon C; Weinstock, David M; Koch, Raphael

    2018-05-22

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.

  4. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  5. Acoustic Parametric Array for Identifying Standoff Targets

    Science.gov (United States)

    Hinders, M. K.; Rudd, K. E.

    2010-02-01

    An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.

  6. Pharmacological interactions of vasoconstrictors.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José Luis

    2009-01-01

    This article is the first of a series on pharmacological interactions involving medicaments commonly prescribed and/or used in odontology: vasoconstrictors in local anaesthetics and anti-inflammatory and anti-microbial analgesics. The necessity for the odontologist to be aware of adverse reactions as a result of the pharmacological interactions is due to the increase in medicament consumption by the general population. There is a demographic change with greater life expectancy and patients have increased chronic health problems and therefore have increased medicament intake. The presence of adrenaline (epinephrine) and other vasoconstrictors in local odontological anaesthetics is beneficial in relation to the duration and depth of anaesthesia and reduces bleeding and systemic toxicity of the local anaesthetic. However, it might produce pharmacological interactions between the injected vasoconstrictors and the local anaesthetic and adrenergic medicament administered exogenically which the odontologist should be aware of, especially because of the risk of consequent adverse reactions. Therefore the importance of conducting a detailed clinical history of the general state of health and include all medicaments, legal as well as illegal, taken by the patient.

  7. Criminal investigations: pupil pharmacological reactivity as method for assessing time since death is fallacious.

    Science.gov (United States)

    Orrico, Marco; Melotti, Roberto; Mantovani, Anna; Avesani, Barbara; De Marco, Roberto; De Leo, Domenico

    2008-12-01

    Determination of the time since death in the early postmortem period is one of the most critical issues to be faced by criminal investigators. One of the techniques is the evaluation of the pupil pharmacological reactivity. In the present work, we aim at identifying whether an objective and single method, based on pharmacological pupil reaction, is feasible or not. Between 2002 and 2003 calendar years, we observed 309 bodies, whose eyes have been each instilled apart, within 26 hours since death, with either a myotic substance or a mydriatic solution. Our results show that the real effectiveness of pupil pharmacological reactivity as method for assessing the time since death in early postmortem period is not only questionable but even highly misleading if not replaced by alternative objective physiological tests and appropriate professional judgments by the investigators.

  8. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    Science.gov (United States)

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. PTSD and comorbid AUD: a review of pharmacological and alternative treatment options

    Directory of Open Access Journals (Sweden)

    Ralevski E

    2014-03-01

    Full Text Available Elizabeth Ralevski, Lening A Olivera-Figueroa, Ismene Petrakis Yale University School of Medicine, Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA Background: Although posttraumatic stress disorder (PTSD and alcohol use disorders (AUD frequently co-occur there are no specific treatments for individuals diagnosed with these comorbid conditions. The main objectives of this paper are to review the literature on pharmacological options for PTSD and comorbid AUD, and to summarize promising behavioral and alternative interventions for those with these dual diagnoses. Methods: We conducted a comprehensive search on PsycINFO and MEDLINE/PubMed databases using Medical Subject Headings terms in various combinations to identify articles that used pharmacotherapy for individuals with dual diagnoses of PTSD and AUD. Similar strategies were used to identify articles on behavioral and alternative treatments for AUD and PTSD. We identified and reviewed six studies that tested pharmacological treatments for patients with PTSD and comorbid AUD. Results: The literature on treatment with US Food and Drug Administration approved medications for patients with dual diagnosis of PTSD and AUD is very limited and inconclusive. Promising evidence indicates that topiramate and prazosin may be effective in reducing PTSD and AUD symptoms in individuals with comorbidity. Seeking safety has had mixed efficacy in clinical trials. The efficacy of other behavioral and alternative treatments (mindfulness-based, yoga, and acupuncture is more difficult to evaluate since the evidence comes from small, single studies without comparison groups. Conclusion: There is a clear need for more systematic and rigorous study of pharmacological, behavioral, and alternative treatments for patients with dual diagnoses of PTSD and AUD. Keywords: dual diagnosis, PTSD, AUD, pharmacotherapy

  10. Being targeted: Young women's experience of being identified for a teenage pregnancy prevention programme.

    Science.gov (United States)

    Sorhaindo, Annik; Bonell, Chris; Fletcher, Adam; Jessiman, Patricia; Keogh, Peter; Mitchell, Kirstin

    2016-06-01

    Research on the unintended consequences of targeting 'high-risk' young people for health interventions is limited. Using qualitative data from an evaluation of the Teens & Toddlers Pregnancy Prevention programme, we explored how young women experienced being identified as at risk for teenage pregnancy to understand the processes via which unintended consequences may occur. Schools' lack of transparency regarding the targeting strategy and criteria led to feelings of confusion and mistrust among some young women. Black and minority ethnic young women perceived that the assessment of their risk was based on stereotyping. Others felt their outgoing character was misinterpreted as signifying risk. To manage these imposed labels, stigma and reputational risks, young women responded to being targeted by adopting strategies, such as distancing, silence and refusal. To limit harmful consequences, programmes could involve prospective participants in determining their need for intervention or introduce programmes for young people at all levels of risk. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  11. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    Science.gov (United States)

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  12. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    Science.gov (United States)

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  13. NCI-60 whole exome sequencing and pharmacological CellMiner analyses.

    Directory of Open Access Journals (Sweden)

    William C Reinhold

    Full Text Available Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes. Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002. These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, "Genetic variant versus drug visualization", provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, "Genetic variant summation" allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based Cell

  14. Pharmacology Goes Concept-Based: Course Design, Implementation, and Evaluation.

    Science.gov (United States)

    Lanz, Amelia; Davis, Rebecca G

    Although concept-based curricula are frequently discussed in the nursing education literature, little information exists to guide the development of a concept-based pharmacology course. Traditionally, nursing pharmacology courses are taught with an emphasis on drug class where a prototype drug serves as an exemplar. When transitioning pharmacology to a concept-based course, special considerations are in order. How can educators successfully integrate essential pharmacological content into a curriculum structured around nursing concepts? This article presents one approach to the design and implementation of a concept-based undergraduate pharmacology course. Planning methods, supportive teaching strategies, and course evaluation procedures are discussed.

  15. A Quantitative Analysis of Undisclosed Conflicts of Interest in Pharmacology Textbooks.

    Science.gov (United States)

    Piper, Brian J; Telku, Hassenet M; Lambert, Drew A

    2015-01-01

    Disclosure of potential conflicts of interest (CoI) is a standard practice for many biomedical journals but not for educational materials. The goal of this investigation was to determine whether the authors of pharmacology textbooks have undisclosed financial CoIs and to identify author characteristics associated with CoIs. The presence of potential CoIs was evaluated by submitting author names (N = 403; 36.3% female) to a patent database (Google Scholar) as well as a database that reports on the compensation ($USD) received from 15 pharmaceutical companies (ProPublica's Dollars for Docs). All publications (N = 410) of the ten highest compensated authors from 2009 to 2013 and indexed in Pubmed were also examined for disclosure of additional companies that the authors received research support, consulted, or served on speaker's bureaus. A total of 134 patents had been awarded (Maximum = 18/author) to textbook authors. Relative to DiPiro's Pharmacotherapy: A Pathophysiologic Approach, contributors to Goodman and Gilman's Pharmacological Basis of Therapeutics and Katzung's Basic and Clinical Pharmacology were more frequently patent holders (OR = 6.45, P 1 patent (OR = 0.15, P < .0005). A total of $2,411,080 USD (28.3% for speaking, 27.0% for consulting, and 23.9% for research), was received by 53 authors (Range = $299 to $310,000/author). Highly compensated authors were from multiple fields including oncology, psychiatry, neurology, and urology. The maximum number of additional companies, not currently indexed in the Dollars for Docs database, for which an author had potential CoIs was 73. Financial CoIs are common among the authors of pharmacology and pharmacotherapy textbooks. Full transparency of potential CoIs, particularly patents, should become standard procedure for future editions of educational materials in pharmacology.

  16. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

    Science.gov (United States)

    Zhang, Xu; Belkina, Natalya; Jacob, Harrys Kishore Charles; Maity, Tapan; Biswas, Romi; Venugopalan, Abhilash; Shaw, Patrick G; Kim, Min-Sik; Chaerkady, Raghothama; Pandey, Akhilesh; Guha, Udayan

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) kinase domain occur in 10-30% of lung adenocarcinoma and are associated with tyrosine kinase inhibitor (TKI) sensitivity. We sought to identify the immediate direct and indirect phosphorylation targets of mutant EGFRs in lung adenocarcinoma. We undertook SILAC strategy, phosphopeptide enrichment, and quantitative MS to identify dynamic changes of phosphorylation downstream of mutant EGFRs in lung adenocarcinoma cells harboring EGFR(L858R) and EGFR(L858R/T790M) , the TKI-sensitive, and TKI-resistant mutations, respectively. Top canonical pathways that were inhibited upon erlotinib treatment in sensitive cells, but not in the resistant cells include EGFR, insulin receptor, hepatocyte growth factor, mitogen-activated protein kinase, mechanistic target of rapamycin, ribosomal protein S6 kinase beta 1, and Janus kinase/signal transducer and activator of transcription signaling. We identified phosphosites in proteins of the autophagy network, such as ULK1 (S623) that is constitutively phosphorylated in these lung adenocarcinoma cells; phosphorylation is inhibited upon erlotinib treatment in sensitive cells, but not in resistant cells. Finally, kinase-substrate prediction analysis from our data indicated that substrates of basophilic kinases from, AGC and Calcium and calmodulin-dependent kinase groups, as well as STE group kinases were significantly enriched and those of proline-directed kinases from, CMGC and Casein kinase groups were significantly depleted among substrates that exhibited increased phosphorylation upon EGF stimulation and reduced phosphorylation upon TKI inhibition. This is the first study to date to examine global phosphorylation changes upon erlotinib treatment of lung adenocarcinoma cells and results from this study provide new insights into signaling downstream of mutant EGFRs in lung adenocarcinoma. All MS data have been deposited in the ProteomeXchange with identifier PXD001101 (http

  17. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour.

    Science.gov (United States)

    Desgrouas, Camille; Taudon, Nicolas; Bun, Sok-Siya; Baghdikian, Beatrice; Bory, Sothavireak; Parzy, Daniel; Ollivier, Evelyne

    2014-07-03

    Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. Stephania rotunda is traditionally used for the treatment of a wide range of

  18. A new method of identifying target groups for pronatalist policy applied to Australia.

    Directory of Open Access Journals (Sweden)

    Mengni Chen

    Full Text Available A country's total fertility rate (TFR depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup's potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies.

  19. A new method of identifying target groups for pronatalist policy applied to Australia

    Science.gov (United States)

    Chen, Mengni; Lloyd, Chris J.

    2018-01-01

    A country’s total fertility rate (TFR) depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup’s potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies. PMID:29425220

  20. Learning of medical pharmacology via innovation:a personal experience at McMaster and in Asia

    Institute of Scientific and Technical Information of China (English)

    Chiu-yin KWAN

    2004-01-01

    Pharmacology in the traditional medical curriculum has been treated as a discrete "preclinical" discipline identifying itself distinctly different from the other preclinical sciences or clinical subjects in knowledge base as well as learning/teaching instructions. It is usually run in series with other pre-clinical courses (eg, anatomy, biochemistry,physiology etc), but in parallel with other paraclinical courses such as pathology, microbiology and community medicine. Clinical pharmacology was only introduced relatively recently designed to overcome the perceived deficiency in "preclinical" pharmacology regarding its therapeutic relevance and application to medicine. In many universities, both preclinical and clinical pharmacology courses co-exist, usually independently offered by two separate, sometimes non-interacting Departments of Pharmacology and Clinical Pharmacology. In this model,pharmacology is generally taught in a teacher-centered, discipline-oriented, and knowledge-based curriculum.Furthermore, pharmacology courses are commonly taught by "expert" teachers, who usually engage in excessiveteaching, often adopt a knowledge-based approach in both instruction and assessment, and frequently evade or ignore clinical relevance. The clinical relevance of the pharmacological sciences is sometimes also taught in a didactic and problem-solving manner, although it is usually case-oriented. In recent years, problem-based medical curricula have emerged, in varying forms, as a platform in which pharmacology is viewed as an integrated component in a holistic approach to medical education. In this problem-based learning (PBL) model, pharmacology is learned in a student-centered environment, based on self-directed, clinically relevant and case-oriented approach,usually in a small-group tutorial format. In PBL, pharmacology is learned in concert with other subject issues relevant to the case-problem in question, such as anatomy, physiology, pathology, microbiology

  1. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  2. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Francesca Megiorni

    2017-10-01

    Full Text Available Abstract Background EPH (erythropoietin-producing hepatocellular receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM. GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg in vivo activity alone or in combination with irradiation (2 Gy was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that

  3. [PROFESSOR VLADIMIR V. NIKOLAEV AND RUSSIAN PHARMACOLOGY.

    Science.gov (United States)

    Bondarchuk, N G; Fisenko, V P

    2016-01-01

    Various stages of scientific research activity of Prof. Vladimir V. Nikolaev are analyzed. The importance of Prof. Nikolaev's discovery of the two-neuron parasympathetic nervous system and some new methods of pharmacological substances evaluation is shown. Prof. Nikolaev is known as the editor of the first USSR Pharmacopoeia. Peculiarities of pharmacology teaching at the First Moscow Medical institute under conditions of changing social demands are described. Successful research of Prof. Nikolaev with colleagues in studying new mechanisms of drug action and developing original pharmacological substances is summarized.

  4. Review of the Chemistry and Pharmacology of 7-Methyljugulone ...

    African Journals Online (AJOL)

    Review of the Chemistry and Pharmacology of 7-Methyljugulone. ... Methods: The chemical and pharmacological data were retrieved from the well-known scientific websites such as Pubmed, Google Scholar, Reaxys, Scirus, Scopus, ... Keywords: 7-methyljugulone; biosynthesis; in vitro synthesis; pharmacology

  5. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  6. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  7. Future pharmacological therapy in hypertension.

    Science.gov (United States)

    Stewart, Merrill H; Lavie, Carl J; Ventura, Hector O

    2018-04-26

    Hypertension (HTN) is a widespread and growing disease, with medication intolerance and side-effect present among many. To address these obstacles novel pharmacotherapy is an active area of drug development. This review seeks to explore future drug therapy for HTN in the preclinical and clinical arenas. The future of pharmacological therapy in HTN consists of revisiting old pathways to find new targets and exploring wholly new approaches to provide additional avenues of treatment. In this review, we discuss the current status of the most recent drug therapy in HTN. New developments in well trod areas include novel mineralocorticoid antagonists, aldosterone synthase inhibitors, aminopeptidase-A inhibitors, natriuretic peptide receptor agonists, or the counter-regulatory angiotensin converting enzyme 2/angiotensin (Ang) (1-7)/Mas receptor axis. Neprilysin inhibitors popularized for heart failure may also still hold HTN potential. Finally, we examine unique systems in development never before used in HTN such as Na/H exchange inhibitors, vasoactive intestinal peptide agonists, and dopamine beta hydroxylase inhibitors. A concise review of future directions of HTN pharmacotherapy.

  8. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  9. Treatment of post-partum depression: a review of clinical, psychological and pharmacological options

    Directory of Open Access Journals (Sweden)

    Elizabeth Fitelson

    2010-12-01

    Full Text Available Elizabeth Fitelson1, Sarah Kim4, Allison Scott Baker3, Kristin Leight21Director, 2Attending Psychiatrist, TheWomen's Program, 3Child and Adolescent Psychiatry Fellow, Division of Child Psychiatry, 4PGY-I Resident in Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York, NY, USAAbstract: Postpartum depression (PPD is a common complication of childbearing, and has increasingly been identified as a major public health problem. Untreated maternal depression has multiple potential negative effects on maternal-infant attachment and child development. Screening for depression in the perinatal period is feasible in multiple primary care or obstetric settings, and can help identify depressed mothers earlier. However, there are multiple barriers to appropriate treatment, including concerns about medication effects in breastfeeding infants. This article reviews the literature and recommendations for the treatment of postpartum depression, with a focus on the range of pharmacological, psychotherapeutic, and other non-pharmacologic interventions. Keywords: postpartum depression, postnatal depression, lactation, antidepressant, hormone therapy, psychotherapy, bright light therapy, omega-3

  10. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review.

    Science.gov (United States)

    Wang, Ting; Guo, Rixin; Zhou, Guohong; Zhou, Xidan; Kou, Zhenzhen; Sui, Feng; Li, Chun; Tang, Liying; Wang, Zhuju

    2016-07-21

    Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng. Copyright © 2016

  11. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins.

    Science.gov (United States)

    Banfi, Cristina; Baetta, Roberta; Gianazza, Erica; Tremoli, Elena

    2017-06-01

    Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fibroblast activation protein (FAP as a novel metabolic target

    Directory of Open Access Journals (Sweden)

    Miguel Angel Sánchez-Garrido

    2016-10-01

    Conclusions: We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  13. A resource of potential drug targets and strategic decision-making for obstructive sleep apnoea pharmacotherapy.

    Science.gov (United States)

    Horner, Richard L; Grace, Kevin P; Wellman, Andrew

    2017-07-01

    There is currently no pharmacotherapy for obstructive sleep apnoea (OSA) but there is no principled a priori reason why there should not be one. This review identifies a rational decision-making strategy with the necessary logical underpinnings that any reasonable approach would be expected to navigate to develop a viable pharmacotherapy for OSA. The process first involves phenotyping an individual to quantify and characterize the critical predisposing factor(s) to their OSA pathogenesis and identify, a priori, if the patient is likely to benefit from a pharmacotherapy that targets those factors. We then identify rational strategies to manipulate those critical predisposing factor(s), and the barriers that have to be overcome for success of any OSA pharmacotherapy. A new analysis then identifies candidate drug targets to manipulate the upper airway motor circuitry for OSA pharmacotherapy. The first conclusion is that there are two general pharmacological approaches for OSA treatment that are of the most potential benefit and are practically realistic, one being fairly intuitive but the second perhaps less so. The second conclusion is that after identifying the critical physiological obstacles to OSA pharmacotherapy, there are current therapeutic targets of high interest for future development. The final analysis provides a tabulated resource of 'druggable' targets that are relatively restricted to the circuitry controlling the upper airway musculature, with these candidate targets being of high priority for screening and further study. We also emphasize that a pharmacotherapy may not cure OSA per se, but may still be a useful adjunct to improve the effectiveness of, and adherence to, other treatment mainstays. © 2017 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.

  14. Investigation of original multivalent iminosugars as pharmacological chaperones for the treatment of Gaucher disease.

    Science.gov (United States)

    Laigre, Eugénie; Hazelard, Damien; Casas, Josefina; Serra-Vinardell, Jenny; Michelakakis, Helen; Mavridou, Irene; Aerts, Johannes M F G; Delgado, Antonio; Compain, Philippe

    2016-06-24

    Multivalent iminosugars conjugated with a morpholine moiety and/or designed as prodrugs have been prepared and evaluated as new classes of pharmacological chaperones for the treatment of Gaucher disease. This study further confirms the interest of the prodrug concept and shows that the addition of a lysosome-targeting morpholine unit into iminosugar cluster structures has no significant impact on the chaperone activity on Gaucher cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pharmacologic treatment of depression in multiple sclerosis

    NARCIS (Netherlands)

    Koch, Marcus W.; Glazenborg, Arjon; Uyttenboogaart, Maarten; Mostert, Jop; De Keyser, Jacques

    2011-01-01

    Background Depression is a common problem in patients with multiple sclerosis (MS). It is unclear which pharmacologic treatment is the most effective and the least harmful. Objectives To investigate the efficacy and tolerability of pharmacologic treatments for depression in patients with MS. Search

  16. Future Targets for Female Sexual Dysfunction.

    Science.gov (United States)

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  17. Averrhoa bilimbi Linn.: A review of its ethnomedicinal uses, phytochemistry, and pharmacology

    Directory of Open Access Journals (Sweden)

    Alhassan Muhammad Alhassan

    2016-01-01

    Full Text Available Averrhoa bilimbi Linn. is principally cultivated for medicinal purposes in many tropical and subtropical countries of the world. Literature survey about this plant shows that A. bilimbi is mainly used as a folk medicine in the treatment of diabetes mellitus, hypertension, and as an antimicrobial agent. The prime objective of this review is to accumulate and organize literature based on traditional claims and correlate those with current findings on the use of A. bilimbi in the management of different ailments. Through interpreting already published scientific manuscripts (1995 through 2015 retrieved from the different scientific search engines, namely Medline, PubMed, EMBASE, and Science Direct databases, published articles and reports covering traditional and scientific literature related to A. bilimbi's potential role against various ailments have been thoroughly evaluated, interpreted, and discussed. Several pharmacological studies have demonstrated the ability of this plant to act as antidiabetic, antihypertensive, thrombolytic, antimicrobial, antioxidant, hepatoprotective, and hypolipidemic agent. A. bilimbi holds great value in the complementary and alternative medicine as evidenced by the substantial amount of research on it. Therefore, we aimed to compile an up-to-date and comprehensive review of A. bilimbi that covers its traditional and folk medicine uses, phytochemistry, and pharmacology. Hence, this paper presents an up-to-date and comprehensive review of the ethnomedicinal uses, different chemical constituents, and pharmacological activities of A. bilimbi. So far, the biologically active agents have not been isolated from this plant and this can be a good scientific study for the future antidiabetic, antihypertensive, and antimicrobial implications. Hence, this review targets at emphasizing the diverse traditional claims and pharmacological activities of A. bilimbi with respect to carrying out more scientific studies to isolate

  18. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Liou Louis S

    2010-04-01

    Full Text Available Abstract Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX, VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1

  19. Pharmacology national board examinations: factors that may influence performance.

    Science.gov (United States)

    Neidle, E A; Kahn, N

    1977-12-01

    Data from a survey of pharmacology courses in 60 dental schools were used to determine whether certain teaching variables affect performance in pharmacology National Board examinations. In addition, three-year class-averaged pharmacology scores and, rarely, one-year averaged scores were correlated with several admissions variables. While correlations between some admissions variables and pharmacology scores were quite good, the averaged pharmacology scores were not powerfully affected by course length, placement of the course in the curriculum, length of the curriculum, or the presence of a dentally trained pharmacologist in the department. It is suggested that other factors, related to the student and his capabilities, influence performance on National Boards. Dental pharmacology courses should be designed to given students the best possible exposure to an important basic science, not to make them perform well on National Boards, because student performance on National Boards may be independent of the nature of the didactic courses.

  20. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density.

    Directory of Open Access Journals (Sweden)

    Claudia Coronnello

    Full Text Available MicroRNAs (miRNAs are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting, a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential

  1. Pharmacological interventions in the treatment of the acute effects of cannabis: a systematic review of literature

    Directory of Open Access Journals (Sweden)

    Crippa José AS

    2012-01-01

    Full Text Available Abstract Background Cannabis intoxication is related to a number of physical and mental health risks with ensuing social costs. However, little attention has been given to the investigation of possible pharmacological interactions in this condition. Objective To review the available scientific literature concerning pharmacological interventions for the treatment of the acute effects of cannabis. Methods A search was performed on the Pubmed, Lilacs, and Scielo online databases by combining the terms cannabis, intoxication, psychosis, anxiety, and treatment. The articles selected from this search had their reference lists checked for additional publications related to the topic of the review. Results The reviewed articles consisted of case reports and controlled clinical trials and are presented according to interventions targeting the physiological, psychiatric, and cognitive symptoms provoked by cannabis. The pharmacological interventions reported in these studies include: beta-blockers, antiarrhythmic agents, antagonists of CB-1 and GABA-benzodiazepine receptors, antipsychotics, and cannabidiol. Conclusion Although scarce, the evidence on pharmacological interventions for the management of cannabis intoxication suggests that propanolol and rimonabant are the most effective compounds currently available to treat the physiological and subjective effects of the drug. Further studies are necessary to establish the real effectiveness of these two medications, as well as the effectiveness of other candidate compounds to counteract the effects of cannabis intoxication, such as cannabidiol and flumazenil.

  2. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  3. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    Science.gov (United States)

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  4. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  5. Lippia citrodora: a review on its phytochemistry and pharmacological activities

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Lippia citrodora commonly known as lemon verbena is a species of flowering plant in the verbena family, native to western South America. With its antioxidant effects, it is mostly used in folk medicine to treat anti-inflammatory diseases, and diseases associated with oxidative stress. This review has presented a summary on L. citordora’s phytochemistry and its pharmacological activities. It will also discuss gaps and challenges needed to be solved. Methods: Electronic database including Web of Science, PubMed, Science Direct and Google Scholar were searched for articles published between 1973 and 2017 regarding the phytochemistry and biological activities of L. citodora. Results: Traditional uses of this plant were specially related to coagulation system, digestive system and brain. Phytochemical investigations identified flavonoids, terpenes, iridois, lignins, phenylethanoid, as the main components of the plant. Antimicrobial, neuroprotective, antinociceptive, anti hyperpropulsive, sedative, anticolitis, anxiolytic, anticonvulsant, antihyperalgesic, and anticancer properties were among the pharmacological activities of L. citriodora. The plant extract and essential oil had also demonstrated high antioxidant activity. Conclusion: Modern pharmacological studies have now validated many traditional uses of L. citrodora. The data reviewed here revealed that this plant is a potential source for the treatment of a wide range of diseases specially inflammatory diseases and neurological dysfunctions. Future human studies are needed for further confirmation of the therapeutic activities of L. citriodora.

  6. Systematic review of pharmacological treatments in fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Tejada Maria-Isabel

    2009-10-01

    Full Text Available Abstract Background Fragile X syndrome (FXS is considered the most common cause of inherited mental retardation. Affected people have mental impairment that can include Attention Deficit and/or Hyperactivity Disorder (ADHD, autism disorder, and speech and behavioural disorders. Several pharmacological interventions have been proposed to treat those impairments. Methods Systematic review of the literature and summary of the evidence from clinical controlled trials that compared at least one pharmacological treatment with placebo or other treatment in individuals with diagnosis of FXS syndrome and assessed the efficacy and/or safety of the treatments. Studies were identified by a search of PubMed, EMBASE and the Cochrane Databases using the terms fragile X and treatment. Risk of bias of the studies was assessed by using the Cochrane Collaboration criteria. Results The search identified 276 potential articles and 14 studies satisfied inclusion criteria. Of these, 10 studies on folic acid (9 with crossover design, only 1 of them with good methodological quality and low risk of bias did not find in general significant improvements. A small sample size trial assessed dextroamphetamine and methylphenidate in patients with an additional diagnosis of ADHD and found some improvements in those taking methylphenidate, but the length of follow-up was too short. Two studies on L-acetylcarnitine, showed positive effects and no side effects in patients with an additional diagnosis of ADHD. Finally, one study on patients with an additional diagnosis of autism assessed ampakine compound CX516 and found no significant differences between treatment and placebo. Regarding safety, none of the studies that assessed that area found relevant side effects, but the number of patients included was too small to detect side effects with low incidence. Conclusion Currently there is no robust evidence to support recommendations on pharmacological treatments in patients with

  7. Clozapine-resistant schizophrenia – non pharmacological augmentation methods

    Directory of Open Access Journals (Sweden)

    Gałaszkiewicz Joanna

    2017-12-01

    Full Text Available Clozapine is the drug of choice for drug-resistant schizophrenia, but despite its use, 30-40% patients fail to achieve satisfactory therapeutic effects. In such situations, augmentation attempts are made by both pharmacological and non-pharmacological methods. To date, most of the work has been devoted to pharmacological strategies, much less to augemantation of clozapine with electroconvulsive therapy (C+ECT, transcranial direct current stimulation (tDCS or transcranial magnetic stimulation (TMS.

  8. Systems Pharmacology Dissecting Holistic Medicine for Treatment of Complex Diseases: An Example Using Cardiocerebrovascular Diseases Treated by TCM.

    Science.gov (United States)

    Wang, Yonghua; Zheng, Chunli; Huang, Chao; Li, Yan; Chen, Xuetong; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Zhang, Boli

    2015-01-01

    Holistic medicine is an interdisciplinary field of study that integrates all types of biological information (protein, small molecules, tissues, organs, external environmental signals, etc.) to lead to predictive and actionable models for health care and disease treatment. Despite the global and integrative character of this discipline, a comprehensive picture of holistic medicine for the treatment of complex diseases is still lacking. In this study, we develop a novel systems pharmacology approach to dissect holistic medicine in treating cardiocerebrovascular diseases (CCDs) by TCM (traditional Chinese medicine). Firstly, by applying the TCM active ingredients screened out by a systems-ADME process, we explored and experimentalized the signed drug-target interactions for revealing the pharmacological actions of drugs at a molecule level. Then, at a/an tissue/organ level, the drug therapeutic mechanisms were further investigated by a target-organ location method. Finally, a translational integrating pathway approach was applied to extract the diseases-therapeutic modules for understanding the complex disease and its therapy at systems level. For the first time, the feature of the drug-target-pathway-organ-cooperations for treatment of multiple organ diseases in holistic medicine was revealed, facilitating the development of novel treatment paradigm for complex diseases in the future.

  9. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light.

    Science.gov (United States)

    Bertolesi, Gabriel E; Vazhappilly, Sherene T; Hehr, Carrie L; McFarlane, Sarah

    2016-03-01

    Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica

    Directory of Open Access Journals (Sweden)

    Peng X

    2013-01-01

    Full Text Available Meiwan Chen,1,‡ Ruie Chen,1,‡ Shengpeng Wang,1 Wen Tan,1 Yangyang Hu,1 Xinsheng Peng,2 Yitao Wang11State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; 2School of Pharmaceutical Sciences, Guangdong Medical College, Dongguan, China‡These authors contributed equally to this workAbstract: Brucea javanica has demonstrated a variety of antitumoral, antimalarial, and anti-inflammatory properties. As a Chinese herbal medicine, Brucea javanica is mainly used in the treatment of lung and gastrointestinal cancers. Pharmacological research has identified the main antitumor components are tetracyclic triterpene quassinoids. However, most of these active components have poor water solubility and low bioavailability, which greatly limit their clinical application. Nanoparticulate delivery systems are urgently needed to improve the bioavailability of Brucea javanica. This paper mainly focuses on the chemical components in Brucea javanica and its pharmacological properties and nanoparticulate formulations, in an attempt to encourage further research on its active components and nanoparticulate drug delivery systems to expand its clinical applications. It is expected to improve the level of pharmaceutical research and provide a strong scientific foundation for further study on the medicinal properties of this plant.Keywords: Brucea javanica, chemical components, pharmacology, nanoparticulate delivery systems

  11. Pharmacological Strategies to Retard Cardiovascular Aging

    Science.gov (United States)

    Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G.; de Cabo, Rafael

    2016-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD), which are the leading cause of death in the United States. Traditionally, the effort to prevent CVD has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat CVD. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the pro-longevity benefits of various therapeutic strategies that support cardiovascular health. PMID:27174954

  12. Pharmacological Needs of Nurses: Short Communication

    Directory of Open Access Journals (Sweden)

    Leila Nazari

    2016-06-01

    Full Text Available Background and objectives : This study was carried out to determine the most commonly used drugs in health centers. By identifying common medications, pharmacological educational needs of nurses gets clear and officials can provide nurses specific relevant training about common drugs. Material and Methods: In this descriptive report, the hospitals’ pharmacies were asked to name ten of the most widely used drugs in the past 6 months. The obtained data were analyzed by SPSS 13 software using descriptive tests. Results: Gastrointestinal drugs and antibiotics in all centers and oxytocin in obstetrics and gynecological centers were the most commonly used drugs. Conclusion: Due to the important and dangerous side-effects of these common medications, renewing nurses’ information in this field is required. ​

  13. Efficacy of Neurofeedback Versus Pharmacological Support in Subjects with ADHD.

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Rodríguez, Celestino; García, Trinidad; Álvarez, Luis

    2016-03-01

    Behavioral training in neurofeedback has proven to be an essential complement to generalize the effects of pharmacological support in subjects who have attention deficit with hyperactivity disorder (ADHD). Therefore, this investigation attempts to analyze the efficacy of neurofeedback compared with pharmacological support and the combination of both. Participants were 131 students, classified into four groups: control (did not receive neurofeedback or pharmacological support), neurofeedback group, pharmacological support group, and combined group (neurofeedback + pharmacological support). Participants' executive control and cortical activation were assessed before and after treatment. Results indicate that the combined group obtained more benefits and that the neurofeedback group improved to a greater extent in executive control than the pharmacological support group. It is concluded that this kind of training may be an alternative to stimulate activation in subjects with ADHD.

  14. Marrubium vulgare L.: A review on phytochemical and pharmacological aspects

    Directory of Open Access Journals (Sweden)

    Santram Lodhi

    2017-12-01

    Full Text Available Marrubium vulgare L. (family: Lamiaceae, also known as white horehound, is widely used as herbal remedy for chronic coughs and colds. It is used in various disorders related to skin, liver, gastric, heart and immune system. This review abridges phytochemical, pharmacological studies and medicinal uses of M. vulgare and provides scientific proof for various ethnobotanical claims in order to identify gaps, which will give impulsion for novel research on M. vulgare based herbal medicines. This review summarizes selected scientific evidence on phytochemistry and pharmacological properties of M. vulgare over the past 48 years (1968 to 2016. The work reported on M. vulgare was reviewed from various sources like books, internet source i.e. google search engine, pubmed, sciencedirect and chemical abstract. The exhaustive literature was studied and critical analysis was done according to their phytochemical and pharmacological properties. Phytochemical investigations on different parts of M. vulgare have been reported the presence of flavonoids, steroids, terpenoids, tannins, saponins and volatile oils (0.05%. The aerial parts contain marrubiin, together with ursolic acid and choline. Pharmacological activities like, anti-nociceptive, anti-spasmodic, anti-hypertensive, anti-diabetic, gastroprotective, anti-inflammatory, anti-microbial, anti-cancer, antioxidant, and anti-hepatotoxic activity have been reported. M. vulgare has therapeutic potential in the treatment of inflammatory conditions, liver disorders, pain, cardiovascular, gastric and diabetic conditions. Aerial parts of M. vulgare is a good source of labdane type diterpene especially marrubiin which is present in high concentrations. However, further scientific studies are needed to explore clinical efficacy, toxicity and to explore the therapeutic effect of major secondary metabolites like diterpenes, phenylpropanoid and phenylethanoid glycosides of M. vulgare. [J Complement Med Res 2017; 6

  15. Predictors and use of non-pharmacologic interventions for procedural pain associated with turning among hospitalized adults

    Science.gov (United States)

    Faigeles, Bonnie; Howie-Esquivel, Jill; Miaskowski, Christine; Stanik - Hutt, Julie; Thompson, Carol; White, Cheri; Wild, Lorie Rietman; Puntillo, Kathleen

    2010-01-01

    Background Many hospitalized adults cannot reposition themselves in their beds. Therefore, they are regularly turned by their nurses, primarily to prevent pressure ulcer formation. Previous research indicates that turning is painful and that patients are rarely pre-medicated with analgesics. Non-pharmacologic interventions may be used to help with this painful procedure. However, no published research was found on the use of non-pharmacologic interventions for turning of hospitalized patients. Objectives 1) to describe patient pain characteristics during turning and their association with patient demographic and clinical characteristics; 2) to determine the frequency of use of various non-pharmacologic interventions for hospitalized adult patients undergoing the painful procedure of turning; and 3) to identify factors that predict the use of specific non-pharmacologic interventions for pain associated with turning. Methods Hospitalized adult patients who experienced turning, the nurses caring for them, and others who were present at the time of turning were asked if they used various non-pharmacologic interventions to manage pain during the turning. Results Of 1395 patients, 92.5% received at least one non-pharmacologic intervention. Most frequently used were calming voice (65.7%), information (60.6%), and deep breathing (37.9%). Critical care patients were more likely to receive a calming voice (OR= 1.66, ppatients. Those reporting higher pain were consistently more likely to receive each of the three interventions (OR=1.01, pturning procedure. The specific interventions used most often are ones that can be initiated spontaneously. These data suggest that patients, nurses, and family members respond to patients’ turning-related pain by using non-pharmacologic interventions. PMID:23688362

  16. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides

    Directory of Open Access Journals (Sweden)

    Cheng J

    2014-12-01

    Full Text Available Jiang Cheng,1,2 Zhi-Wei Zhou,2 Hui-Ping Sheng,3 Lan-Jie He,4 Xue-Wen Fan,1 Zhi-Xu He,5 Tao Sun,6 Xueji Zhang,7 Ruan Jin Zhao,8 Ling Gu,9 Chuanhai Cao,2 Shu-Feng Zhou2,5 1Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 2Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Infectious Diseases, 4Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, 6Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, 7Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 8Center for Traditional Chinese Medicine, Sarasota, FL, USA; 9School of Biology and Chemistry, University of Pu’er, Pu’er, Yunnan, People’s Republic of China Abstract: Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People’s Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of

  17. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review.

    Science.gov (United States)

    Bi, Wu; Gao, Ying; Shen, Jie; He, Chunnian; Liu, Haibo; Peng, Yong; Zhang, Chunhong; Xiao, Peigen

    2016-08-02

    The genus Acer (Aceraceae), commonly known as maple, comprises approximately 129 species that primarily grow in the northern hemisphere, especially in the temperate regions of East Asia, eastern North America, and Europe. These plants have been traditionally used to treat a wide range of diseases in East Asia and North America. Moreover, clinical studies have shown that medicinal plants belonging to Acer are highly effective in the treatment of rheumatism, bruises, hepatic disorders, eye disease, and pain, and in detoxification. This review provides a systematic and constructive overview of the traditional uses, chemical constituents, and pharmacological activities of plants of the genus Acer. This review is based on a literature study of scientific journals and books from libraries and electronic sources such as SciFinder, ScienceDirect, Springer, PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science. The literature in this review related to chemical constituents and pharmacological activities dates from 1922 to the end of October 2015. Furthermore, ethnopharmacological information on this genus was obtained from libraries and herbaria in China and USA. In traditional medicine, 40 species, 11 subspecies, and one varieta of the genus Acer are known to exhibit a broad spectrum of biological activities. To date, 331 compounds have been identified from 34 species of the genus Acer, including flavonoids, tannins, phenylpropanoids, diarylheptanoids, terpenoids, benzoic acid derivatives, and several other types of compounds, such as phenylethanoid glycosides and alkaloids. Preliminary pharmacological studies have shown that the extracts and compounds isolated from this genus exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, antidiabetic, hepatoprotective, and antiobesity activities, as well as promoting osteoblast differentiation. To date, reports on the toxicity of Acer species to humans are very limited, and

  18. Problems of pharmacological supply of disaster medicine

    International Nuclear Information System (INIS)

    Sabaev, V.V.; Il'ina, S.L.

    1995-01-01

    The paper reviews a number of pharmacological problems, being important for the disaster medicine, of theoretical and practical nature, the settlement of which would promote more efficient rendering emergency medical aid to the injured persons in the conditions of emergency situations and further expert medical care. On the example of radiation accidents there are studied methodical approaches to organization of drug prophylaxis and therapy of the injured persons in emergency situations. The authors have proved the necessity of arranging proper pharmacological supply of disaster medicine which is to settle the whole complex of scientific-applied and organizational questions relating to the competence of pharmacology and pharmacy. 17 refs

  19. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  20. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Institute of Scientific and Technical Information of China (English)

    Huile Gao

    2016-01-01

    Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  1. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  2. Perinatal pharmacology: applications for neonatal neurology.

    Science.gov (United States)

    Smits, Anne; Allegaert, Karel

    2011-11-01

    The principles of clinical pharmacology also apply to neonates, but their characteristics warrant a tailored approach. We focus on aspects of both developmental pharmacokinetics (concentration/time relationship) and developmental pharmacodynamics (concentration/effect relationship) in neonates. We hereby aimed to link concepts used in clinical pharmacology with compound-specific observations (anti-epileptics, analgosedatives) in the field of neonatal neurology. Although in part anecdotal, we subsequently illustrate the relevance of developmental pharmacology in the field of neonatal neurology by a specific intervention (e.g. whole body cooling), specific clinical presentations (e.g. short and long term outcome following fetal exposure to antidepressive agents, the development of new biomarkers for fetal alcohol syndrome) and specific clinical needs (e.g. analgosedation in neonates, excitocytosis versus neuro-apoptosis/impaired synaptogenesis). Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio.

    Science.gov (United States)

    Chaparro, María Jesús; Calderón, Félix; Castañeda, Pablo; Fernández-Alvaro, Elena; Gabarró, Raquel; Gamo, Francisco Javier; Gómez-Lorenzo, María G; Martín, Julio; Fernández, Esther

    2018-04-13

    Malaria remains a major global health problem. In 2015 alone, more than 200 million cases of malaria were reported, and more than 400,000 deaths occurred. Since 2010, emerging resistance to current front-line ACTs (artemisinin combination therapies) has been detected in endemic countries. Therefore, there is an urgency for new therapies based on novel modes of action, able to relieve symptoms as fast as the artemisinins and/or block malaria transmission. During the past few years, the antimalarial community has focused their efforts on phenotypic screening as a pragmatic approach to identify new hits. Optimization efforts on several chemical series have been successful, and clinical candidates have been identified. In addition, recent advances in genetics and proteomics have led to the target deconvolution of phenotypic clinical candidates. New mechanisms of action will also be critical to overcome resistance and reduce attrition. Therefore, a complementary strategy focused on identifying well-validated targets to start hit identification programs is essential to reinforce the clinical pipeline. Leveraging published data, we have assessed the status quo of the current antimalarial target portfolio with a focus on the blood stage clinical disease. From an extensive list of reported Plasmodium targets, we have defined triage criteria. These criteria consider genetic, pharmacological, and chemical validation, as well as tractability/doability, and safety implications. These criteria have provided a quantitative score that has led us to prioritize those targets with the highest probability to deliver successful and differentiated new drugs.

  4. New approaches for identifying and testing potential new anti-asthma agents.

    Science.gov (United States)

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  5. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  6. Review of systematic reviews of non-pharmacological interventions to improve quality of life in cancer survivors.

    Science.gov (United States)

    Duncan, Morvwen; Moschopoulou, Elisavet; Herrington, Eldrid; Deane, Jennifer; Roylance, Rebecca; Jones, Louise; Bourke, Liam; Morgan, Adrienne; Chalder, Trudie; Thaha, Mohamed A; Taylor, Stephanie C; Korszun, Ania; White, Peter D; Bhui, Kamaldeep

    2017-11-28

    Over two million people in the UK are living with and beyond cancer. A third report diminished quality of life. A review of published systematic reviews to identify effective non-pharmacological interventions to improve the quality of life of cancer survivors. Databases searched until May 2017 included PubMed, Cochrane Central, EMBASE, MEDLINE, Web of Science, the Cumulative Index to Nursing and Allied Health Literature, and PsycINFO. Published systematic reviews of randomised trials of non-pharmacological interventions for people living with and beyond cancer were included; included reviews targeted patients aged over 18. All participants had already received a cancer diagnosis. Interventions located in any healthcare setting, home or online were included. Reviews of alternative therapies or those non-English reports were excluded. Two researchers independently assessed titles, abstracts and the full text of papers, and independently extracted the data. The primary outcome of interest was any measure of global (overall) quality of life. Quality assessment assessing methdological quality of systematic reviews (AMSTAR) and narrative synthesis, evaluating effectiveness of non-pharmacological interventions and their components. Of 14 430 unique titles, 21 were included in the review of reviews. There was little overlap in the primary papers across these reviews. Thirteen reviews covered mixed tumour groups, seven focused on breast cancer and one focused on prostate cancer. Face-to-face interventions were often combined with online, telephone and paper-based reading materials. Interventions included physical, psychological or behavioural, multidimensional rehabilitation and online approaches. Yoga specifically, physical exercise more generally, cognitive behavioural therapy (CBT) and mindfulness-based stress reduction (MBSR) programmes showed benefit in terms of quality of life. Exercise-based interventions were effective in the short (less than 3-8 months) and long

  7. Advancements in therapeutically-targeting orphan GPCRs

    Directory of Open Access Journals (Sweden)

    Jennifer eStockert

    2015-05-01

    Full Text Available G-protein coupled receptors (GPCRs are popular biological targets for drug discovery and development. To date there are more than 140 orphan GPCRs, i.e. receptors whose endogenous ligands are unknown. Traditionally orphan GPCRs have been difficult to study and the development of therapeutic compounds targeting these receptors has been extremely slow although these GPCRs are considered important targets based on their distribution and behavioral phenotype revealed by animals lacking the receptor. Recent advances in several methods used to study orphan receptors, including protein crystallography and homology modeling are likely to be useful in the identification of therapeutics targeting these receptors. In the past 13 years, over a dozen different Class A GPCRs have been crystallized; this trend is exciting, since homology modeling of GPCRs has previously been limited by the availability of solved structures. As the number of solved GPCR structures continues to grow so does the number of templates that can be used to generate increasingly accurate models of phylogenetically-related orphan GPCRs. The availability of solved structures along with the advances in using multiple templates to build models (in combination with molecular dynamics simulations that reveal structural information not provided by crystallographic data and methods for modeling hard-to-predict flexible loop regions have improved the quality of GPCR homology models. This, in turn, has improved the success rates of virtual ligand screens that use homology models to identify potential receptor binding compounds. Experimental testing of the predicted hits and validation using traditional GPCR pharmacological approaches can be used to drive ligand-based efforts to probe orphan receptor biology as well as to define the chemotypes and chemical scaffolds important for binding. As a result of these advances, orphan GPCRs are emerging from relative obscurity as a new class of drug

  8. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. ApicoAP: the first computational model for identifying apicoplast-targeted proteins in multiple species of Apicomplexa.

    Directory of Open Access Journals (Sweden)

    Gokcen Cilingir

    Full Text Available Most of the parasites of the phylum Apicomplexa contain a relict prokaryotic-derived plastid called the apicoplast. This organelle is important not only for the survival of the parasite, but its unique properties make it an ideal drug target. The majority of apicoplast-associated proteins are nuclear encoded and targeted post-translationally to the organellar lumen via a bipartite signaling mechanism that requires an N-terminal signal and transit peptide (TP. Attempts to define a consensus motif that universally identifies apicoplast TPs have failed.In this study, we propose a generalized rule-based classification model to identify apicoplast-targeted proteins (ApicoTPs that use a bipartite signaling mechanism. Given a training set specific to an organism, this model, called ApicoAP, incorporates a procedure based on a genetic algorithm to tailor a discriminating rule that exploits the known characteristics of ApicoTPs. Performance of ApicoAP is evaluated for four labeled datasets of Plasmodium falciparum, Plasmodium yoelii, Babesia bovis, and Toxoplasma gondii proteins. ApicoAP improves the classification accuracy of the published dataset for P. falciparum to 94%, originally 90% using PlasmoAP.We present a parametric model for ApicoTPs and a procedure to optimize the model parameters for a given training set. A major asset of this model is that it is customizable to different parasite genomes. The ApicoAP prediction software is available at http://code.google.com/p/apicoap/ and http://bcb.eecs.wsu.edu.

  10. Ethnobotany, biochemistry and pharmacology of Minthostachys (Lamiaceae).

    Science.gov (United States)

    Schmidt-Lebuhn, A N

    2008-08-13

    The South American mint genus Minthostachys is of great importance in the Andes as a medicinal, aromatic, culinary and commercial essential oil plant. After decades of taxonomic confusion and virtual indeterminability of specimens, new systematic and taxonomic work has been conducted in recent years. The present paper attempts to summarize the state of knowledge about Minthostachys with a focus on ethnobotany, analyses of essential oil content and pharmacology, to identify the currently accepted species names for the plants examined in these previous studies, and to assess where additional research is needed. All available studies on Minthostachys were obtained and evaluated. Herbaria were contacted to identify voucher specimens cited in the respective publications. The great majority of published studies was conducted on a single species, Argentinean Minthostachys verticillata. In contrast, the most widely distributed and well-known species (Minthostachys mollis) as well as several locally important and intensively used species (e.g., Minthostachys acutifolia) have received disproportionately little attention, and virtually nothing is known about the local endemics among the 17 species currently recognized. In many cases, however, it is difficult to relate the results to taxonomic entities due to the lack of voucher specimens. Future research efforts should especially be directed at studying the chemistry and potential for use of several common but so far neglected species of the central and northern Andes, at disentangling environmental and genetic influences on essential oil composition, at prerequisites for cultivation, and at the pharmacological basis of the most important traditional uses. Because of the morphological complexity of the genus, future researchers are urged to deposit voucher specimens of the plants used in their studies to facilitate species identification and to make the results more comparable and reproducible.

  11. Quantitative Systems Pharmacology: A Case for Disease Models.

    Science.gov (United States)

    Musante, C J; Ramanujan, S; Schmidt, B J; Ghobrial, O G; Lu, J; Heatherington, A C

    2017-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model-informed drug discovery and development, supporting program decisions from exploratory research through late-stage clinical trials. In this commentary, we discuss the unique value of disease-scale "platform" QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  12. Using Market Research to Characterize College Students and Identify Potential Targets for Influencing Health Behaviors

    Science.gov (United States)

    Berg, Carla J.; Ling, Pamela M.; Guo, Hongfei; Windle, Michael; Thomas, Janet L.; Ahluwalia, Jasjit S.; An, Lawrence C.

    2013-01-01

    Marketing campaigns, such as those developed by the tobacco industry, are based on market research, which defines segments of a population by assessing psychographic characteristics (i.e., attitudes, interests). This study uses a similar approach to define market segments of college smokers, to examine differences in their health behaviors (smoking, drinking, binge drinking, exercise, diet), and to determine the validity of these segments. A total of 2,265 undergraduate students aged 18–25 years completed a 108-item online survey in fall 2008 assessing demographic, psychographic (i.e., attitudes, interests), and health-related variables. Among the 753 students reporting past 30-day smoking, cluster analysis was conducted using 21 psychographic questions and identified three market segments – Stoic Individualists, Responsible Traditionalists, and Thrill-Seeking Socializers. We found that segment membership was related to frequency of alcohol use, binge drinking, and limiting dietary fat. We then developed three messages targeting each segment and conducted message testing to validate the segments on a subset of 73 smokers representing each segment in spring 2009. As hypothesized, each segment indicated greater relevance and salience for their respective message. These findings indicate that identifying qualitatively different subgroups of young adults through market research may inform the development of engaging interventions and health campaigns targeting college students. PMID:25264429

  13. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  14. Enhancement of carer skills and patient function in the non-pharmacological management of frontotemporal dementia (FTD): A call for randomised controlled studies

    Science.gov (United States)

    O'Connor, Claire M.; Clemson, Lindy; da Silva, Thaís Bento Lima; Piguet, Olivier; Hodges, John R.; Mioshi, Eneida

    2013-01-01

    FTD is a unique condition which manifests with a range of behavioural symptoms, marked dysfunction in activities of daily living (ADL) and increased levels of carer burden as compared to carers of other dementias. No efficacious pharmacological interventions to treat FTD currently exist, and research on pharmacological symptom management is variable. The few studies on non-pharmacological interventions in FTD focus on either the carer or the patients' symptoms, and lack methodological rigour. This paper reviews and discusses current studies utilising non-pharmacological approaches, exposing the clear need for more rigorous methodologies to be applied in this field. Finally, a successful randomised controlled trial helped reduce behaviours of concern in dementia, and through implementing participation in tailored activities, the FTD-specific Tailored Activities Program (TAP) is presented. Crucially, this protocol has scope to target both the person with FTD and their carer. This paper highlights that studies in this area would help to elucidate the potential for using activities to reduce characteristic behaviours in FTD, improving quality of life and the caregiving experience in FTD. PMID:29213832

  15. Non-pharmacological modulation of cerebral white matter organization

    DEFF Research Database (Denmark)

    Kristensen, Tina D; Mandl, Rene C W; Jepsen, Jens R M

    2018-01-01

    OBJECTIVE: Neuroplasticity is a well-described phenomenon, but effects of non-pharmacological interventions on white matter (WM) are unclear. Here we review associations between active non-pharmacological interventions and WM organization in healthy subjects and in psychiatric patients. METHOD...

  16. Clinical pharmacology in Russia-historical development and current state.

    Science.gov (United States)

    Zagorodnikova Goryachkina, Ksenia; Burbello, Aleksandra; Sychev, Dmitry; Frolov, Maxim; Kukes, Vladimir; Petrov, Vladimir

    2015-02-01

    Clinical pharmacology in Russia has long history and is currently active, but rather unrecognized internationally. It is governmentally approved as a teaching/scientific specialty since 1983 and as a medical specialty since 1997. Courses of clinical pharmacology are included in the undergraduate curricula in the 5th and/or 6th year of education at all medical schools in the Russian Federation. Postgraduate education includes initial specialization in internal medicine with further residency in clinical pharmacology. Governmental legislation recommends that every healthcare institution has either a department or a single position of clinical pharmacologist. Major routine duties include information about and monitoring of medication use, consultations in difficult clinical situations, pharmacogenetic counseling, therapeutic drug monitoring, pharmacovigilance, and participation in drug and therapeutics (formulary) committees. There are official experts in clinical pharmacology in Russia responsible for coordinating relevant legislative issues. The chief expert clinical pharmacologist represents the discipline directly at the Ministry of Health. Research in clinical pharmacology in Russia is extensive and variable, but only some of it is published internationally. Russia is a participant of international societies of clinical pharmacology and therapeutics and collaboration is actively ongoing. There are still certain problems related to the development of the discipline in Russia-some healthcare institutions do not see the need for clinical pharmacology. However, the number of clinical pharmacologists in Russia is increasing as well as their role in physicians' education, national healthcare, and research.

  17. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions.

    Science.gov (United States)

    Ivanov, Sergey; Semin, Maxim; Lagunin, Alexey; Filimonov, Dmitry; Poroikov, Vladimir

    2017-07-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rescue of a pathogenic mutant human glucagon receptor by pharmacological chaperones.

    Science.gov (United States)

    Yu, Run; Chen, Chun-Rong; Liu, Xiaohong; Kodra, János T

    2012-10-01

    We have previously demonstrated that a homozygous inactivating P86S mutation of the glucagon receptor (GCGR) causes a novel human disease of hyperglucagonemia, pancreatic α-cell hyperplasia, and pancreatic neuroendocrine tumors (Mahvash disease). The mechanisms for the decreased activity of the P86S mutant (P86S) are abnormal receptor localization to the endoplasmic reticulum (ER) and defective interaction with glucagon. To search for targeted therapies for Mahvash disease, we examined whether P86S can be trafficked to the plasma membrane by pharmacological chaperones and whether novel glucagon analogs restore effective receptor interaction. We used enhanced green fluorescent protein-tagged P86S stably expressed in HEK 293 cells to allow fluorescence imaging and western blotting and molecular modeling to design novel glucagon analogs in which alanine 19 was replaced with serine or asparagine. Incubation at 27 °C largely restored normal plasma membrane localization and normal processing of P86S but osmotic chaperones had no effects. The ER stressors thapsigargin and curcumin partially rescued P86S. The lipophilic GCGR antagonist L-168,049 also partially rescued P86S, so did Cpd 13 and 15 to a smaller degree. The rescued P86S led to more glucagon-stimulated cAMP production and was internalized by glucagon. Compared with the native glucagon, the novel glucagon analogs failed to stimulate more cAMP production by P86S. We conclude that the mutant GCGR is partially rescued by several pharmacological chaperones and our data provide proof-of-principle evidence that Mahvash disease can be potentially treated with pharmacological chaperones. The novel glucagon analogs, however, failed to interact with P86S more effectively.

  19. [Note on the epistemology of clinical pharmacology: comparison with the approach of Karl Popper].

    Science.gov (United States)

    Boissel, J P

    1999-01-01

    Is clinical pharmacology a science or only an application of science? Karl Popper suggested a method to identify science and to sort it out from other logical activities such as metaphysics, whereby the falsification criterion he proposed can apply to the theory in such a way that the theory could be refuted. The clinical pharmacologist's approach requires the build-up of a therapeutic model on the basis of two other models: the physiopathologic and the pharmacological. The three-model construct is a theory. Is it scientific in the Popperian sense? From the therapeutic model, one can predict the efficacy of a drug, and the corresponding statement is tested by a clinical trial. Whatever the original statement, it is modified into a refutable one because of the use of the statistical approach in clinical trials. Furthermore, the predicate represents a hypothesis of the model validity, which will then be confronted with 'reality' through clinical experiment. As the therapeutic model is refutable, clinical pharmacology is a science in the Popperian sense.

  20. Quality of reporting statistics in two Indian pharmacology journals

    OpenAIRE

    Jaykaran,; Yadav, Preeti

    2011-01-01

    Objective: To evaluate the reporting of the statistical methods in articles published in two Indian pharmacology journals. Materials and Methods: All original articles published since 2002 were downloaded from the journals′ (Indian Journal of Pharmacology (IJP) and Indian Journal of Physiology and Pharmacology (IJPP)) website. These articles were evaluated on the basis of appropriateness of descriptive statistics and inferential statistics. Descriptive statistics was evaluated on the basis of...

  1. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Education and non-pharmacological approaches for gout.

    Science.gov (United States)

    Abhishek, Abhishek; Doherty, Michael

    2018-01-01

    The objectives of this review are as follows: to highlight the gaps in patient and physician knowledge of gout and how this might impede optimal disease management; to provide recommended core knowledge points that should be conveyed to people with gout; and to review non-pharmacological interventions that can be used in gout management. MeSH terms were used to identify eligible studies examining patients' and health-care professionals' knowledge about gout and its management. A narrative review of non-pharmacological management of gout is provided. Many health-care professionals have significant gaps in their knowledge about gout that have the potential to impede optimal management. Likewise, people with gout and the general population lack knowledge about causes, consequences and treatment of this condition. Full explanation about gout, including the potential benefits of urate-lowering treatment (ULT), motivates people with gout to want to start such treatment, and there is evidence, albeit limited, that educational interventions can improve uptake and adherence to ULT. Additionally, several non-pharmacological approaches, such as rest and topical ice application for acute attacks, avoidance of risk factors that can trigger acute attacks, and dietary interventions that may reduce gout attack frequency (e.g. cherry or cherry juice extract, skimmed milk powder or omega-3 fatty acid intake) or lower serum uric acid (e.g. vitamin C), can be used as adjuncts to ULT. There is a pressing need to educate health-care professionals, people with gout and society at large to remove the negative stereotypes associated with gout, which serve as barriers to optimal gout management, and to perceive gout as a significant medical condition. Moreover, there is a paucity of high-quality trial evidence on whether certain simple individual dietary and lifestyle factors can reduce the risk of recurrent gout attacks, and further studies are required in this field. © The Author 2018

  3. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    -selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93% and doxepin (72%, confirming these chemistries as "leads" for insecticide discovery. CONCLUSIONS/SIGNIFICANCE: This research provides a "proof-of-concept" for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.

  4. Punishment, Pharmacological Treatment, and Early Release

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2013-01-01

    Recent studies have shown that pharmacological treatment may have an impact on aggressive and impulsive behavior. Assuming that these results are correct, would it be morally acceptable to instigate violent criminals to accept pharmacological rehabilitation by offering this treatment in return fo...... relates to the acceptability of the fact that those criminals who accepted the treatment would be exempted from the punishment they rightly deserved. It is argued that none of these reasons succeeds in rejecting this sort of offer....

  5. Pharmacological management of narcolepsy with and without cataplexy.

    Science.gov (United States)

    Kallweit, Ulf; Bassetti, Claudio L

    2017-06-01

    Narcolepsy is an orphan neurological disease and presents with sleep-wake, motoric, neuropsychiatric and metabolic symptoms. Narcolepsy with cataplexy is most commonly caused by an immune-mediated process including genetic and environmental factors, resulting in the selective loss of hypocretin-producing neurons. Narcolepsy has a major impact on workableness and quality of life. Areas covered: This review provides an overview of the temporal available treatment options for narcolepsy (type 1 and 2) in adults, including authorization status by regulatory agencies. First- and second-line options are discussed as well as combination therapies. In addition, treatment options for frequent coexisting co-morbidities and different phenotypes of narcolepsy are presented. Finally, this review considers potential future management strategies. Non-pharmacological approaches are important in the management of narcolepsy but will not be covered in this review. Expert opinion: Concise evaluation of symptoms and type of narcolepsy, coexisting co-morbidities and patients´ distinct needs is mandatory in order to identify a suitable, individual pharmacological treatment. First-line options include Modafinil/Armodafinil (for excessive daytime sleepiness, EDS), Sodium Oxybate (for EDS and/with cataplexy), Pitolisant (for EDS and cataplexy) and Venlafaxine (for cataplexy (off-label) and co-morbid depression). New symptomatic and causal treatment most probably will be completed by hypocretin-replacement and immune-modifying strategies.

  6. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  7. Non-pharmacological approaches to alleviate distress in dementia care.

    Science.gov (United States)

    Mitchell, Gary; Agnelli, Joanne

    2015-11-25

    Distress is one of the most common clinical manifestations associated with dementia. Pharmacological intervention may be appropriate in managing distress in some people. However, best practice guidelines advocate non-pharmacological interventions as the preferred first-line treatment. The use of non-pharmacological interventions encourages healthcare professionals to be more person-centred in their approach, while considering the causes of distress. This article provides healthcare professionals with an overview of some of the non-pharmacological approaches that can assist in alleviating distress for people living with dementia including: reminiscence therapy, reality orientation, validation therapy, music therapy, horticultural therapy, doll therapy and pet therapy. It provides a summary of their use in clinical practice and links to the relevant literature.

  8. The understanding of core pharmacological concepts among health care students in their final semester.

    Science.gov (United States)

    Aronsson, Patrik; Booth, Shirley; Hägg, Staffan; Kjellgren, Karin; Zetterqvist, Ann; Tobin, Gunnar; Reis, Margareta

    2015-12-29

    The overall aim of the study was to explore health care students´ understanding of core concepts in pharmacology. An interview study was conducted among twelve students in their final semester of the medical program (n = 4), the nursing program (n = 4), and the specialist nursing program in primary health care (n = 4) from two Swedish universities. The participants were individually presented with two pharmacological clinically relevant written patient cases, which they were to analyze and propose a solution to. Participants were allowed to use the Swedish national drug formulary. Immediately thereafter the students were interviewed about their assessments. The interviews were audio-recorded and transcribed verbatim. A thematic analysis was used to identify units of meaning in each interview. The units were organized into three clusters: pharmacodynamics, pharmacokinetics, and drug interactions. Subsequent procedure consisted of scoring the quality of students´ understanding of core concepts. Non-parametric statistics were employed. The study participants were in general able to define pharmacological concepts, but showed less ability to discuss the meaning of the concepts in depth and to implement these in a clinical context. The participants found it easier to grasp concepts related to pharmacodynamics than pharmacokinetics and drug interactions. These results indicate that education aiming to prepare future health care professionals for understanding of more complex pharmacological reasoning and decision-making needs to be more focused and effective.

  9. Targeting the orexinergic system: Mainly but not only for sleep ...

    African Journals Online (AJOL)

    Orexin receptors belong to the big family of G protein coupled receptors (GPCRs) that constitute the main targets in the modern pharmacological approaches. Although the orexinergic system is involved in a variety of processes, treating sleep-wakefulness disorders such as narcolepsy and insomnia, remains the main ...

  10. Breastfeeding information in pharmacology textbooks: a content analysis.

    Science.gov (United States)

    Amir, Lisa H; Raval, Manjri; Hussainy, Safeera Y

    2013-07-01

    Women often need to take medicines while breastfeeding and pharmacists need to provide accurate information in order to avoid undue caution about the compatibility of medicines and breastfeeding. The objective of this study was to review information provided about breastfeeding in commonly used pharmacology textbooks. We asked 15 Australian universities teaching pharmacy courses to provide a list of recommended pharmacology textbooks in 2011. Ten universities responded, generating a list of 11 textbooks that we analysed for content relating to breastfeeding. Pharmacology textbooks outline the mechanisms of actions of medicines and their use: however, only a small emphasis is placed on the safety/compatibility of medicines for women during breastfeeding. Current pharmacology textbooks recommended by Australian universities have significant gaps in their coverage of medicine use in breastfeeding. Authors of textbooks should address this gap, so academic staff can recommend texts with the best lactation content.

  11. Spontaneous bone metastases in a preclinical orthotopic model of invasive lobular carcinoma; the effect of pharmacological targeting TGFβ receptor I kinase.

    Science.gov (United States)

    Buijs, Jeroen T; Matula, Kasia M; Cheung, Henry; Kruithof-de Julio, Marianna; van der Mark, Maaike H; Snoeks, Thomas J; Cohen, Ron; Corver, Willem E; Mohammad, Khalid S; Jonkers, Jos; Guise, Theresa A; van der Pluijm, Gabri

    2015-04-01

    Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80-90% and 10-15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E-cadherin and p53 in a conditional K14cre;Cdh1((F/F));Trp53((F/F)) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD-208 (60 mg/kg per day), an orally available TGFβ receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD-208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD-208 treatment reduced TGFβ signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti-tumour effects of TGFβ. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on

  12. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  13. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Sun, Q; Kini, R; Sivaraman, J

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstrate a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.

  14. Measuring the effectiveness of pharmacology teaching in undergraduate medical students.

    Science.gov (United States)

    Urrutia-Aguilar, Maria Esther; Martinez-Gonzalez, Adrian; Rodriguez, Rodolfo

    2012-03-01

    Information overload and recent curricular changes are viewed as important contributory factors to insufficient pharmacological education of medical students. This study was designed to assess the effectiveness of pharmacology teaching in our medical school. The study subjects were 455 second-year medical students, class of 2010, and 26 pharmacology teachers at the National University of Mexico Medical School. To assess pharmacological knowledge, students were required to take 3 multiple-choice exams (70 questions each) as part of their evaluation in the pharmacology course. A 30-item questionnaire was used to explore the students' opinion on teaching. Pharmacology professors evaluated themselves using a similar questionnaire. Students and teachers rated each statement on a 5-point Likert scale. The groups' exam scores ranged from 54.5% to 90.0% of correct responses, with a mean score of 77.3%. Only 73 (16%) of 455 students obtained an exam score of 90% and higher. Students' evaluations of faculty and professor self-ratings were very high (90% and 96.2%, of the maximal response, respectively). Student and professor ratings were not correlated with exam scores (r = 0.291). Our study shows that knowledge on pharmacology is incomplete in a large proportion of second-year medical students and indicates that there is an urgent need to review undergraduate training in pharmacology. The lack of relationship between the subjective ratings of teacher effectiveness and objective exam scores suggests the use of more demanding measures to assess the effectiveness of teaching.

  15. Pharmacological effects of biotin.

    Science.gov (United States)

    Fernandez-Mejia, Cristina

    2005-07-01

    In the last few decades, more vitamin-mediated effects have been discovered at the level of gene expression. Increasing knowledge on the molecular mechanisms of these vitamins has opened new perspectives that form a connection between nutritional signals and the development of new therapeutic agents. Besides its role as a carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. The vitamin regulates genes that are critical in the regulation of intermediary metabolism: Biotin has stimulatory effects on genes whose action favors hypoglycemia (insulin, insulin receptor, pancreatic and hepatic glucokinase); on the contrary, biotin decreases the expression of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme that stimulates glucose production by the liver. The findings that biotin regulates the expression of genes that are critical in the regulation of intermediary metabolism are in agreement with several observations that indicate that biotin supply is involved in glucose and lipid homeostasis. Biotin deficiency has been linked to impaired glucose tolerance and decreased utilization of glucose. On the other hand, the diabetic state appears to be ameliorated by pharmacological doses of biotin. Likewise, pharmacological doses of biotin appear to decrease plasma lipid concentrations and modify lipid metabolism. The effects of biotin on carbohydrate metabolism and the lack of toxic effects of the vitamin at pharmacological doses suggest that biotin could be used in the development of new therapeutics in the treatment of hyperglycemia and hyperlipidemia, an area that we are actively investigating.

  16. A drug development perspective on targeting tumor-associated myeloid cells.

    Science.gov (United States)

    Majety, Meher; Runza, Valeria; Lehmann, Christian; Hoves, Sabine; Ries, Carola H

    2018-02-01

    Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed. © 2017 Federation of European Biochemical Societies.

  17. PCSK9: Regulation and Target for Drug Development for Dyslipidemia.

    Science.gov (United States)

    Burke, Amy C; Dron, Jacqueline S; Hegele, Robert A; Huff, Murray W

    2017-01-06

    Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted zymogen expressed primarily in the liver. PCSK9 circulates in plasma, binds to cell surface low-density lipoprotein (LDL) receptors, is internalized, and then targets the receptors to lysosomal degradation. Studies of naturally occurring PCSK9 gene variants that caused extreme plasma LDL cholesterol (LDL-C) deviations and altered atherosclerosis risk unleashed a torrent of biological and pharmacological research. Rapid progress in understanding the physiological regulation of PCSK9 was soon translated into commercially available biological inhibitors of PCSK9 that reduced LDL-C levels and likely also cardiovascular outcomes. Here we review the swift evolution of PCSK9 from novel gene to drug target, to animal and human testing, and finally to outcome trials and clinical applications. In addition, we explore how the genetics-guided path to PCSK9 inhibitor development exemplifies a new paradigm in pharmacology. Finally, we consider some potential challenges as PCSK9 inhibition becomes established in the clinic.

  18. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    Science.gov (United States)

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  20. A Review of Pharmacologic Treatment for Compulsive Buying Disorder

    OpenAIRE

    Soares, Célia; Fernandes, Natália; Morgado, Pedro

    2016-01-01

    At present, no treatment recommendations can be made for compulsive buying disorder. Recent studies have found evidence for the efficacy of psychotherapeutic options, but less is known regarding the best pharmacologic treatment. The purpose of this review is to present and analyze the available published evidence on the pharmacological treatment of compulsive buying disorder. To achieve this, we conducted a review of studies focusing on the pharmacological treatment of compulsive buying by se...

  1. Pharmacological Experimental Study Of The Anti-Depressant Effect ...

    African Journals Online (AJOL)

    Pharmacological Experimental Study Of The Anti-Depressant Effect Of Total Saikosaponins. Y Liu, C Cao, H Ding. Abstract. Background: Chai Hu has the hepato-protective, choleretic, anti-tussive, analgesic, anti-inflammatory, anti-viral, hypotensive, hypolipidemic, and anti-tumor pharmacological effects. In this study, the ...

  2. Temporal trends in pharmacology publications by pharmacy institutes: A deeper dig

    OpenAIRE

    Bhatt, Parloop Amit; Patel, Zarana

    2016-01-01

    Objective: Publications in Indian Journal of Pharmacology (IJP) are the face of contemporary pharmacology practices followed in health-care profession - a knowledge-based profession. It depicts trends in terms of quantity (proportions), quality, type (preclinical/clinical), thrust areas, etc., of pharmacology followed by biomedical community professions both nationally and internationally. This article aims to establish temporal trends in pharmacology research by pharmacy institutes in light ...

  3. How research in behavioral pharmacology informs behavioral science.

    Science.gov (United States)

    Branch, Marc N

    2006-05-01

    Behavioral pharmacology is a maturing science that has made significant contributions to the study of drug effects on behavior, especially in the domain of drug-behavior interactions. Less appreciated is that research in behavioral pharmacology can have, and has had, implications for the experimental analysis of behavior, especially its conceptualizations and theory. In this article, I outline three general strategies in behavioral pharmacology research that have been employed to increase understanding of behavioral processes. Examples are provided of the general characteristics of the strategies and of implications of previous research for behavior theory. Behavior analysis will advance as its theories are challenged.

  4. Recent Pharmacology Studies on the International Space Station

    Science.gov (United States)

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  5. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  6. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify...

  7. An Integrated Approach to Change the Outcome Part II: Targeted Neuromuscular Training Techniques to Reduce Identified ACL Injury Risk Factors

    Science.gov (United States)

    Myer, Gregory D.; Ford, Kevin R.; Brent, Jensen L.; Hewett, Timothy E.

    2014-01-01

    Prior reports indicate that female athletes who demonstrate high knee abduction moments (KAMs) during landing are more responsive to neuromuscular training designed to reduce KAM. Identification of female athletes who demonstrate high KAM, which accurately identifies those at risk for noncontact anterior cruciate ligament (ACL) injury, may be ideal for targeted neuromuscular training. Specific neuromuscular training targeted to the underlying biomechanical components that increase KAM may provide the most efficient and effective training strategy to reduce noncontact ACL injury risk. The purpose of the current commentary is to provide an integrative approach to identify and target mechanistic underpinnings to increased ACL injury in female athletes. Specific neuromuscular training techniques will be presented that address individual algorithm components related to high knee load landing patterns. If these integrated techniques are employed on a widespread basis, prevention strategies for noncontact ACL injury among young female athletes may prove both more effective and efficient. PMID:22580980

  8. Unusual Voltage-Gated Sodium Currents as Targets for Pain.

    Science.gov (United States)

    Barbosa, C; Cummins, T R

    2016-01-01

    Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages

    Directory of Open Access Journals (Sweden)

    Norikazu Kiguchi

    2017-11-01

    Full Text Available Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1 macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.

  10. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology.

    Science.gov (United States)

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto; Montecucco, Cesare

    2017-04-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. Copyright © 2017 by The Author(s).

  11. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  12. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    Directory of Open Access Journals (Sweden)

    Mehdi Mesri

    Full Text Available Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  13. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  14. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach.

    Science.gov (United States)

    Park, Sa-Yoon; Park, Ji-Hun; Kim, Hyo-Su; Lee, Choong-Yeol; Lee, Hae-Jeung; Kang, Ki Sung; Kim, Chang-Eop

    2018-01-01

    Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng , it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng , a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.

  15. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  16. Developmental paediatric anaesthetic pharmacology

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing

    2015-01-01

    Safe and effective drug therapy in neonates, infants and children require detailed knowledge about the ontogeny of drug disposition and action as well how these interact with genetics and co-morbidity of children. Recent advances in developmental pharmacology in children follow the increased...

  17. Phage Therapy: Eco-Physiological Pharmacology

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2014-01-01

    Full Text Available Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies, impact on body-associated microbiota (as ecological communities, and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.

  18. Pharmacological enhancement of treatment for amblyopia

    Science.gov (United States)

    Rashad, Mohammad A

    2012-01-01

    Background The purpose of this study was to compare a weight-adjusted dose of carbidopa- levodopa as treatment adjunctive to occlusion therapy with occlusion therapy alone in children and adults with different types of amblyopia. Methods This prospective study included 63 patients with amblyopia classified into two groups, ie, an occlusion group which included 35 patients who received occlusion therapy only and a pharmacological enhancement group which included 28 patients who received oral carbidopa-levodopa together with occlusion therapy for 6 weeks. Results The mean logarithm of the minimal angle of resolution (logMAR) of the eyes with amblyopia was not significantly different in the occlusion group (0.52, 0.52, and 0.51) than in the pharmacological enhancement group (0.58, 0.49, and 0.56) at three follow-up visits (at months 1, 3, and 12, respectively). There was a highly significant improvement in mean logMAR of amblyopic eyes compared with baseline in both occlusion groups (from 0.68 to 0.52, from 0.68 to 0.52, and from 0.68 to 0.51) and in the pharmacological enhancement group (from 0.81 to 0.58, from 0.81 to 0.49, and from 0.81 to 0.56) at the month 1, 3, and 12 visits (P = 0.01, P = 0.01, and P = 0.001, respectively). The improvement of mean logMAR in the subgroup of patients older than 12 years was greater in the pharmacological enhancement group (42.5%) than in the occlusion group (30%). The improvement of mean logMAR in the subgroup of patients with severe amblyopia was greater in the pharmacological enhancement group (34.3%) than in the occlusion group (22%). Conclusion Significant improvement was reported in both groups at all follow-up visits over 1 year. Regardless of the etiology of amblyopia, levodopa-carbidopa may be added to part-time occlusion in older patients as a means of increasing the plasticity of the visual cortex. Levodopa may add to the effect of occlusion in severe amblyopia and bilateral amblyopia. PMID:22536029

  19. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M

    2017-02-01

    Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology

  20. Systematic review of evidence underpinning non-pharmacological therapies in dementia.

    Science.gov (United States)

    Olley, Richard; Morales, Andrea

    2017-05-15

    Objective Dementia is one of the most common illnesses worldwide, and is one of the most important causes of disability in older people. Currently, dementia affects over 35million people around the globe. It is expected that this number will increase to 65.7million by 2030. Early detection, diagnosis and treatment to control the principal behaviour symptoms may help reduce these numbers and delay the progression to more advanced and dangerous stages of this disorder with resultant increase quality of life for those affected. The main goal of the present systematic literature review was to examine contemporary evidence relating to non-pharmacological therapy in the treatment of dementia. Methods To achieve the study goal, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used. Results This study identified the five most common behaviours in patients with dementia as aggression, wandering, agitation, apathy and sleep disturbances. Two non-pharmacological therapies were the most studied treatment: music therapy and aromatherapy. Ten other non-pharmacological therapies were also identified, but these lack a sufficient evidence-base. Conclusion Although all the therapies identified could be used as part of the treatment of behavioural symptoms, there is insufficient evidence relating to the indications, appropriate use and effectiveness of these therapies to apply in each behavioural treatment. Thus, the present study has demonstrated a significant research gap. What is known about the topic? Despite the widespread use of many different types of therapies, there is limited evidence regarding the efficacy of non-pharmaceutical therapies deployed in the management of behaviours of concern manifested by some people who suffer with dementia in all its forms. What does this paper add? This systematic review examines contemporary evidence from the literature to determine whether there is an evidence base available that would

  1. Identifying diabetes-related important protein targets with few interacting partners with the PageRank algorithm.

    Science.gov (United States)

    Grolmusz, Vince I

    2015-04-01

    Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google(TM), Inc., we analyse the human protein-protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method.

  2. [Pharmacological treatment].

    Science.gov (United States)

    Arriola Manchola, Enrique; Álaba Trueba, Javier

    2016-06-01

    Alzheimer's disease (AD) is a chronic degenerative and inflammatory process leading to synapticdysfunction and neuronal death. A review about the pharmacological treatment alternatives is made: acetylcholinesterase inhibitors (AChEI), a nutritional supplement (Souvenaid) and Ginkgo biloba. A special emphasis on Ginkgo biloba due to the controversy about its use and the approval by the European Medicines Agency is made. Copyright © 2016 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Directory of Open Access Journals (Sweden)

    Yan M

    2015-10-01

    Full Text Available Meng Yan,1 Kaiping Zhang,1 Yanhui Shi,1 Lifang Feng,1 Lin Lv,1 Baoxin Li1,2 1Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China Abstract: Berberine (BBR, an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293 cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652 and phenylalanine (Phe656 in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. Keywords: berberine, hERG, cavoline-1, cardiotoxicity, LQTS, pharmacological rescue

  4. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  5. Low prevalence of hypertension with pharmacological treatments and associated factors

    Directory of Open Access Journals (Sweden)

    Helena Gama

    2013-06-01

    Full Text Available OBJECTIVE: To assess the determinants of the lack of pharmacological treatment for hypertension. METHODS: In 2005, 3,323 Mozambicans aged 25-64 years old were evaluated. Blood pressure, weight, height and smoking status were assessed following the Stepwise Approach to Chronic Disease Risk Factor Surveillance. Hypertensives (systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg and/or antihypertensive drug therapy were evaluated for awareness of their condition, pharmacological and non-pharmacological management, as well as use of herbal or traditional remedies. Prevalence ratios (PR were calculated, adjusted for sociodemographic characteristics, cardiovascular risk factors and non-pharmacological treatment. RESULTS: Most of the hypertensive subjects (92.3%, and nearly half of those aware of their condition were not treated pharmacologically. Among the aware, the prevalence of untreated hypertension was higher in men {PR = 1.61; 95% confidence interval (95%CI 1.10;2.36} and was lower in subjects under non-pharmacological treatment (PR = 0.58; 95%CI 0.42;0.79; there was no significant association with traditional treatments (PR = 0.75; 95%CI 0.44;1.26. CONCLUSIONS: The lack of pharmacological treatment for hypertension was more frequent in men, and was not influenced by the presence of other cardiovascular risk factors; it could not be explained by the use of alternative treatments as herbal/traditional medicines or non-pharmacological management. It is important to understand the reasons behind the lack of management of diagnosed hypertension and to implement appropriate corrective actions to reduce the gap in the access to healthcare between developed and developing countries.

  6. Teaching pharmacology to medical students in an integrated problem-based learning curriculum:an Australian perspective

    Institute of Scientific and Technical Information of China (English)

    Owen L WOODMAN; Agnes E DODDS; Albert G FRAUMAN; Mosepele MOSEPELE

    2004-01-01

    The world-wide move away from the didactic teaching of single disciples to integrated Problem-based Learning (PBL) curricula in medical education has posed challenges for the basic sciences. In this paper we identify two major challenges. The first challenge is the need to describe a core disciplinary curriculum that can be articulated and mapped onto the new structure. We illustrate how the British Pharmacological Society (BPS) Guidelines are used to evaluate the curriculum coverage in the medical course at The University of Melbourne. The second challenge is to ensure that foundational concepts are given adequate emphasis within the new structure, and in particular, that students have the opportunity to pursue these concepts in their self-directed learning. We illustrate one approach to teaching important pharmacological concepts in an integrated curriculum with a case study from the first year curriculum at The University of Melbourne. Finally, we propose the features of an integrated curriculum that facilitates the learning of basic pharmacology in a situation where PBL and integration sets the curriculum framework.

  7. Pharmacists' and general practitioners' pharmacology knowledge and pharmacotherapy skills

    NARCIS (Netherlands)

    Keijsers, Carolina J P W; Leendertse, Anne J; Faber, Adrianne; Brouwers, Jacobus R B J; de Wildt, Dick J; Jansen, Paul A F

    Understanding differences in the pharmacology knowledge and pharmacotherapy skills of pharmacists and physicians is vital to optimizing interprofessional collaboration and education. This study investigated these differences and the potential influence of work experience. The pharmacology knowledge

  8. Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative.

    Science.gov (United States)

    Hendriks, Hans R; Govaerts, Anne-Sophie; Fichtner, Iduna; Burtles, Sally; Westwell, Andrew D; Peters, Godefridus J

    2017-07-11

    The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Over a period of more than twenty years the EORTC-Cancer Research Campaign panel reviewed ∼2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology.

  9. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Jonathan A Scolnick

    Full Text Available Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET, for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE tissue RNA in both normal tissue and cancer cells.

  10. Clinical Policy Recommendations from the VHA State-of-the-Art Conference on Non-Pharmacological Approaches to Chronic Musculoskeletal Pain.

    Science.gov (United States)

    Kligler, Benjamin; Bair, Matthew J; Banerjea, Ranjana; DeBar, Lynn; Ezeji-Okoye, Stephen; Lisi, Anthony; Murphy, Jennifer L; Sandbrink, Friedhelm; Cherkin, Daniel C

    2018-05-01

    As a large national healthcare system, Veterans Health Administration (VHA) is ideally suited to build on its work to date and develop a safe, evidence-based, and comprehensive approach to the care of chronic musculoskeletal pain conditions that de-emphasizes opioid use and emphasizes non-pharmacological strategies. The VHA Office of Health Services Research and Development (HSR&D) held a state-of-the-art (SOTA) conference titled "Non-pharmacological Approaches to Chronic Musculoskeletal Pain Management" in November 2016. Goals of the conference were (1) to establish consensus on the current state of evidence regarding non-pharmacological approaches to chronic musculoskeletal pain to inform VHA policy in this area and (2) to begin to identify priorities for the future VHA research agenda. Workgroups were established and asked to reach consensus recommendations on clinical and research priorities for the following treatment strategies: psychological/behavioral therapies, exercise/movement therapies, manual therapies, and models for delivering multimodal pain care. Participants in the SOTA identified nine non-pharmacological therapies with sufficient evidence to be implemented across the VHA system as part of pain care. Participants further recommended that effective integration of these non-pharmacological approaches across the VHA and especially into VHA primary care, pain care, and mental health settings should be a priority, and that these treatments should be offered early in the course of pain treatment and delivered in a team-based, multimodal treatment setting concurrently with active self-care and self-management approaches. In addition, we recommend that VHA leadership and policy makers systematically address the barriers to implementation of these approaches by expanding opportunities for clinician and veteran education on the effectiveness of these strategies; supporting and funding further research to determine optimal dosage, duration, sequencing

  11. Pharmacotherapy of Traumatic Brain Injury: State of the Science and the Road Forward: Report of the Department of Defense Neurotrauma Pharmacology Workgroup

    Science.gov (United States)

    Kochanek, Patrick M.; Bergold, Peter; Kenney, Kimbra; Marx, Christine E.; Grimes, Col. Jamie B.; Loh, LTC Yince; Adam, LTC Gina E.; Oskvig, Devon; Curley, Kenneth C.; Salzer, Col. Wanda

    2014-01-01

    Abstract Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI. PMID:23968241

  12. Pharmacological characterization of social isolation-induced hyperactivity

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Fink-Jensen, Anders

    2011-01-01

    Social isolation (SI) of rats directly after weaning is a non-pharmacological, non-lesion animal model based on the neurodevelopmental hypothesis of schizophrenia. The model causes several neurobiological and behavioral alterations consistent with observations in schizophrenia.......Social isolation (SI) of rats directly after weaning is a non-pharmacological, non-lesion animal model based on the neurodevelopmental hypothesis of schizophrenia. The model causes several neurobiological and behavioral alterations consistent with observations in schizophrenia....

  13. Enhanced surveillance of Staphylococcus aureus bacteraemia to identify targets for infection prevention.

    Science.gov (United States)

    Morris, A K; Russell, C D

    2016-06-01

    Surveillance of Staphylococcus aureus bacteraemia (SAB) in Scotland is limited to the number of infections per 100,000 acute occupied bed-days and susceptibility to meticillin. To demonstrate the value of enhanced SAB surveillance to identify targets for infection prevention. Prospective cohort study of all patients identified with SAB over a five-year period in a single health board in Scotland. All patients were reviewed at the bedside by a clinical microbiologist. In all, 556 SAB episodes were identified: 261 (46.6%) were hospital-acquired; 209 (37.9%) were healthcare-associated; 80 (14.4%) were community-acquired; and in six (1.1%) the origin of infection was not hospital-acquired, but could not be separated into healthcare-associated or community-acquired. These were classified as non-hospital-acquired. Meticillin-resistant S. aureus (MRSA) bacteraemia was associated with hospital-acquired and healthcare-associated infections. In addition, there was a significantly higher 30-day mortality associated with hospital-acquired (31.4%) and healthcare-associated (16.3%) infections compared to community-acquired SAB (8.7%). Vascular access devices were associated with hospital-acquired SAB and peripheral venous cannulas were the source for most of these (43.9%). Community-acquired infections were associated with intravenous drug misuse, respiratory tract infections and skeletal and joint infections. Skin and soft tissue infections were more widely seen in healthcare-associated infections. The data indicate that enhanced surveillance of SAB by origin of infection and source of bacteraemia has implications for infection prevention, empirical antibiotic therapy, and health improvement interventions. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology.

    Science.gov (United States)

    Zhao, Liangcai; Dong, Minjian; Liao, Shixian; Du, Yao; Zhou, Qi; Zheng, Hong; Chen, Minjiang; Ji, Jiansong; Gao, Hongchang

    2016-06-03

    Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, (1)H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases.

  15. Fibromyalgia syndrome: prevalence, pharmacological and non-pharmacological interventions in outpatient health care. An analysis of statutory health insurance data.

    Science.gov (United States)

    Sauer, Kristin; Kemper, Claudia; Glaeske, Gerd

    2011-01-01

    Fibromyalgia syndrome (FMS) is a chronic pain condition impacting on quality of life, causing physical and psychological impairment resulting in limited participation in professional and social life. The objective of this study was to assess the prevalence, recommended pharmacological and non-pharmacological interventions of FMS, patients' characteristics and to compare findings to current research. About 1.6 Mio patients of a German statutory health insurance company (GEK) in 2007 were analyzed for: (a) the prevalence of FMS (ICD-10: M79.7); (b) and comorbid depression (ICD-10: F32/33); (c) the recommended pharmacological and non-pharmacological intervention rates; (d) and characteristics of patients associated with being prescribed recommended interventions. The (a) standardized prevalence of FMS in 2007 was 0.05% in men and 0.4% in women. (b) 51.9% of the patients with prevalent FMS had a comorbid depression in 2007 (88.2% female). (c) 66% of FMS patients received the recommended pharmacological treatment, 59% physical therapy, 6.1% cognitive-behavioural therapy and 3.4% a combination of these (multi-component therapy, MCT). (d) One year increase in age was associated with a 3% decrease in the predicted odds of receiving MCT (95%, CI 0.95-0.99). The current data indicate an FMS-prevalence that differs from epidemiological surveys and screenings, probably due to methodological differences. Especially females with comorbid depression are affected. The likelihood of receiving MCT is not associated with gender, but with younger age. Yet, the findings seem to indicate insufficient and inadequate treatment, but FMS warrants more research. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  16. Pharmacological intervention with oxidative burst in human neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj

    2017-01-01

    Roč. 10, č. 2 (2017), s. 56-60 ISSN 1337-6853 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * tharapeutical drugs * natural antioxidants Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy https://www.degruyter.com/downloadpdf/j/intox.2017.10.issue-2/intox-2017-0009/intox-2017-0009.pdf

  17. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    Directory of Open Access Journals (Sweden)

    Lyne Khair

    2015-08-01

    Full Text Available Activation-induced cytidine deaminase (AID is required for initiation of Ig class switch recombination (CSR and somatic hypermutation (SHM of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq. We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  18. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan.

    Science.gov (United States)

    Wangchuk, Phurpa; Yeshi, Karma; Jamphel, Kinga

    2017-12-01

    The Bhutanese Sowa Rigpa medicine (BSM) uses medicinal plants as the bulk ingredients. Our study was to botanically identify subtropical medicinal plants from the Lower Kheng region in Bhutan, transcribe ethnopharmacological uses, and highlight reported pharmacological activities of each plant. We freely listed the medicinal plants used in the BSM literature, current formulations, and the medicinal plants inventory documents. This was followed by a survey and the identification of medicinal plants in the Lower Kheng region. The botanical identification of each medicinal plant was confirmed using The Plant List , eFloras , and TROPICOS . Data mining for reported pharmacological activities was performed using Google Scholar, Scopus, PubMed, and SciFinder Scholar. We identified 61 subtropical plants as the medicinal plants used in BSM. Of these, 17 plants were cultivated as edible plant species, 30 species grow abundantly, 24 species grow in moderate numbers, and only seven species were scarce to find. All these species grow within the altitude range of 100-1800 m above sea level. A total of 19 species were trees, and 13 of them were shrubs. Seeds ranked first in the parts usage category. Goshing Gewog (Block) hosted maximum number of medicinal plants. About 52 species have been pharmacologically studied and only nine species remain unstudied. Lower Kheng region is rich in subtropical medicinal plants and 30 species present immediate economic potential that could benefit BSM, Lower Kheng communities and other Sowa Rigpa practicing organizations.

  19. Veterinary pharmacology: history, current status and future prospects.

    Science.gov (United States)

    Lees, P; Fink-Gremmels, J; Toutain, P L

    2013-04-01

    Veterinary therapeutics, based on the art of Materia Medica, has been practised for countless centuries, but the science of veterinary pharmacology is of very recent origin. This review traces the contribution of Materia Medica to veterinary therapeutics from the Egyptian period through to the Age of Enlightenment. The first tentative steps in the development of the science of veterinary pharmacology were taken in the 18th century, but it was not until the mid 20th century that the science replaced the art of Materia Medica. This review traces the 20th century developments in veterinary pharmacology, with emphasis on the explosion of knowledge in the 35 year period to 2010. The range of factors which have influenced the current status of the discipline are reviewed. Future developments are considered from the perspectives of what might be regarded as desirable and those innovations that might be anticipated. We end with words of encouragement for young colleagues intent upon pursuing a career in veterinary pharmacology. © 2013 Blackwell Publishing Ltd.

  20. Kinase Screening in Pichia pastoris Identified Promising Targets Involved in Cell Growth and Alcohol Oxidase 1 Promoter (PAOX1 Regulation.

    Directory of Open Access Journals (Sweden)

    Wei Shen

    Full Text Available As one of the most commonly used eukaryotic recombinant protein expression systems, P. pastoris relies heavily on the AOX1 promoter (PAOX1, which is strongly induced by methanol but strictly repressed by glycerol and glucose. However, the complicated signaling pathways involved in PAOX1 regulation when supplemented with different carbon sources are poorly understood. Here we constructed a kinase deletion library in P. pastoris and identified 27 mutants which showed peculiar phenotypes in cell growth or PAOX1 regulation. We analyzed both annotations and possible functions of these 27 targets, and then focused on the MAP kinase Hog1. In order to locate its potential downstream components, we performed the phosphoproteome analysis on glycerol cultured WT and Δhog1 strains and identified 157 differentially phosphorylated proteins. Our results identified important kinases involved in P. pastoris cell growth and PAOX1 regulation, which could serve as valuable targets for further mechanistic studies.

  1. Publication trends in Naunyn-Schmiedeberg's Archives of Pharmacology: focus on pharmacology in Egypt

    NARCIS (Netherlands)

    El-Mas, Mahmoud M.; El-Gowelli, Hanan M.; Michel, Martin C.

    2013-01-01

    In a previous analysis of the country of origin of papers published in Naunyn-Schmiedeberg's Archives of Pharmacology, a major shift toward contributions from emerging market countries, was noticed in comparison of 2010 to 2001 publications. Repeating such analysis for 2012 publications in the

  2. Pharmacological Properties of Melanin and its Function in Health.

    Science.gov (United States)

    ElObeid, Adila Salih; Kamal-Eldin, Afaf; Abdelhalim, Mohamed Anwar K; Haseeb, Adil M

    2017-06-01

    The biological pigment melanin is present in most of the biological systems. It manifests a host of biological and pharmacological properties. Its role as a molecule with special properties and functions affecting general health, including photoprotective and immunological action, are well recognized. Its antioxidant, anti-inflammatory, immunomodulatory, radioprotective, hepatic, gastrointestinal and hypoglycaemic benefits have only recently been recognized and studied. It is also associated with certain disorders of the nervous system. In this MiniReview, we consider the steadily increasing literature on the bioavailability and functional activity of melanin. Published literature shows that melanin may play a number of possible pharmacological effects such as protective, stimulatory, diagnostic and curative roles in human health. In this MiniReview, possible health roles and pharmacological effects are considered. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  3. The Pharmacological Basis of Cannabis Therapy for Epilepsy.

    Science.gov (United States)

    Reddy, Doodipala Samba; Golub, Victoria M

    2016-04-01

    Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Target Control in Logical Models Using the Domain of Influence of Nodes.

    Science.gov (United States)

    Yang, Gang; Gómez Tejeda Zañudo, Jorge; Albert, Réka

    2018-01-01

    Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.

  5. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    Science.gov (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  6. Biochemical and Pharmacological Characterizations of ESI-09 Based EPAC Inhibitors: Defining the ESI-09 “Therapeutic Window”

    OpenAIRE

    Yingmin Zhu; Haijun Chen; Stephen Boulton; Fang Mei; Na Ye; Giuseppe Melacini; Jia Zhou; Xiaodong Cheng

    2015-01-01

    The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied...

  7. Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI as a putative drug target for Aspergillosis

    Directory of Open Access Journals (Sweden)

    Morya Vivek K

    2012-02-01

    Full Text Available Abstract Aspergillus is a leading causative agent for fungal morbidity and mortality in immuno-compromised patients. To identify a putative target to design or identify new antifungal drug, against Aspergillus is required. In our previous work, we have analyzed the various biochemical pathways, and we found Ketol Acid Reducto-Isomerase (KARI an enzyme involves in the amino acid biosynthesis, could be a better target. This enzyme was found to be unique by comparing to host proteome through BLASTp analysis. A homology based model of KARI was generated by Swiss model server. The generated model had been validated by PROCHECK and WHAT IF programs. The Zinc library was generated within the limitation of the Lipinski rule of five, for docking study. Based on the dock-score six molecules have been studied for ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678, ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a drug target and the screened inhibitors could help in the development of the better drug against Aspergillus.

  8. Review on research of the phytochemistry and pharmacological activities of Celosia argentea

    Directory of Open Access Journals (Sweden)

    Ying Tang

    Full Text Available ABSTRACT Celosia argentea L., Amaranthaceae, is widely used as traditional medicine with a long history in China. It is a unique source of Semen Celosiae whose contributions include purging the hepatic pathogenic fire, improving eyesight, and treating other eye diseases. Over 79 compounds from this plant were isolated and identified, mainly including saponins, peptides, phenols, fatty acids, and amino acids, of which saponins have been considered as the characteristic and active constituents of Celosia argentea. Experimental evidences manifested that Celosia argentea, with its active compounds, possesses wide-reaching biological activities such as hepatoprotection, tumor treatment, anti-diarrhea, anti-diabetes, anti-oxidant, anti-hypertension, and for treatment of a number of eye diseases. The objective of the study was to provide an overview of the ethno-pharmacology, chemical constituents, pharmacology, and related clinical applications of Celosia argentea, and to reveal their therapeutic potentials, and secure an evidence base for further research works on Celosia argentea.

  9. Clinical Pharmacology in Denmark in 2016 - 40 Years with the Danish Society of Clinical Pharmacology and 20 Years as a Medical Speciality

    DEFF Research Database (Denmark)

    Brøsen, Kim; Andersen, Stig Ejdrup; Borregaard, Jeanett

    2016-01-01

    new jobs and career opportunities for clinical pharmacologists. As of July 2016, the Danish Society of Clinical Pharmacology has 175 members, and 70 of these are specialists in clinical pharmacology corresponding to approximately 2.5 specialists per 1000 doctors (Denmark has in total 28,000 doctors...

  10. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1

    DEFF Research Database (Denmark)

    Carvill, Gemma L; Heavin, Sinéad B; Yendle, Simone C

    2013-01-01

    Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify...... CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies...

  11. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cordeau

    Full Text Available In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC associated with elemental mass spectrometry (ICP-MS to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully

  12. Pharmacological inhibition of feline immunodeficiency virus (FIV).

    Science.gov (United States)

    Mohammadi, Hakimeh; Bienzle, Dorothee

    2012-05-01

    Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.

  13. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.

    Science.gov (United States)

    Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

    2014-12-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Targeting Policy for Obesity Prevention: Identifying the Critical Age for Weight Gain in Women

    Directory of Open Access Journals (Sweden)

    Trevor J. B. Dummer

    2012-01-01

    Full Text Available The obesity epidemic requires the development of prevention policy targeting individuals most likely to benefit. We used self-reported prepregnancy body weight of all women giving birth in Nova Scotia between 1988 and 2006 to define obesity and evaluated socioeconomic, demographic, and temporal trends in obesity using linear regression. There were 172,373 deliveries in this cohort of 110,743 women. Maternal body weight increased significantly by 0.5 kg per year from 1988, and lower income and rural residence were both associated significantly with increasing obesity. We estimated an additional 82,000 overweight or obese women in Nova Scotia in 2010, compared to the number that would be expected from obesity rates of just two decades ago. The critical age for weight gain was identified as being between 20 and 24 years. This age group is an important transition age between adolescence and adulthood when individuals first begin to accept responsibility for food planning, purchasing, and preparation. Policy and public health interventions must target those most at risk, namely, younger women and the socially deprived, whilst tackling the marketing of low-cost energy-dense foods at the expense of healthier options.

  15. Pharmacological and non-pharmacological treatment options for depression and depressive symptoms in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Stefania S. Grigoriou

    2015-04-01

    Full Text Available Depression is a mental disorder with a high prevalence among patients with end stage renal disease (ESRD. It is reported that depression afflicts approximately 20-30% of this patient population, being associated, amongst other, with high mortality rate, low adherence to medication and low perceived quality of life. There is a variety of medications known to be effective for the treatment of depression but due to poor adherence to treatment as well as due to the high need for medications addressing other ESRD comorbidities, depression often remains untreated. According to the literature, depression is under-diagnosed and undertreated in the majority of the patients with chronic kidney disease. In the current review the main pharmacological and non-pharmacological approaches and research outcomes for the management of depressive symptoms in hemodialysis patients are discussed.

  16. [Pharmacological mechanism analysis of oligopeptide from Pinctada fucata based on in silico proteolysis and protein interaction network].

    Science.gov (United States)

    Chen, Yan-Kun; Qiao, Lian-Sheng; Huo, Xiao-Qian; Zhang, Xu; Han, Na; Zhang, Yan-Ling

    2017-09-01

    Pinctada fucata oligopeptide is one of key pharmaceutical effective constituents of P. fucata. It is significant to analyze its pharmacological effect and mechanism. This study aims to discover the potential oligopeptides from P. fucata and analyze the mechanism of P. fucata oligopeptide based on in silico technologies and protein interaction network(PIN). First, main protein sequences of P. fucata were collected, and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, key potential targets of P. fucata oligopeptides were obtained through pharmacophore screening. The protein-protein interaction(PPI) of targets was achieved and implemented to construct PIN and analyze the mechanism of P. fucata oligopeptides. P. fucata oligopeptide database was constructed based on in silico technologies, including 458 oligopeptides. Twelve modules were identified from PIN by a graph theoretic clustering algorithm Molecular Complex Detection(MCODE) and analyzed by Gene ontology(GO) enrichment. The results indicated that P. fucata oligopeptides have an effect in treating neurological diseases, such as Alzheimer's disease. In silico proteolysis could be used to analyze the protein sequences of traditional Chinese medicine(TCM). According to the combination of in silico proteolysis and PIN, the biological activity of oligopeptides could be interpreted rapidly based on the known TCM protein sequence. The study provides the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides. Copyright© by the Chinese Pharmaceutical Association.

  17. Safety pharmacology--current and emerging concepts.

    Science.gov (United States)

    Hamdam, Junnat; Sethu, Swaminathan; Smith, Trevor; Alfirevic, Ana; Alhaidari, Mohammad; Atkinson, Jeffrey; Ayala, Mimieveshiofuo; Box, Helen; Cross, Michael; Delaunois, Annie; Dermody, Ailsa; Govindappa, Karthik; Guillon, Jean-Michel; Jenkins, Rosalind; Kenna, Gerry; Lemmer, Björn; Meecham, Ken; Olayanju, Adedamola; Pestel, Sabine; Rothfuss, Andreas; Sidaway, James; Sison-Young, Rowena; Smith, Emma; Stebbings, Richard; Tingle, Yulia; Valentin, Jean-Pierre; Williams, Awel; Williams, Dominic; Park, Kevin; Goldring, Christopher

    2013-12-01

    Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pharmacologic Implications of Marijuana Use During Pregnancy.

    Science.gov (United States)

    Fantasia, Heidi Collins

    Marijuana is the most commonly used recreational drug in the United States, including among women of childbearing age and women who are pregnant. Changing legal statutes that allow for the use of medical marijuana and the decriminalization of marijuana for personal use reflect more permissive societal views on the use of this drug. Active compounds in marijuana cross the placenta rapidly and are excreted in breast milk. Results of studies of the effects of marijuana on a developing fetus and neonate are conflicting, but researchers have identified chronic marijuana exposure as a risk factor for preterm birth and small-for-gestational-age infants. This article reviews the pharmacology of marijuana and discusses implications for nurses who work with women of childbearing age. © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses.

  19. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    Science.gov (United States)

    Munguia, Jason; Nizet, Victor

    2017-05-01

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radioreceptor assay: theory and applications to pharmacology

    International Nuclear Information System (INIS)

    Perret, G.; Simon, P.

    1984-01-01

    The aim of the first part of this work is to present the theory of the radioreceptor assay and to compare it to the other techniques of radioanalysis (radioimmunoassay, competitive protein binding assays). The technology of the radioreceptor assay is then presented and its components (preparation of the receptors, radioligand, incubation medium) are described. The analytical characteristics of the radioreceptor assay (specificity, sensitivity, reproductibility, accuracy) and the pharmacological significance of the results are discussed. The second part is devoted to the description of the radioreceptor assays of some pharmacological classes (neuroleptics, tricyclic antidepressants, benzodiazepines, β-blockers, anticholinergic drugs) and to their use in therapeutic drug monitoring. In conclusion, by their nature, radioreceptor assays are highly sensitive, reliable, precise, accurate and simple to perform. Their chief disadvantage relates to specificity, since any substance having an appreciable affinity to the receptor site will displace the specifically bound radioligand. Paradoxically in some cases, this lack of specificity may be advantageous in that it allows for the detection of not only the apparent compound but of active metabolites and endogenous receptor agonists as well and in that radioreceptors assays can be devised for a whole pharmacological class and not only for one drug as it is the case for classical physico-chemical techniques. For all these reasons future of radioreceptor assay in pharmacology appears promising [fr

  1. Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice.

    Science.gov (United States)

    Faccidomo, Sara; Swaim, Katarina S; Saunders, Briana L; Santanam, Taruni S; Taylor, Seth M; Kim, Michelle; Reid, Grant T; Eastman, Vallari R; Hodge, Clyde W

    2018-03-03

    There is a clear need for discovery of effective medications to treat behavioral pathologies associated with alcohol addiction, such as chronic drinking. The goal of this preclinical study was to assess effects of chronic alcohol drinking on the nucleus accumbens (NAcb) proteome to identify and validate novel targets for medications development. Two-dimensional difference in-gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization tandem time-of-flight (MALDI-TOF/TOF) was used to assess effects of chronic voluntary home-cage (24-h access) alcohol drinking on the NAcb proteome of C57BL/6J mice. To extend these findings to a model of alcohol self-administration and reinforcement, we investigated potential regulation of the positive reinforcing effects of alcohol by the target protein glutathione S-transferase Pi 1 (GSTP1) using a pharmacological inhibition strategy in mice trained to self-administer alcohol or sucrose. Expression of 52 unique proteins in the NAcb was changed by chronic alcohol drinking relative to water control (23 upregulated, 29 downregulated). Ingenuity Pathway Analysis showed that alcohol drinking altered an array of protein networks associated with neurological and psychological disorders, molecular and cellular functions, and physiological systems and development. DAVID functional annotation analysis identified 9 proteins (SNCA, GSTP1, PRDX3, PPP3R1, EIF5A, PHB, PEBP1/RKIP, GAPDH, AND SOD1) that were significantly overrepresented in a functional cluster that included the Gene Ontology categories "response to alcohol" and "aging." Immunoblots confirmed changes in Pebp1 (RKIP) and GSTP1 in NAcb with no change in amygdala or frontal cortex, suggesting anatomical specificity. Systemic inhibition of GSTP1 with Ezatiostat (0-30 mg/kg, i.p.) dose-dependently reduced the reinforcing effects of alcohol as measured by operant self-administration, in the absence of motor effects. Sucrose self-administration was also reduced but in a

  2. A Multi-Level Analysis of World Scientific Output in Pharmacology

    OpenAIRE

    Olmeda-Gómez, Carlos; Ovalle-Perandones, María Antonia; Perianes-Rodríguez, Antonio

    2012-01-01

    The purpose of this chapter is to analyse international research in “pharmacology, toxicology and pharmaceutics” (hereafter pharmacology) on the basis of the scientific papers listed in the Scopus multidisciplinary database. This primary objective is reached by answering the following questions (in the section on results). What weight does the subject area “pharmacology, toxicology and pharmaceutics” carry in world-wide science? What is the percentage contribution made by the various regions ...

  3. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells—a Potential Target for Pharmacological Intervention in Cardiovascular Diseases

    Science.gov (United States)

    Vukićević, Tanja; Schulz, Maike; Faust, Dörte; Klussmann, Enno

    2016-01-01

    Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments. PMID:26903868

  5. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo.

    Science.gov (United States)

    Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung

    2012-12-01

    What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To

  6. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  7. Pharmacological enhancement of treatment for amblyopia

    Directory of Open Access Journals (Sweden)

    Rashad MA

    2012-03-01

    Full Text Available Mohammad A RashadOphthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, EgyptBackground: The purpose of this study was to compare a weight-adjusted dose of carbidopa-levodopa as treatment adjunctive to occlusion therapy with occlusion therapy alone in children and adults with different types of amblyopia.Methods: This prospective study included 63 patients with amblyopia classified into two groups, ie, an occlusion group which included 35 patients who received occlusion therapy only and a pharmacological enhancement group which included 28 patients who received oral carbidopa-levodopa together with occlusion therapy for 6 weeks.Results: The mean logarithm of the minimal angle of resolution (logMAR of the eyes with amblyopia was not significantly different in the occlusion group (0.52, 0.52, and 0.51 than in the pharmacological enhancement group (0.58, 0.49, and 0.56 at three follow-up visits (at months 1, 3, and 12, respectively. There was a highly significant improvement in mean logMAR of amblyopic eyes compared with baseline in both occlusion groups (from 0.68 to 0.52, from 0.68 to 0.52, and from 0.68 to 0.51 and in the pharmacological enhancement group (from 0.81 to 0.58, from 0.81 to 0.49, and from 0.81 to 0.56 at the month 1, 3, and 12 visits (P = 0.01, P = 0.01, and P = 0.001, respectively. The improvement of mean logMAR in the subgroup of patients older than 12 years was greater in the pharmacological enhancement group (42.5% than in the occlusion group (30%. The improvement of mean logMAR in the subgroup of patients with severe amblyopia was greater in the pharmacological enhancement group (34.3% than in the occlusion group (22%.Conclusion: Significant improvement was reported in both groups at all follow-up visits over 1 year. Regardless of the etiology of amblyopia, levodopa-carbidopa may be added to part-time occlusion in older patients as a means of increasing the plasticity of the visual cortex. Levodopa may add

  8. Human pharmacology of current and new treatments for schizophrenia

    NARCIS (Netherlands)

    Liem-Moolenaar, Marieke

    2012-01-01

    The studies in this thesis together show different ways of studying human pharmacology, give an impression of the current drug development in schizophrenia, and provide examples how human pharmacology can be applied in an early stage of drug development in healthy volunteers. The investigated

  9. Pharmacological Aspects of Neuro-Immune Interactions.

    Science.gov (United States)

    Tarasov, Vadim V; Kudryashov, Nikita V; Chubarev, Vladimir N; Kalinina, Tatiana S; Barreto, George E; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2018-01-01

    The use of systematic approach for the analysis of mechanism of action of drugs at different levels of biological organization of organisms is an important task in experimental and clinical pharmacology for drug designing and increasing the efficacy and safety of drugs. The analysis of published data on pharmacological effects of psychotropic drugs possessing immunomodulatory and/or antiviral properties have shown a correlation between central effects of examined drugs associated with the impact on the processes of neurogenesis of adult brain and survival of neurons, and their ability to alter levels of key proinflammatory cytokines. The changes that occur as a result of the influence of pharmacological agents at one of the systems should inevitably lead to the functional reorganization at another. Integrative mechanisms underlying the neuro-immune interactions may explain the "pleiotropic" pharmacological effects of some antiviral and immunomodulatory drugs. Amantadine, which was originally considered as an antiviral agent, was approved as anti-parkinsonic drug after its wide medical use. The prolonged administration of interferon alpha caused depression in 30-45% of patients, thus limiting its clinical use. The antiviral drug "Oseltamivir" may provoke the development of central side effects, including abnormal behavior, delirium, impaired perception and suicides. Anti-herpethetical drug "Panavir" shows pronounced neuroprotective properties. The purpose of this review is to analyze the experimental and clinical data related to central effects of drugs with antiviral or/and immunotropic activity, and to discover the relationship of these effects with changes in reactivity of immune system and proinflammatory response. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Prêtre, Kathya; Rechfeld, Florian; Thalhammer, Verena; Oesch, Susanne; Wachtel, Marco; Schäfer, Beat W; Niggli, Felix K

    2012-11-01

    Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes. Copyright © 2012 UICC.

  11. Cancer gene therapy with targeted adenoviruses.

    Science.gov (United States)

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  12. Molecular determinants of magnolol targeting both RXRα and PPARγ.

    Directory of Open Access Journals (Sweden)

    Haitao Zhang

    Full Text Available Nuclear receptors retinoic X receptor α (RXRα and peroxisome proliferator activated receptor γ (PPARγ function potently in metabolic diseases, and are both important targets for anti-diabetic drugs. Coactivation of RXRα and PPARγ is believed to synergize their effects on glucose and lipid metabolism. Here we identify the natural product magnolol as a dual agonist targeting both RXRα and PPARγ. Magnolol was previously reported to enhance adipocyte differentiation and glucose uptake, ameliorate blood glucose level and prevent development of diabetic nephropathy. Although magnolol can bind and activate both of these two nuclear receptors, the transactivation assays indicate that magnolol exhibits biased agonism on the transcription of PPAR-response element (PPRE mediated by RXRα:PPARγ heterodimer, instead of RXR-response element (RXRE mediated by RXRα:RXRα homodimer. To further elucidate the molecular basis for magnolol agonism, we determine both the co-crystal structures of RXRα and PPARγ ligand-binding domains (LBDs with magnolol. Structural analyses reveal that magnolol adopts its two 5-allyl-2-hydroxyphenyl moieties occupying the acidic and hydrophobic cavities of RXRα L-shaped ligand-binding pocket, respectively. While, two magnolol molecules cooperatively accommodate into PPARγ Y-shaped ligand-binding pocket. Based on these two complex structures, the key interactions for magnolol activating RXRα and PPARγ are determined. As the first report on the dual agonist targeting RXRα and PPARγ with receptor-ligand complex structures, our results are thus expected to help inspect the potential pharmacological mechanism for magnolol functions, and supply useful hits for nuclear receptor multi-target ligand design.

  13. Pharmacological Effects of Biotin in Animals.

    Science.gov (United States)

    Riveron-Negrete, Leticia; Fernandez-Mejia, Cristina

    2017-01-01

    In recent decades, it was found that vitamins affect biological functions in ways other than their long-known functions; niacin is the best example of a water-soluble vitamin known to possess multiple actions. Biotin, also known as vitamin B7 or vitamin H, is a water-soluble B-complex vitamin that serves as a covalently-bound coenzyme of carboxylases. It is now well documented that biotin has actions other than participating in classical enzyme catalysis reactions. Several lines of evidence have demonstrated that pharmacological concentrations of biotin affect glucose and lipid metabolism, hypertension, reproduction, development, and immunity. The effect of biotin on these functions is related to its actions at the transcriptional, translational, and post-translational levels. The bestsupported mechanism involved in the genetic effects of biotin is the soluble guanylate cyclase/protein kinase G (PKG) signaling cascade. Although there are commercially-available products containing pharmacological concentrations of biotin, the toxic effects of biotin have been poorly studied. This review summarizes the known actions and molecular mechanisms of pharmacological doses of biotin in animals and current information regarding biotin toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Pharmacomicrobiomics: The Impact of Human Microbiome Variations on Systems Pharmacology and Personalized Therapeutics

    OpenAIRE

    ElRakaiby, Marwa; Dutilh, Bas E.; Rizkallah, Mariam R.; Boleij, Annemarie; Cole, Jason N.; Aziz, Ramy K.

    2014-01-01

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized thera...

  15. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  16. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target.

    Science.gov (United States)

    Frei, Priska; Pang, Lijuan; Silbermann, Marleen; Eriş, Deniz; Mühlethaler, Tobias; Schwardt, Oliver; Ernst, Beat

    2017-08-25

    Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression.

    Directory of Open Access Journals (Sweden)

    Victor Chatterjee

    Full Text Available A disintegrin and metalloproteinase15 (ADAM15 has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS. An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3' UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.

  18. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia].

    Science.gov (United States)

    Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh

    2013-04-01

    In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.

  19. Patient- and Family-Identified Problems of Traumatic Brain Injury: Value and Utility of a Target Outcome Approach to Identifying the Worst Problems

    Directory of Open Access Journals (Sweden)

    Laraine Winter

    2016-01-01

    Full Text Available Purpose: This study aimed to identify the sequelae of traumatic brain injury (TBI that are most troubling to veterans with TBI and their families and identify veteran-family differences in content and ranking. Instead of standardized measures of symptom frequency or severity, which may be insensitive to change or intervention effects, we used a target outcome measure for veterans with TBI and their key family members, which elicited open-ended reports concerning the three most serious TBI-related problems. This was followed by Likert-scaled ratings of difficulty in managing the problem. Methods: In this cross-sectional study, interviews were conducted in veterans’ homes. Participants included 83 veterans with TBI diagnosed at a Veterans Affairs medical rehabilitation service and a key family member of each veteran. We utilized open-ended questions to determine the problems caused by TBI within the last month. Sociodemographic characteristics of veterans and family members, and veterans’ military and medical characteristics were collected. A coding scheme was developed to categorize open-ended responses. Results: Families identified nearly twice as many categories of problems as did veterans, and veterans and families ranked problem categories very differently. Veterans ranked cognitive and physical problems worst; families ranked emotional and interpersonal problems worst. Conclusions: Easily administered open-ended questions about the most troubling TBI-related problems yield novel insights and reveal important veteran-family discrepancies.

  20. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Science.gov (United States)

    Walker, Andrew A.; Weirauch, Christiane; Fry, Bryan G.; King, Glenn F.

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  1. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits.

    Science.gov (United States)

    Walker, Andrew A; Weirauch, Christiane; Fry, Bryan G; King, Glenn F

    2016-02-12

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  2. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Directory of Open Access Journals (Sweden)

    Andrew A. Walker

    2016-02-01

    Full Text Available The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  3. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    Science.gov (United States)

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics

  4. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs

    Science.gov (United States)

    Nitsche, Michael A; Müller-Dahlhaus, Florian; Paulus, Walter; Ziemann, Ulf

    2012-01-01

    The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment. PMID:22869014

  5. Targeted siRNA Delivery to Diseased Microvascular Endothelial Cells-Cellular and Molecular Concepts

    NARCIS (Netherlands)

    Kowalski, Piotr S.; Leus, Niek G. J.; Scherphof, Gerrit L.; Ruiters, Marcel H. J.; Kamps, Jan A. A. M.; Molema, Grietje

    Increased insight in the role of endothelial cells in the pathophysiology of cancer, inflammatory and cardiovascular diseases, has drawn great interest in pharmacological interventions aiming at the endothelium in diseased sites. Their location in the body makes them suitable targets for therapeutic

  6. Human Behavioral Pharmacology, Past, Present, and Future: Symposium Presented at the 50th Annual Meeting of the Behavioral Pharmacology Society

    Science.gov (United States)

    Comer, Sandra D.; Bickel, Warren K.; Yi, Richard; de Wit, Harriet; Higgins, Stephen T.; Wenger, Galen R.; Johanson, Chris-Ellyn; Kreek, Mary Jeanne

    2010-01-01

    A symposium held at the 50th annual meeting of the Behavioral Pharmacology Society in May 2007 reviewed progress in the human behavioral pharmacology of drug abuse. Studies on drug self-administration in humans are reviewed that assessed reinforcing and subjective effects of drugs of abuse. The close parallels observed between studies in humans and laboratory animals using similar behavioral techniques have broadened our understanding of the complex nature of the pharmacological and behavioral factors controlling drug self-administration. The symposium also addressed the role that individual differences, such as gender, personality, and genotype play in determining the extent of self-administration of illicit drugs in human populations. Knowledge of how these factors influence human drug self-administration has helped validate similar differences observed in laboratory animals. In recognition that drug self-administration is but one of many choices available in the lives of humans, the symposium addressed the ways in which choice behavior can be studied in humans. These choice studies in human drug abusers have opened up new and exciting avenues of research in laboratory animals. Finally, the symposium reviewed behavioral pharmacology studies conducted in drug abuse treatment settings and the therapeutic benefits that have emerged from these studies. PMID:20664330

  7. Identification of validated questionnaires to measure adherence to pharmacological antihypertensive treatments

    Science.gov (United States)

    Pérez-Escamilla, Beatriz; Franco-Trigo, Lucía; Moullin, Joanna C; Martínez-Martínez, Fernando; García-Corpas, José P

    2015-01-01

    Background Low adherence to pharmacological treatments is one of the factors associated with poor blood pressure control. Questionnaires are an indirect measurement method that is both economic and easy to use. However, questionnaires should meet specific criteria, to minimize error and ensure reproducibility of results. Numerous studies have been conducted to design questionnaires that quantify adherence to pharmacological antihypertensive treatments. Nevertheless, it is unknown whether questionnaires fulfil the minimum requirements of validity and reliability. The aim of this study was to compile validated questionnaires measuring adherence to pharmacological antihypertensive treatments that had at least one measure of validity and one measure of reliability. Methods A literature search was undertaken in PubMed, the Excerpta Medica Database (EMBASE), and the Latin American and Caribbean Health Sciences Literature database (Literatura Latino-Americana e do Caribe em Ciências da Saúde [LILACS]). References from included articles were hand-searched. The included papers were all that were published in English, French, Portuguese, and Spanish from the beginning of the database’s indexing until July 8, 2013, where a validation of a questionnaire (at least one demonstration of the validity and at least one of reliability) was performed to measure adherence to antihypertensive pharmacological treatments. Results A total of 234 potential papers were identified in the electronic database search; of these, 12 met the eligibility criteria. Within these 12 papers, six questionnaires were validated: the Morisky–Green–Levine; Brief Medication Questionnaire; Hill-Bone Compliance to High Blood Pressure Therapy Scale; Morisky Medication Adherence Scale; Treatment Adherence Questionnaire for Patients with Hypertension (TAQPH); and Martín–Bayarre–Grau. Questionnaire length ranged from four to 28 items. Internal consistency, assessed by Cronbach’s α, varied from 0

  8. Smartphone apps to support hospital prescribing and pharmacology education: a review of current provision.

    Science.gov (United States)

    Haffey, Faye; Brady, Richard R W; Maxwell, Simon

    2014-01-01

    Junior doctors write the majority of hospital prescriptions but many indicate they feel underprepared to assume this responsibility and around 10% of prescriptions contain errors. Medical smartphone apps are now widely used in clinical practice and present an opportunity to provide support to inexperienced prescribers. This study assesses the contemporary range of smartphone apps with prescribing or related content. Six smartphone app stores were searched for apps aimed at the healthcare professional with drug, pharmacology or prescribing content. Three hundred and six apps were identified. 34% appeared to be for use within the clinical environment in order to aid prescribing, 14% out with the clinical setting and 51% of apps were deemed appropriate for both clinical and non-clinical use. Apps with drug reference material, such as textbooks, manuals or medical apps with drug information were the commonest apps found (51%), followed by apps offering drug or infusion rate dose calculation (26%). 68% of apps charged for download, with a mean price of £14.25 per app and a range of £0.62-101.90. A diverse range of pharmacology-themed apps are available and there is further potential for the development of contemporary apps to improve prescribing performance. Personalized app stores may help universities/healthcare organizations offer high quality apps to students to aid in pharmacology education. Users of prescribing apps must be aware of the lack of information regarding the medical expertise of app developers. This will enable them to make informed choices about the use of such apps in their clinical practice. © 2013 The British Pharmacological Society.

  9. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Metcalfe, Dean D; Gilfillan, Alasdair M

    2007-01-01

    The prevalence of allergic diseases is increasing worldwide. Hence, there is continued need for novel pharmacological therapies for the treatment of these disorders. As the mast cell is one of the essential cells that contributes to the inflammation associated with allergic diseases, this cell type......E-receptor) on the cell surface. These mediators also contribute to the late and chronic stages of allergic inflammation. Thus, the IgE/antigen response has been a major focus in the development of new drugs targeting mast cells. The essential role that stem cell factor (SCF) and its receptor, Kit, play in mast cell...... remains an attractive target for such pharmacological intervention. Mast cells are major players in the early phase of the allergic response since they generate and release a variety of inflammatory mediators following antigen-dependent aggregation of IgE-bound FcepsilonRI (high affinity Ig...

  10. An Integrated Approach to Instruction in Pharmacology and Therapeutics

    Science.gov (United States)

    Talbert, Robert L.; Walton, Charles A.

    1976-01-01

    The impact of the clinical faculty on the content of the pharmacology course is described in a discussion of trends in pharmacology instruction. Interfaculty communication and development of course objectives are reviewed, and descriptions of two baccalaureate courses at the University of Texas College of Pharmacy are appended. (LBH)

  11. Signatures of DNA target selectivity by ETS transcription factors.

    Science.gov (United States)

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  12. Pharmacological Treatment for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Kaoru Sugi, MD PhD

    2005-01-01

    Full Text Available Pharmacological treatment for atrial fibrillation has a variety of purposes, such as pharmacological defibrillation, maintenance of sinus rhythm, heart rate control to prevent congestive heart failure and prevention of both cerebral infarction and atrial remodeling. Sodium channel blockers are superior to potassium channel blockers for atrial defibrillation, while both sodium and potassium channel blockers are effective in the maintenance of sinus rhythm. In general, digitalis or Ca antagonists are used to control heart rate during atrial fibrillation to prevent congestive heart failure, while amiodarone or bepridil also reduce heart rates during atrial fibrillation. Anticoagulant therapy with warfarin is recommended to prevent cerebral infarction and angiotensin converting enzyme antagonists or angiotensin II receptor blockers are also used to prevent atrial remodeling. One should select appropriate drugs for treatment of atrial fibrillation according to the patient's condition.

  13. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease.

    Science.gov (United States)

    German, Christopher L; Baladi, Michelle G; McFadden, Lisa M; Hanson, Glen R; Fleckenstein, Annette E

    2015-10-01

    Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Pharmacologic studies in vulnerable populations: Using the pediatric experience.

    Science.gov (United States)

    Zimmerman, Kanecia; Gonzalez, Daniel; Swamy, Geeta K; Cohen-Wolkowiez, Michael

    2015-11-01

    Historically, few data exist to guide dosing in children and pregnant women. Multiple barriers to inclusion of these vulnerable populations in clinical trials have led to this paucity of data. However, federal legislation targeted at pediatric therapeutics, innovative clinical trial design, use of quantitative clinical pharmacology methods, pediatric thought leadership, and collaboration have successfully overcome many existing barriers. This success has resulted in improved knowledge on pharmacokinetics, safety, and efficacy of therapeutics in children. To date, research in pregnant women has not been characterized by similar success. Wide gaps in knowledge remain despite the common use of therapeutics in pregnancy. Given the similar barriers to drug research and development in pediatric and pregnant populations, the route toward success in children may serve as a model for the advancement of drug development and appropriate drug administration in pregnant women. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2008-12-01

    Full Text Available Abstract Background Patients diagnosed with lung adenocarcinoma (AD and squamous cell carcinoma (SCC, two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy. Methods MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays. Results Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively. Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette

  16. [Establishment pharmacological research platform for "Concurrent treatment of the brain and heart" and its application on dissecting mechanism of Danhong injection].

    Science.gov (United States)

    Zhao, Xiao-Ping; Yu, Yun-Ru; Li, Xue; Shao, Qing; Wang, Yi-Min; Zhao, Tao; Zhao, Chao; Zhao, Bu-Chang; Wang, Yue-Fei; Wang, Yi

    2017-12-01

    The Concurrent treatment of the brain and heart (CTBH) theory is proposed based on traditional Chinese medical theory and clinical practice. In this study, a framework for the pharmacological research platform was established to investigate the principles of concurrent treatment of the brain and heart. The platform for CTBH includes several key techniques for network modeling, discovery of active substances, dissecting mechanism of action and investigation of pharmacokinetic property of TCM. Taking network modeling of CTBH as an example, using database search, literature mining, network construction and module analysis, the that network modules closely associated with the pathological progress of cardiovascular and cerebrovascular diseases were identified, while further functional enrichment analysis of these modules indicated that the key biological processes included oxidative stress, metabolism and inflammation. GSK3B, NOTCH1, CDK4 were identified as key nodes in these network modules. The above-mentioned platform was applied to construct component-biomolecules network of Danhong injection for the identification of common targets and pathways. Among them, GSK3B had the highest correlation with the composition of Danhong injection in the network, and the biological function of whose cluster was related to cell oxidative stress. Based upon results of network analysis, validation experiments suggested that Danhong injection significantly improved the survival rate of oxidative injured myocardial cells and nerve cells, and the protective effect was related to the increase of phosphorylated GSK3β protein expression. Moreover, extracts of Salviae Miltiorrhizae Radix et Rhizoma and Carthami Flos exerted the synergisticcytoprotective effect. The results indicated that the mechanism of treatment of cardiovascular and cerebrovascular diseases of Danhong injection could be studied through network modeling and other methods. In summary, the proposed pharmacological

  17. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology.

    Science.gov (United States)

    Wang, Guo-Wei; Hu, Wen-Ting; Huang, Bao-Kang; Qin, Lu-Ping

    2011-06-14

    The fruit of Illicium verum Hook. f. (Chinese star anise) has long been used in traditional Chinese medicine and food industry with the actions of dispelling cold, regulating the flow of Qi and relieving pain. A bibliographic investigation was carried out by analyzing recognized books including Chinese herbal classic, and worldwide accepted scientific databases (Pubmed, SciFinder, Scopus and Web of Science) were searched for the available information on I. verum. I. verum is an aromatic evergreen tree of the family Illiciaceae. It is sometimes contaminated with highly toxic Japanese star anise (I. anisatum L.) and poisonous star anise (I. lanceolatum A. C. Smith), which contain several neurotoxic sesquiterpenes. Traditional uses of I. verum are recorded throughout Asia and Northern America, where it has been used for more than 10 types of disorders. Numerous compounds including volatiles, seco-prezizaane-type sesquiterpenes, phenylpropanoids, lignans, flavonoids and other constituents have been identified from I. verum. Modern pharmacology studies demonstrated that its crude extracts and active compounds possess wide pharmacological actions, especially in antimicrobial, antioxidant, insecticidal, analgesic, sedative and convulsive activities. In addition, it is the major source of shikimic acid, a primary ingredient in the antiflu drug (Tamiflu). This review summarizes the up-to-date and comprehensive information concerning the botany, traditional use, phytochemistry and pharmacology of I. verum together with the toxicology, and discusses the possible trend and scope for future research of I. verum. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Kang, Hyun Tae; Park, Joon Tae; Choi, Kobong; Choi, Hyo Jei Claudia; Jung, Chul Won; Kim, Gyu Ree; Lee, Young-Sam; Park, Sang Chul

    2017-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) constitutes a genetic disease wherein an aging phenotype manifests in childhood. Recent studies indicate that reactive oxygen species (ROS) play important roles in HGPS phenotype progression. Thus, pharmacological reduction in ROS levels has been proposed as a potentially effective treatment for patient with this disorder. In this study, we performed high-throughput screening to find compounds that could reduce ROS levels in HGPS fibroblasts and identified rho-associated protein kinase (ROCK) inhibitor (Y-27632) as an effective agent. To elucidate the underlying mechanism of ROCK in regulating ROS levels, we performed a yeast two-hybrid screen and discovered that ROCK1 interacts with Rac1b. ROCK activation phosphorylated Rac1b at Ser71 and increased ROS levels by facilitating the interaction between Rac1b and cytochrome c. Conversely, ROCK inactivation with Y-27632 abolished their interaction, concomitant with ROS reduction. Additionally, ROCK activation resulted in mitochondrial dysfunction, whereas ROCK inactivation with Y-27632 induced the recovery of mitochondrial function. Furthermore, a reduction in the frequency of abnormal nuclear morphology and DNA double-strand breaks was observed along with decreased ROS levels. Thus, our study reveals a novel mechanism through which alleviation of the HGPS phenotype is mediated by the recovery of mitochondrial function upon ROCK inactivation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety.

    Science.gov (United States)

    Moreira, Rute; Pereira, David M; Valentão, Patrícia; Andrade, Paula B

    2018-06-05

    Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world, frequently in species relevant for human consumption. Apart from the toxicity that these molecules can cause in humans and livestock, PA are also known for their wide range of pharmacological properties, which can be exploited in drug discovery programs. In this work we review the current body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.

  20. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.