WorldWideScience

Sample records for identifying natural synthetic

  1. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  2. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  3. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    Science.gov (United States)

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  4. EPR spectra of synthetic, and natural Australian opals - A pilot study

    International Nuclear Information System (INIS)

    Hutton, D.R.; Troup, G.J.

    1996-01-01

    Full text: The EPR spectra of some synthetic opals, and of some Australian natural opals of various provenance, have been obtained, with the use of a Varian E-12 EPR spectrometer operating at ∼9.2 Ghz. The synthetic opals, from Swiss Gilson showed here a broad ESR signal in the g =2 region, with little identifiable structure . The natural Australian opals from Coober Pedy, Lightning Ridge, and Mintabie all showed the clear presence of Fe 3+ , Mn 2+ and a free radical like signal, suspected to be localised on an Al atom. Examples of the various spectra will be presented. It is not yet certain how the spectra correlate with provenance, but the synthetic spectra are quite different from the natural ones

  5. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  7. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  8. Characteristics of Color Produced by Awa Natural Indigo and Synthetic Indigo

    Directory of Open Access Journals (Sweden)

    Miyoko Kawahito

    2009-06-01

    Full Text Available Color of cloth dyed with Awa natural indigo is quantitatively compared with color of the cloth dyed with synthetic indigo. Results showed that: 1 color produced by Awa natural indigo is bluer and brighter than color produced by synthetic indigo; 2 a single Gaussian function fits the profile of the running of color produced by Awa natural indigo and the running of color produced by synthetic indigo prepared with sodium hydrosulfite approximates a linear sum of two Gaussian functions; 3 before and after washing, color is quantitatively more uneven when produced by Awa natural indigo than when produced by synthetic indigo; 4 the diffusion coefficient of Awa natural indigo is lower than that of synthetic indigo; 5 color superiority of Awa natural indigorelates to smaller diffusion coefficient, slower reduction, poorer penetration, and higher dye aggregation.

  9. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparison of natural and synthetic diamond X-ray detectors.

    Science.gov (United States)

    Lansley, S P; Betzel, G T; Metcalfe, P; Reinisch, L; Meyer, J

    2010-12-01

    Diamond detectors are particularly well suited for dosimetry applications in radiotherapy for reasons including near-tissue equivalence and high-spatial resolution resulting from small sensitive volumes. However, these detectors have not become commonplace due to high cost and poor availability arising from the need for high-quality diamond. We have fabricated relatively cheap detectors from commercially-available synthetic diamond fabricated using chemical vapour deposition. Here, we present a comparison of one of these detectors with the only commercially-available diamond-based detector (which uses a natural diamond crystal). Parameters such as the energy dependence and linearity of charge with dose were investigated at orthovoltage energies (50-250 kV), and dose-rate dependence of charge at linear accelerator energy (6 MV). The energy dependence of a synthetic diamond detector was similar to that of the natural diamond detector, albeit with slightly less variation across the energy range. Both detectors displayed a linear response with dose (at 100 kV) over the limited dose range used. The sensitivity of the synthetic diamond detector was 302 nC/Gy, compared to 294 nC/Gy measured for the natural diamond detector; however, this was obtained with a bias of 246.50 V compared to a bias of 61.75 V used for the natural diamond detector. The natural diamond detector exhibited a greater dependency on dose-rate than the synthetic diamond detector. Overall, the synthetic diamond detector performed well in comparison to the natural diamond detector.

  11. Synthetic and natural antioxidants: food quality protectors

    Directory of Open Access Journals (Sweden)

    Valenzuela, A.

    1996-06-01

    Full Text Available Oxidation of food lipid components, known as oxidative rancidity is one of the major deteriorative and quality-affecting reactions. Oxidative rancidity is initiated by oxygen free-radicals or by the reaction of molecular oxygen with pre-formed organic free-radicals from polyunsaturated fatty acids composing fats and oils. Oxidation may be prevented or delayed by antioxidants, these substances being organic molecules of either synthetic or natural origin which can scavenge the oxygen free-radicals involved in fatty acid oxidation. Synthetic antioxidants are the most popular and widely used antioxidants, however concerns about it safe to both human and animal health is encouraging research on substances from natural origin showing antioxidant properties. Few natural antioxidants have been proved to be effective when compared to synthetic products in the same experimental conditions. This work summarizes the main characteristics of the most important synthetic antioxidants, also discuss the principal characteristics of four natural antioxidants, comparing the advantages and disadvantages of using natural products compared to synthetic ones, and sight the future for natural products with antioxidant activity.

    La oxidación de los componentes lípidos de un alimento, conocida como rancidez oxidativa, es una de las reacciones que deteriora y afecta en forma más importante la calidad de un producto. La rancidez oxidativa es iniciada por radicales libres del oxígeno o por el ataque del oxígeno molecular a radicales libres pre-formados en los ácidos grasos poliinsaturados que forman las grasas y aceites. La oxidación puede ser prevenida o retrasada por los antioxidantes, sustancias orgánicas de origen sintético o natural que actúan como atrapadores de los radicales libres del oxígeno involucrados en la oxidación de los ácidos grasos. Los antioxidantes sintéticos son los más populares y ampliamente utilizados, sin embargo existe

  12. Determination of synthetic colorants and natural carmine in wines

    Directory of Open Access Journals (Sweden)

    S. Virtanen

    1999-09-01

    Full Text Available Methods were developed for the determination of synthetic colorants and natural carmine (E120 in wines. The synthetic colorants studied were tartrazine (E102, quinoline yellow (E104, sunset yellow (E110, azo ruby (E122, amaranth (E123, ponceau 4R (E124, and erythrosine (E127. The colorants were extracted using solid-phase extraction (SPE with NH2 cartridges. The extracted colorants were then analysed by high-performance liquid chromatography (HPLC. The compounds were identified by comparing the spectrum of extract with spectra in a UV-vis spectral library of known food colorants. The detection limits in red wine ranged from 0.1 mg/l to 0.2 mg/l. Diode array detection and library search makes the method very effective in identifying forbidden colorants in wines. SPE is sufficiently effective in separating and concentrating colorants from wine. The effect of added colorants, e.g. azo ruby (E122, amaranth (E123 and tartrazine (E102 on the UV-vis spectra of red and white wines were studied. The added colorants could be identified in this way but not as accurately as by the HPLC method.

  13. Effects of synthetic and natural toxicants on livestock.

    Science.gov (United States)

    Shull, L R; Cheeke, P R

    1983-07-01

    Synthetic and natural toxicants are constituents of soil, air, water and foodstuffs. Their impact on animal agriculture has resulted from acute and chronic intoxication and residues transferred into meat, dairy and poultry products. Recent advances in analytical chemistry and the sciences associated with toxicology have allowed better assessment of the hazard of toxicants on animals including man. Historically, natural toxicants (phytotoxins, mycotoxins and minerals) that are associated with many common feedstuffs accounted for toxicity episodes of epidemic proportions. Most synthetic chemicals (pesticides, nonpesticidal organic chemicals and drugs) have been introduced in increasing numbers since the 1940's. In the 1960's and '70's, recognition of the need to control their environmental distribution stimulated the introduction of numerous laws and regulations. In the last decade, several problematic synthetic chemicals have been banned, particularly those found to persist in the environment or those confirmed or suspected as carcinogens in humans. At the farm level, the development of various preventative management strategies has decreased the exposure of livestock to natural toxicants. In the future, the impact of natural toxicants on animal agriculture is expected to lessen as their existence, etiology and toxicology are determined. On the other hand, synthetic chemicals will continue to threaten animal health as greater numbers and quantities are released into the environment. These challenges should stimulate a greater involvement of animal scientists in toxicology.

  14. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  15. Comprehension of synthetic speech and digitized natural speech by adults with aphasia.

    Science.gov (United States)

    Hux, Karen; Knollman-Porter, Kelly; Brown, Jessica; Wallace, Sarah E

    2017-09-01

    Using text-to-speech technology to provide simultaneous written and auditory content presentation may help compensate for chronic reading challenges if people with aphasia can understand synthetic speech output; however, inherent auditory comprehension challenges experienced by people with aphasia may make understanding synthetic speech difficult. This study's purpose was to compare the preferences and auditory comprehension accuracy of people with aphasia when listening to sentences generated with digitized natural speech, Alex synthetic speech (i.e., Macintosh platform), or David synthetic speech (i.e., Windows platform). The methodology required each of 20 participants with aphasia to select one of four images corresponding in meaning to each of 60 sentences comprising three stimulus sets. Results revealed significantly better accuracy given digitized natural speech than either synthetic speech option; however, individual participant performance analyses revealed three patterns: (a) comparable accuracy regardless of speech condition for 30% of participants, (b) comparable accuracy between digitized natural speech and one, but not both, synthetic speech option for 45% of participants, and (c) greater accuracy with digitized natural speech than with either synthetic speech option for remaining participants. Ranking and Likert-scale rating data revealed a preference for digitized natural speech and David synthetic speech over Alex synthetic speech. Results suggest many individuals with aphasia can comprehend synthetic speech options available on popular operating systems. Further examination of synthetic speech use to support reading comprehension through text-to-speech technology is thus warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Susceptibility of enterococci to natural and synthetic iron chelators].

    Science.gov (United States)

    Lisiecki, Paweł; Mikucki, Jerzy

    2002-01-01

    A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.

  17. Comparison of synthetic and natural glucosylceramides as substrate for glucosylceramidase assay

    International Nuclear Information System (INIS)

    Vaccaro, A.M.; Kobayashi, T.; Suzuki, K.

    1982-01-01

    Commercially available [ 3 H]glucosylceramide is derived from spleen tissue of patients with Gaucher's disease. When such tritiated glucosylceramide was diluted with unlabelled glucosylceramide from different sources and used as the substrate for assays of glucosylceramidase, the apparent activities obtained differed drastically. When diluted with synthetic N-stearoyl- or N-lignoceroyl-glucosyldihydrosphingosine, the release of [ 3 H]glucose was 4-5 times greater than when diluted with unlabelled glucosylceramide from Gaucher spleen, with either brain or fibroblast homogenate as the enzyme source. The Ksub(i) values of the synthetic substrates were 15-30 times greater than the Ksub(m) for the natural mixture, indicating much lower affinity of the synthetic substrates for the enzyme. Although the reason for the reduction in affinity could not be identified, caution is required when the commercial [ 3 H]glucosylceramide is to be diluted with unlabelled glucosylceramide. (Auth.)

  18. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  19. A Synthetic Ecology Perspective: How Well Does Behavior of Model Organisms in the Laboratory Predict Microbial Activities in Natural Habitats?

    Science.gov (United States)

    Yu, Zheng; Krause, Sascha M B; Beck, David A C; Chistoserdova, Ludmila

    2016-01-01

    In this perspective article, we question how well model organisms, the ones that are easy to cultivate in the laboratory and that show robust growth and biomass accumulation, reflect the dynamics and interactions of microbial communities observed in nature. Today's -omics toolbox allows assessing the genomic potential of microbes in natural environments in a high-throughput fashion and at a strain-level resolution. However, understanding of the details of microbial activities and of the mechanistic bases of community function still requires experimental validation in simplified and fully controlled systems such as synthetic communities. We have studied methane utilization in Lake Washington sediment for a few decades and have identified a number of species genetically equipped for this activity. We have also identified co-occurring satellite species that appear to form functional communities together with the methanotrophs. Here, we compare experimental findings from manipulation of natural communities involved in metabolism of methane in this niche with findings from manipulation of synthetic communities assembled in the laboratory of species originating from the same study site, from very simple (two-species) to rather complex (50-species) synthetic communities. We observe some common trends in community dynamics between the two types of communities, toward representation of specific functional guilds. However, we also identify strong discrepancies between the dominant methane oxidizers in synthetic communities compared to natural communities, under similar incubation conditions. These findings highlight the challenges that exist in using the synthetic community approach to modeling dynamics and species interactions in natural communities.

  20. A Preliminary Trypanocidal Study of Natural and Synthetic ...

    African Journals Online (AJOL)

    Eighty healthy Wistar albino rats were used to investigate the trypanocidal effect of natural and synthetic supplements of zinc and magnesium in combination with diminazene aceturate in Trypanosoma congolense-inoculated rats. The rats were randomly divided into eight groups in study '1' (involving the natural ...

  1. Application of natural and synthetic polymers in a production of paper

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan

    2007-01-01

    Full Text Available This work gives the review of most frequently used natural and synthetic polymers in production of paper, board and cardboard. Physical and chemical interaction of natural and synthetic polymers with cellulose fibers, and thus the way these polymers influence the improvement of both production process and the paper characteristics, have been presented.

  2. Removal of Pb(II) from aqueous solution by natural and synthetic ...

    African Journals Online (AJOL)

    The point of zero charge values of 9.57 and 8.20 were obtained by mass titration method for synthetic and natural calcite, respectively. The maximum adsorption capacities of 200 mg/g and 150 mg/g Pb(II) of synthetic calcite and natural calcite were obtained at initial lead loading of 1200 mg/L at 25±2 °C, respectively.

  3. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  4. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  5. The Influence of Safety, Efficacy, and Medical Condition Severity on Natural versus Synthetic Drug Preference.

    Science.gov (United States)

    Meier, Brian P; Lappas, Courtney M

    2016-11-01

    Research indicates that there is a preference for natural v. synthetic products, but the influence of this preference on drug choice in the medical domain is largely unknown. We present 5 studies in which participants were asked to consider a hypothetical situation in which they had a medical issue requiring pharmacological therapy. Participants ( N = 1223) were asked to select a natural, plant-derived, or synthetic drug. In studies 1a and 1b, approximately 79% of participants selected the natural v. synthetic drug, even though the safety and efficacy of the drugs were identical. Furthermore, participants rated the natural drug as safer than the synthetic drug, and as that difference increased, the odds of choosing the natural over synthetic drug increased. In studies 2 and 3, approximately 20% of participants selected the natural drug even when they were informed that it was less safe (study 2) or less effective (study 3) than the synthetic drug. Finally, in study 4, approximately 65% of participants chose a natural over synthetic drug regardless of the severity of a specific medical condition (mild v. severe hypertension), and this choice was predicted by perceived safety and efficacy differences. Overall, these data indicate that there is a bias for natural over synthetic drugs. This bias could have implications for drug choice and usage. © The Author(s) 2015.

  6. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  7. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    International Nuclear Information System (INIS)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J.

    2002-01-01

    New developments in molecular-level 14 C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14 C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ( 14 C-free) and natural compounds should have 'modern' or 'contemporary' 14 C levels. As a baseline study, we measured, for the first time, the 14 C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14 C-free except for the pesticide toxaphene, which had a modern 14 C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14 C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock

  8. Chemical communication between synthetic and natural cells: a possible experimental design.

    Directory of Open Access Journals (Sweden)

    Livia Leoni

    2013-09-01

    Full Text Available The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes, allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012 we presented the state-of-the-art of semi-synthetic minimal cell (SSMC technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013 we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i synthetic cell construction, and (ii bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.

  9. Optical spectroscopy and high pressure on emeralds: synthetic and natural

    Science.gov (United States)

    Sánchez-Alejo, M. A.; Hernández-Alcántara, J. M.; Flores Jiménez, C.; Calderón, T.; Murrieta S., H.; Camarillo García, E.

    2011-09-01

    Emerald, natural and synthetic, are the subject of study by means of optical spectroscopy techniques. Particularly, natural emeralds have been considered as a gemstone in jewelry not being so the synthetic ones. But, in general, the properties of these are very good for applications, for instance as a laser system, due to the impurities control. In this work a comparison between natural and synthetic emeralds is done. Chromium ions are the main responsible of the characteristic fascinating green color of these gemstones, entering in the crystals in octahedral sites. Absorption at room temperature show up two broad bands in the visible region and two narrow bands called the R-lines. That spectrum corresponds to trivalent chromium ions in an octahedral site, as it happens in ruby and alexandrite. On other hand, photoemission arises in the range 640-850 nm. at room temperature . It is shown that the luminescence spectra changes as the temperature is lowered. The effect on the main peak of luminescence when high pressure is applied on small samples of emerald shows as a linear function.

  10. China's precarious synthetic natural gas demonstration

    International Nuclear Information System (INIS)

    Yang, Chi-Jen

    2015-01-01

    In 2013, China's national government abandoned its previous cautious policy and started to promote large-scale deployment of coal-based synthetic natural gas (SNG). Coal-based SNG is both carbon-intensive and very water-intensive. Driven by a smog crisis and the recession of coal industry, China's 2013 policy change is major setback in its long-term efforts in carbon mitigation and water conservation. The government of China made the policy change before the commercial commencement of China's first SNG demonstration plant. Since the commencement of China's SNG demonstration plant, many problems have started to appear. In this article, I discuss the nature of demonstration project and explain the danger in starting a crash program without evaluating the demonstration comprehensively and transparently. - Highlights: • China is promoting large-scale commercialization of synthetic natural gas (SNG) plants. • The push for commercialization started before the startup of its first SNG demonstration. • A crash SNG program is both financially risky and environmental detrimental. • China should reconsider its SNG policy and adopt a more cautious approach

  11. Antimicrobial activity of new porphyrins of synthetic and natural origin

    Science.gov (United States)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  12. Chlorine-36 abundance in natural and synthetic perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  13. Comparison of natural and synthetic diamond X-ray detectors

    International Nuclear Information System (INIS)

    Lansley, S. P.; Betzel, G.T.; Meyer, J.; Metcalf, P.; Reinisch, L.

    2010-01-01

    Full text: Diamond detectors are particularly well suited for dosimetry applications in radiotherapy for reasons including near-tissue equivalence and high-spatial resolu tion resulting from small sensitive volumes. However, these detectors have not become commonplace due to high cost and poor availability arising from the need for high quality diamond. We have fabricated relatively cheap detectors from commercially-available synthetic diamond fabricated using chemical vapour deposition. Here, we present a comparison of one of these detectors with the only commercially-available diamond-based detector (which uses a natural diamond crystal). Parameters such as the energy dependence and linearity of charge with dose were investigated at orthovoltage energies (50-250 kY), and dose-rate dependence of charge at linear accelerator energy (6 MY). The energy dependence of a synthetic diamond detector was similar to that of the natural diamond detector, albeit with slightly less variation across the energy range. Both detectors displayed a linear response S. P. Lansley () . G. T. Betzel . J. Meyer Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand e-mail: stuart.lansley canterbury.ac.nz S. P. Lansley The Macdiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand P. Metcalfe Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia L. Reinisch Department of Physical and Earth Sciences, Jacksonville State University, Jacksonville, AL, USA with dose (at 100 kY) over the limited dose range used. The sensitivity of the synthetic diamond detector was 302 nC/Gy, compared to 294 nC/Gy measured for the natural diamond detector; however, this was obtained with a bias of 246.50 Y compared to a bias of 61.75 Y used for the natural diamond detector. The natural diamond detector exhibited a greater dependency on dose-rate than the syn thetic diamond detector. Overall

  14. Simultaneous identification of synthetic and natural dyes in different food samples by UPLC-MS

    Science.gov (United States)

    Mandal, Badal Kumar; Mathiyalagan, Siva; Dalavai, Ramesh; Ling, Yong-Chien

    2017-11-01

    Fast foods and variety food items are populating among the food lovers. To improve the appearance of the food product in surviving gigantic competitive environment synthetic or natural food dyes are added to food items and beverages. Although regulatory bodies permit addition of natural colorants due to its safe and nontoxic nature in food, synthetic dyes are stringently controlled in all food products due to their toxicity by regulatory bodies. Artificial colors are need certification from the regulatory bodies for human consumption. To analyze food dyes in different food samples many analytical techniques are available like high pressure liquid chromatography (HPLC), thin layer chromatography (TLC), spectroscopic and gas chromatographic methods. However all these reported methods analyzed only synthetic dyes or natural dyes. Not a single method has analyzed both synthetic and natural dyes in a single run. In this study a robust ultra-performance liquid chromatographic method for simultaneous identification of 6 synthetic dyes (Tartrazine, Indigo carmine, Briliant blue, Fast green, malachite green, sunset yellow) and one natural dye (Na-Cu-Chlorophyllin) was developed using acquitic UPLC system equipped with Mass detector and acquity UPLC HSS T3 column (1.8 μm, 2.1 × 50 mm, 100Å). All the dyes were separated and their masses were determined through fragments’ masses analyses.

  15. Regenesis how synthetic biology will reinvent nature and ourselves

    CERN Document Server

    Church, George M

    2012-01-01

    Imagine a future in which human beings have become immune to all viruses, in which bacteria can custom-produce everyday items, like a drinking cup, or generate enough electricity to end oil dependency. Building a house would entail no more work than planting a seed in the ground. These scenarios may seem far-fetched, but pioneering geneticist George Church and science writer Ed Regis show that synthetic biology is bringing us ever closer to making such visions a reality. In "Regenesis," Church and Regis explorethe possibilities--and perils--of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. Until now, nature has been the exclusive arbiter of life, death, and evolution; with synthetic biology, we now have the potential to write our own biological future. Indeed, as Church and Regis show, it even enables us to revisit crucial points in th...

  16. Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides.

    Science.gov (United States)

    Dinarello, C A; Krueger, J M

    1986-10-01

    Like bacterial lipopolysaccharides (endotoxins), synthetic muramyl peptides (MPs) are thought to exert many of their biological effects by inducing the production of various mediators from host cells. Both synthetic muramyl dipeptide (MDP) and naturally occurring sleep factor (SF), which contains an MP structure, stimulate human monocytes to produce interleukin 1 (IL 1). IL 1 is a family of unique polypeptides that mediate a variety of host defense functions and possess several biological properties, many of which are shared with MPs. Endotoxins are potent inducers of IL 1, but polymyxin B, which blocks endotoxin's biological activities, has no effect on MP-induced IL 1 production. SF purified from human urine and SF isolated from the peritoneal fluid of patients undergoing chronic ambulatory peritoneal dialysis (CAPD) induce IL 1 when incubated with human mononuclear cells in vitro. SF from urine or CAPD fluid induces IL 1 production in the picrogram per milliliter range whereas synthetic MDP requires microgram per milliliter concentrations. Thus, both synthetic and naturally occurring MPs exert their biological effects, in part, by inducing IL 1.

  17. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives.

    Science.gov (United States)

    Caleja, Cristina; Barros, Lillian; Antonio, Amilcar L; Carocho, Márcio; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-11-01

    Consumers demand more and more so-called "natural" products and, therefore, the aim of this work was to compare the effects of natural versus synthetic antioxidant preservatives in yogurts. Matricaria recutita L. (chamomile) and Foeniculum vulgare Mill. (fennel) decoctions were tested as natural additives, while potassium sorbate (E202) was used as a synthetic additive. The fortification of yogurts with natural and synthetic antioxidants did not cause significant changes in the yoghurt pH and nutritional value, in comparison with control samples (yogurt without any additive). However, the fortified yogurts showed higher antioxidant activity, mainly the yogurts with natural additives (and among these, the ones with chamomile decoction). Overall, it can be concluded that plant decoctions can be used to develop novel yogurts, by replacing synthetic preservatives and improving the antioxidant properties of the final product, without changing the nutritional profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms

    Science.gov (United States)

    Manner, Suvi; Skogman, Malena; Goeres, Darla; Vuorela, Pia; Fallarero, Adyary

    2013-01-01

    When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. PMID:24071942

  19. Acute Toxicity of a Recently Identified Phenol-based Synthetic ...

    African Journals Online (AJOL)

    This paper reports on the acute toxicity of a new phenol based synthetic tsetse fly repellent recently identified at the International Centre for Insect Physiology and Ecology (patent No. ... The repellent can be classified as being highly toxic with central nervous system (CNS) involvement and a mild skin and eye irritant.

  20. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  1. Adsorption and desorption of cadmium by synthetic and natural organo-clay complexes

    International Nuclear Information System (INIS)

    Levy, R.; Francis, C.W.; Oak Ridge National Lab., Tenn.

    1976-01-01

    Tracer levels of 109 Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo-clay complexes. Synthetic organo-clay complexes were made by adsorbing humic acid extracted from soil to various forms of 3 ) 2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo-clay fractions

  2. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.

    Science.gov (United States)

    Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    Science.gov (United States)

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. DESIGN AND EVALUATION OF LOSARTAN POTASSIUM MATRIX TABLETS WITH NATURAL AND SYNTHETIC POLYMERS

    OpenAIRE

    R. L. C. Sasidhar et al.

    2012-01-01

    The objective of the study was to formulate controlled release matrix tablets of losartan Potassium by using a combination of hydrophilic synthetic polymer like poly (ethylene oxides) and natural gums like xanthan gum, karaya gum and guar gum. A combination of synthetic hydrophobic polymers like methacrylates with synthetic hydrophilic polymer like poly (ethylene oxide) was also used in the preparation of matrix tablets and evaluated for their influence on controlled drug release. The matrix ...

  5. Recent Advances in Cell Electrospining of Natural and Synthetic Nanofibers for Regenerative Medicine.

    Science.gov (United States)

    Zamani, Reza; Aval, Sedigheh Fekri; Pilehvar-Soltanahmadi, Younes; Nejati-Koshki, Kazem; Zarghami, Nosratollah

    2018-01-22

    The progression of nanotechnology provides opportunities to manipulate synthetic and natural materials to mimic the natural structure for tissue engineering applications. The electrospinning technique applies electrostatic principle to fabricate electrospun nanofibers. Nanofiber scaffolds are precisely similar to the native extracellular matrix (ECM) and support cell proliferation, adhesion, tendency to preserve their phenotypic shape and directed growth according to the nanofiber direction. This study reviewed both the natural and synthetic type of nanofibers and described the different properties used to trigger certain process in the tissue development. Also, the potential applications of electrospun scaffolds for regenerative medicine were summarized. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Comparative study of the electronic structure of natural and synthetic ...

    Indian Academy of Sciences (India)

    Unknown

    We have studied the Cr–K-edge XANES and EXAFS in natural Indian rubies from two sources and a synthetic ... mineral in a wide variety of quality spread all over the world e.g. Burma ... using Si diode pairs oriented toward the sample. The.

  7. Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos

    International Nuclear Information System (INIS)

    Gazzano, Elena; Foresti, Elisabetta; Lesci, Isidoro Giorgio; Tomatis, Maura; Riganti, Chiara; Fubini, Bice; Roveri, Norberto; Ghigo, Dario

    2005-01-01

    The carcinogenic potency of asbestos, including chrysotile, is well established. Several physico-chemical features of the fibers appear implied, such as fibrous habit, size, crystallinity, morphology, and surface active metal ions, where free radical generation may take place. In contrast to other asbestos forms, iron is not a stoichiometric component of chrysotile, but is only present together with other extraneous ions as a magnesium- and silicon-replacing contaminant. To determine the role played by contaminating ions and morphological features of the fibers, a stoichiometric chrysotile with constant structure and morphology was synthesized in hydrothermal conditions. Free radical generation and the effects of these fibers on human lung epithelial A549 cells have been compared to that elicited by a well known toxic natural chrysotile (UICC A, from Rhodesia). After a 24-h incubation, the natural, but not the synthetic, form exerted a cytotoxic effect, detected as leakage of lactate dehydrogenase. Homolytic rupture of a C-H bond and lipoperoxidation in A549 cells took place in the presence of the natural, but not of the synthetic, chrysotile. Antioxidant systems were also affected differently. The pentose phosphate pathway and its regulatory enzyme glucose 6-phosphate dehydrogenase were markedly inhibited only by the natural specimen, which also caused a depletion of intracellular reduced glutathione in A549 cells. These results suggest that metal ions, fiber size and state of the surface play a crucial role in the oxidative stress caused by chrysotile asbestos. Stoichiometric synthetic fibers may thus be proposed as a reference standard (negative control) for toxicological studies

  8. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    International Nuclear Information System (INIS)

    Parikh, P.; Saini, N.L.; Dalela, S.; Bhardwaj, D.M.; Fernandes, S.; Gupta, R.P.; Garg, K.B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising

  9. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Sofronia, Ancuta M.; Baies, Radu; Anghel, Elena M.; Marinescu, Cornelia A.; Tanasescu, Speranta

    2014-01-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m 2 /g by calcination. • Raman spectra indicate the presence of B-type CO 3 group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample

  10. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Sofronia, Ancuta M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Baies, Radu [National Research Institute for Electrochemistry and Condensed Matter, 300224 Timisoara (Romania); Anghel, Elena M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Marinescu, Cornelia A., E-mail: alcorina@chimfiz.icf.ro [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Tanasescu, Speranta [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania)

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m{sup 2}/g by calcination. • Raman spectra indicate the presence of B-type CO{sub 3} group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample.

  11. Comparative study of the electronic structure of natural and synthetic ...

    Indian Academy of Sciences (India)

    ... have studied the Cr–K-edge XANES and EXAFS in natural Indian rubies from two sources and a synthetic ruby at ESRF. Weight % of various constituents in them is determined using EDAX measurements. Taking the results from the three techniques together we are able to demonstrate their feasibility in quantitative study ...

  12. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.

    Science.gov (United States)

    Galler, Kerstin M; Brandl, Ferdinand P; Kirchhof, Susanne; Widbiller, Matthias; Eidt, Andreas; Buchalla, Wolfgang; Göpferich, Achim; Schmalz, Gottfried

    2018-02-01

    Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.

  13. Micro-Raman spectroscopy of natural and synthetic indigo samples.

    Science.gov (United States)

    Vandenabeele, Peter; Moens, Luc

    2003-02-01

    In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.

  14. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  15. Marine bioactive compounds: stereospecific anti-inflammatory activity of natural and synthetic cordiachromene A.

    Science.gov (United States)

    Benslimane, A F; Pouchus, Y F; Verbist, J F; Petit, J Y; Khettab, E N; Welin, L; Brion, J D

    1992-01-01

    A new synthesis is proposed for cordiachromene A (CCA), a bioactive component of the ascidian Aplidium antillense Gravier, using a method producing a racemic mixture. The anti-inflammatory activities of a natural extract and a chemically synthetic form of CCA were assessed in vivo by carrageenan-induced rat-paw edema. The activity of synthetic CCA was confirmed by a test on kaolin-induced granuloma in the rat. Strong activities were measured for both CCA, but comparison of results of the first test suggests that only the natural optically active isomer has an anti-inflammatory effect. CCA is similar to indomethacin in its effect on carrageenan-induced rat-paw edema and ten times as active as phenylbutazone.

  16. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    Science.gov (United States)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  17. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Electron transfer dissociation of synthetic and natural peptides containing lanthionine/methyllanthionine bridges.

    Science.gov (United States)

    Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae

    2018-06-15

    The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  20. Radiation Synthesis and Characterization of Natural and Natural-Synthetic Hybrid Super Absorbent Polymers for Agricultural Applications. Chapter 19

    Energy Technology Data Exchange (ETDEWEB)

    Şen, M.; Hayrabolulu, H.; Güven, O. [Hacettepe University Department of Chemistry, Beytepe, Ankara (Turkey)

    2014-07-15

    The experimental studies carried out in Hacettepe University, Laboratories of Radiation and Polymers Science (LRPS) in the past ten years, which focused mainly on the synthesis of synthetic and natural-synthetic super absorbent polymers in various irradiation conditions, are summarized in the first part of the presentation. Studies conducted on the following areas: (1) the controlled release of fertilizers and herbicides and the effect of the natural polymer type, (2) the neutralization degree of poly(acrylic acid), (3) the temperature and pressure on the swelling kinetics, and (4) the maximum water absorption capacity of the potential soil conditional hydrogels, were explained. The results were then compared with those obtained from commercial super absorbent polymers prepared through conventional techniques. In the third part of the presentation, basic and advanced techniques in the characterization of the network structure of super water absorbents were presented. (author)

  1. FORMULATION DEVELOPMENT OF MUCOADHESIVE MICROCAPSULES OF METFORMIN HYDROCHLORIDE USING NATURAL AND SYNTHETIC POLYMERS AND IN VITRO CHARACTERIZATION

    OpenAIRE

    Yellanki Shiva Kumar; Deb Sambit kumar; Goranti Sharada; Nerella Naveen kumar

    2010-01-01

    The objective of this work was to develop optimized and systematically evaluate performances of mucoadhesive microcapsules of antihyperglycemic agent drug Metformin. Alginate microcapsules coated with mucoadhesive natural or synthetic polymers were prepared by Orifice-Ionic Gelation technique utilizing calcium chloride as a cross linking agent. The effect of type (natural or synthetic) and concentration of coating polymers and concentration of alginate on formulation was investigated. Prepare...

  2. Maternal supplementation with natural or synthetic vitamin E and its levels in human colostrum.

    Science.gov (United States)

    Clemente, Heleni A; Ramalho, Heryka M M; Lima, Mayara S R; Grilo, Evellyn C; Dimenstein, Roberto

    2015-04-01

    Newborns are considered a high-risk group for vitamin E deficiency. Breast milk is a source of alpha-tocopherol (α-TOH), a form of vitamin E that prevents deficiency. The present study aimed to assess whether supplementation with a natural or synthetic form of α-TOH, in addition to maternal sources of vitamin E, would increase the concentration of α-TOH in colostrum. A total of 109 healthy lactating women were recruited from a Brazilian public maternity clinic and randomized into 3 groups: control without supplementation (n = 36), natural α-TOH supplementation (n = 40), and synthetic α-TOH supplementation (n = 33). Blood and colostrum samples were collected before and after supplementation to check the nutritional status of these women by high-performance liquid chromatography. The Kruskal-Wallis test was applied for independent samples, and Tukey test was used for 2-way analysis of the averages of the groups. The baseline nutritional status of vitamin E of all of the lactating women enrolled in the trial was considered adequate. Women who received supplementation had higher concentrations of α-TOH in colostrum than the control group, with 57% and 39% increases in women supplemented with the natural and synthetic forms of α-TOH, respectively. Supplementation with both forms of α-TOH increased vitamin E concentrations in colostrum; however, the natural form was more efficient in increasing the levels.

  3. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  4. Natural and Synthetic Biohydrogels Design, Characterization, Network Structure Imaging and Modeling

    Science.gov (United States)

    Marmorat, Clement

    Biocompatible hydrogels can be derived from materials that are naturally obtained, such as proteins or polysaccharides, or synthetic, such as poloxamers. In order to be classified as biocompatible, these water-swollen networks can not trigger a toxic response once introduced into a biological or physiological environment and, therefore, must be immunoneutral. Hyaluronic acid hydrogels can be great candidates for tissue engineering applications as long as the cross-linking chemistry and process does not affect the biocompatibility of the natural protein matrix. Thermoreversible hydrogels have the advantage of undergoing a sol/gel phase transition at specific temperatures. Thus, they are excellent candidates for biomedical applications such as drug delivery systems, wound healing coatings or cellular scaffolds. Although these hydrogels can be used in their natural form without further modification or chemical alteration, the original protein or polymer matrix is often strengthened by the use of a crosslinking agent to achieve a specific set of properties. In the case of gelatin fibril formation at low temperatures or the micellization of triblock copolymers in solution with temperature increase, the natural phase transition is modified when crosslinkers are introduced to alter the biohydrogels properties and, ultimately, disturb the system's equilibrium. By using spectroscopy techniques, rheology and cryo-imaging we investigated several biocompatible polymeric networks in their natural form as well as their engineered structures to better understand the mechanisms of gelation and artificial internal re-organization of the networks. Natural and synthetic biohydrogels were designed and their mechanical properties were characterized before imaging. Models that better describe the relationship between network configuration and resulting mechanical properties showed great agreement with experimental mesh size observations. Finally, a novel set of hybrid gels was developed

  5. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration.

    Science.gov (United States)

    Stefani, Angelo; Felício, Joanna D'Arc; de Andréa, Mara M

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley-GHE and Typic Eutroferric Chernosol-AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g(-1)), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g(-1)), and (14)C-glucose (4.0 mg and 5.18 Bq of (14)C-glucose g(-1)). The (14)C-CO(2) produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects.

  6. 1,5-Dimethylhexylamine (octodrine) in sports and weight loss supplements: Natural constituent or synthetic chemical?

    Science.gov (United States)

    Wang, Mei; Haider, Saqlain; Chittiboyina, Amar G; Parcher, Jon F; Khan, Ikhlas A

    2018-04-15

    In the past years, there has been a mounting trend toward the addition of sympathomimetic stimulants in sports and weight loss supplements sold in the US and claimed to be from natural constituents. The latest among those pharmaceutical stimulants is 1,5-dimethylhexylamine (1,5-DMHA or octodrine), an ingredient in newly introduced sports and weight loss supplements with its 'natural' origin being cited from Aconitum or Kigelia plants. In order to validate the natural existence of 1,5-DMHA, two GC/MS methods were developed. One method involved using thick film megabore capillary columns to analyze the underivatized 1,5-DMHA. The second method was to determine enantiomeric distribution of 1,5-DMHA. Fifteen Aconitum or Kigelia plant samples originating from various locations were analyzed, and none of them contained 1,5-DMHA within the limit of detection (25 ng/mL) of the method. In contrast, although 1,5-DMHA was listed on the labels or website for all the 13 dietary supplements, only four products were found to contain this compound, with the highest quantity being reported as 112 mg per serving size. This is equivalent to more than three times the highest pharmaceutical dose established in Europe. The enantiomeric ratios of 1,5-DMHA in these products were determined to be between 0.9-1.0 (expressed as peak area ratio of one enantiomer over another), suggesting racemic nature. Interestingly, two byproducts from 1,5-DMHA synthesis were identified in commercial supplements containing 1,5-DMHA, indicating that 1,5-DMHA indeed originated from a poor quality source. Overall, the significant amount of 1,5-DMHA observed in the supplements, the enantiomeric distribution and the presence of the synthetic byproducts all suggested the synthetic origin of 1,5-DMHA in the commercial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Synthetic Applications of Asymmetric Horner-Wadsworth-Emmons Condensations: Approaches to Marine Natural Products

    DEFF Research Database (Denmark)

    Tullis, Joshua S.; Helquist, Paul; Rein, Tobias

    1999-01-01

    Asymmetric HWE condensations of meso-dialdehyde 1 with chiral phosphonates containing 8-phenylmenthol very directly generate chiral moieties that are seen in a number of cytotoxic natural products. The HWE reactions proceed in good yields with synthetically useful geometric and diastereoselectivi...

  8. Transfer of 65Zn from natural and synthetic foods to a freshwater fish

    International Nuclear Information System (INIS)

    Merlini, M.; Pozzi, G.; Brazzelli, A.; Berg, A.

    1976-01-01

    Lepomis gibbosus, L. from Lago Maggiore, North Italy, were fed marked laboratory-made ''synthetic'' food or the soft tissues of the snail Viviparus ater (Cristofori and Jan) which had accumulated 65 Zn from lake water prior to the experiment. Other groups of the fish, maintained in water with 65 ZnCl 2 , were fed unmarked synthetic food or nonradioactive snail tissues (natural food). The transfer of radiozinc was greater from food than from water. In addition, it appears that accumulation of the radioelement by fish is dependent upon its physico-chemical state which, in turn, depends on the type of food eaten

  9. Influence of natural and synthetic carotenoids on the color of egg yolk

    Directory of Open Access Journals (Sweden)

    Fernanda Papa Spada

    2016-06-01

    Full Text Available ABSTRACT Carotenoids are incorporated into the diet of laying hens in order to modify the yolk color. A natural source of carotenoids in tropical countries is annatto, which could be used in the diets of hens. This study aimed to evaluate the addition of natural (annatto and synthetic carotenoids to the diet of laying hens (commercial and alternative and their effects on yolk color and consumer sensory perception of fresh and stored eggs obtained from two different preparations (boiled and fried. Physicochemical analysis of proximate composition, thiobarbituric acid reactive substances (TBARS, emulsion activity and instrumental color were performed. Cooking caused significant alterations to the moisture in the preparations and this may have directly affected the color intensity, influencing factors related to egg appearance. In this study, 85 % of the panelists indicated that yolk color is an important attribute of the product’s quality. There was no antioxidant effect of the carotenoids in raw eggs. Synthetic additives should be better dosed to obtain the desired effect. Storage did not alter the proximate composition of the eggs.

  10. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  11. Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues.

    Science.gov (United States)

    Moodie, Lindon W K; Trepos, Rozenn; Cervin, Gunnar; Bråthen, Kari Anne; Lindgård, Bente; Reiersen, Rigmor; Cahill, Patrick; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2017-07-28

    The current study reports the first comprehensive evaluation of a class of allelopathic terrestrial natural products as antifoulants in a marine setting. To investigate the antifouling potential of the natural dihydrostilbene scaffold, a library of 22 synthetic dihydrostilbenes with varying substitution patterns, many of which occur naturally in terrestrial plants, were prepared and assessed for their antifouling capacity. The compounds were evaluated in an extensive screen against 16 fouling marine organisms. The dihydrostilbene scaffold was shown to possess powerful general antifouling effects against both marine microfoulers and macrofoulers with inhibitory activities at low concentrations. The species of microalgae examined displayed a particular sensitivity toward the evaluated compounds at low ng/mL concentrations. It was shown that several of the natural and synthetic compounds exerted their repelling activities via nontoxic and reversible mechanisms. The activities of the most active compounds such as 3,5-dimethoxybibenzyl (5), 3,4-dimethoxybibenzyl (9), and 3-hydroxy-3',4,5'-trimethoxybibenzyl (20) were comparable to the commercial antifouling booster biocide Sea-nine, which was employed as a positive control. The investigation of terrestrial allelopathic natural products to counter marine fouling represents a novel strategy for the design of "green" antifouling technologies, and these compounds offer a potential alternative to traditional biocidal antifoulants.

  12. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect

  13. The competitiveness of synthetic natural gas as a propellant in the Swedish fuel market

    International Nuclear Information System (INIS)

    Mohseni, Farzad; Görling, Martin; Alvfors, Per

    2013-01-01

    The road transport sector today is almost exclusively dependent on fossil fuels. Consequently, it will need to face a radical change if it aims to switch from a fossil-based system to a renewable-based system. Even though there are many promising technologies under development, they must also be economically viable to be implemented. This paper studies the economic feasibility of synthesizing natural gas through methanation of carbon dioxide and hydrogen from water electrolysis. It is shown that the main influences for profitability are electricity prices, synthetic natural gas (SNG) selling prices and that the by-products from the process are sold. The base scenario generates a 16% annual return on investment assuming that SNG can be sold at the same price as petrol. A general number based on set conditions was that the SNG must be sold at a price about 2.6 times higher per kWh than when bought in form of electricity. The sensitivity analysis indicates that the running costs weigh more heavily than the yearly investment cost and off-peak production can therefore still be economically profitable with only a moderate reduction of electricity price. The calculations and prices are based on Swedish prerequisites but are applicable to other countries and regions. - Highlights: ► The production cost for synthetic natural gas corresponds to the current biogas price. ► High return on capital if the synthetic natural gas could be sold for the same price as petrol. ► Production can cost-effectively be run off-peak hence electricity is the major cost. ► This study is based on Swedish prerequisites but is applicable on other regions.

  14. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    Science.gov (United States)

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  15. antimicrobial properties of some natural and synthetic fabrics modified by radiation treatments

    International Nuclear Information System (INIS)

    Mohamed, R.M.A.

    2008-01-01

    natural and synthetic fabrics have been treated with different antimicrobial metal complexes under the effect of gamma radiation . in this regard, cotton, cotton/PET blend and PET were grafted with acrylic acid by gamma radiation and this grafted fabrics were complexed with Cu(ll),Ni(ll)and Co(ll) metal ions . the antimicrobial properties were evaluated by the measurement of tensile strength of fabrics after burring in a soil for one and two weeks as well as the effect of this treatment on the growth of certain bacteria and fungi incubated on a culture for 48 hours. the results showed that the highest protection to cotton, cotton/PET blend and PET fabrics by using Cu(ll) ion in the complexation process, where the order of protection by metals is Cu(ll) > Co(ll)> Ni(ll), moreover, the more grafted fabrics the more complexed fabrics with metal ions and is higher protection against microorganisms . the treatment with the metal ions has nearly no effect on the chemical and physical properties of the natural or the synthetic fabrics as indicated from the analysis by TGA, sem, ion exchange testing and wettability testing.

  16. Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

    Science.gov (United States)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam

    2018-04-01

    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.

  17. Cathodoluminescence response of natural and synthetic lanthanide-rich phosphates (Ln3+: Ce, Nd)

    Science.gov (United States)

    Barrera-Villatoro, A.; Boronat, C.; Rivera-Montalvo, T.; Correcher, V.; Garcia-Guinea, J.; Zarate-Medina, J.

    2017-12-01

    This paper reports on the cathodoluminescence (CL) emission of both natural and synthetic lanthanide-rich phosphates (Ln3+: Ce, Nd) previously characterized by X-ray Diffraction (XRD), Environmental Scanning Electronic Microscopy (ESEM) and Energy Dispersive Spectroscopy. The thermal treatment at 700 °C performed on the synthetic sample obtained by chemical precipitation, promotes increasing of the crystallinity degree giving rise to a phase transition from the hexagonal (comprising monazite and rabdophane) into the monoclinic (cerianite and monazite) structures detected by XRD. Despite the size and the morphology of the grains are similar under ESEM, it could be appreciated significant differences among CL signals attending to the shape (with well-defined peaks for the annealed sample) and intensity (with lower emission for the non-thermally pretreated synthetic phosphate). The main wavebands centered at (i) 360, 380 and 490 nm are associated respectively with 5D3/2 → 2F5/2 and 5D3/2 → 2F7/2 transitions as well as a redox reaction assigned to the presence of Ce3+, (ii) 276, 424, 516 and 531 nm are linked respectively to 2G9/2→4I9/2, 2P1/2→4I9/2, 4G9/2→4I9/2 and 4G7/2→4I9/2 Nd3+ transitions and (iii) 400-490 nm is due to non-bridging oxygen hole centers related to the tetrahedral PO43- groups or structural defects for the heated synthetic samples. The natural sample from Madagascar, with a very complex CL spectrum, displays a characteristic band emission in the green-yellow and red regions corresponding to [UO2]2+ groups and Sm3+ respectively.

  18. A simple method for the determination of synthetic spirit in some alcoholic beverages

    International Nuclear Information System (INIS)

    Majerova, P.; Fiser, B.; Leseticky, L.

    2002-01-01

    Measurement of carbon C-14 can be used to distinguish between natural and synthetic alcohol. Natural ethanol produced by fermentation of sugar contains approximately 16.13 DPM (0,27 Bq) per gram of carbon, synthetic ethanol should contain no carbon-14. Natural C-14 content can be determined precisely and conveniently by liquid scintillation counting. Various scintillation cocktails were tested and the best results were achieved with PCS. The optimum measurement conditions were also identified. Samples of spirits were fractionated on a short distillation column and the resulting 96% ethanol was measured. For comparison was distilled and measured A 35% aqueous solution of natural ethanol was also distilled and measured for a comparison. The natural-to-synthetic ethanol ratio was obtained for a series of commercial spirits. (P.A.)

  19. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae allotetraploids

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2010-09-01

    Full Text Available Abstract Background Tragopogon mirus and T. miscellus are allotetraploids (2n = 24 that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA following the introduction of the diploids T. dubius, T. porrifolius, and T. pratensis (2n = 12 from Europe. In most natural populations of T. mirus and T. miscellus, there are far fewer 35S rRNA genes (rDNA of T. dubius than there are of the other diploid parent (T. porrifolius or T. pratensis. We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids. Results Using Southern blot hybridization and fluorescent in situ hybridization (FISH, we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic T. mirus (110 individuals and four lines of synthetic T. miscellus (71 individuals. Variation among diploid parents accounted for most of the observed gene imbalances detected in F1 hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either T. porrifolius or T. pratensis-type units, and only 7% had more rDNA copies of T. dubius-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids. Conclusions Uniparental reductions of

  1. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  2. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  3. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  4. Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study.

    LENUS (Irish Health Repository)

    Ong, J C Y

    2012-06-01

    The goal of this study was to determine differences in fracture stability and functional outcome between synthetic bone graft and natural bone graft with internal fixation of tibia plateau metaphyseal defects.

  5. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  6. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  7. Investigation of the resistance of some naturally occurring and synthetic inorganic ion exchangers against gamma radiation

    International Nuclear Information System (INIS)

    Nilchi, A.; Khanchi, A.; Ghanadi Maragheh, M.; Bagheri, A.

    2003-01-01

    The effect of various doses of gamma radiation on the ion-exchange capacity, distribution coefficient values, elution behaviour, physical effect, pH titration and infrared spectra of some synthetic inorganic ion exchangers, namely the cerium substituted phosphates; and naturally occurring inorganic ion exchangers, zeolites from different parts of Iran, have been studied systematically. No significant change has been observed in the ion-exchange capacity (with the exception of CeP(Na), CeP(Di·Na) and zeolite 5 (deposits of arababad talas)), elution behaviour, physical effect, chemical stability and the infrared spectra of the synthetic ion exchangers irradiated up to a total dose of 200 kGy, while a change has been observed in the pH-titration and distribution behaviour. The increase in pH is sharper for irradiated samples with divalent cations than for the normal samples. Furthermore, the K d values, and hence the selectivity towards certain cations increase with the total dose absorbed, reaching its optimum selectivity with the dose of 50-100 kGy. The natural zeolites chosen for these studies, show, similar pattern to those of synthetic ion exchangers, and in some cases an extremely high selectivity toward certain cations, like Be II . These make, zeolites, which are naturally occurring ion exchangers more viable economically, and extremely useful alternative in this industry

  8. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  9. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  10. Social interaction in synthetic and natural microbial communities.

    Science.gov (United States)

    Xavier, Joao B

    2011-04-12

    Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.

  11. Ion channeling in natural and synthetic beryl crystals

    International Nuclear Information System (INIS)

    Fritzsche, C.R.; Diehl, R.; Goetzberger, A.

    1980-01-01

    The transmission of ions by channeling through natural beryl and synthetic emerald has been studied extensively. The transmission ratios depend upon the angle of incidence with a full half width of less than 0.32 0 . While the maximum ratio obtained up to now is only 4 x 10 -4 for 350 keV protons through a crystal of 21 μm thickness, the energy of the transmitted ions is high, the loss being in the order of a few keV/μm. About 60-80% of the particles emerging from the rear surface are ionized. By varying the ion species transmission could be observed up to atomic number 9. It is assumed that the transmission is facilitated by the existence of an electron free channel core. Higher transmission ratios can be expected for sufficiently perfect crystals. (orig.) 891 CDS/orig. 892 MB

  12. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    Science.gov (United States)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  13. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    Directory of Open Access Journals (Sweden)

    M. A. Baker

    2016-08-01

    Full Text Available The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL and Pyriproxyfen (Bruce 10.8% EC and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, the recommended field doses of all the insecticides were applied on cotton cultivar MNH-886. Data against sucking pests and their natural enemies was recorded 24 hours prior to insecticidal application and then 24, 48, 72 and 96 hours after insecticidal application. Results revealed that Nitenpyram was much toxic against sucking pests followed by Pyriproxyfen as compared to two botanical extracts. On the other hand, the synthetic insecticides did not prove safer for natural enemies as compared to botanical extracts. It was concluded that as an Integrated Pest Management (IPM strategy, botanical extracts can be used at low infestation levels so that ecosystem service of biological control may be sustained.

  14. Properties of natural and synthetic hydroxyapatite and their surface free energy determined by the thin-layer wicking method

    Science.gov (United States)

    Szcześ, Aleksandra; Yan, Yingdi; Chibowski, Emil; Hołysz, Lucyna; Banach, Marcin

    2018-03-01

    Surface free energy is one of the parameters accompanying interfacial phenomena, occurring also in the biological systems. In this study the thin layer wicking method was used to determine surface free energy and its components for synthetic hydroxyapatite (HA) and natural one obtained from pig bones. The Raman, FTIR and X-Ray photoelectron spectroscopy, X-ray diffraction techniques and thermal analysis showed that both samples consist of carbonated hydroxyapatite without any organic components. Surface free energy and its apolar and polar components were found to be similar for both investigated samples and equalled γSTOT = 52.4 mJ/m2, γSLW = 40.2 mJ/m2 and γSAB = 12.3 mJ/m2 for the synthetic HA and γSTOT = 54.6 mJ/m2, γSLW = 40.3 mJ/m2 and γSAB = 14.3 mJ/m2 for the natural one. Both HA samples had different electron acceptor (γs+) and electron donor (γs-) parameters. The higher value of the electron acceptor was found for the natural HA whereas the electron donor one was higher for the synthetic HA

  15. Repellency of 29 Synthetic and Natural Commercial Topical Insect Repellents Against Aedes aegypti (Diptera: Culicidae) in Central Mexico.

    Science.gov (United States)

    Kuri-Morales, Pablo A; Correa-Morales, Fabián; González-Acosta, Cassandra; Sánchez-Tejeda, Gustavo; Moreno-Garcia, Miguel; Dávalos-Becerril, Eduardo; Juárez-Franco, Marissa F; Benitez-Alva, José Ismael; González-Roldán, Jesús F

    2017-09-01

    In Mexico, the use of repellents to prevent insects from landing and biting is a common practice. However, variation in the efficiency of natural and synthetic repellents has been observed. In this study, we evaluated the repellency and protection time of 16 synthetic and 13 natural-based commercial products against Aedes aegypti (L.) from an endemic dengue area (Jojutla, Morelos) in Central Mexico. The "arm exposure" cage test was used to assess the efficacy of the repellents. Tests were conducted by three adult volunteers. Results showed that DEET (N, N-Diethyl-3-methylbenzamide) repellents provided the highest protection and duration times against Ae. aegypti. However, low repellency and short-time protection was observed (when compared with the manufacturers' protection times). Natural-based products did not repel (either landing or biting) mosquitoes for >30 min. These results show that most of the repellent products did not provide satisfactory levels of personal protection against mosquito bites. Frequent reapplication of repellents (synthetic and natural-based) may compensate for their short duration of action. Repellent efficacy data must be integrated into the decision-making process for an optimal response to the local (or specific region) situation. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions.

    Science.gov (United States)

    Kmiecik, Dominik; Korczak, Józef; Rudzińska, Magdalena; Gramza-Michałowska, Anna; Hęś, Marzanna; Kobus-Cisowska, Joanna

    2015-04-15

    The aim of the study was to assess the potential applicability of natural antioxidants in the stabilisation of phytosterols. A mixture of β-sitosterol and campesterol was incorporated into triacylglycerols (TAGs). The following antioxidants were added to the prepared matrix: green tea extract, rosemary extract, a mix of tocopherols from rapeseed oil, a mix of synthetic tocopherols, phenolic compounds extracted from rapeseed meal, sinapic acid and butylated hydroxytoluene (BHT). Samples were heated at a temperature of 180 °C for 4 h. After the completion of heating, the losses of phytosterols were analysed, as well as the contents of β-sitosterol and campesterol oxidation products. The total content of phytosterol oxidation products in samples ranged from 96.69 to 268.35 μg/g of oil. The effectiveness of antioxidants decreased in the following order: phenolic compounds from rapeseed meal>rosemary extract>mix of tocopherols from rapeseed oil>mix of synthetic tocopherols>green tea extract>sinapic acid>BHT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  18. Synthetic analogues of natural semiochemicals as promising insect control agents

    International Nuclear Information System (INIS)

    Ujvary, Istvan; Toth, Miklos; Guerin, Patrick

    2000-01-01

    After decades of research and development, insect pheromones and other semiochemicals became indispensable tools of ecologically based agricultural pest and disease vector management programmes with main uses as: 1) detection and population monitoring of emerging and migrating insects, 2) mass trapping of insects, 3) combined formulation of semiochemicals and insecticides ('lure-and-kill'), and 4) mating disruption with specially formulated pheromone components. In spite of their demonstrated safety and biodegradability, the direct application of these semiochemicals for pest control has not fulfilled initial expectations. Nonetheless considerable field experience has been accumulated (Carde and Minks 1995). Evidently, two important factors limit the practical potential of these substances: 1) inherent in their particular mode of action, semiochemicals, especially pheromones, are effectively cleared by specific enzymes in the insect antennae, and 2) some of these compounds contain labile functional moieties that are prone to degradation (oxidation, isomerisation and polymerisation) under field conditions. Appropriate chemical modifications of these natural compounds, however, can circumvent these problems by providing synthetic analogues (sometimes also called parapheromones or antipheromones; for early studies, see Roelofs and Comeau 1971, Payne et al. 1973) which in ideal cases are not only more potent and environmentally acceptable but more economical as well. It should also be mentioned that many effective attractants have been discovered through the empirical screening of synthetic chemicals, some of which have actually turned out to be structural relatives of natural semiochemicals of the particular insect. In this paper, selected case studies of analogues of sex pheromones and kairomones will be presented. The examples from our work include nitrile bioisosteres of labile aldehyde pheromone components of the cranberry girdler moth, Chrysoteuchia topiaria

  19. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  20. Synthetic Chemicals with Potential for Natural Attenuation (Postprint)

    Science.gov (United States)

    2012-07-01

    The purpose of this paper is to describe examples of other synthetic organic compounds that are known to be biodegradable ...chlorophenols are unusual among the synthetic compounds discussed here in that they can be very toxic to microorganisms . They are often used as biocides...widely distributed. In contract, bacteria able to grow at the expense of chlorinated aliphatic compounds are less common and the

  1. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  3. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  4. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    OpenAIRE

    M. A. Baker; A. H. Makhdum; M. Nasir; A. Imran; A. Ahmad; F. Tufail

    2016-01-01

    The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL) and Pyriproxyfen (Bruce 10.8% EC) and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, ...

  5. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  6. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  7. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  8. Histological and histochemical studies on liver of rat subjected to synergistic effect of natural and synthetic food colorants and/or gamma irradiation

    International Nuclear Information System (INIS)

    Soliman, O.; Hafez, M. N.; Abd El Maguid, A.

    2007-01-01

    The present work has been carried out to detect some histological and histochemical changes in the liver of albino rats after oral administration of a mixture of the synthetic food colorants tartrazine and brilliant blue and/ or gamma-irradiation (5 Gy). The possible ameliorative effect of the natural food colorant beta-carotene (30 mg/ kg body wt) orally administered with the synthetic food colorants tartrazine and brilliant blue and irradiation was evaluated. Rats were divided into five groups: 1- Control group. 2- Group received a food colorant mixture of tartrazine and brilliant blue (100 mg/ kg body wt). 3- Group received gamma-irradiation at 5 Gy. 4-Animals received the food colorant mixture for 2 weeks and were irradiated. 5- Animals received beta-carotene (30 mg/ kg body wt) with the food colorant mixture for 2 weeks and were then irradiated (5 Gy). Administration of tartrazine and brilliant blue caused histopathological and histochemical changes in the liver of rat manifested by haemorrhage, vacuolar degeneration of hepatocytes, dilatation of blood sinusoids, scattered necrotic areas and a decrease in the mucopolysaccharides content. The radiation caused infiltration of inflammatory cells in the portal area, necrosis with pyknosis and karyolysis of nuclei and a decrease in the mucopolysaccharide content of hepatic cells 1 and 3 days post-irradiation. The present work also showed that the natural food colorant beta-carotene reduced the toxicity of the synthetic food colorants tartrazine and brilliant blue and gamma-irradiation when the natural pigment was given together with the synthetic dyes used as food additives. In conclusion, synthetic food colours and/ or radiation induced histopathological and histochemical disturbances in rats. On the other hand, administration of the natural food colorant beta-carotene had a significant protective role against the damaging effects induced by these synthetic colours mixture

  9. Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles

    Science.gov (United States)

    Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.

    2014-12-01

    For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.

  10. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  11. Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins

    OpenAIRE

    Duke, Stephen O.; Bajsa, Joanna; Pan, Zhiqiang

    2013-01-01

    For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances ...

  12. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  13. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  14. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man

    International Nuclear Information System (INIS)

    Ballard, P.L.; Carter, J.P.; Graham, B.S.; Baxter, J.D.

    1975-01-01

    An assay for plasma glucocorticoid activity has been developed using specific glucocorticoid receptors. Unlike other assays for cortisol and certain synthetic corticosteroids, this radioreceptor assay measures the glucocorticoid activity of all natural and synthetic steroids. Steroids extracted from as little as 0.05 ml of plasma are incubated with 3 H-dexamethasone and cytosol receptors from cultured rat hepatoma cells. From 0.5 to 50 ng of cortisol are accurately detected. Glucocorticoid activities of adult plasmas determined by the assay correlate closely with corticoid levels obtained in the CBG-isotope and fluorometric assays. Other steroids are measured in proportion to both concentration and potency as glucocorticoids. Relative activities include: cortisol 100, dexamethasone 940, prednisolone 230, prednisone 3, estradiol 1 and androstenedione 1. A similar ranking of steroids was found using receptors from a human source (fetal lung). The assay has been useful in detecting glucocorticoid activity in unidentified medications and in measuring plasma glucocorticoid levels after administration of synthetic corticosteroids. (auth)

  17. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol

    Directory of Open Access Journals (Sweden)

    Paula Morales

    2017-06-01

    Full Text Available Cannabidiol (CBD has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.

  18. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Influence of Natural, Synthetic Polymers and Fillers on sustained release matrix tablets of Pregabalin

    OpenAIRE

    Vijaya Durga. K; Ashok Kumar. P; Suresh V Kulkarni

    2013-01-01

    The objective of the present study was to develop sustained release matrix tablets of Pregabalin for the treatment of neuropathic pain and epilepsy. The tablets were prepared by wet granulation and formulated using drug with Hydrophilic, hydrophobic, synthetic, natural polymers and 4 different fillers were used. The effect of Polymer concentration, combination and fillers on drug release rate was analyzed for the formulations F-1 to F-17. The tablets were subjected to physicochemical studies,...

  20. Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Manawala, Amritsar-143001, Punjab (India); Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad-121007 (India)

    2010-12-15

    According to the proposed National Mission on Biodiesel in India, we have undertaken studies on the oxidative stability of biodiesel synthesized from tree borne non-edible oil seeds jatropha. Neat jatropha biodiesel exhibited oxidation stability of 3.95 h and research was conducted to investigate the influence of natural and synthetic antioxidants on the oxidation stability of jatropha methyl ester. Antioxidants namely {alpha}-tocopherol, tert-butylated hydroxytoluene, tert-butylated phenol derivative, octylated butylated diphenyl amine, and tert-butylhydroxquinone were doped to improve the oxidation stability. It was found that both types of antioxidants showed beneficial effects in increasing the oxidation stability of jatropha methyl ester, but comparatively, the synthetic antioxidants were found to be more effective. (author)

  1. Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology.

    Science.gov (United States)

    Schmidt, Markus; de Lorenzo, Víctor

    2012-07-16

    The plausible release of deeply engineered or even entirely synthetic/artificial microorganisms raises the issue of their intentional (e.g. bioremediation) or accidental interaction with the Environment. Containment systems designed in the 1980s-1990s for limiting the spread of genetically engineered bacteria and their recombinant traits are still applicable to contemporary Synthetic Biology constructs. Yet, the ease of DNA synthesis and the uncertainty on how non-natural properties and strains could interplay with the existing biological word poses yet again the challenge of designing safe and efficacious firewalls to curtail possible interactions. Such barriers may include xeno-nucleic acids (XNAs) instead of DNA as information-bearing molecules, rewriting the genetic code to make it non-understandable by the existing gene expression machineries, and/or making growth dependent on xenobiotic chemicals. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  3. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  4. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. X-ray photoelectron spectroscopy of HUPA organic substances: natural and synthetic humic compounds

    International Nuclear Information System (INIS)

    Barre, N.; Mercier-Bion, F.; Reiller, P.

    2004-01-01

    X-ray photoelectron spectroscopy (XPS) results on the characterisation of the HUPA organic materials, i.e. natural humic substances ''GOHY 573'' (fulvic acid FA and humic acid HA) extracted from the Gorleben ground waters, and synthetic humic acids ''M1'' and ''M42'' obtained from a standard melanoidin preparation from FZ Rossendorf, are presented in this paper. XPS investigations were focused on the determination of the chemical environment of the major elements as carbon, nitrogen, oxygen and sulphur, and on the identification of trace metals trapped by these organic compounds. (orig.)

  6. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  7. The validation of synthetic spectra used in the performance evaluation of radionuclide identifiers

    International Nuclear Information System (INIS)

    Flynn, A.; Boardman, D.; Reinhard, M.I.

    2013-01-01

    This work has evaluated synthetic gamma-ray spectra created by the RASE sampler using experimental data. The RASE sampler resamples experimental data to create large data libraries which are subsequently available for use in evaluation of radionuclide identification algorithms. A statistical evaluation of the synthetic energy bins has shown the variation to follow a Poisson distribution identical to experimental data. The minimum amount of statistics required in each base spectrum to ensure the subsequent use of the base spectrum in the generation of statistically robust synthetic data was determined. A requirement that the simulated acquisition time of the synthetic spectra was not more than 4% of the acquisition time of the base spectrum was also determined. Further validation of RASE was undertaken using two different radionuclide identification algorithms. - Highlights: • A validation of synthetic data created in order to evaluate radionuclide identification systems has been carried out. • Statistical analysis has shown that the data accurately represents experimental data. • A limit to the amount of data which could be created using this method was evaluated. • Analysis of the synthetic gamma spectra show identical results to analysis carried out with experimental data

  8. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.

    Science.gov (United States)

    Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S

    2017-11-01

    This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Leaching studies of natural and synthetic titanite, a potential host for wastes from the reprocessing of Canadian nuclear fuel

    International Nuclear Information System (INIS)

    Hayward, P.J.; Doern, F.E.; Cecchetto, E.V.; Mitchell, S.L.

    1983-01-01

    Glass ceramics (i.e., glasses subjected to controlled crystallization) with synthetic titanite as the major crystalline phase are being considered as potential hosts for the radioactive wastes arising from possible future reprocessing of nuclear fuel in Canada. In order to assess the stability of titanite in the anticipated environment of a disposal vault sited 500-1000 m deep within a granitic pluton in the Canadian Shield, leaching experiments have been performed with natural and synthetic titanite, using a synthetic groundwater whose composition is based on findings from a recent borehole-survey. The results are in qualitative agreement with calculations of solution equilibria for titanite and its main alteration products, and indicate that titanite should be stable and suffer no net leaching under anticipated conditions in the vault

  10. The use of synthetic Zn-/Ni-labeled montmorillonite colloids as a natural bentonite marker

    International Nuclear Information System (INIS)

    Huber, F.; Heck, S.; Hoess, P.; Bouby, M.; Schaefer, T.; Truche, L.; Brendle, J.

    2012-01-01

    Document available in extended abstract form only. Quantification of bentonite erosion rates/colloid release rates and the colloid attachment under unfavourable conditions for clay colloids is frequently based on the detection of the alumino-silicate building blocks and accompanied by relative high analytical uncertainties due to the presence of high background concentrations in the groundwater. In situ experiments planned at the Grimsel Test Site (CH) in the frame of the Colloid Formation and Migration (CFM) project foresee the emplacement of a compacted bentonite source and determination of the bentonite erosion rate under near-natural flow conditions. To univocally differentiate between the natural background colloid concentration and the eroded bentonite an irreversible labeling of the bentonite colloid source placed in a granite fracture would greatly improve their detection and reduce the analytical uncertainty. It is thought to use an admixture to label the natural bentonite. Therefore, the characteristics as erosion behavior, colloid stability and radionuclide sorption/reversibility behavior have to be studied and compared. Here, we focus on the radionuclide sorption reversibility. Synthetic montmorillonite containing structurally bound Zn and Ni in its octahedral layer was used within this study. Actually, Zn and Ni are good candidates to determine more accurately the colloid concentration as the ICP-MS sensitivity is at least one order of magnitude higher and the Zn and Ni background concentrations found in natural ground waters (e.g. Grimsel ground water, GGW) are very low. In the present study, the colloids are first separated and characterized by AsFlFFF-ICP-MS. Then, they are used to perform radionuclide reversibility kinetic experiments similar to those already published under anoxic conditions and room temperature. The aim is to compare the results obtained with those already available on natural FEBEX bentonite derived colloids. The size

  11. Aspects of the political economy of development and synthetic biology.

    Science.gov (United States)

    Wellhausen, Rachel; Mukunda, Gautam

    2009-12-01

    What implications might synthetic biology's potential as a wholly new method of production have for the world economy, particularly developing countries? Theories of political economy predict that synthetic biology can shift terms of trade and displace producers in developing countries. Governments, however, retain the ability to mitigate negative changes through social safety nets and to foster adaptation to some changes through research, education and investment. We consider the effects the synthetic production of otherwise naturally derived molecules are likely to have on trade and investment, particularly in developing countries. Both rubber in Malaysia and indigo dyes in India provide historical examples of natural molecules that faced market dislocations from synthetic competitors. Natural rubber was able to maintain significant market share, while natural indigo vanished from world markets. These cases demonstrate the two extremes of the impact synthetic biology might have on naturally derived products. If developing countries can cushion the pain of technological changes by providing producers support as they retool or exit, the harmful effects of synthetic biology can be mitigated while its benefits can still be captured.

  12. Synthetic securitization in the accounting: the peculiarities and the national experienc

    Directory of Open Access Journals (Sweden)

    O.P. Driga

    2015-03-01

    Full Text Available In the dynamic development of the financial market and the economy as a whole is one of the Securitisation innovative tools to attract additional funding, increased liquidity, diversification of assets and minimize risks in financial markets. The article outlines the nature, types and predictors of securitization as a whole and are implementing national experience of the financial mechanism. On the basis of the comparative analysis of the main types of securitization outlines the benefits of a synthetic securitization, including the Ukrainian financial market, and especially its implementation. Also describes the various mechanisms and synthetic securitization. The general steps for its implementation using credit derivatives. In addition, selected the most common types of credit derivatives that are used during the implementation of a synthetic securitization. On the basis of theoretical research facilities identified accounting arising during synthetic securitization.

  13. Evaluation of clay hybrid nanocomposites of different chain length as reinforcing agent for natural and synthetic rubbers

    International Nuclear Information System (INIS)

    Yehia, A.A.; Akelah, A.M.; Rehab, A.; El-Sabbagh, S.H.; El Nashar, D.E.; Koriem, A.A.

    2012-01-01

    Highlights: → The modified organo-clay (MMT-ATBN) markedly reinforce natural and synthetic rubbers. → The reinforcing efficiency of the organo-clay is much higher than HAF carbon black. → The reinforcing efficiency of MMT modified with different alkylamines greatly depend on the chain length. → The good compatibility of modified organo-clay with NBR can be attributed to the chemical nature. -- Abstract: Polymer nanocomposites are one of the highly discussed research topics in recent time. It has been reported in the present paper the preparation and the properties of different nanoclays based on sodium montmorillonite (bentonite) and some organic amines of varying chain lengths (dodecylamine, hexadecylamine and octadecylamine) beside amine-terminated butadiene-acrylonitrile copolymer (ATBN). The hybrid clays have been characterized with the help of Fourier Transform Infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Wide angle X-ray diffractions (WXRD), and Thermogravimetric analysis (TGA). X-ray results showed that the intergallery distance of the clay is increased as a result of the intercalation of the amines and ATBN. The nanocomposite clays were incorporated in natural and synthetic rubbers (NR, SBR and NBR). The physico-mechanical properties are greatly improved with loading low concentrations of the nanocomposite clays compared with carbon black.

  14. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  15. Strategy revealing phenotypic differences among synthetic oscillator designs.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2014-09-19

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested.

  16. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  17. Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages

    Directory of Open Access Journals (Sweden)

    Abderrahmane Beroual

    2017-04-01

    Full Text Available This paper deals with a comparative study of AC and DC breakdown voltages of based mineral oil mixtures with natural and synthetic esters mainly used in high voltage power transformers. The goal was to analyze the performances of oil mixtures from the dielectric withstand point of view and to predict the behavior of transformers originally filled with mineral oil and re-filled with synthetic or natural ester oils when emptied for maintenance. The study concerns mixtures based on 20%, 50%, and 80% of natural and synthetic ester oils. AC breakdown voltages were measured using a sphere-sphere electrode system according to IEC 60156 specifications; the same specification was adopted for DC measurements since there is no standard specifications for this voltage waveform. A statistical analysis of the mean values, standard deviations, and histograms of breakdown voltage data was carried out. The Normal and Weibull distribution functions were used to analyze the experimental data and the best function that the data followed was used to estimate the breakdown voltage with risk of 1%, 10%, and 50% probability. It was shown that whatever the applied voltage waveforms, ester oils always have a significantly higher breakdown voltage than mineral oil. The addition of only 20% of natural or synthetic ester oil was sufficient to considerably increase the breakdown voltage of mineral oil. The dielectric strength of such a mixture is much higher than that of mineral oil alone and can reach that of ester oils. From the point of view of dielectric strength, the mixtures constitute an option for improving the performance of mineral oil. Thus, re-filling of transformers containing up to 20% mineral oil residues with ester oils, does not present any problem; it is even advantageous when considering only the breakdown voltage. Under AC, the mixtures with natural ester always follow the behavior of vegetable oil alone. With the exception of the 20% mixture of natural

  18. Recent trends on gellan gum blends with natural and synthetic polymers: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Khan, Muhammad Faris; Akram, Nadia; Akhter, Naheed; Noreen, Aqdas; Zuber, Mohammad

    2018-04-01

    Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.

    Science.gov (United States)

    Piccapietra, Flavio; Sigg, Laura; Behra, Renata

    2012-01-17

    To gain important information on fate, mobility, and bioavailability of silver nanoparticles (AgNP) in aquatic systems, the influence of pH, ionic strength, and humic substances on the stability of carbonate-coated AgNP (average diameter 29 nm) was systematically investigated in 10 mM carbonate and 10 mM MOPS buffer, and in filtered natural freshwater. Changes in the physicochemical properties of AgNP were measured using nanoparticle tracking analysis, dynamic light scattering, and ultraviolet-visible spectroscopy. According to the pH-dependent carbonate speciation, below pH 4 the negatively charged surface of AgNP became positive and increased agglomeration was observed. Electrolyte concentrations above 2 mM Ca(2+) and 100 mM Na(+) enhanced AgNP agglomeration in the synthetic media. In the considered concentration range of humic substances, no relevant changes in the AgNP agglomeration state were measured. Agglomeration of AgNP exposed in filtered natural freshwater was observed to be primarily controlled by the electrolyte type and concentration. Moreover, agglomerated AgNP were still detected after 7 days of exposure. Consequently, slow sedimentation and high mobility of agglomerated AgNP could be expected under the considered natural conditions. A critical evaluation of the different methods used is presented as well.

  20. Radiation damage studies on natural and synthetic rock salt utilizing measurements made during electron irradiation

    International Nuclear Information System (INIS)

    Swyler, K.J.; Levy, P.W.

    1977-01-01

    The numerous radiation damage effects which will occur in the rock salt surrounding radioactive waste disposal canisters are being investigated with unique apparatus for making optical and other measurements during 1 to 3 MeV electron irradiation. This equipment, consists of a computer controlled double beam spectrophotometer which simultaneously records 256 point absorption and radioluminescence spectra, in either the 200 to 400 or 400 to 800 nm region, every 40 seconds. Most often the measurements commence as the irradiation is started and continue after it is terminated. This procedure provides information on the kinetics and other details of the damage formation process and, when the irradiation is terminated, on both the transient and stable damage components. The exposure rates may be varied between 10 2 or 10 3 to more than 10 8 rad per hour and the sample temperature maintained between 25 and 800 or 900 0 C. Although this project was started recently, measurements have been made on synthetic NaCl and on natural rock salt from two disposal sites and two mines. Both unstrained and purposely strained samples have been used. Most recently, measurements at temperatures between 25 and 200 0 C have been started. The few measurements completed to date indicate that the damage formation kinetics in natural rock salt are quite different from those observed in synthetic NaCl

  1. Natural Origin Materials for Osteochondral Tissue Engineering.

    Science.gov (United States)

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  2. Synthetic system mimicking the energy transfer and charge separation of natural photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, D.; Moore, T.A.

    1985-05-01

    A synthetic molecular triad consisting of a porphyrin P linked to both a quinone Q and a carotenoid polyene C has been prepared as a mimic of natural photosynthesis for solar energy conversion purposes. Laser flash excitation of the porphyrin moiety yields a charge-separated state Csup(+.)-P-Qsup(-.) within 100 ps with a quantum yield of more than 0.25. This charge-separated state has a lifetime on the microsecond time scale in suitable solvents. The triad also models photosynthetic antenna function and photoprotection from singlet oxygen damge. The successful biomimicry of photosynthetic charge separation is in part the result of multistep electron transfers which rapidly separate the charges and leave the system at high potential, but with a considerable barrier to recombination.

  3. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    Science.gov (United States)

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  4. Segmental intelligibility of synthetic speech produced by rule.

    Science.gov (United States)

    Logan, J S; Greene, B G; Pisoni, D B

    1989-08-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk--Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener's processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener.

  5. Segmental intelligibility of synthetic speech produced by rule

    Science.gov (United States)

    Logan, John S.; Greene, Beth G.; Pisoni, David B.

    2012-01-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk—Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener’s processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener. PMID:2527884

  6. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  7. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  8. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  9. Natural gums and modified natural gums as sustained-release carriers.

    Science.gov (United States)

    Bhardwaj, T R; Kanwar, M; Lal, R; Gupta, A

    2000-10-01

    Although natural gums and their derivatives are used widely in pharmaceutical dosage forms, their use as biodegradable polymeric materials to deliver bioactive agents has been hampered by the synthetic materials. These natural polysaccharides do hold advantages over the synthetic polymers, generally because they are nontoxic, less expensive, and freely available. Natural gums can also be modified to have tailor-made materials for drug delivery systems and thus can compete with the synthetic biodegradable excipients available in the market. In this review, recent developments in the area of natural gums and their derivatives as carriers in the sustained release of drugs are explored.

  10. Solubility properties of synthetic and natural meta-torbernite

    Science.gov (United States)

    Cretaz, Fanny; Szenknect, Stéphanie; Clavier, Nicolas; Vitorge, Pierre; Mesbah, Adel; Descostes, Michael; Poinssot, Christophe; Dacheux, Nicolas

    2013-11-01

    Meta-torbernite, Cu(UO2)2(PO4)2ṡ8H2O, is one of the most common secondary minerals resulting from the alteration of pitchblende. The determination of the thermodynamic data associated to this phase appears to be a crucial step toward the understanding the origin of uranium deposits or to forecast the fate and transport of uranium in natural media. A parallel approach based on the study of both synthetic and natural samples of meta-torbernite (H3O)0.4Cu0.8(UO2)2(PO4)2ṡ7.6H2O was set up to evaluate its solubility constant. The two solids were first thoroughly characterized and compared by means of XRD, SEM, X-EDS analyses, Raman spectroscopy and BET measurements. The solubility constant was then determined in both under- and supersaturated conditions: the obtained value appeared close to logKs,0°(298 K) = -52.9 ± 0.1 whatever the type of experiment and the sample considered. The joint determination of Gibbs free energy (ΔRG°(298 K) = 300 ± 2 kJ mol-1) then allowed the calculation of ΔRH°(298 K) = 40 ± 3 kJ mol-1 and ΔRS°(298 K) = -879 ± 7 J mol-1 K-1. From these values, the thermodynamic data associated with the formation of meta-torbernite (H3O)0.4Cu0.8(UO2)2(PO4)2ṡ7.6H2O were also evaluated and found to be consistent with those previously obtained by calorimetry, showing the reliability of the method developed in this work. Finally, the obtained data were implemented in a calculation code to determine the conditions of meta-torbernite formation in environmental conditions typical of a former mining site. SI=log({Q}/{Ks}) with Q=∏i( where νi is the stoichiometric coefficient (algebraic value) of species i and ai the nonequilibrium activity of i.

  11. Engineering synthetic vaccines using cues from natural immunity

    Science.gov (United States)

    Irvine, Darrell J.; Swartz, Melody A.; Szeto, Gregory L.

    2013-11-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.

  12. Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste. Crystal structure and its comparison with natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomova, Anna S.; Krivovichev, Sergey V. [St. Petersburg State Univ. (Russian Federation). Dept. of Crystallography; Yudintsev, Sergey V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, St. Petersburg (Russian Federation); Stefanovsky, Sergey V. [MosNPO Radon, Moscow (Russian Federation)

    2013-03-01

    The structure of synthetic murataite-3C intended for long-term immobilization of high-level radioactive waste has been solved using crystals prepared by melting in an electric furnace at 1500 C. The material is cubic, F- anti 43m, a = 14.676(15) A, V = 3161.31(57) A{sup 3}. The structure is based upon a three-dimensional framework consisting of {alpha}-Keggin [Al{sup [4]}Ti{sub 12}{sup [6]}O{sub 40}] clusters linked by sharing the O5 atoms. The Keggin-cluster-framework interpenetrates with the metal-oxide substructure that can be considered as a derivative of the fluorite structure. The crystal chemical formula of synthetic murataite-3C derived from the obtained structure model can be written as {sup [8]}Ca{sub 6}{sup [8]}Ca{sub 4}{sup [6]}Ti{sub 12}{sup [5]}Ti{sub 4}{sup [4]}AlO{sub 42}. Its comparison with the natural murataite shows that the synthetic material has a noticeably less number of vacancies in the cation substructure and contains five instead of four symmetrically independent cation positions. The presence of the additional site essentially increases the capacity of synthetic murataite with respect to large heavy cations such as actinides, rare earth and alkaline earth metals in comparison with the material of natural origin. (orig.)

  13. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  14. First natural occurrence of coesite

    Science.gov (United States)

    Chao, E.C.T.; Shoemaker, E.M.; Madsen, B.M.

    1960-01-01

    Coesite, the high-pressure polymorph of SiO2, hitherto known only as a synthetic compound, is identified as an abundant mineral in sheared Coconino sandstone at Meteor Crater, Arizona. This natural occurrence has important bearing on the recognition of meteorite impact craters in quartz-bearing geologic formations.

  15. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    Science.gov (United States)

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  16. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  17. [Application of synthetic biology to sustainable utilization of Chinese materia medica resources].

    Science.gov (United States)

    Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin

    2014-01-01

    Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.

  18. Recent studies on radiation damage formation in synthetic NaCl and natural rock salt for radioactive waste disposal applications

    International Nuclear Information System (INIS)

    Swyler, K.J.; Klaffky, R.W.; Levy, P.W.

    1980-01-01

    Radiation damage formation in natural rock salt is described as a function of irradiation temperature and plastic deformation. F-center formation decreases with increasing temperature while significant colloidal sodium formation occurs over a restricted temperature range around 150 0 C. Plastic deformation increases colloid formation; it is estimated that colloid concentrations may be increased by a factor of 3 if the rock salt near radioactive waste disposal canisters is heavily deformed. Optical bandshape analysis indicates systematic differences between the colloids formed in synthetic and natural rock salts

  19. Chlorine Isotopic Composition of Perchlorate in Human Urine as a Means of Distinguishing Among Natural and Synthetic Exposure Sources

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentín-Blasini, Liza; Blount, Benjamin C.; Ferreccio, Catterina; Steinmaus, Craig M.; Sturchio, Neil C.

    2015-01-01

    Perchlorate (ClO4−) is a ubiquitous environmental contaminant with high human exposure potential; it has both natural and man-made sources in the environment. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the southwestern USA [δ37Cl = +4.1 ± 1.0 ‰; 36Cl/Cl = 1811 (± 136) × 10−15], and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile [δ37Cl = −11.0 ± 1.0 ‰; 36Cl/Cl = 254 (± 40) × 10−15]. Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways. PMID:25805252

  20. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  1. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  2. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  3. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  4. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  5. Effect of micellized natural (D-α-tocopherol) vs. synthetic (DL-α-tocopheryl acetate) vitamin E supplementation given to turkeys on oxidative status and breast meat quality characteristics.

    Science.gov (United States)

    Rey, A I; Segura, J; Olivares, A; Cerisuelo, A; Piñeiro, C; López-Bote, C J

    2015-06-01

    This study evaluates the effect of vitamin E supplementation source (micellized natural vs. the synthetic form) and dosage (40, 80, or 120 mg/kg) on α-tocopherol concentration in plasma and muscle, antioxidant capacity, and breast meat quality in turkeys. Three hundred female turkeys were randomly selected at an average live weight 63.2 g±0.5 and distributed into 7 groups. One group (control) was fed a standard diet without vitamin E supplementation and the other 6 were given mixed diets supplemented with the natural (d-α-tocopherol) or synthetic (dl-α-tocopheryl acetate) form of vitamin E in 3 dosages (40, 80, or 120 mg/kg). Following 11 wk feeding, results showed that performance parameters were not modified either by source or dosage of vitamin E supplementation to the turkeys. Plasma and muscle α-tocopherol at d 9 of refrigerated storage were higher when turkeys were supplemented with the natural form at higher doses. Losses in the concentration of α-tocopherol in meat between the beginning and the end of the 9 d refrigerated storage were greater in the groups supplemented with the synthetic form of vitamin E compared to those receiving the natural supplementation. The relationship between plasma α-tocopherol and the Trolox equivalent antioxidant capacity followed a different trend depending on the vitamin E source. Intramuscular fat was not significantly affected by the vitamin E source supplementation; however the slope of the linear regression equation was lower for the natural form than for the synthetic form. Turkeys given the natural form had higher C18:1n-9 but lower C15:1, C17:1, C20:5n-3, and C22:6n-3 in breast muscle. Meat samples from turkeys supplemented with natural vitamin E had higher deoxymyoglobin at d 3, 6, and 9 and lower metmyoglobin at d 9 of refrigerated storage than those receiving the synthetic form. Dietary supplementation with medium doses (80 mg/kg) micellized d-α-tocopherol is an interesting feeding strategy for

  6. Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Shen, Xiaoyan; Chang, Hong; Sun, Dezhi; Wang, Linxia; Wu, Fengchang

    2018-04-15

    A broad number of natural and synthetic progestins are widely used in human and veterinary therapies. Although progestins exhibit adverse effects in aquatic organisms, information about environmental occurrence and fate have been limited to several compounds, hampering the accuracy of risk assessments of the compounds. In this study, a selective and sensitive analytical method was established to simultaneously determine 19 natural and 42 synthetic progestins in environmental waters, and the synthetic progestins included 19-nortestosterone, 17α-hydroxyprogesterone and progesterone derivatives. All of the target compounds were effectively separated using an HSS T3 column, and the recoveries for effluent and river samples were 80-115% and 75-105%, respectively. The detection limits for the 61 analytes were in the range of 0.05-0.60 ng/L and 0.03-0.40 ng/L for the effluent and river samples, respectively. The developed method is applied to analyze the target progestogens in sewage effluent and river water samples from Beijing. The detected concentrations of natural progesterone metabolites (3α-hydroxy-5β-tetrahydroprogesterone) were up to 63 times higher than those of the parent compound. Of the three groups of synthetic progestins, the progesterone derivatives were detected for the first time and had the highest concentrations followed by the 19-nortestosterone and 17α-hydroxyprogesterone derivatives. In contrast to previous studies, the predominant derivative compounds of 19-nortestosterone were found to be 19-nortestosterone, gestodene and mifepristone, and those of 17α-hydroxyprogesterone were 6-epi-medroxy progesterone 17-acetate and melengestrol acetate. The toxicities and environmental risk of these emerging progestins deserves more attention in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  8. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    Science.gov (United States)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data

  9. Use of diffusion-ordered NMR spectroscopy and HPLC-UV-SPE-NMR to identify undeclared synthetic drugs in medicines illegally sold as phytotherapies.

    Science.gov (United States)

    Silva, Lorena M A; Filho, Elenilson G A; Thomasi, Sérgio S; Silva, Bianca F; Ferreira, Antonio G; Venâncio, Tiago

    2013-09-01

    The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  11. Omics methods for probing the mode of action of natural and synthetic phytotoxins.

    Science.gov (United States)

    Duke, Stephen O; Bajsa, Joanna; Pan, Zhiqiang

    2013-02-01

    For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances the probability of success. Generally, compounds with the same mode of action generate similar responses with a particular omics method. Stress and detoxification responses to phytotoxins can be much clearer than effects directly related to the target site. Clues to new modes of action must be validated with in vitro enzyme effects or genetic approaches. Thus far, the only new phytotoxin target site discovered with omics approaches (metabolomics and physionomics) is that of cinmethylin and structurally related 5-benzyloxymethyl-1,2-isoxazolines. These omics approaches pointed to tyrosine amino-transferase as the target, which was verified by enzyme assays and genetic methods. In addition to being a useful tool of mode of action discovery, omics methods provide detailed information on genetic and biochemical impacts of phytotoxins. Such information can be useful in understanding the full impact of natural phytotoxins in both agricultural and natural ecosystems.

  12. The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content

    DEFF Research Database (Denmark)

    Duffy, Sarah K.; Kelly, Alan K.; Rajauria, Gaurav

    2018-01-01

    This study investigated the effects of synthetic and natural sources of vitamin D biofortification in pig diets on pork vitamin D activity and pork quality. One hundred and twenty pigs (60 male, 60 female) were assigned to one of four dietary treatments for a 55 d feeding period. The dietary trea...

  13. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  14. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    Directory of Open Access Journals (Sweden)

    Michael Volpers

    Full Text Available The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force. The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly

  15. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  16. Customizable Generation of Synthetically Accessible, Local Chemical Subspaces.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2017-03-27

    Screening large libraries of chemicals has been an efficient strategy to discover bioactive compounds; however a portion of the potential for success is limited to the available libraries. Synergizing combinatorial and computational chemistries has emerged as a time-efficient strategy to explore the chemical space more widely. Ideally, streamlining the evaluation process for larger, feasible chemical libraries would become commonplace. Thus, combinatorial tools and, for example, docking methods would be integrated to identify novel bioactive entities. The idea is simple in nature, but much more complex in practice; combinatorial chemistry is more than the coupling of chemicals into products: synthetic feasibility includes chemoselectivity, stereoselectivity, protecting group chemistry, and chemical availability which must all be considered for combinatorial library design. In addition, intuitive interfaces and simple user manipulation is key for optimal use of such tools by organic chemists-crucial for the integration of such software in medicinal chemistry laboratories. We present herein Finders and React2D-integrated into the Virtual Chemist platform, a modular software suite. This approach enhances virtual combinatorial chemistry by identifying available chemicals compatible with a user-defined chemical transformation and by carrying out the reaction leading to libraries of realistic, synthetically accessible chemicals-all with a completely automated, black-box, and efficient design. We demonstrate its utility by generating ∼40 million synthetically accessible, stereochemically accurate compounds from a single library of 100 000 purchasable molecules and 56 well-characterized chemical reactions.

  17. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.

    Science.gov (United States)

    Azmi, Fazren; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.

  18. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  19. Use of synthetic, crystalline, L-α-dimyristoyl lecithin in cardiolipin antigens

    Science.gov (United States)

    Reyn, Alice; Bentzon, Michael Weis

    1956-01-01

    Experiments were carried out by the authors to determine whether synthetic, crystalline, L-α-dimyristoyl lecithin could replace natural purified lecithins in the preparation of cardiolipin antigens. These experiments were designed specifically to find out whether it was possible to obtain the same serological reactions, qualitatively and quantitatively, with the test antigen as with a reference antigen containing natural lecithin, and whether the test antigen had the same keeping qualities as the reference antigen. The tests used were the quantitative complement-fixation test as modified by Mørch in 1933, and the VDRL slide flocculation test. The results showed that synthetic, crystalline, L-α-dimyristoyl lecithin could replace natural lecithin in the preparation of cardiolipin antigens, but that the antigens prepared with the synthetic lecithin were significantly less sensitive than those prepared with an equimolar amount of natural lecithin. The authors consider that further investigation is required before the use of synthetic lecithin is finally adopted. PMID:13342931

  20. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  1. Structure-cytotoxicity relationships of a series of natural and semi-synthetic simple coumarins as assessed in two human tumour cell lines

    NARCIS (Netherlands)

    Kolodziej, H; Kayser, O; Woerdenbag, HJ; vanUden, W; Pras, N

    1997-01-01

    The cytotoxicity of 22 natural and semi-synthetic simple coumarins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values > 100 mu M, following a continuous (96h)

  2. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Toxicity of synthetic flavorings, nature identical and artificial, to hematopoietic tissue cells of rodents

    Directory of Open Access Journals (Sweden)

    I. M. S. Sales

    2017-08-01

    Full Text Available Abstract The goal of this study was to analyze cytotoxicity, genotoxicity and mutagenicity to bone marrow cells of mice of nature identical synthetic flavorings, passion fruit and strawberry, and artificial synthetic flavorings, vanilla, chocolate, tutti-frutti and cookie, at doses 0.5; 1.0; 2.0; 5.0 and 10.0 mL/kg. The additives were given to the animals by gavage in a single daily application for seven days. Data were subjected to analysis of variance (ANOVA followed by post Tukey’s post hoc test, p <0.05. Animals treated with 2.0; 5.0 and 10.0 mL/Kg of flavorings chocolate, strawberry and cookie, and 5.0 and 10.0 mL/Kg of flavorings vanilla and passion fruit died on the fifth and sixth day of the experiment, respectively. The doses 0.5 and 1.0 mL/Kg of the six additives significantly reduced erythropoiesis in the examined tissue. Also, treatments 0.5 and 1.0 mL/Kg of chocolate, and 1.0 mL/Kg of strawberry and biscuit induced the formation of micronuclei in the bone marrow erythrocytes, at a significant frequency. Therefore, under the study conditions, the six microingredients analyzed were cytotoxic and genotoxic, and additives strawberry, chocolate and cookie were also mutagenic in at least one of the evaluated doses.

  4. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids.

    Science.gov (United States)

    Dong, Shaowei; Adams, Keith L

    2011-06-01

    Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  6. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Survey of synthetic disinfectants in grapefruit seed extract and its compounded products].

    Science.gov (United States)

    Sugimoto, Naoki; Tada, Atsuko; Kuroyanagi, Masanori; Yoneda, Yuko; Yun, Young Sook; Kunugi, Akira; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Ken-Ichi

    2008-02-01

    Grapefruit seed extract (GSE), derived from the seeds of grapefruit (Citrus paradisi MCAF.), is listed as a natural food additive in Japan. Products containing GSE are used as disinfectants made from only natural sources, especially after Japanese researchers found that GSE prevents the growth of norovirus. On the other hand, recent overseas studies indicated that synthetic disinfectants, such as benzalkonium and benzethonium chlorides, were present in some commercial GSE products. To confirm the quality of commercial GSE products available in Japanese markets, we carried out comprehensive research to identify the major constituents of commercial GSE products which are used as food additives (13 products from 6 manufacturers), dietary supplements (5 products from 4 manufacturers), cosmetic materials (16 products from 10 manufacturers) and disinfectant or deodorant sprays (7 products from 7 manufacturers). By means of NMR and LC/MS analysis, synthetic disinfectants such as benzethonium or benzalkonium salts were detected in most of the commercial GSE products.

  8. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  9. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  10. Polyhydroxyalkanoate-based natural-synthetic hybrid copolymer films: A small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-01-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 A -1 . This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 A. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films

  11. Ecological impacts of Synthetic Natural Gas from wood (SNG) used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Dones, R.

    2007-07-01

    This illustrated poster illustrates how synthetic natural gas (SNG) from wood is a promising option to partially substitute fossil energy carriers. The comprehensive life cycle-based ecological impact of SNG is compared with that of natural gas, fuel oil, petrol/diesel, and wood chips that deliver the same services. The methods used for comparison, including Eco-indicator '99 perspectives, Eco-scarcity '97 (UBP), IPCC (2001), and external costs are discussed. The results indicate best ecological performance of the SNG system if consumption of fossil resources is strongly weighted. The performance of natural gas and wood-based systems are also discussed. The main negative aspects of the SNG system are discussed, as is the better ecological score of wood when highly-efficient particulate matter filters are installed. SNG is quoted as performing better than oil derivatives. External costs for SNG are examined. The authors recommend that SNG should preferably be used in cars, since the reduction of overall ecological impact and external costs when substituting oil-based fuels is higher for cars than for heating systems.

  12. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  13. Synthetic Biology with Cytochromes P450 Using Photosynthetic Chassis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan

    , this modern field of synthetic biology is completely dependent on the nature of the chassis - the host organisms - for its endeavor. Of all the chassis, photosynthetic organisms such as cyanobacteria and plants gains special attention due to the remarkable amount of sunlight that is striking the Earth...... in cyanobacteria and plant chloroplasts for the purpose of light driven synthesis of bioactive compounds by using synthetic biology approaches. As model pathways, in this thesis, the pathway involved in the synthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor, and the pathway involved......Synthetic biology is a rapidly growing engineering discipline in biology. It aims at building novel biological systems that do not exist in nature by selecting the interchangeable standardized biological parts that are already available in the nature, and assembling them in a specific order. Today...

  14. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  15. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  16. A synthetic cannabinoid FDU-NNEI, two 2H-indazole isomers of synthetic cannabinoids AB-CHMINACA and NNEI indazole analog (MN-18), a phenethylamine derivative N-OH-EDMA, and a cathinone derivative dimethoxy-α-PHP, newly identified in illegal products.

    Science.gov (United States)

    Uchiyama, Nahoko; Shimokawa, Yoshihiko; Kikura-Hanajiri, Ruri; Demizu, Yosuke; Goda, Yukihiro; Hakamatsuka, Takashi

    Six new psychoactive substances were identified together with two other substances (compounds 1 - 8 ) in illegal products by our ongoing survey in Japan between January and July 2014. A new synthetic cannabinoid, FDU-NNEI [1-(4-fluorobenzyl)- N -(naphthalen-1-yl)-1 H -indole-3-carboxamide, 2 ], was detected with the newly distributed synthetic cannabinoid FDU-PB-22 ( 1 ). Two 2 H -indazole isomers of synthetic cannabinoids, AB-CHMINACA 2 H -indazole analog ( 3 ) and NNEI 2 H -indazole analog ( 4 ), were newly identified with 1 H -indazoles [AB-CHMINACA and NNEI indazole analog (MN-18)]. In addition, 2-methylpropyl N -(naphthalen-1-yl) carbamate ( 5 ) and isobutyl 1-pentyl-1 H -indazole-3-carboxylate ( 6 ) were detected in illegal products. Compound 6 is considered to be a by-product of the preparation of NNEI indazole analog from compound 5 and 1-pentyl-1 H -indazole. A phenethylamine derivative, N -OH-EDMA [ N -hydroxy-3,4-ethylenedioxy- N -methylamphetamine, 7 ], and a cathinone derivative, dimethoxy-α-PHP (dimethoxy-α-pyrrolidinohexanophenone, 8 ), were newly identified in illegal products. Among them, compounds 1 and 8 have been controlled as designated substances (Shitei-Yakubutsu) under the Pharmaceutical Affairs Law in Japan since August and November 2014, respectively.

  17. Removal of Sulphate and Manganese on Synthetic Wastewater in Sulphate Reducing Bioreactor Using Indonesian Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Endah Retnaningrum

    2017-07-01

    Full Text Available The present research was conducted to investigate sulphate and manganese removal from synthetic wastewater. The continuous laboratory scale of down-flow fluidized-bed reactor (DFBR using sulphate reducing bacteria (SRB consortium and Indonesian natural zeolite as a bacterial support material was designed. At 9 days operation, maximum sulphate and manganese removal was observed to be 23% and 15.4%, respectively. The pH values were also changed to neutral. The population of SRB increased which effect on the raising of their activity for removing sulphate and manganese. Using the scanning electronic microscopy (SEM, it was observed that natural zeolite possesses excellent physical characteristics as a bacterial support material in DFBR. The imaging SEM result of SRB consortium on zeolite surface clearly showed the developed SRB biofilm on that particle. Analysis result of EDX confirmed that manganese was precipitated as manganese–sulfides.

  18. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  19. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  20. Perception of synthetic speech produced automatically by rule: Intelligibility of eight text-to-speech systems.

    Science.gov (United States)

    Greene, Beth G; Logan, John S; Pisoni, David B

    1986-03-01

    We present the results of studies designed to measure the segmental intelligibility of eight text-to-speech systems and a natural speech control, using the Modified Rhyme Test (MRT). Results indicated that the voices tested could be grouped into four categories: natural speech, high-quality synthetic speech, moderate-quality synthetic speech, and low-quality synthetic speech. The overall performance of the best synthesis system, DECtalk-Paul, was equivalent to natural speech only in terms of performance on initial consonants. The findings are discussed in terms of recent work investigating the perception of synthetic speech under more severe conditions. Suggestions for future research on improving the quality of synthetic speech are also considered.

  1. Perception of synthetic speech produced automatically by rule: Intelligibility of eight text-to-speech systems

    Science.gov (United States)

    GREENE, BETH G.; LOGAN, JOHN S.; PISONI, DAVID B.

    2012-01-01

    We present the results of studies designed to measure the segmental intelligibility of eight text-to-speech systems and a natural speech control, using the Modified Rhyme Test (MRT). Results indicated that the voices tested could be grouped into four categories: natural speech, high-quality synthetic speech, moderate-quality synthetic speech, and low-quality synthetic speech. The overall performance of the best synthesis system, DECtalk-Paul, was equivalent to natural speech only in terms of performance on initial consonants. The findings are discussed in terms of recent work investigating the perception of synthetic speech under more severe conditions. Suggestions for future research on improving the quality of synthetic speech are also considered. PMID:23225916

  2. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  4. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  5. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  6. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China

    International Nuclear Information System (INIS)

    Li, Hengchong; Yang, Siyu; Zhang, Jun; Kraslawski, Andrzej; Qian, Yu

    2014-01-01

    To alleviate the problem of the insufficient reserves of natural gas in China, coal-based synthetic natural gas (SNG) is considered to be a promising option as a source of clean energy, especially for urban use. However, recent study showed that SNG will not accomplish the task of simultaneous energy conservation and CO 2 reduction. In this paper, life cycle costing is made for SNG use in three main applications in residential sector: heating, household use, and public transport. Comparisons are conducted between SNG and coal, natural gas, liquefied petroleum gas (LPG), diesel, and methanol. The results show that SNG is a competitive option only for household use. The use of SNG for heating boilers or city buses is not as cost-effective as expected. The biggest shortcoming of SNG is the large amount of pollutants generated in the production stage. At the moment, the use of SNG is promoted by the government. However, as shown in this paper, one can expect a transfer of pollution from the urban areas to the regions where SNG is produced. Therefore, it is suggested that well-balanced set of environmental damage-compensating policies should be introduced to compensate the environmental losses in the SNG-producing regions. - Highlights: • Life cycle costing was applied on the coal-based SNG. • The SNG was compared with conventional fuels of three residential applications. • The SNG is not so cost-effective except of household use. • Ecological compensation policy is useful to deal with the transfer of pollutions

  7. Synthetic staggered architecture composites

    International Nuclear Information System (INIS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  8. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  9. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  10. UV-protection of Natural and Synthetic Fabrics by Surface Treatment under the effect of Gamma Irradiation

    International Nuclear Information System (INIS)

    El-Naggar, AW.M.; Zohdy, M.H.; Ali, N.M.

    2008-01-01

    Synthetic and natural fabrics were surface coated with gamma radiation curable novel formulations. These formulations were based on naturally occurring Alum individually and in binary mixture with ZnO beside different functional oligomers and monomers. The physical properties of the treated fabrics were evaluated in terms of ultraviolet protection, moisture regain, and water absorption. Also, the effect of coating formulations on the crystallinity was investigated by X-ray diffraction (XRD). The results of ultraviolet protection factor (UPF) showed that the formulation containing 30% of Alum caused a significant UPF values (50+) according to standard rating over untreated fabrics. When ZnO was incorporated in the formulation, the UPF factor was increased by two folds. A decrease in the moisture regain and water absorption of fabrics was featured with ZnO, however, in case of Alum a decrease followed by an increase was observed. In conclusion, these novel coats could be taken as an nontoxic alternative UV-resist finishing agents for fabrics

  11. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  12. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Novel synthetic lethality screening method identifies TIP60-dependent radiation sensitivity in the absence of BAF180.

    Science.gov (United States)

    Hopkins, Suzanna R; McGregor, Grant A; Murray, Johanne M; Downs, Jessica A; Savic, Velibor

    2016-10-01

    In recent years, research into synthetic lethality and how it can be exploited in cancer treatments has emerged as major focus in cancer research. However, the lack of a simple to use, sensitive and standardised assay to test for synthetic interactions has been slowing the efforts. Here we present a novel approach to synthetic lethality screening based on co-culturing two syngeneic cell lines containing individual fluorescent tags. By associating shRNAs for a target gene or control to individual fluorescence labels, we can easily follow individual cell fates upon siRNA treatment and high content imaging. We have demonstrated that the system can recapitulate the functional defects of the target gene depletion and is capable of discovering novel synthetic interactors and phenotypes. In a trial screen, we show that TIP60 exhibits synthetic lethality interaction with BAF180, and that in the absence of TIP60, there is an increase micronuclei dependent on the level of BAF180 loss, significantly above levels seen with BAF180 present. Moreover, the severity of the interactions correlates with proxy measurements of BAF180 knockdown efficacy, which may expand its usefulness to addressing synthetic interactions through titratable hypomorphic gene expression. Copyright © 2016. Published by Elsevier B.V.

  14. Synthetic and tomato-based lycopene have identical bioavailability in humans

    NARCIS (Netherlands)

    Hoppe, P.P.; Krämer, K.; Berg, H. van den; Steenge, G.; Vliet, T. van

    2003-01-01

    Background: Bioavailability studies with lycopene have focused on natural sources. A synthetic source has recently become available. Aim of the study: To determine the relative bioavailabilities of synthetic and tomato-based lycopene in free living volunteers in a single-blind, randomized,

  15. Radical-scavenging Activity of Natural Methoxyphenols vs. Synthetic Ones using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2007-02-01

    Full Text Available The radical-scavenging activities of the synthetic antioxidants 2-allyl-4-X-phenol (X=NO2, Cl, Br, OCH3, COCH3, CH3, t-(CH33, C6H5 and 2,4-dimethoxyphenol, and the natural antioxidants eugenol and isoeugenol, were investigated using differential scanning calorimetry (DSC by measuring their anti-1,1-diphenyl-2-picrylhydrazyl (DPPH radical activity and the induction period for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN and benzoyl peroxide (BPO. 2-Allyl-4-methoxyphenol and 2,4-dimethoxy-phenol scavenged not only oxygen-centered radicals (PhCOO. derived from BPO, but also carbon-centered radicals (R. derived from the AIBN and DPPH radical much more efficiently, in comparison with eugenol and isoeugenol. 2-Allyl-4-methoxyphenol may be useful for its lower prooxidative activity.

  16. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  17. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez

    2014-01-01

    Full Text Available This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification- based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.

  18. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Science.gov (United States)

    Amezquita-Sanchez, Juan P.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.; Garcia-Perez, Arturo

    2014-01-01

    This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals. PMID:24683346

  19. From bricolage to BioBricks™: Synthetic biology and rational design.

    Science.gov (United States)

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  1. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Scheidweiler, Karl B; Jarvis, Michael J Y; Huestis, Marilyn A

    2015-01-01

    Clandestine laboratories constantly produce new synthetic cannabinoids to circumvent legislative scheduling efforts, challenging and complicating toxicological analysis. Sundstrom et al. (Anal Bioanal Chem 405(26):8463-8474, [9]) and Kronstrand et al. (Anal Bioanal Chem 406(15):3599-3609, [10]) published nontargeted liquid chromatography, high-resolution, quadrupole/time-of-flight mass spectrometric (LC-QTOF) assays with validated detection of 18 and 38 urinary synthetic cannabinoid metabolites, respectively. We developed and validated a LC-QTOF urine method for simultaneously identifying the most current 47 synthetic cannabinoid metabolites from 21 synthetic cannabinoid families (5-fluoro AB-PINACA, 5-fluoro-AKB48, 5-fluoro PB-22, AB-PINACA, ADB-PINACA, AKB48, AM2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, JWH-398, MAM2201, PB-22, RCS-4, UR-144, and XLR11). β-Glucuronidase-hydrolyzed urine was extracted with 1-mL Biotage SLE+ columns. Specimens were reconstituted in 150-μL mobile phase consisting of 80% A (0.1% formic acid in water) and 20% B (0.1% formic acid in acetonitrile). Fifty microliters was injected, and SWATH™ MS data were acquired in positive electrospray mode. The LC-QTOF instrument consisted of a Shimadzu UFLCxr system and an ABSciex 5600+ TripleTOF® mass spectrometer. Gradient chromatographic separation was achieved with a Restek Ultra Biphenyl column with a 0.5-mL/min flow rate and an overall run time of 15 min. Identification criteria included molecular ion mass error, isotopic profiles, retention time, and library fit criteria. Limits of detection were 0.25-5 μg/L (N = 10 unique fortified urine samples), except for two PB-22 metabolites with limits of 10 and 20 μg/L. Extraction efficiencies and matrix effects (N = 10) were 55-104 and -65-107%, respectively. We present a highly useful novel LC-QTOF method for simultaneously confirming 47 synthetic cannabinoid metabolites in human urine.

  2. Lessons from the synthetic chemist nature.

    Science.gov (United States)

    Jürjens, Gerrit; Kirschning, Andreas; Candito, David A

    2015-05-01

    This conceptual review examines the ideal multistep synthesis from the perspective of nature. We suggest that besides step- and redox economies, one other key to efficiency is steady state processing with intermediates that are immediately transformed to the next intermediate when formed. We discuss four of nature's strategies (multicatalysis, domino reactions, iteration and compartmentation) that commonly proceed via short-lived intermediates and show that these strategies are also part of the chemist's portfolio. We particularly focus on compartmentation which in nature is found microscopically within cells (organelles) and between cells and on a molecular level on multiprotein scaffolds (e.g. in polyketide synthases) and demonstrate how compartmentation is manifested in modern multistep flow synthesis.

  3. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  4. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    Science.gov (United States)

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  5. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  6. A historical perspective of synthetic ceramic and traditional feldspathic porcelain.

    Science.gov (United States)

    Chu, Stephen; Ahmad, Irfan

    2005-10-01

    Ceramics were invented by the Chinese during the T'ang Dynasty, where they quickly became a precious commodity. By the early 18th Century, ceramics found its way into dentistry due to its high strength, biocompatibility, and malleability. Today, ceramic materials are a staple in dentistry, available in both naturally based and partially synthetic formulas. Most recently they have become available as quartz-glass synthetic materials manufactured under controlled conditions to eliminate the inconsistencies and impurities inherent in the naturally based counterpart. This article details the discovery of porcelain and its role as a precious substance throughout the world and time, from its initial use as ornamental earthenware to its practical application in modern dentistry. Upon reading this article, the reader should: Understand the historical significance of porcelain. Recognize the fundamental constituents and physical properties of both natural feldspathic porcelains and fully synthetic ceramics used in dentistry.

  7. Air quality, health, and climate implications of China's synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  8. Comparative study for the removal of Sr2+ and Pb2+ from waste solutions using synthetic and natural cow bone apatite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.

    2007-01-01

    The aim of this study is to develop the cow bone derived apatite as a new sorbent for Sr 2+ and Pb 2+ ions from their aqueous waste solutions. In this respect, four different types of apatite (Ca 10 (PO 4 )6(OH) 2 ) were investigated. The first was natural cow bone apatite (raw bone). The second was cow bone derived apatite after treatment at 700 degree C. The third was synthetic apatite and the last was commercial apatite supplied from Bio Rad company, USA. Removal of Sr 2+ and Pb 2+ by the studied samples was investigated using batch experiments. The different parameters affecting sorption process such as contact time, metal ion concentration and hydrogen ion concentration of the aqueous phase were studied. Desorption of the investigated ions from the loaded samples was also studied. The results obtained showed that the raw cow bone was more effective than the other investigated HAP for adsorbing both Sr 2+ and Pb 2+ ions since the removal percentage of Sr 2+ and Pb 2+ by natural cow bone apatite were 85% and 98%, respectively, while the removal of Sr 2+ and Pb 2+ by the synthetic apatite were 71% and 62%, respectively. From the obtained data, it can be concluded that the natural (raw) cow bone apatite can be used as an ion exchanger for removal of some radioactive elements that may present in radioactive waste solutions as well as it could be considered as a new competitor of the other natural absorbents. Therefore, it is recommended that the natural cow bone apatite could be used for removal of both Sr 2+ and Pb 2+ from radioactive waste solutions as well as other wastewater

  9. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  10. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  11. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  12. Synthetic multicellular oscillatory systems: controlling protein dynamics with genetic circuits

    International Nuclear Information System (INIS)

    Koseska, Aneta; Volkov, Evgenii; Kurths, Juergen

    2011-01-01

    Synthetic biology is a relatively new research discipline that combines standard biology approaches with the constructive nature of engineering. Thus, recent efforts in the field of synthetic biology have given a perspective to consider cells as 'programmable matter'. Here, we address the possibility of using synthetic circuits to control protein dynamics. In particular, we show how intercellular communication and stochasticity can be used to manipulate the dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune the expression of specific proteins of interest, e.g. in large bioreactors.

  13. Synthetic multielement standards used for instrumental neutron activation analysis as rock imitations

    International Nuclear Information System (INIS)

    Leypunskaya, D.I.; Drynkin, V.I.; Belenky, B.V.; Kolomijtsev, M.A.; Dundera, V.Yu.; Pachulia, N.V.

    1975-01-01

    Complex (multielemental) standards representing microelement composition of standard rocks such as trap ST-1 (USSR), gabbrodiorite SGD-1 (USSR), albitized granite SG-1 (USSR), basalt BCR-1 (USA) and granodiorite GSP-1 (USA) have been synthesized. It has been shown that the concentration of each microelement in the synthetic standards can be given with a high precision. Comparative investigation has been carried out of the synthetic imitations and the above natural standard rocks. It has been found that the result of the instrumental neutron activation analysis using the synthetic standards is as good as in the case when natural standard rocks are used. The results obtained have been also used for substantiation of the versatility of the method used for standard preparation, i.e. a generalization has been made of a possibility of using this method for the preparation of synthetic standards representing the microelement composition of any natural rocks with various compositions and concentrations of microelements. (T.G.)

  14. Natural zinniol derivatives from Alternaria tagetica. Isolation, synthesis, and structure-activity correlation.

    Science.gov (United States)

    Gamboa-Angulo, M Marcela; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Alejos-González, Fátima; Delgado-Lamas, Guillermo; Peña-Rodríguez, Luis M

    2002-02-27

    Two novel phytotoxins, 8-zinniol methyl ether (5) and 8-zinniol acetate (6), in addition to 6-(3',3'-dimethylallyloxy)-4-methoxy-5-methylphthalide (2), 5-(3',3'-dimethylallyloxy)-7-methoxy-6-methylphthalide (3), and the novel metabolites 8-zinniol 2-(phenyl)ethyl ether (4) and 7-zinniol acetate (7) have been identified as natural zinniol derivatives from the organic crude extract of Alternaria tagetica culture filtrates. Using zinniol as the starting material, phytotoxin 5 was synthesized, together with a number of synthetic intermediates (8-13). Both natural and synthetic zinniol derivatives were evaluated in the leaf-spot bioassay against marigold leaves (Tagetes erecta).

  15. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  16. Theoretical and Kinetic Tools for Selecting Effective Antioxidants: Application to the Protection of Omega-3 Oils with Natural and Synthetic Phenols

    Directory of Open Access Journals (Sweden)

    Romain Guitard

    2016-07-01

    Full Text Available Radical-scavenging antioxidants play crucial roles in the protection of unsaturated oils against autoxidation and, especially, edible oils rich in omega-3 because of their high sensitivity to oxygen. Two complementary tools are employed to select, among a large set of natural and synthetic phenols, the most promising antioxidants. On the one hand, density functional theory (DFT calculations provide bond dissociation enthalpies (BDEs of 70 natural (i.e., tocopherols, hydroxybenzoic and cinnamic acids, flavonoids, stilbenes, lignans, and coumarins and synthetic (i.e., 2,6-di-tert-butyl-4-methylphenol (BHT, 3-tert-butyl-4-hydroxyanisol (BHA, and tert-butylhydroquinone (TBHQ phenols. These BDEs are discussed on the basis of structure–activity relationships with regard to their potential antioxidant activities. On the other hand, the kinetic rate constants and number of hydrogen atoms released per phenol molecule are measured by monitoring the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH• radical. The comparison of the results obtained with these two complementary methods allows highlighting the most promising antioxidants. Finally, the antioxidant effectiveness of the best candidates is assessed by following the absorption of oxygen by methyl esters of linseed oil containing 0.5 mmol L−1 of antioxidant and warmed at 90 °C under oxygen atmosphere. Under these conditions, some natural phenols namely epigallocatechin gallate, myricetin, rosmarinic and carnosic acids were found to be more effective antioxidants than α-tocopherol.

  17. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.

    Science.gov (United States)

    Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish

    2016-08-01

    The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.

  18. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Science.gov (United States)

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  19. Deuterium, carbon and nitrogen isotopic analysis of natural and synthetic caffeines. Authentication of coffees and coffee extracts

    International Nuclear Information System (INIS)

    Danho, D.; Naulet, N.; Martin, G.J.

    1992-01-01

    Isotope ratio mass spectrometry (IRMS) was used to determine the δ( 13 C) and δ( 15 N) values of a series of caffeine samples extracted from coffee beans or obtained by synthesis, 2 H NMR spectra were recorded in order to compute the site-specific isotope ratios of caffeine. The set of the five isotope ratios measured for the 26 different samples was studied by multi-variate analysis (principal component and discriminant analyse) and it is shown that the synthetic samples are clearly distinguishable from the natural caffeines which in turn can be classified with complete accuracy as of either American or African origin

  20. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  1. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  3. Computational protein design-the next generation tool to expand synthetic biology applications.

    Science.gov (United States)

    Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel

    2018-05-02

    One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.

  4. Solution dynamics of synthetic and natural polyelectrolytes

    Science.gov (United States)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  5. Synthetic biology and conservation of nature: wicked problems and wicked solutions.

    Science.gov (United States)

    Redford, Kent H; Adams, William; Mace, Georgina M

    2013-01-01

    So far, conservation scientists have paid little attention to synthetic biology; this is unfortunate as the technology is likely to transform the operating space within which conservation functions, and therefore the prospects for maintaining biodiversity into the future.

  6. A Comparison of Natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol Acetate) Vitamin E Supplementation on the Growth Performance, Meat Quality and Oxidative Status of Broilers.

    Science.gov (United States)

    Cheng, K; Niu, Y; Zheng, X C; Zhang, H; Chen, Y P; Zhang, M; Huang, X X; Zhang, L L; Zhou, Y M; Wang, T

    2016-05-01

    The present study was conducted to compare the supplementation of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-α-tocopherol or DL-α-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of α-tocopherol in the breast muscle was increased by the supplementation of vitamin E (pnatural vitamin E group (pnatural vitamin E group (pnatural rather than synthetic vitamin E reduced MDA accumulation in the thigh (pnatural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular α-tocopherol, improve meat quality and muscular antioxidant capacity of broilers.

  7. Robust synthetic biology design: stochastic game theory approach.

    Science.gov (United States)

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  8. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  9. N-acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry.

    Science.gov (United States)

    Ammazzalorso, Alessandra; De Filippis, Barbara; Giampietro, Letizia; Amoroso, Rosa

    2017-12-01

    Sulfonamide is a common structural motif in naturally occurring and synthetic medicinal compounds. The rising interest in sulfonamides and N-acyl derivatives is attested by the large number of drugs and lead compounds identified in last years, explored in different fields of medicinal chemistry and showing biological activity. Many acylsulfonamide derivatives were designed and synthesized as isosteres of carboxylic acids, being the characteristics of these functional groups very close. Starting from chemical routes to N-acylsulfonamides, this review explores compounds of pharmaceutical interest, developed as enzymatic inhibitors or targeting receptors. © 2017 John Wiley & Sons A/S.

  10. Bio-corrosion in synthetic and natural sea water of modified stainless steels by poison elements

    International Nuclear Information System (INIS)

    Hernandez Duque, G.

    1989-09-01

    In seawater, bacteria can modify the behaviour of stainless steels towards corrosion. It can be then considered to control this type of degradation by a better adjustment of the chemical composition of the steels used. In this work, has been studied the influence of the addition of 'poisons' elements for bacteria on the bio-corrosion resistance of an austenitic 316L steel. The added elements were copper, tin and arsenic. After a bibliographic study and a description of the metallographic, electrochemical and surface analyses methods used, the results obtained in the considered media are given: synthetical seawater, natural, or sterilized and then inoculated. The specific role of each addition elements has then been revealed as well as the alteration of the protecting films and of the induced bio-film, and the behaviour differences in aerobic and anaerobic conditions. (O.M.)

  11. Natural and synthetic prion structure from X-ray fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Holger; Bian, Wen; McDonald, Michele; Kendall, Amy; Colby, David W.; Bloch, Lillian; Ollesch, Julian; Borovinskiy, Alexander L.; Cohen, Fred E.; Prusiner, Stanley B.; Stubbs, Gerald; (Vanderbilt); (UCSF)

    2009-10-21

    A conformational isoform of the mammalian prion protein (PrP{sup Sc}) is the sole component of the infectious pathogen that causes the prion diseases. We have obtained X-ray fiber diffraction patterns from infectious prions that show cross-{beta} diffraction: meridional intensity at 4.8 {angstrom} resolution, indicating the presence of {beta} strands running approximately at right angles to the filament axis and characteristic of amyloid structure. Some of the patterns also indicated the presence of a repeating unit along the fiber axis, corresponding to four {beta}-strands. We found that recombinant (rec) PrP amyloid differs substantially from highly infectious brain-derived prions, both in structure as demonstrated by the diffraction data, and in heterogeneity as shown by electron microscopy. In addition to the strong 4.8 {angstrom} meridional reflection, the recPrP amyloid diffraction is characterized by strong equatorial intensity at approximately 10.5 {angstrom}, absent from brain-derived prions, and indicating the presence of stacked {beta}-sheets. Synthetic prions recovered from transgenic mice inoculated with recPrP amyloid displayed structural characteristics and homogeneity similar to those of naturally occurring prions. The relationship between the structural differences and prion infectivity is uncertain, but might be explained by any of several hypotheses: only a minority of recPrP amyloid possesses a replication-competent conformation, the majority of recPrP amyloid has to undergo a conformational maturation to acquire replication competency, or inhibitory forms of recPrP amyloid interfere with replication during the initial transmission.

  12. Functional mining of transporters using synthetic selections

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bali, Anne Pihl; Petersen, Søren Dalsgård

    2016-01-01

    transporters, PnuT, which is widely distributed across multiple bacterial phyla. We demonstrate that with modular replacement of the biosensor, we could expand our method to xanthine and identify xanthine permeases from gut and soil metagenomes. Our results demonstrate how synthetic-biology approaches can......-responsive biosensor systems that enable selective growth of cells only if they encode a ligand-specific importer. We developed such a synthetic selection system for thiamine pyrophosphate and mined soil and gut metagenomes for thiamine-uptake functions. We identified several members of a novel class of thiamine...

  13. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    Directory of Open Access Journals (Sweden)

    Jason Gunther Lomnitz

    2016-07-01

    the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits.

  14. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    Science.gov (United States)

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    , and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346

  15. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-01-01

    , and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits.

  16. Relative potency estimation for synthetic petroleum skin carcinogens.

    OpenAIRE

    Holland, J M; Wolf, D A; Clark, B R

    1981-01-01

    A procedure for quantitative analysis of skin carcinogenesis data, for the purpose of establishing carcinogenic potency, has been applied to observations obtained from C3H mice exposed continuously to synthetic and natural petroleums. The importance of total polynuclear aromatic (PNA) content to the skin carcinogenic activity of the crude materials was also examined. Of three synthetic petroleums evaluated, all were shown capable of inducing skin neoplasms within a two-year exposure period. U...

  17. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  18. Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens.

    Science.gov (United States)

    Vieira-Brock, Paula L; Vaughan, Brent M; Vollmer, David L

    2017-12-01

    Plant essential oils (EOs) are known to inhibit the growth of bacteria and fungi. Whether these antimicrobial effects are comparable to synthetic household products is less clear. Furthermore, limited research is available on the potential additive effect of blending EOs. In this investigation, a new EO blend containing orange, patchouli, peppermint, and clary sage was compared to its individual single oils and to three household products-air freshener, liquid soap, and body spray-for their ability to inhibit the growth of Staphylococcus aureus, Streptococcus pneumoniae, Pseudonomas aeruginosa, and Aspergillus brasiliensis in the disc-diffusion assay. The new EO blend significantly inhibited the growth of the four microorganisms. The zones of inhibition of new EO blend were greater than the air freshener and similar to the liquid soap and body spray, with the exception of Str. pneumoniae in which the body spray provided greater inhibitory zone. The new EO blend and the single oils, with the exception of peppermint, equally inhibited the growth of S. aureus and Str. pneumoniae suggesting no additive effect. P. aeruginosa and A. brasiliensis showed variable susceptibility to all EOs except for no susceptibility to orange and limonene. No difference was found between (-) and (+)-limonene; whereas, (+)-menthol showed greater effect than (-)-menthol. In conclusion, blending the EO of orange, patchouli, peppermint, and clary sage was beneficial in inhibiting the growth of S. aureus, Str. pneumoniae, P. aeruginosa, and A. brasiliensis providing a natural antimicrobial fragrance option over synthetics fragrances used in soaps, body sprays, and air fresheners.

  19. H2O removal from diesel and JP8 fuels: A comparison study between synthetic and natural dehydration agents

    Directory of Open Access Journals (Sweden)

    E. P. Favvas

    2014-08-01

    Full Text Available The comparison between Thermal Polyaspartate Anion, TPA, and natural resin in their effect on the improvement of the physicochemical properties of both conventional diesel and JP8 fuels is the main scope of this work. Specifically, both studied materials were used dehydration agents in order to increase the physicochemical properties of both treated fuels. The higher amount of the removed water was obtained when used the natural resin as adsorbent material. In this case the water concentration decreased into diesel up to 68.66 % and more than 30 % in the case of jet fuel (JP8. This water removal improves the studied physicochemical properties of both studied fuels, diesel and JP8, for example up to 633 J/g (using natural resin as dehydration agent (removable additive and 1040 J/g (using TPA as dehydration agent for the heat of combustion. Overall, the proposed method can be used in a simple fuel cleaning process using a metal mesh vessel of synthetic TPA polymer or natural resin. The higher water/humidity removal amount in conjunction with the very low price of the natural resin makes this material more promising for the up scaling of the proposed technique in the near future.

  20. Synthetic biology between technoscience and thing knowledge.

    Science.gov (United States)

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  2. Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 60 Years after Ownbey's discovery.

    Science.gov (United States)

    Tate, Jennifer A; Symonds, V Vaughan; Doust, Andrew N; Buggs, Richard J A; Mavrodiev, Evgeny; Majure, Lucas C; Soltis, Pamela S; Soltis, Douglas E

    2009-05-01

    In plants, polyploidy has been a significant evolutionary force on both recent and ancient time scales. In 1950, Ownbey reported two newly formed Tragopogon allopolyploids in the northwestern United States. We have made the first synthetic lines of T. mirus and T. miscellus using T. dubius, T. porrifolius, and T. pratensis as parents and colchicine treatment of F(1) hybrids. We also produced allotetraploids between T. porrifolius and T. pratensis, which are not known from nature. We report on the crossability between the diploids, as well as the inflorescence morphology, pollen size, meiotic behavior, and fertility of the synthetic polyploids. Morphologically, the synthetics resemble the natural polyploids with short- and long-liguled forms of T. miscellus resulting when T. pratensis and T. dubius are reciprocally crossed. Synthetic T. mirus was also formed reciprocally, but without any obvious morphological differences resulting from the direction of the cross. Of the 27 original crosses that yielded 171 hybrid individuals, 18 of these lineages have persisted to produce 386 S(1) progeny; each of these lineages has produced S(2) seed that are viable. The successful generation of these synthetic polyploids offers the opportunity for detailed comparative studies of natural and synthetic polyploids within a nonmodel system.

  3. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  4. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  5. Hydrothermal Gasification Of Synthetic Liquefied Wood To Methane

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M.H.; De Boni, E.; Vogel, F.

    2005-03-01

    Biomass can be effectively converted to synthetic natural gas (SNG) in a hydrothermal environment. Lower temperatures favor the production of methane rather than hydrogen. At around 420 C, catalysts are needed to ensure reasonable rates of reaction. They are tested in a new rig in terms of activity, selectivity and stability. Gold-plated surfaces ensure no interference from the stainless steel. Experiments were carried out using different feeds, such as ethanol and synthetic liquefied wood. (author)

  6. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    Science.gov (United States)

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Synthetic Studies of Bioactive Heterocyclic Natural Products and Fused Heterocyclic Compounds Based on the Thermal Electrocyclic or Azaelectocyclic Reaction of 6π-Electron or Aza-6π-electron Systems].

    Science.gov (United States)

    Hibino, Satoshi

    2016-01-01

    Since 1979, synthetic studies of bioactive heterocyclic natural products and condensed heteroaromatic compounds based on the thermal electrocyclic reaction of 6π-electron or aza-6π-electron systems incorporating the double bond of the principal aromatic or heteroaromatic ring have been conducted by our research group. In this review, five types of electrocyclic and azaelectrocyclic reaction are described: 1) the synthesis of the carbazole alkaloids hyellazole and 6-chlorohyellazole through the electrocyclic reaction of 2,3-bisalkenylindoles; 2) synthetic studies of the pyridocarbazole alkaloids ellipticine and olivacine through the electrocyclic reactions of the indole-2,3- and pyridine-3,4-quinodimethane intermediates; 3) synthetic studies of polysubstituted carbazole alkaloids through the allene-mediated electrocyclic reactions involving the indole 2,3-bond; 4) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 1-aza-6π-electron system using the oxime or oxime ether; and 5) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 2-aza-6π-electron system using a carbodiimide or isocyanate.

  8. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  9. Co-culture systems and technologies: taking synthetic biology to the next level.

    Science.gov (United States)

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M

    2014-07-06

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Selective effects of natural and synthetic insecticides on mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its predator Eriopis connexa (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Tavares, Wagner S; Costa, Mariana A; Cruz, Ivan; Silveira, Rodrigo D; Serrao, Jose E; Zanuncio, Jose C

    2010-08-01

    Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is a serious pest of corn in several American countries. It is mainly controlled with synthetic insecticides. The objectives of this study were to evaluate the effects of the natural products, neem oil and pyroligneous extract, and the synthetic insecticide, lufenuron, at 2.50 mL water (0.25%) on the mortality of 2-, 4- and 6-day-old caterpillars of S. frugiperda, and their selectivities against fourth instar larvae of Eriopis connnexa Germar (Coleoptera: Coccinellidae). Four- and 6-day-old S. frugiperda caterpillars showed higher mortality after exposure to neem oil (83.33 +/- 0.83 and 89.58 +/- 0.90%, respectively) and lufenuron (95.83 +/- 0.96 and 85.41 +/- 0.83%), compared to pyroligneous extract (68.75 +/- 0.69 and 31.25 +/- 0.31%). The deleterious effect of pyroligneous extract was higher in 2- (83.33 +/- 0.83% mortality) and 4-day-old (68.75 +/- 0.69%) S. frugiperda caterpillars than in 6-day-old caterpillars (31.25 +/- 0.31%). Larval mortality of the predator E. connexa was lower with neem oil and pyroligneous extract (25.00 +/- 0.33%) than with lufenuron (91.66 +/- 1.22%). Neem oil is thus recommended for control of S. frugiperda because of its high toxicity, combined with its relatively low toxicity to larvae of the natural enemy E. connexa.

  11. Generation method of synthetic training data for mobile OCR system

    Science.gov (United States)

    Chernyshova, Yulia S.; Gayer, Alexander V.; Sheshkus, Alexander V.

    2018-04-01

    This paper addresses one of the fundamental problems of machine learning - training data acquiring. Obtaining enough natural training data is rather difficult and expensive. In last years usage of synthetic images has become more beneficial as it allows to save human time and also to provide a huge number of images which otherwise would be difficult to obtain. However, for successful learning on artificial dataset one should try to reduce the gap between natural and synthetic data distributions. In this paper we describe an algorithm which allows to create artificial training datasets for OCR systems using russian passport as a case study.

  12. Studies on the specificity of immunological reactions of synthetic and natural Thomsen-Friedenreich antigens

    International Nuclear Information System (INIS)

    Hoeppner, W.

    1982-01-01

    A number of derivatives of disaccharide β-D-Gal-(1,3)-D-GalNAc, the carbohydrate component of T-antigen, and four different synthetic antigens having this disaccharide structure have been investigated. The immunological reactions with native human antibodies and rabbit immune antibodies have been studied in the haemagglutination inhibition test and in RIA. The findings are relevant to the use of synthetic carbohydrate antigens as model substances for immunological studies. (orig./MG) [de

  13. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.

    Science.gov (United States)

    Lee, M L; Schneider, G

    2001-01-01

    Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.

  14. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  15. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens

    Directory of Open Access Journals (Sweden)

    Paula L. Vieira-Brock

    2017-12-01

    Full Text Available Plant essential oils (EOs are known to inhibit the growth of bacteria and fungi. Whether these antimicrobial effects are comparable to synthetic household products is less clear. Furthermore, limited research is available on the potential additive effect of blending EOs. In this investigation, a new EO blend containing orange, patchouli, peppermint, and clary sage was compared to its individual single oils and to three household products–air freshener, liquid soap, and body spray–for their ability to inhibit the growth of Staphylococcus aureus, Streptococcus pneumoniae, Pseudonomas aeruginosa, and Aspergillus brasiliensis in the disc-diffusion assay. The new EO blend significantly inhibited the growth of the four microorganisms. The zones of inhibition of new EO blend were greater than the air freshener and similar to the liquid soap and body spray, with the exception of Str. pneumoniae in which the body spray provided greater inhibitory zone. The new EO blend and the single oils, with the exception of peppermint, equally inhibited the growth of S. aureus and Str. pneumoniae suggesting no additive effect. P. aeruginosa and A. brasiliensis showed variable susceptibility to all EOs except for no susceptibility to orange and limonene. No difference was found between (− and (+-limonene; whereas, (+-menthol showed greater effect than (−-menthol. In conclusion, blending the EO of orange, patchouli, peppermint, and clary sage was beneficial in inhibiting the growth of S. aureus, Str. pneumoniae, P. aeruginosa, and A. brasiliensis providing a natural antimicrobial fragrance option over synthetics fragrances used in soaps, body sprays, and air fresheners. Keywords: Essential oils, Soap, Body spray, Air freshener

  17. Using synthetic biology to make cells tomorrow's test tubes.

    Science.gov (United States)

    Garcia, Hernan G; Brewster, Robert C; Phillips, Rob

    2016-04-18

    The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.

  18. Geographic Variability and Anti-Staphylococcal Activity of the Chrysophaentins and Their Synthetic Fragments

    Directory of Open Access Journals (Sweden)

    Jared T. Hammill

    2012-05-01

    Full Text Available Drug-resistant Staphylococcus aureus is a continuing public health concern, both in the hospital and community settings. Antibacterial compounds that possess novel structural scaffolds and are effective against multiple S. aureus strains, including current drug-resistant ones, are needed. Previously, we have described the chrysophaentins, a family of bisdiarylbutene macrocycles from the chrysophyte alga Chrysophaeum taylori that inhibit the growth of S. aureus and methicillin-resistant S. aureus (MRSA. In this study we have analyzed the geographic variability of chrysophaentin production in C. taylori located at different sites on the island of St. John, U.S. Virgin Islands, and identified two new linear chrysophaentin analogs, E2 and E3. In addition, we have expanded the structure activity relationship through synthesis of fragments comprising conserved portions of the chrysophaentins, and determined the antimicrobial activity of natural chrysophaentins and their synthetic analogs against five diverse S. aureus strains. We find that the chrysophaentins show similar activity against all S. aureus strains, regardless of their drug sensitivity profiles. The synthetic chrysophaentin fragments indeed mimic the natural compounds in their spectrum of antibacterial activity, and therefore represent logical starting points for future medicinal chemistry studies of the natural products and their analogs.

  19. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Directory of Open Access Journals (Sweden)

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  20. Natural rubber (NR) biosynthesis: perspectives from polymer chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barkakaty, Balaka [ORNL

    2014-01-01

    Natural rubber is an important strategic raw material for manufacturing a wide variety of industrial products. There are at least 2,500 different latex-producing plant species; however, only Hevea brasiliensis (the Brazilian rubber tree) is a commercial source. The chemical structure of natural rubber is cis-1,4-polyisoprene, but the exact structure of the head and end groups remains unknown. Since synthetic cis-1,4-polyisoprenes cannot match the superior properties of natural rubber, understanding the chemistry behind the biosynthetic process is key to finding a possible replacement. T his chapter summarizes our current understandings from the perspective of a polymer scientist by comparing synthetic polyisoprenes to natural rubber. The chapter also highlights biomimetic polymerization, research towards a synthetic match of natural rubber and the role of natural rubber in health care.

  1. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry.

    Science.gov (United States)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe; Linnet, Kristian

    2015-03-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products. This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using an authentic urine sample and high-resolution accurate-mass Fourier transform Orbitrap mass spectrometry, we identified 16 phase-I metabolites of 5F-AKB-48. The modifications included mono-, di-, and trihydroxylation on the adamantyl ring alone or in combination with hydroxylation on the N-fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having the hydroxyl groups on the adamantyl ring. The results presented here may be used to select metabolites specific of 5F-AKB-48 for use in clinical and forensic screening. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  3. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Air quality, health, and climate implications of China’s synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  5. The metaphysical lessons of synthetic biology and neuroscience.

    Science.gov (United States)

    Baertschi, Bernard

    2015-01-01

    In this paper, I examine some important metaphysical lessons that are often presented as derived from two new scientific disciplines: synthetic biology and neuroscience. I analyse four of them: the nature of life, the existence of a soul (the mind-body problem), personhood, and free will. Many caveats are in order, and each 'advance' or each case should be assessed for itself. I conclude that a main lesson can nevertheless be learned: in conjunction with modern science, neuroscience and synthetic biology allow us to enrich old metaphysical debates, to deepen and even renew them. In particular, it becomes less and less plausible to consider life, mind, person, and agency as non-natural or non-physical entities. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  7. Growth of maize coleoptiles in the presence of natural and synthetic growth regulators. Growth correlations

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The effect of natural (IAA, FC, ABA and synthetic (2,4-D growth substances on the increase of the fresh weight of maize coleoptile segments and change of the pH of the incubation medium, accepted here as criteria of maize coleoptile growth, was studied. The growth of maize coleoptiles depended on the concentration of the growth substances, as well as, on the composition of the incubation medium. The highest stimulation of coleoptile growth was seen with FC at a concentration of 10-4M, whereas ABA at 10-3 M gave the highest inhibition of maize coleoptile fresh weight increase and caused alkalization of the medium. The presence of K+ ions in the incubation medium enhanced the stimulatory effect of IAA and FC on the increase of the coleoptile fresh weight, whereas the presence of these ions and phosphate buffer abolished the growth-promoting effect of IAA and FC. The best correlation of the "fresh weight" and "pH" effects was found in the case of the growth of maize coleoptiles in the presence of FC (rxy = 0.67. The inhibition of maize coleoptile growth in the presence of high concentrations of IAA can be explained by the destructive effect of natural auxin at these concentrations on the integrity of mitochondrial membranes, and therefore on the normal functioning of mitochondria.

  8. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  9. Potential of Thermophilic microorganisms for the degradation of synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Deive, F. J.; Sanroman, M. A.; Longo, M. A.

    2009-07-01

    Nowadays, synthetic polymers are used in all areas of human activity, mainly due to their high stability against environmental conditions and microbial attack. However, these properties are also a problem from an environmental point of view, and thus it is necessary to find biodegradable synthetic polymers that can be easily removed in nature after disposal, and decomposed into biomass, CO{sub 2} and water. (Author)

  10. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  11. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  12. Use of [125I]-iodohistamine-labelled steroid derivatives as radioligands for radioimmunoassay of natural and synthetic steroids

    International Nuclear Information System (INIS)

    Stanczyk, F.Z.; Goebelsmann, U.

    1981-01-01

    [ 125 I]-Iodohistamine-labelled steroid derivatives were prepared and utilized as radioligands in radioimmunoassays of progesterone, testosterone, estradiol, estriol, estriol-16α-glucuronide, levonorgestrel, norethindrone and medroxyprogesterone acetate. The binding of these iodinated radioligands was compared to that of the corresponding tritiated steroids and their effect on the sensitivity and slope of standard curves was examined. The results demonstrate that much higher antibody dilutions could be used with iodinated than with tritiated radioligands. In general, standard curves obtained with iodinated radioligands were more sensitive than those obtained with tritiated steroids, but standard curves had steeper slopes when tritiated rather than iodinated radioligands were used. The data, summarizing our 5-year experience with steroid-[ 125 I]-iodohistamine derivatives, indicate that these tracers play an important role in radioimmunoassay systems for both natural and synthetic steroids. (author)

  13. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air–Water Interface

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Kinoshita, K.; Needham, D.

    2016-01-01

    at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB...... of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression...

  14. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  15. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Emerging trends in the discovery of natural product antibacterials

    DEFF Research Database (Denmark)

    Bologa, Cristian G; Ursu, Oleg; Oprea, Tudor

    2013-01-01

    This article highlights current trends and advances in exploiting natural sources for the deployment of novel and potent anti-infective countermeasures. The key challenge is to therapeutically target bacterial pathogens that exhibit a variety of puzzling and evolutionarily complex resistance...... mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antibacterial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting bacterial phenotypes....... These efforts have identified a critical mass of natural product antibacterial lead compounds and discovery technologies with high probability of successful implementation against emerging bacterial pathogens....

  17. Design and construction of synthetic microbial consortia in China

    Directory of Open Access Journals (Sweden)

    Ming-Zhu Ding

    2016-12-01

    Full Text Available The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the “973” project-“Design and Construction of Microbial Consortia” was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial consortia and reconstructing microbial consortia to meet industrial demands. In this review, we will introduce this “973” project, including the significance of microbial consortia, the fundamental scientific issues, the recent research progresses, and some case studies about synthetic microbial consortia in the past two and a half years.

  18. Oral sustained release tablets of zidovudine using binary blends of natural and synthetic polymers.

    Science.gov (United States)

    Emeje, Martins; Olaleye, Olajide; Isimi, Christiana; Fortunak, Joseph; Byrn, Stephen; Kunle, Olobayo; Ofoefule, Sabinus

    2010-01-01

    Oral sustained release matrix tablets of zidovudine (ZDV) were prepared using different types, proportions and blends of carbopol 71G (C71) and a plant gum obtained from Abelmoschus esculentus (AEG). The effect of various formulation factors like polymer proportion, polymer type and pH of the dissolution medium on the in vitro release of the drug was studied, using the half change technique, in 900 ml of dissolution medium, at 100 rpm. Release kinetics were analyzed using Zero-order, Higuchi's square-root and Ritger-Peppas' empirical equations. In vitro release performance as revealed by the time taken for 70% of the drug to be released (t70%), showed that the release rate decreased with increase in polymer proportion. Matrix tablets containing 10 and 20% AEG were found to exhibit immediate-release characteristics. Matrix tablets containing 30% AEG showed t70% value of 204 min and extended the release up to 5 h, while matrix tablets containing 30% carbopol showed t70% value of 234 min and extended the release up to 6 h. Three blends of AEG and C71 at the ratio of 1:2, 2:1 and 1:3 showed t70% values of 132, 312 and 102 min respectively and extended the release up to 8 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed Fickian and anomalous release. Drug release from matrix tablets of zidovudine containing blends of AEG and C71 demonstrates the advantage of blending a natural and synthetic polymer over single polymer use.

  19. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  20. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  1. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    Science.gov (United States)

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  4. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    Science.gov (United States)

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  5. Ion and electron beam studies and applications of natural and synthetic diamonds

    International Nuclear Information System (INIS)

    Sellschop, J.P.F.; Connell, S.H.; Sideras-Haddad, E.; Stemmet, M.C.; Naidoo, S.; Bharuth-Ram, K.; Haricharun, H.

    1992-01-01

    'Nuclear' probes are shown to be powerful diagnostic analytical tools for the interrogation of diamond, whether natural or synthetic. The full sweep of such probes ranges from electrons to heavy ions, and spans energies over the keV to GeV range. Neutrons are singularly appropriate for the bulk trace element analysis of diamond, while charged particle (activation) analysis is appropriate for lighter element determination, and for surface and depth profiling specification. Energetic ions are effectively deployed for the study of the amorpisation and extrusion of diamond, and for ion implantation with the view to the production of devices in diamond. Resonant nuclear reactions are used effectively in establishing the 'macroscopic' distribution of dopants, while the used of pulsed ion beams in time dependent perturbed angular distribution studies gives information on 'microscopic' lattice location of impurities. Ion channeling in diamond sets near-theoretical parameterization of Lindhard channeling theory. Electron and positron channeling is interesting in its own right, and in the former case is shown to give rise to channeling radiation for few-MeV electron energies. At GeV electron energies, channeling is important as a powerful, polarized monochromatic photon source. Muons are an elegant tool in diamond studies, and the formation of muonium permits of (radiation damage-free) hydrogen-equivalent studies. Two relatively unused nuclear techniques, Moessbauer spectroscopy and Positron Annihilation, are shown to give unique information on diamond. Finally the use of diamond as a detector of radiation is indicated. (author)

  6. Using Opinions and Knowledge to Identify Natural Groups of Gambling Employees.

    Science.gov (United States)

    Gray, Heather M; Tom, Matthew A; LaPlante, Debi A; Shaffer, Howard J

    2015-12-01

    Gaming industry employees are at higher risk than the general population for health conditions including gambling disorder. Responsible gambling training programs, which train employees about gambling and gambling-related problems, might be a point of intervention. However, such programs tend to use a "one-size-fits-all" approach rather than multiple tiers of instruction. We surveyed employees of one Las Vegas casino (n = 217) and one online gambling operator (n = 178) regarding their gambling-related knowledge and opinions prior to responsible gambling training, to examine the presence of natural knowledge groups among recently hired employees. Using k-means cluster analysis, we observed four natural groups within the Las Vegas casino sample and two natural groups within the online operator sample. We describe these natural groups in terms of opinion/knowledge differences as well as distributions of demographic/occupational characteristics. Gender and language spoken at home were correlates of cluster group membership among the sample of Las Vegas casino employees, but we did not identify demographic or occupational correlates of cluster group membership among the online gambling operator employees. Gambling operators should develop more sophisticated training programs that include instruction that targets different natural knowledge groups.

  7. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging.

    Science.gov (United States)

    Torres-Giner, Sergio; Wilkanowicz, Sabina; Melendez-Rodriguez, Beatriz; Lagaron, Jose M

    2017-06-07

    This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

  8. Effects of a naturally occurring and a synthetic synergist on toxicity of three insecticides and a phytochemical to navel orangeworm (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Niu, Guodong; Pollock, Henry S; Lawrance, Allen; Siegel, Joel P; Berenbaum, May R

    2012-04-01

    The navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive lepidopteran pest of almonds [Prunus dulcis (Mill.) D.A.Webb] and pistachios (Pistacia vera L.) in California and is a serious problem in figs (Ficus carica L.) and walnuts (Juglans spp.). In addition to direct damage, larval feeding leaves nuts vulnerable to infection by Aspergillus spp., fungi that produce toxic aflatoxins. A potentially safe and sustainable approach for managing navel orangeworm in orchards may be to use natural essential oil synergists to interfere with this insect's ability to detoxify insecticides and phytochemicals. We tested the effects of a naturally occurring plant-derived chemical, myristicin, and a synthetic inhibitor of cytochrome P450 monooxygenases (P450s), piperonyl butoxide, on the toxicity of three insecticides (alpha-cypermethrin, tau-fluvalinate, and methoxyfenozide [Intrepid]) and a phytochemical (xanthotoxin) to A. transitella. Piperonyl butoxide significantly synergized alpha-cypermethrin and tau-fluvalinate, whereas myristicin synergized only alpha-cypermethrin. Piperonyl butoxide synergized the toxicity of xanthotoxin as early as 72 h after exposure, whereas myristicin synergized xanthotoxin after 120 h. In view of these findings and the limited availability of environmentally safe synthetic insecticides for sustainable management, particularly in organic orchards, myristicin is a potential field treatment in combination with insecticides to reduce both navel orangeworm survival and aflatoxin contamination of nuts. In addition, this study demonstrates that in A. transitella the insect growth regulator methoxyfenozide is not detoxified by P450s.

  9. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe

    2015-01-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products...

  10. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  12. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    Science.gov (United States)

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.

  13. Opuntia ficus indica (L.) Fruit Extract as Natural Indicator in Acid-Base Titration

    OpenAIRE

    Manoj A. Suva

    2014-01-01

    In routine experiments synthetic indicators are the choice of acid base titrations. But there are some limitations like environmental pollution, availability and higher cost which leads to search for natural compounds as an acid base indicator was started. The present work highlights theexploit of the methanolic and aqueous extract of the fruit of Opuntia ficus indica plants as a natural acid base indicator in acid base titrations. Opuntia ficus indica plant was identified and fruits were was...

  14. Combined Effect of Synthetic and Natural Polymers in Preparation of Cetirizine Hydrochloride Oral Disintegrating Tablets: Optimization by Central Composite Design.

    Science.gov (United States)

    Patro, Chandra Sekhar; Sahu, Prafulla Kumar

    2017-01-01

    Our aim was to employ experimental design to formulate and optimize cetirizine hydrochloride oral disintegrating tablets (ODTs) by direct compression technique, using the mutual effect of synthetic croscarmellose sodium (CCS) and natural Hibiscus rosa-sinensis mucilage (HRM) as disintegrants in the formulation. Central composite design (CCD) was applied to optimize the influence of three levels each of CCS ( X 1 ) and HRM ( X 2 ) concentrations (independent variables) for investigated responses: disintegration time (DT) ( Y 1 ), % friability ( F ) ( Y 2 ), and % cumulative drug release (DR) ( Y 3 ) (dependent variables). This face-centered second-order model's reliability was verified by the probability and adequate precision values from the analysis of variance, while the significant factor effects influencing the studied responses were identified using multiple linear regression analysis. Perturbation and response surface plots were interpreted to evaluate the responses' sensitivity towards the variables. During optimization, the concentrations of the processed factors were evaluated, and the resulting values were in good agreement with predicted estimates endorsing the validity. Spectral study by Fourier Transform Infrared Spectroscopy (FTIR) and thermograms from Differential Scanning Calorimetry (DSC) demonstrated the drug-excipients compatibility of the optimized formulation. The optimized formulation has concentrations of 9.05 mg and 16.04 mg of CCS and HRM each, respectively, and the model predicted DT of 13.271 sec, F of 0.498, and DR of 99.768%.

  15. Spatial Computing in Synthetic Bioware: Creating Bacterial Architectures

    OpenAIRE

    Pascalie , Jonathan; Potier , Martin; Kowaliw , Taras; Giavitto , Jean-Louis; Michel , Olivier; Spicher , Antoine; Doursat , René

    2015-01-01

    International audience; Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care, nanotechnology and energy. Most works are currently focused on the individual bacterium as a chemical reactor. Our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering, i.e. the redesign of natural mor...

  16. Beyond patchwork precaution in the dual-use governance of synthetic biology.

    Science.gov (United States)

    Kelle, Alexander

    2013-09-01

    The emergence of synthetic biology holds the potential of a major breakthrough in the life sciences by transforming biology into a predictive science. The dual-use characteristics of similar breakthroughs during the twentieth century have led to the application of benignly intended research in e.g. virology, bacteriology and aerobiology in offensive biological weapons programmes. Against this background the article raises the question whether the precautionary governance of synthetic biology can aid in preventing this techno-science witnessing the same fate? In order to address this question, this paper proceeds in four steps: it firstly introduces the emerging techno-science of synthetic biology and presents some of its potential beneficial applications. It secondly analyses contributions to the bioethical discourse on synthetic biology as well as precautionary reasoning and its application to life science research in general and synthetic biology more specifically. The paper then identifies manifestations of a moderate precautionary principle in the emerging synthetic biology dual-use governance discourse. Using a dual-use governance matrix as heuristic device to analyse some of the proposed measures, it concludes that the identified measures can best be described as "patchwork precaution" and that a more systematic approach to construct a web of dual-use precaution for synthetic biology is needed in order to guard more effectively against the field's future misuse for harmful applications.

  17. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.

    Science.gov (United States)

    Guan, Xuefei; He, Jingjing; Rasselkorde, El Mahjoub

    2015-02-01

    A direct time-domain reconstruction and sizing method of synthetic aperture focusing technique (SAFT) is developed to improve the spatial resolution and sizing accuracy for phased-array ultrasonic inspections. The basic idea of the reconstruction algorithm is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The algorithm involves data mapping and in-phase summation according to time-of-flight (TOF). Data mapping refers to the process of placing each of the sampling points to a two-/three-dimensional grid that represents the geometry model of the object being inspected. The value for each of the cells of the grid is a summation of all sampling points mapped into the cell. A sizing method based on the concept of 6 dB-drop is proposed to characterize the flaw boundary. The extents, orientation and the shape of the flaw can then be inferred to provide more information for life assessment calculations. Lab experiments are performed using a 10 MHz phased-array ultrasonic transducer to collect data from a cylinder material block with closely spaced artificial flaws and from a material block with a natural flaw. The developed method is used to process the experimental data to characterize the flaws. Using the developed method, the improvement of spatial resolution is observed. Results indicate that four closely spaced 0.794 mm-diameter flat-bottomed holes are clearly identified, and the quantification of size and orientation of the natural flaw is very close to the actual measurement made from digital microscopy after cutting the testing piece apart. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    Science.gov (United States)

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  2. Natural Marine and Synthetic Xenobiotics Get on Nematode's Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans.

    Science.gov (United States)

    Lieke, Thora; Steinberg, Christian E W; Ju, Jingjuan; Saul, Nadine

    2015-05-06

    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms.

  3. METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY

    Directory of Open Access Journals (Sweden)

    Paula Jouhten

    2012-10-01

    Full Text Available Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.

  4. An Alternative to Synthetic Acid Base Indicator-Tagetes Erecta Linn

    OpenAIRE

    *A. Elumalai; M. C. Eswariah; M. K. Chinna; B. A. Kumar

    2012-01-01

    The present work highlights the use of the methanolic extract of the flowers of Tagetes erecta as an acid-base indicator in acid-base titrations. This natural indicator is easy to extract as well as easily available. Indicators used in titration show well marked changes of colour in certain intervals of pH. Most of these indicators are organic dyes and are of synthetic origin. Today synthetic indicators are the choice of acid-base titrations. But due to environmental pollution, availability a...

  5. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  6. Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Remo; Dones, Roberto [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2007-06-15

    A promising option to substitute fossil energy carriers by renewables is the production of synthetic natural gas (SNG) from wood, as this results in a flexible energy carrier usable via existing infrastructure in gas boilers or passenger cars. The comprehensive life cycle-based ecological impact of SNG is investigated and compared with standard fuels delivering the same service (natural gas, fuel oil, petrol/diesel, and wood chips). Life cycle impact assessment methodologies and external costs from airborne emissions provide measures of overall damage. The results indicate that the SNG system has the best ecological performance if the consumption of fossil resources is strongly weighted. Otherwise natural gas performs best, as its supply chain is energy-efficient and its use produces relatively low emissions. Wood systems are by far the best in terms of greenhouse gas emissions (GHG), where SNG emits about twice as much as the wood chips system. The main negative aspects of the SNG system are NO{sub x} and particulate emissions and the relatively low total energy conversion efficiency resulting from the additional processing to transform wood to gas. Direct wood combustion has a better ecological score when highly efficient particulate filters are installed. SNG performs better than oil derivatives with all the evaluation methods used. External costs for SNG are the lowest as long as GHG are valued high. SNG should preferably be used in cars, as the reduction of overall ecological impacts and external costs when substituting oil-based fuels is larger for current cars than for heating systems. (author)

  7. A Natural Love of Natural Products

    OpenAIRE

    Kingston, David G. I.

    2008-01-01

    Recent research on the chemistry of natural products from the author?s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies wit...

  8. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brenna, Elisabetta [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: elisabetta.brenna@polimi.it; Fronza, Giovanni [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Instituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: giovanni.fronza@polimi.it; Fuganti, Claudio [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)

    2007-10-10

    Samples of fluoxetine of different origin were submitted to natural abundance {sup 2}H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting.

  9. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    International Nuclear Information System (INIS)

    Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio

    2007-01-01

    Samples of fluoxetine of different origin were submitted to natural abundance 2 H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting

  10. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans.

    Directory of Open Access Journals (Sweden)

    Christine A Bahlai

    Full Text Available BACKGROUND: Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates. CONCLUSIONS/SIGNIFICANCE: These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment, because generalizations based on chemical origin do not hold true in all cases.

  12. Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development

    Science.gov (United States)

    Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.

    2016-12-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.

  13. Dose response on the 110 °C thermoluminescence peak of un-heated, synthetic Merck quartz

    Energy Technology Data Exchange (ETDEWEB)

    Kaya Keleş, Şule, E-mail: sule.kaya@ankara.edu.tr; Meriç, Niyazi; Polymeris, George S.

    2016-07-15

    Studies on 110 °C TL peak have been carried out using natural quartz from different origins and synthetic quartz produced by different suppliers. The interest in quartz is due to its usage in dating and retrospective dosimetry as a main material; both synthetic and natural types of quartz yield the 110 °C TL peak in their glow curve. In most studies to understand the physical mechanism behind the TL system, synthetic quartz samples are used and there are many investigations about dose response, in both low and high radiation dose region. In these studies generally synthetic quartz samples produced by Sawyer Research Products are used and the studies showed that both heated and un-heated synthetic quartz samples have intense supra-linear responses. Supra-linearity was enhanced by applying a pre-irradiation while several models have been developed towards an explanation to these supra-linearity effects. In this study commercially available synthetic Merck quartz was used. Different combinations of optical filters were used to obtain dose response curves upto 266 Gy and the effect of pre-dose to these dose response curves was studied. Un-pre-dosed Merck quartz samples dose supra-linearity index is below 1 independently on the optical filters; so Merck quartz showed linear or sub-linear dose response.

  14. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    Science.gov (United States)

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Natural gums of plant origin as edible coatings for food industry applications.

    Science.gov (United States)

    Saha, Anuradha; Tyagi, Shvetambri; Gupta, Rajinder K; Tyagi, Yogesh K

    2017-12-01

    Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market. In this review, the recent developments in the use of natural gums and their derivatives as edible coatings have been explored and discussed.

  16. The formation of trihalomethanes in the potabilization of natural and synthetic waters; Formacion de trihalometanos en la potabilizacion de aguas naturales y sinteticas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F.J.; Perez Serrano, A.; Orozco Barrenetxea, C.; Sanllorente, M.C.; Garcia Valverde, M. [Universidad de Burgos. Burgos (Spain)

    1998-12-01

    One of the main aspects in the control drinking water treatment is the formation of disinfection by-pro-ducts (DBPs), some of the most important are the trihalomethanes (THMs). In order to predict and control the THMs formation is necessary to know the influence of the different parameters involved in their formation and the influence of the different techniques used in drinking water treatment. The objective of this study is to investigate these effects on natural waters (Uzquiza reservoir-Burgos) and synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 21 refs.

  17. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  18. Experience with synthetic fluorinated fluid lubricants

    Science.gov (United States)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  19. The adjuvant potential of synthetic alkylglycerols.

    Science.gov (United States)

    Acevedo, Reinaldo; Gil, Danay; del Campo, Judith; Bracho, Gustavo; Valdés, Yolanda; Pérez, Oliver

    2006-04-12

    Alkylglycerols (AGs) have shown immune stimulant and adjuvant activity in many studies, but natural sources are not so accessible and their extraction from them is very complicated. Therefore, a group of chemists at IFAL have synthesized AG analogs. The aim of this work was to evaluate the adjuvant potential of different synthetic AGs. A mix of ovoalbumin (Ova) and AGs increase anti-Ova IgG antibodies production in sera of immunized mice. The predominant subclass was IgG1 although higher levels of IgG2a were observed as the carbon chain length of AGs increased. AGs also induced the production of IL-12 and nitric oxide (NO) in the U937 human histiocyte and J774 mouse macrophage cell lines, respectively. These results indicate that synthetic AGs are effective adjuvants for the standardized antigen, Ova.

  20. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks.

    Science.gov (United States)

    Augustine, Robin

    2018-05-12

    Significant progress has been made over the past few decades in the development of in vitro-engineered substitutes that mimic human skin, either as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. Tissue engineering has been developing as a novel strategy by employing the recent advances in various fields such as polymer engineering, bioengineering, stem cell research and nanomedicine. Recently, an advancement of 3D printing technology referred as bioprinting was exploited to make cell loaded scaffolds to produce constructs which are more matching with the native tissue. Bioprinting facilitates the simultaneous and highly specific deposition of multiple types of skin cells and biomaterials, a process that is lacking in conventional skin tissue-engineering approaches. Bioprinted skin substitutes or equivalents containing dermal and epidermal components offer a promising approach in skin bioengineering. Various materials including synthetic and natural biopolymers and cells with or without signalling molecules like growth factors are being utilized to produce functional skin constructs. This technology emerging as a novel strategy to overcome the current bottle-necks in skin tissue engineering such as poor vascularization, absence of hair follicles and sweat glands in the construct.

  1. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    Science.gov (United States)

    1985-02-01

    TERMS (Continue on retuerse if necessary and identify by block num ber) FIELD YGROUP SUB. GR. Adaptive control, aritificial intelligence , synthetic aetr1...application of Artificial Intelligence methods to Synthetic Aperture Radars (SARs) is investigated. It was shown that the neuron-like Adaptive Learning...wavelength Al SE!RI M RADAR DIVISION REFERENCES 1. Barto, A.G. and R.S. Sutton, Goal Seeking Components for Adaptive Intelligence : An Initial Assessment

  2. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  3. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships.

    Science.gov (United States)

    Morais, Thiago R; da Costa-Silva, Thais A; Tempone, Andre G; Borborema, Samanta Etel T; Scotti, Marcus T; de Sousa, Raquel Maria F; Araujo, Ana Carolina C; de Oliveira, Alberto; de Morais, Sérgio Antônio L; Sartorelli, Patricia; Lago, João Henrique G

    2014-05-05

    Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees.

  4. Antiparasitic Activity of Natural and Semi-Synthetic Tirucallane Triterpenoids from Schinus terebinthifolius (Anacardiaceae: Structure/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Thiago R. Morais

    2014-05-01

    Full Text Available Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae, and nine semi-synthetic derivatives were investigated against Leishmania (L. infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR data as well as electrospray ionization mass spectrometry (ESI-MS. Additionally, structure-activity relationships were performed using Decision Trees.

  5. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  6. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    International Nuclear Information System (INIS)

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  7. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    CERN Document Server

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  9. Combined Effect of Synthetic and Natural Polymers in Preparation of Cetirizine Hydrochloride Oral Disintegrating Tablets: Optimization by Central Composite Design

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Patro

    2017-01-01

    Full Text Available Our aim was to employ experimental design to formulate and optimize cetirizine hydrochloride oral disintegrating tablets (ODTs by direct compression technique, using the mutual effect of synthetic croscarmellose sodium (CCS and natural Hibiscus rosa-sinensis mucilage (HRM as disintegrants in the formulation. Central composite design (CCD was applied to optimize the influence of three levels each of CCS (X1 and HRM (X2 concentrations (independent variables for investigated responses: disintegration time (DT (Y1, % friability (F (Y2, and % cumulative drug release (DR (Y3 (dependent variables. This face-centered second-order model’s reliability was verified by the probability and adequate precision values from the analysis of variance, while the significant factor effects influencing the studied responses were identified using multiple linear regression analysis. Perturbation and response surface plots were interpreted to evaluate the responses’ sensitivity towards the variables. During optimization, the concentrations of the processed factors were evaluated, and the resulting values were in good agreement with predicted estimates endorsing the validity. Spectral study by Fourier Transform Infrared Spectroscopy (FTIR and thermograms from Differential Scanning Calorimetry (DSC demonstrated the drug-excipients compatibility of the optimized formulation. The optimized formulation has concentrations of 9.05 mg and 16.04 mg of CCS and HRM each, respectively, and the model predicted DT of 13.271 sec, F of 0.498, and DR of 99.768%.

  10. High throughput Screening to Identify Natural Human Monoamine Oxidase B Inhibitors

    Science.gov (United States)

    Mazzio, E; Deiab, S; Park, K; Soliman, KFA

    2012-01-01

    Age-related increase in monoamine oxidase B (MAO-B) may contribute to CNS neurodegenerative diseases. Moreover, MAO-B inhibitors are used in the treatment of idiopathic Parkinson disease as preliminary monotherapy or adjunct therapy with L-dopa. To date, meager natural sources of MAO-B inhibitors have been identified, and the relative strength, potency and rank of many plants relative to standard drugs such as Selegiline (L-deprenyl, Eldepryl) are not known. In this work, we developed and utilized a high throughput enzyme microarray format to screen and evaluate 905 natural product extracts (0.025–.7 mg/ml) to inhibit human MAO-B derived from BTI-TN-5B1-4 cells infected with recombinant baculovirus. The protein sequence of purified enzyme was confirmed using 1D gel electrophoresis-matrix assisted laser desorption ionization-time-of-flight-tandem mass spectroscopy, and enzyme activity was confirmed by [1] substrate conversion (3-mM benzylamine) to H202 and [2] benzaldehyde. Of the 905 natural extracts tested, the lowest IC50s [Comfrey, Bringraj, Skullcap, Kava-kava, Wild Indigo, Gentian and Green Tea. In conclusion, the data reflect relative potency information by rank of commonly used herbs and plants that contain human MAO-B inhibitory properties in their natural form. PMID:22887993

  11. Comprehensive multipathway risk assessment of chemicals associated with recycled ("crumb") rubber in synthetic turf fields.

    Science.gov (United States)

    Peterson, Michael K; Lemay, Julie C; Pacheco Shubin, Sara; Prueitt, Robyn L

    2018-01-01

    Thousands of synthetic turf fields in the US are regularly used by millions of individuals (particularly children and adolescents). Although many safety assessments have concluded that there are low or negligible risks related to exposure to chemicals found in the recycled rubber used to make these fields, concerns remain about the safety of this product. Existing studies of recycled rubber's potential health risks have limitations such as small sample sizes and limited evaluation of relevant exposure pathways and scenarios. Conduct a comprehensive multipathway human health risk assessment (HHRA) of exposure to chemicals found in recycled rubber. All available North American data on the chemical composition of recycled rubber, as well as air sampling data collected on or near synthetic turf fields, were identified via a literature search. Ingestion, dermal contact, and inhalation pathways were evaluated according to US Environmental Protection Agency (US EPA) guidance, and exposure scenarios for adults, adolescents, and children were considered. Estimated non-cancer hazards and cancer risks for all the evaluated scenarios were within US EPA guidelines. In addition, cancer risk levels for users of synthetic turf field were comparable to or lower than those associated with natural soil fields. This HHRA's results add to the growing body of literature that suggests recycled rubber infill in synthetic turf poses negligible risks to human health. This comprehensive assessment provides data that allow stakeholders to make informed decisions about installing and using these fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Natural gas and renewable methane for powertrains future strategies for a climate-neutral mobility

    CERN Document Server

    2016-01-01

    This book focuses on natural gas and synthetic methane as contemporary and future energy sources. Following a historical overview, physical and chemical properties, occurrence, extraction, transportation and storage of natural gas are discussed. Sustainable production of natural gas and methane as well as production and storage of synthetic methane are scrutinized next. A substantial part of the book addresses construction of vehicles for natural and synthetic methane as well as large engines for industrial and maritime use. The last chapters present some perspectives on further uses of renewable liquid fuels as well as natural gas for industrial engines and gas power plants.

  13. Synthetic Minority Oversampling Technique and Fractal Dimension for Identifying Multiple Sclerosis

    Science.gov (United States)

    Zhang, Yu-Dong; Zhang, Yin; Phillips, Preetha; Dong, Zhengchao; Wang, Shuihua

    Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski-Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.

  14. ROLE OF NATURAL POLYMERS IN SUSTAINED RELEASE DRUG DELIVERY SYSTEM: APPLICATIONS AND RECENT APPROACHES

    OpenAIRE

    Prakash Pawan; Porwal Mayur; Saxena Ashwin

    2011-01-01

    In recent years there have been important developments in different dosage forms for existing and newly designed drugs and natural products, and semi-synthetic as well as synthetic excipients often need to be used for a variety of purposes. Gums and mucilages are widely used natural materials for conventional and novel dosage forms. These natural materials have advantages over synthetic ones since they are chemically inert, nontoxic, less expensive, biodegradable and widely available. They c...

  15. Synthetic Biology: Knowledge Accessed by Everyone (Open Sources)

    Science.gov (United States)

    Sánchez Reyes, Patricia Margarita

    2016-01-01

    Using the principles of biology, along with engineering and with the help of computer, scientists manage to copy. DNA sequences from nature and use them to create new organisms. DNA is created through engineering and computer science managing to create life inside a laboratory. We cannot dismiss the role that synthetic biology could lead in…

  16. Natural Marine and Synthetic Xenobiotics Get on Nematode’s Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Thora Lieke

    2015-05-01

    Full Text Available Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans. This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms.

  17. Learning from biology: synthetic lipoproteins for drug delivery.

    Science.gov (United States)

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2015-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. © 2014 Wiley Periodicals, Inc.

  18. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd

    2016-04-01

    Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: the Role of Defects

    Directory of Open Access Journals (Sweden)

    Petra Agota Szilagyi

    2016-03-01

    Full Text Available Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. Its vehicular application however will only be widespread if safe and high-capacity methane stores are developed. In this work report an over 33% increase in methane uptake on a post-synthetically modified metal-organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  20. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  1. Carbon monosulfide: a useful synthetic intermediate

    International Nuclear Information System (INIS)

    Kramer, M.P.

    1986-01-01

    The physical properties of carbon monosulfide, CS, are well documented. The molecule has been observed in interstellar space and is found to be a common intermediate in the thermal decomposition of carbon disulfide and other sulfur compounds. Interestingly enough, the chemistry of carbon monosulfide, a molecule that is isovalent with carbon monoxide, has received little attention. The explosive nature of the carbon monosulfide monomer, which hindered previous workers, was overcome by the development of special handling techniques. The ability to produce carbon monosulfide in gram quantities had lead to synthesis of novel compounds and to a more direct synthetic route for certain known compounds. Specifically, the following general reaction demonstrates the capabilities of carbon monosulfide on the synthetic scale. CS + RXY → RXC(S)Y;(X = N,S), (Y = H, Cl). Note: The initial product formed in the reaction can be an unstable intermediate

  2. ROLE OF NATURAL POLYMER IN SUSTAINED AND CONTROLLED RELEASE

    OpenAIRE

    Vaishali S. Kadam, G. R. Shendarkar

    2017-01-01

    Now a day there has been an important development in different dosage forms for existing and newly designed drugs and natural products, and synthetic as well as semi-synthetic excipients always need to be used for a variety of purposes. Gums and mucilages are widely used as natural materials for conventional and novel dosage forms. With the increasing interest in polymers of natural origin, the pharmaceutical world has compliance to use most of them in their formulations. Moreover, the tremen...

  3. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  4. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds.

    Science.gov (United States)

    La Clair, James J

    2010-07-01

    In our understanding of matter, natural products deliver plots that would stun even the best productions of the legendary filmmaker, Sergio Leone. While every decade heralds a new genre of film (as well as avenues of small-molecule discovery), natural products and their "untamed prehistoric" plots continue to dazzle the fields of biotechnology, drug discovery, fragrances, food additives and agrochemistry. This review provides an abridged synopsis of the modes of natural product action discovered within the last decade and the tools and methods used in their discovery. Their stories are united in a common theme that unveils one of the more vital aspects of chemical biological research:understanding the global activity of Nature's arsenal of secondary metabolites.

  5. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Synthetic biology ethics: a deontological assessment.

    Science.gov (United States)

    Heavey, Patrick

    2013-10-01

    In this article I discuss the ethics of synthetic biology from a broadly deontological perspective, evaluating its morality in terms of the integrity of nature, the dignity of life and the relationship between God and his creation. Most ethical analyses to date have been largely consequentialist in nature; they reveal a dual use dilemma, showing that synbio has potential for great good and great evil, possibly more so than any step humanity has taken before. A deontological analysis may help to resolve this dilemma, by evaluating whether synbio is right or wrong in itself. I also assess whether deontology alone is a sufficient methodological paradigm for the proper evaluation of synbio ethics. © 2013 John Wiley & Sons Ltd.

  7. Investigation of synthetic spider silk crystallinity and alignment via electrothermal, pyroelectric, literature XRD, and tensile techniques.

    Science.gov (United States)

    Munro, Troy; Putzeys, Tristan; Copeland, Cameron G; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael

    2017-04-01

    The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production.

  8. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  9. Synthetic pulse radar including a microprocessor based controller

    International Nuclear Information System (INIS)

    Fowler, J.C.; Rubin, L.A.; Still, W.L.

    1980-01-01

    This invention relates to pulse radar detection of targets in extended media, including natural phenomena such as oil, coal and ore deposits within the earth. In particular, this invention relates to a pulse radar system employing a synthetic pulse formed from a fourier spectrum of frequencies generated and detected by a digitally controlled transmitter and receiver circuits

  10. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2015-01-01

    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a

  11. Comparison of the Performance of Poly Aluminum Chloride with Natural Co-coagulants in Removal of Turbidity from synthetic aqueous solution

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-06-01

    Full Text Available Background: Contaminated water, naturally or by human, should be processed to become drinking water. Coagulation is a process that fine unsettling particles which called colloids and are important factors in the turbidity occurrence, join together and settle. The purpose of this study was to evaluate and comparison of the performance of poly aluminum chloride accompany with corn starch and okra, as a co-coagulant agent, to remove turbidity from water. Methods: This research was descriptive-functional study. In this study, the effect of two natural co-coagulant agents, corn starch and okra, with poly aluminum chloride were evaluated and R and SAS software were used in order to experimental design and data analysis. Also, after the analysis of variance, LSD test was used to compare treatment averages. Results: In the initial turbidity of 250 NTU, poly aluminum chloride and corn starch (5 ppm and 0.7 ppm, respectively, the highest percentage of turbidity removal was observed which could reduce the turbidity up to 98.48% and reached at 3.73 NTU. Moreover, in the initial turbidity of 500 NTU, maximum turbidity reduction related to poly aluminum chloride and okra (5 ppm and 0.7 ppm, respectively which reduced the turbidity up to 98.38% and reached at 8.1 NTU. Conclusions: As an economic aspect, replacement of natural polymers with synthetic polymers which have higher costs is economic and also higher turbidity reduction may be observed in compare with using chemical coagulants, solely. In addition, chemical coagulants consumption reduces, however more researches must be conducted on residual natural co-coagulants and interactions between chemical and natural and also their health effects on consumers.

  12. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    Science.gov (United States)

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  13. Biologic and synthetic skin substitutes: An overview.

    Science.gov (United States)

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  14. Biologic and synthetic skin substitutes: An overview

    Directory of Open Access Journals (Sweden)

    Halim Ahmad

    2010-10-01

    Full Text Available The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  15. Building synthetic sterols computationally – unlocking the secrets of evolution?

    Directory of Open Access Journals (Sweden)

    Tomasz eRog

    2015-08-01

    Full Text Available Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include e.g. its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, and its fluorescent analogs in studies of cholesterol transport in cells and tissues. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols nonexistent in nature can be used to elucidate the roles of cholesterol's structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.

  16. The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells.

    Science.gov (United States)

    Lorig-Roach, Nicholas; Hamkins-Indik, Frances; Johnson, Tyler A; Tenney, Karen; Valeriote, Frederick A; Crews, Phillip

    2018-01-11

    Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC 50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin ( 1 ) and the new derivative, 6-Br-8-keto-conicamin A ( 2 ), were identified and 2 (IC 50 1.5 μM for the natural product vs 4.1 μM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.

  17. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    Science.gov (United States)

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  18. Annotating novel genes by integrating synthetic lethals and genomic information

    Directory of Open Access Journals (Sweden)

    Faty Mahamadou

    2008-01-01

    Full Text Available Abstract Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process.

  19. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  20. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J.

    2013-01-01

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  1. A Perfect Match Genomic Landscape Provides a Unified Framework for the Precise Detection of Variation in Natural and Synthetic Haploid Genomes.

    Science.gov (United States)

    Palacios-Flores, Kim; García-Sotelo, Jair; Castillo, Alejandra; Uribe, Carina; Aguilar, Luis; Morales, Lucía; Gómez-Romero, Laura; Reyes, José; Garciarubio, Alejandro; Boege, Margareta; Dávila, Guillermo

    2018-04-01

    We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository. Copyright © 2018 by the Genetics Society of America.

  2. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides.

    Directory of Open Access Journals (Sweden)

    Prisila Mkenda

    Full Text Available Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders. Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin and T. diversifolia (the sesquiterpene lactone tagitinin A. Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.

  3. A study of positron properties in quartz crystals and synthetic silica glass

    International Nuclear Information System (INIS)

    Anwand, W.; Brauer, G.; Hesegawa, M.; Dersch, O.; Rauch, F.

    2001-01-01

    The monoenergetic positron beamline 'SPONSOR' at Rossendorf has been used to investigate the positron behaviour in a naturally grown Brasilian quartz, two synthetic quartz crystals of different origin, and synthetic silica glass. The measurements allow us to obtain the positron diffusion length of free positrons and Bloch para-positronium, if formed, in these materials. In addition, hydrothermal treatment of a synthetic quartz has been used to introduce hydrogen into the crystal up to a certain depth. The presence of hydrogen is found to influence the formation of para-positronium. The depth distribution of hydrogen has been measured independently by the nuclear reaction analysis, and will be discussed in comparison with the results deduced from the positron studies. (author)

  4. Emerging Insights into Directed Assembly: Taking Examples from Nature to Design Synthetic Processes

    Science.gov (United States)

    de Pablo, Juan J.

    There is considerable interest in controlling the assembly of polymeric material in order to create highly ordered materials for applications. Such materials are often trapped in metastable, non-equilibrium states, and the processes through which they assemble become an important aspect of the materials design strategy. An example is provided by di-block copolymer directed self-assembly, where a decade of work has shown that, through careful choice of process variables, it is possible to create ordered structures whose degree of perfection meets the constraints of commercial semiconductor manufacturing. As impactful as that work has been, it has focused on relatively simple materials neutral polymers, consisting of two or at most three blocks. Furthermore, the samples that have been produced have been limited to relatively thin films, and the assembly has been carried out on ideal, two-dimensional substrates. The question that arises now is whether one can translate those achievements to polymeric materials having a richer sequence, to monomers that include charges, to three-dimensional substrates, or to active systems that are in a permanent non-equilibrium state. Building on discoveries from the biophysics literature, this presentation will review recent work from our group and others that explains how nature has evolved to direct the assembly of nucleic acids into intricate, fully three-dimensional macroscopic functional materials that are not only active, but also responsive to external cues. We will discuss how principles from polymer physics serve to explain those assemblies, and how one might design a new generation of synthetic systems that incorporate some of those principles.

  5. Synthetic biology: a challenge to mechanical explanations in biology?

    Science.gov (United States)

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  6. Semi-synthetic preparation of the rare, cytotoxic, deep-sea sourced sponge metabolites discorhabdins P and U.

    Science.gov (United States)

    Grkovic, Tanja; Kaur, Balwinder; Webb, Victoria L; Copp, Brent R

    2006-04-01

    Semi-synthetic routes to the enzyme inhibitory and potently anti-proliferative marine natural products discorhabdins P and U were developed by one-step methylation reactions of discorhabdins C and B, respectively. Two novel semi-synthetic derivatives of discorhabdin U were also prepared, one of which (6) exhibited significant anti-proliferative activity.

  7. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    Science.gov (United States)

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-21

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.

  8. Interactive learning and action: realizing the promise of synthetic biology for global health

    NARCIS (Netherlands)

    Betten, A.W.; Roelofsen, A.; Broerse, J.E.W.

    2013-01-01

    The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international

  9. Surface and Bulk Modification of Synthetic Textiles to Improve Dyeability

    NARCIS (Netherlands)

    Agrawal, P. (Pramod); Parvinzadeh Gashti, M.; Willoughby, J.

    2011-01-01

    Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are

  10. Effects of synthetic and naturally occurring flavonoids on mitogen-induced proliferation of human peripheral-blood lymphocytes

    International Nuclear Information System (INIS)

    Hirano, Toshihiko; Oka, Kitaro; Kawashima, Etsuko; Akiba, Mitsuo

    1989-01-01

    Examination was made of the effects of 17 synthetic and naturally occurring flavonoids on human lymphocyte proliferation in the presence of concanavalin A as a mitogen. Twelve of the flavonoids examined were mono-hydroxy of methoxy derivatives. The mitogen-induced response of lymphocytes was evaluated from the extent of the incorporation of [ 3 H]thymidine into cells in vitro. All the compounds showed inhibitory effects; 4.5-77.7% of [ 3 H] thymidine incorporation was blocked by an 1.0 μg/ml concentration. The viability of lymphocytes before and after treatment, as assessed by a dye exclusion test, indicated no change, and thus the flavonoids may inhibit DNA synthesis. The flavonoids possessing 5-hydroxyl, 5-methoxyl and 6-methoxyl groups, and those with cyclohexyl instead of phenyl substituent (i.e. 2-cyclohexyl-benzopyran-4-one), showed the greatest inhibition. The inhibitory effect of any one of them was less than one half that of prednisolone, but essentially the same or somewhat exceeding that of bredinine of azathioprine. It would thus appear that the well-known anti-inflammatory effects of flavonoids may possibly arise in part from the inhibition of the proliferative response of lymphocytes

  11. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Science.gov (United States)

    2010-04-01

    ... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  12. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts.

    Science.gov (United States)

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement.

  13. Clinical validation of synthetic brain MRI in children: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-01-15

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  14. Clinical validation of synthetic brain MRI in children: initial experience

    International Nuclear Information System (INIS)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D.

    2017-01-01

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  15. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    Science.gov (United States)

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  16. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Xie

    Full Text Available Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53- human cancer cells. We find that compared to p53-competent (p53+ human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.

  17. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  18. Natural experimentation is a challenging method for identifying headache triggers.

    Science.gov (United States)

    Houle, Timothy T; Turner, Dana P

    2013-04-01

    In this study, we set out to determine whether individual headache sufferers can learn about the potency of their headache triggers (causes) using only natural experimentation. Headache patients naturally use the covariation of the presence-absence of triggers with headache attacks to assess the potency of triggers. The validity of this natural experimentation has never been investigated. A companion study has proposed 3 assumptions that are important for assigning causal status to triggers. This manuscript examines one of these assumptions, constancy in trigger presentation, using real-world conditions. The similarity of day-to-day weather conditions over 4 years, as well as the similarity of ovarian hormones and perceived stress over a median of 89 days in 9 regularly cycling headache sufferers, was examined using several available time series. An arbitrary threshold of 90% similarity using Gower's index identified similar days for comparison. The day-to-day variability in just these 3 headache triggers is substantial enough that finding 2 naturally similar days for which to contrast the effect of a fourth trigger (eg, drinking wine vs not drinking wine) will only infrequently occur. Fluctuations in weather patterns resulted in a median of 2.3 days each year that were similar (range 0-27.4). Considering fluctuations in stress patterns and ovarian hormones, only 1.5 days/month (95% confidence interval 1.2-2.9) and 2.0 days/month (95% confidence interval 1.9-2.2), respectively, met our threshold for similarity. Although assessing the personal causes of headache is an age-old endeavor, the great many candidate triggers exhibit variability that may prevent sound conclusions without assistance from formal experimentation or statistical balancing. © 2013 American Headache Society.

  19. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  20. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  1. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins

    Science.gov (United States)

    Pikul, J. H.; Li, S.; Bai, H.; Hanlon, R. T.; Cohen, I.; Shepherd, R. F.

    2017-10-01

    Technologies that use stretchable materials are increasingly important, yet we are unable to control how they stretch with much more sophistication than inflating balloons. Nature, however, demonstrates remarkable control of stretchable surfaces; for example, cephalopods can project hierarchical structures from their skin in milliseconds for a wide range of textural camouflage. Inspired by cephalopod muscular morphology, we developed synthetic tissue groupings that allowed programmable transformation of two-dimensional (2D) stretchable surfaces into target 3D shapes. The synthetic tissue groupings consisted of elastomeric membranes embedded with inextensible textile mesh that inflated to within 10% of their target shapes by using a simple fabrication method and modeling approach. These stretchable surfaces transform from flat sheets to 3D textures that imitate natural stone and plant shapes and camouflage into their background environments.

  2. Cell-free synthetic biology: thinking outside the cell.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Playing God and the intrinsic value of life: moral problems for synthetic biology?

    Science.gov (United States)

    Link, Hans-Jürgen

    2013-06-01

    Most of the reports on synthetic biology include not only familiar topics like biosafety and biosecurity but also a chapter on 'ethical concerns'; a variety of diffuse topics that are interrelated in some way or another. This article deals with these 'ethical concerns'. In particular it addresses issues such as the intrinsic value of life and how to deal with 'artificial life', and the fear that synthetic biologists are tampering with nature or playing God. Its aim is to analyse what exactly is the nature of the concerns and what rationale may lie behind them. The analysis concludes that the above-mentioned worries do not give genuine cause for serious concern. In the best possible way they are interpreted as slippery slope arguments, yet arguments of this type need to be handled with care. It is argued that although we are urged to be especially vigilant we do not have sufficiently cogent reasons to assume that synthetic biology will cause such fundamental hazards as to warrant restricting or refraining from research in this field.

  4. Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil.

    Directory of Open Access Journals (Sweden)

    Angélica H Klippel

    Full Text Available Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus, an opossum (Didelphis aurita and a frog (Trachycephalus mesophaeus species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios.

  5. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  6. Data-driven approach for creating synthetic electronic medical records

    Directory of Open Access Journals (Sweden)

    Moniz Linda

    2010-10-01

    Full Text Available Abstract Background New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. Methods This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia and for background records. The method developed has three major steps: 1 synthetic patient identity and basic information generation; 2 identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3 adaptation of these care patterns to the synthetic patient population. Results We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. Conclusions A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders. The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious

  7. Data-driven approach for creating synthetic electronic medical records.

    Science.gov (United States)

    Buczak, Anna L; Babin, Steven; Moniz, Linda

    2010-10-14

    New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population. We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4

  8. Influence of the Mg-content on ESR-signals in synthetic calcium carbonate

    International Nuclear Information System (INIS)

    Barabas, M.; Bach, A.; Mudelsee, M.; Mangini, A.

    1989-01-01

    Carbonate crystals doped with various concentrations of Mg 2+ -ions have been grown by a gel-diffusion method. An increase of the Mg/Ca-ratio to more than about 1 caused a phase change in the crystal lattice from calcite to aragonite. The properties of the ESR-signals of the synthetic carbonates were studied and compared with natural marine carbonates. The following results were derived: (a) In the presence of Mg 2+ -ions the synthetic carbonates display the same ESR-signals as natural calcites of marine origin with similar properties (thermal stability, radiation sensitivity). (b) The saturation value of the signal at g=2.0006 in synthetic calcites was found to be strongly related with the Mg-content in the crystals. (c) The signal at g=2.0036 (axial symmetry) which is present in calcite was not influenced by the Mg-concentration. Its saturation value decreases when the crystal phase changed from calcite to aragonite and in complement the signal at g=2.0031 appeared. (d) The signals at g=2.0057 and g=2.0031 are most probably not of organic origin. (author)

  9. A RELAP5 study to identify flow regime in natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Masotti, Paulo H.F.; Belchior Junior, Antonio; Angelo, Gabriel, E-mail: gdjian@ipen.b, E-mail: umbehaun@ipen.b, E-mail: wmtorres@ipen.b, E-mail: tnconti@ipen.b, E-mail: rnavarro@ipen.b, E-mail: lamacedo@ipen.b, E-mail: pmasotti@ipen.b, E-mail: abelchior@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There has been a crescent interest in the scientific community in the study of natural circulation phenomenon. New generation of compact nuclear reactors uses the natural circulation of the fluid as a system of cooling and of residual heat removal in case of accident or shutdown. The objective of this paper is to compare the flow patterns of experimental data and numerical simulation for the natural circulation phenomenon in two-phase flow regime. An experimental circuit built with glass tubes is used for the experiments. Thus, it allows the thermal hydraulic phenomena visualization. There is an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density excursions. The circuit instrumentation consists of thermocouples and pressure meters to better keep track of the flow and heat transfer phenomena. Data acquisition is performed through a computer interface developed with LABVIEW. The characteristic of the regime is identified using photography techniques. Numerical modeling and simulation is done with the thermal hydraulic code RELAP5, which is widely used for this purpose. This numerical simulation is capable to reproduce some of the flow regimes which are present in the circuit for the natural circulation phenomenon. Comparison between experimental and numerical simulation is presented in this work. (author)

  10. Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds.

    Science.gov (United States)

    Dresen, Sebastian; Ferreirós, Nerea; Pütz, Michael; Westphal, Folker; Zimmermann, Ralf; Auwärter, Volker

    2010-10-01

    Herbal mixtures like 'Spice' with potentially bioactive ingredients were available in many European countries since 2004 and are still widely used as a substitute for cannabis, although merchandized as 'herbal incense'. After gaining a high degree of popularity in 2008, big quantities of these drugs were sold. In December 2008, synthetic cannabinoids were identified in the mixtures which were not declared as ingredients: the C(8) homolog of the non-classical cannabinoid CP-47,497 (CP-47,497-C8) and a cannabimimetic aminoalkylindole called JWH-018. In February 2009, a few weeks after the German legislation put these compounds and further pharmacologically active homologs of CP-47,497 under control, another cannabinoid appeared in 'incense' products: the aminoalkylindole JWH-073. In this paper, the results of monitoring of commercially available 'incense' products from June 2008 to September 2009 are presented. In this period of time, more than 140 samples of herbal mixtures were analyzed for bioactive ingredients and synthetic cannabimimetic substances in particular. The results show that the composition of many products changed repeatedly over time as a reaction to prohibition and prosecution of resellers. Therefore neither the reseller nor the consumer of these mixtures can predict the actual content of the 'incense' products. As long as there is no possibility of generic definitions in the controlled substances legislation, further designer cannabinoids will appear on the market as soon as the next legal step has been taken. This is affirmed by the recent identification of the aminoalkylindoles JWH-250 and JWH-398. As further cannabinoids can be expected to occur in the near future, a continuous monitoring of these herbal mixtures is required. The identification of the synthetic opioid O-desmethyltramadol in a herbal mixture declared to contain 'kratom' proves that the concept of selling apparently natural products spiked with potentially dangerous synthetic

  11. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms

    Science.gov (United States)

    Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph

    2015-01-01

    Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947

  12. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism.

    Science.gov (United States)

    Kosina, Suzanne M; Danielewicz, Megan A; Mohammed, Mujahid; Ray, Jayashree; Suh, Yumi; Yilmaz, Suzan; Singh, Anup K; Arkin, Adam P; Deutschbauer, Adam M; Northen, Trent R

    2016-07-15

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.

  13. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    OpenAIRE

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folat...

  14. Designing synthetic RNA for delivery by nanoparticles

    International Nuclear Information System (INIS)

    Jedrzejczyk, Dominika; Pawlowska, Roza; Chworos, Arkadiusz; Gendaszewska-Darmach, Edyta

    2017-01-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided. (topical review)

  15. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jack J

    2009-01-01

    Full Text Available Abstract Background Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. Conclusion The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities.

  16. A comparative thermoluminescence and electron spin resonance study of synthetic carbonated A-type hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, L.C.; Rossi, A.M.; Baffa, O.

    2012-01-01

    Intensity of the 150 °C thermoluminescence peak of beta-irradiated carbonated synthetic A-type hydroxyapatite is approximately 12 times higher than that of the noncarbonated material. Deconvolution of the glow curve showed that this peak is a result of a trap distribution. An attempt was made to relate this thermoluminescence peak enhanced by carbonation with the ESR signal of the CO 2 − radical in natural or synthetic hydroxyapatite. - Highlights: ► Synthetic hydroxyapatite was carbonated with CO 2 . ► TL enhanced by 12 times in carbonated synthetic A-type hydroxyapatite. ► EPR and TL were performed to find out a relation between CO 2 − center and the TL. ► No direct relation was found between the CO 2 − center and TL enhancement.

  17. Application of LC-ESI-MS-MS for detection of synthetic adulterants in herbal remedies.

    Science.gov (United States)

    Bogusz, Maciej J; Hassan, Huda; Al-Enazi, Eid; Ibrahim, Zuhour; Al-Tufail, Mohammed

    2006-05-03

    Adulteration of allegedly "natural herbal medicines" with undeclared synthetic drugs is a common and dangerous phenomenon of alternative medicine. The purpose of the study was to develop a procedure for detection of most common synthetic adulterants in herbal remedies, using high-pressure liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS-MS). Eighty drugs belonging to various pharmacological classes were included in the study. For most drugs two transitions were monitored, using protonated or deprotonated molecules as precursor ions. The drugs were isolated from herbal remedies using simple methanol extraction. Chromatographic separation was done in gradient of acetonitrile-10 mM ammonium formate buffer (pH 3.0). Drugs tested were grouped in suites, comprising analgesic drugs, antibiotics, antidiabetic drugs, antiepileptic drugs, aphrodisiacs, hormones and anabolic drugs, psychotropic drugs, and weight reducing compounds. These suites were used according to the declared benefits of examined preparations. Limits of detection ranged from 5 pg to 1 ng per injected sample. Drug-free herbal remedy spiked with eight various pharmaceuticals occurring in adulterated herbal preparations was used for internal proficiency testing. The recoveries of spiked drugs ranged from 63 to 100%. The procedure was applied in everyday casework. Several undeclared drugs were identified in "herbal" remedies, like e.g. sildenafil, tadalafil, testosterone, or glibenclamide. Pharmacological properties of detected drugs always corresponded with the claims of the "natural" remedies. The method presents a valuable extension of standard GC-MS screening used for this purpose.

  18. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  19. Heavy crude oil and synthetic crude market outlook

    International Nuclear Information System (INIS)

    Crandall, G.R.

    1997-01-01

    This presentation included an outline of the international heavy crude supply and demand versus Canadian heavy crude supply and disposition, and pricing outlook for synthetic crudes. Differences among crude oils such as light sweet, light sour, heavy and bitumen were described and illustrated with respect to their gravity, API, percentage of sulphur, metals and nitrogen. Internationally, heavy and sour crude supplies are forecast to increase significantly over the next four years. Discoveries of light sour crude in offshore Gulf of Mexico will provide a major new source of sour crude to U.S. Gulf Coast refineries. Venezuela's supplies of heavy and sour crude are also expected to increase over the next few years. Mexico and Canada have plans to increase their heavy crude production. All of the crudes will be aimed at the U.S. Gulf Coast and Midwest markets. Pentanes and condensates are also expected to increase based on the growing Canadian natural gas production. Diluent demand will also grow to match Canadian heavy crude/bitumen production. U.S. midwest refiners are proposing expansions to allow them to process more Canadian heavy crude oil. At present, only a few refineries are equipped to process significant amounts of synthetic crude. It was suggested that to absorb available heavy and synthetic production, increased penetration into both Canadian and U.S. markets will be required. Some refineries may have to be modified to process heavy and synthetic oil supplies. Heavy oil and synthetic producers may need to develop relationships with refiners such as joint ventures and term supply agreements to secure markets. 2 tabs., 12 figs

  20. The identifiable victim effect in charitable giving: evidence from a natural field experiment

    DEFF Research Database (Denmark)

    Lesner, Tine; Rasmussen, O. D.

    2014-01-01

    or a statistical victim. Unlike much previous research, which has used only laboratory experiments, we find that the campaign letter focusing on one identifiable victim did not result in significantly larger donations than the campaign letter focusing on the statistical victim. In addition to the role......We design a natural field experiment to enhance our understanding of the role of the identifiable victim effect in charitable giving. Using direct mail solicitations to 25797 prior donors of a nonprofit charity, we tested the responsiveness of donors to make a contribution to either an identifiable...... campaigns. We find some evidence of crowding out, indicating that charitable giving could be a zero-sum game; however, the treatment letters did not have different effects on other payments....

  1. Potential impact of environmental requirements on petroleum products derived from synthetic crude

    International Nuclear Information System (INIS)

    1997-01-01

    Fuel quality proposals regarding gasoline and diesel fuels were discussed. Strict regulations on air emissions will mean changes in transportation fuel specifications which will ultimately impact on the refining industry. As fuel quality requirements become more stringent, refiners will need to look more closely at increasing the use of Canadian synthetic crude as a refinery feed. The fuel quality specifications with the potentially highest impact for the continued use of synthetic crude are those relating to sulphur, aromatics (including benzene), and olefins in gasoline and sulphur, aromatics and cetane in diesel fuel. Synthetic crude has an advantage in terms of gasoline sulphur content. The FCC feed is at a low enough sulphur level to result in gasoline components that would allow refiners to meet final gasoline sulphur levels of less than 100 ppm. In either case, synthetic middle distillate must be upgraded. Options that face the synthetic crude and refining industries are: (1) synthetic crude producers may install the process equipment needed to upgrade the middle distillate portion of their synthetic crude stream, (2) refiners may install equipment to upgrade just the diesel fuel portion of the middle distillate pool and jet fuel, and (3) a joint effort may be made by the two industries. The National Centre for Upgrading Technology (NCUT) and the Western Research Centre of Natural Resources Canada will continue to assist with research into improved catalysts for hydrotreating of middle distillates, and new lower cost processes for upgrading middle distillates from synthetic and conventional crude oils to meet future product requirements. 5 refs., 1 tab

  2. Nano-reinforcement of tire rubbers: silica-technology for natural rubber : exploring the infuence of non-rubber constituents on the natural rubber-silica system

    NARCIS (Netherlands)

    Sarkawi, S.S.

    2013-01-01

    Natural rubber is a renewable resource material with outstanding properties which offers significant advantages over its counterparts, the fossil-resource synthetic rubbers. In fact, a natural rubber tree is an efficient carbon dioxide sequester. Since natural rubber is a natural product, it is

  3. Towards a synthetic osteo-odonto-keratoprosthesis.

    Science.gov (United States)

    Viitala, Reeta; Franklin, Valerie; Green, David; Liu, Christopher; Lloyd, Andrew; Tighe, Brian

    2009-01-01

    Osteo-odonto-keratoprostheses (OOKP) is a unique form of keratoprosthesis involving surgical removal of a tooth root and surrounding bone from the patient which are then used to construct an osteo-odonto lamina into which an optical cylinder is cemented. The OOKP procedure is successful and capable of withstanding the very hostile ocular environments found in severe Stevens-Johnson syndrome, pemphigoid, chemical burns, trachoma and multiple corneal graft failure. The existing procedure is complex and time consuming in terms of operative time, and additionally involves sacrifice of the oral structures. This paper discusses the rational search for a "synthetic" analogue of the dental lamina, capable of mimicking those features of the natural system that are responsible for the success of OOKP. In this study the degradation of selected commercial and natural bioceramics was tested in vitro using a purpose-designed resorption assay. Degradation rate was compared with tooth and bone, which are currently used in OOKP lamina. At normal physiological pH the degradation of bioceramics was equivalent to tooth and bone; however, at pH 6.5-5.0, associated with infectious and inflamed tissues, the bioceramics degrade more rapidly. At lower pH the degradation rate decreased in the following order: calcium carbonate corals>biphasic calcium phosphates>hydroxyapatite. Porosity did not significantly influence these degradation rates. Such degradation is likely to compromise the stability and viability of the synthetic OOKP. Consequently more chemically stable materials are required that are optimized for the surrounding ocular environment.

  4. More Insight of Piezoelectric-based Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2016-11-01

    Increased understanding of the internal flow of piezoelectric-based synthetic jet actuators is needed for the development of specialized actuator cavity geometries to increase jet momentum coefficients and tailor acoustic resonant frequencies. Synthetic jet actuators can benefit from tuning of the structural resonant frequency of the piezoelectric diaphragm(s) and the acoustic resonant frequency of the actuator cavity such that they experience constructive coupling. The resulting coupled behavior produces increased jet velocities. The ability to design synthetic jet actuators to operate with this behavior at select driving frequencies allows for them to be better used in flow control applications, which sometimes require specific jet frequencies in order to utilize the natural instabilities of a given flow field. A parametric study of varying actuator diameters was conducted to this end. Phase-locked data were collected on the jet velocity, the cavity pressure at various locations, and the three-dimensional deformation of the surface of the diaphragm. These results were compared to previous analytical work on the interaction between the structural resonance of the diaphragm and the acoustic resonance of the cavity. Funded by the Boeing Company.

  5. Phage Therapy in the Era of Synthetic Biology.

    Science.gov (United States)

    Barbu, E Magda; Cady, Kyle C; Hubby, Bolyn

    2016-10-03

    For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    Science.gov (United States)

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  7. Kenaf/Synthetic and Kevlar®/Cellulosic Fiber-Reinforced Hybrid Composites: A Review

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2015-08-01

    Full Text Available This paper reviews the published and ongoing research work on kenaf/synthetic and Kevlar®/cellulosic fiber-reinforced composite materials. The combination of natural fibers with synthetic fibers in hybrid composites has become increasingly applied in several different fields of technology and engineering. As a result, a better balance between performance and cost is expected to be achieved by 2015, through appropriate material design. This review is intended to provide an outline of the essential outcomes of those hybrid composite materials currently utilized, focusing on processing and mechanical and structural properties.

  8. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A single step methane conversion into synthetic fuels using microplasma reactor

    NARCIS (Netherlands)

    Nozaki, Tomohiro; Agiral, A.; Gardeniers, Johannes G.E.; Yuzawa, Shuhei; Okazaki, Ken

    2011-01-01

    Direct conversion of natural gas into synthetic fuels such as methanol attracts keen attention because direct process can reduce capital and operating costs of high temperature, energy intensive, multi-step processes. We report a direct and selective synthesis of organic oxygenates such as methanol,

  10. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities.

    Science.gov (United States)

    Roybal, Kole T; Lim, Wendell A

    2017-04-26

    The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.

  11. Erasing Borders: A Brief Chronicle of Early Synthetic Biology.

    Science.gov (United States)

    Peretó, Juli

    2016-12-01

    Synthetic Biology is currently presented as an emergent field involving the application of engineering principles to living matter. However, the scientific pursuit of making life in a laboratory is not new and has been the ultimate, if somewhat distant, aim of the origin-of-life research program for many years. Actually, over a century ago, the idea that the synthesis of life was indispensable to fully understand its nature already appealed to material scientists and evolutionists alike. Jacques Loeb proposed a research program from an engineering standpoint, following a synthetic method (experimental abiogenesis) and based on his mechanist vision of living beings, which he considered true chemical machines. Early synthetic biology endeavors, such as the premature experiments by Alfonso L. Herrera in Mexico, Stéphane Leduc in France, and John B. Burke in United Kingdom, were easily ridiculed on both scientific and ideological grounds. However, in retrospect, all those attempts should be considered as legitimate and sincere anti-vitalistic efforts to cross the apparent border between inert and living matter.

  12. Synthetic cannabinoid and marijuana exposures reported to poison centers.

    Science.gov (United States)

    Forrester, M B; Kleinschmidt, K; Schwarz, E; Young, A

    2012-10-01

    Synthetic cannabinoids have recently gained popularity as a recreational drug because they are believed to result in a marijuana-like high. This investigation compared synthetic cannabinoids and marijuana exposures reported to a large statewide poison center system. Synthetic cannabinoid and marijuana exposures reported to Texas poison centers during 2010 were identified. The distribution of exposures to the two agents with respect to various demographic and clinical factors were compared by calculating the rate ratio (RR) of the synthetic cannabinoid and marijuana percentages for each subgroup and 95% confidence interval (CI). The proportion of synthetic cannabinoid and marijuana exposures, respectively, were 87.3% and 46.5% via inhalation (RR 1.88, 95% CI 1.38-2.61), 74.9% and 65.7% in male (RR 1.14, 95% CI 0.87-1.51), 40.2% and 56.6% age ≤ 19 years (RR 0.71, 95% CI 0.52-0.98), 79.2% and 58.6% occurring at a residence (RR 1.35, 95% CI 1.02-1.82), 8.4% and 16.2% managed on-site (RR 0.52. 95% CI 0.28-1.00), and 59.3% and 41.4% with serious medical outcomes (RR 1.43, 95% CI 1.03-2.05). Compared to marijuana, synthetic cannabinoid exposures were more likely to be used through inhalation, to involve adults, to be used at a residence, and to result in serious outcomes.

  13. Anti-Cancer Drug Discovery Using Synthetic Lethal Chemogenetic (SLC) Analysis

    National Research Council Canada - National Science Library

    Bellows, David S

    2004-01-01

    I am developing a novel cell-based small-molecule screening approach that can identify inhibitors of any non-essential protein function through a surrogate synthetic lethal phenotype in the baker's...

  14. Anti-Cancer Drug Discovery Using Synthetic Lethal Chemogenetic (SLC) Analysis

    National Research Council Canada - National Science Library

    Bellows, David S

    2006-01-01

    I am developing a novel cell-based small-molecule screening approach that can identify inhibitors of any non-essential protein function through a surrogate synthetic lethal phenotype in the baker's...

  15. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer

    Science.gov (United States)

    Ragupathi, Govind; Gardner, Jeffrey R; Livingston, Philip O; Gin, David Y

    2013-01-01

    One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity. PMID:21506644

  16. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Rehakova, Maria; Fortunova, Lubica; Bastl, Zdenek; Nagyova, Stanislava; Dolinska, Silvia; Jorik, Vladimir; Jona, Eugen

    2011-01-01

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py) x ZSM5, Cu-CT and Cu-(py) x CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py) x zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  17. Synthetic cannabimimetic agents metabolized by carboxylesterases

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Nielsen, Line M; Holm, Niels B

    2015-01-01

    Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study......, the metabolism of two indazole carboxamide derivatives, AB-PINACA and AB-FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB-PINACA-COOH and AB-FUBINACA-COOH. Other...... major metabolic pathways were mono-hydroxylation of the N-pentyl chain in AB-PINACA and mono-hydroxylation of the 1-amino-3-methyl-1-oxobutane moiety in AB-FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well...

  18. Experimental and Numerical Characterization of Synthetic and Natural Rock Properties in Support of the NEESROCK Project

    Science.gov (United States)

    Adams, S.; Smith, S.; Maclaughlin, M.; Wartman, J.; Applegate, K. N.; Gibson, M. D.; Arnold, L.; Keefer, D. K.

    2013-12-01

    Seismically induced rock slope failures are one of the most dangerous and least understood of all seismic hazards. The NEESROCK project, a collaboration between researchers at the University of Washington, Montana Tech, and the University of Maine, is supported by the National Science Foundation through its Network for Earthquake Engineering Simulation (NEES) program. The overall goal of the project is to advance our understanding of the fundamental mechanisms of the rock-slope failure process by integrating centrifuge physical modeling and distinct element numerical simulations in order to develop more advanced predictive tools and analysis procedures. Centrifuge experiments will calibrate and verify the numerical models. A fundamental component of this project and the primary focus of the Montana Tech research is laboratory testing of the synthetic materials used in the centrifuge models and comparison of these materials with natural rock specimens. Properties such as strength of the intact material, the geometry and strength of material interfaces, and the material's response to deformation and wave propagation are being studied with laboratory experiments that include tilt table tests, direct shear tests, laser scanning of the interface surfaces, unconfined compression tests, ultrasonic velocity tests, and free-free resonant column tests. The numerical modeling portion of the study is being used to simulate selected laboratory tests to investigate the abilities of the distinct element programs (Itasca's Universal Distinct Element Code (UDEC) and Particle Flow Code (PFC) software) to simulate the material behavior in the laboratory. Direct shear test results, in particular, are used to validate the performance of the joint constitutive models in UDEC. The experimental ultrasonic velocity tests, in combination with unconfined compression tests, are being used to investigate the relationship between static and dynamic modulus values for the project material as

  19. Development of synthetic graphite resistive elements for sintering furnace

    International Nuclear Information System (INIS)

    Otani, C.; Rezende, Mirabel C.; Polidoro, H.A.; Otani, S.

    1987-01-01

    The synthetic graphites have been produced using lignin coke, natural graphite and phenolic resin. The bulk density, porosity, flexural strength and eletrical resistivity measurements have been performed on specimens at about 2400 0 C. The performance of these materials, as heating elements, was evaluated in a sintering furnace prototype. This paper reports the fabrication process and the experimental results. (Author) [pt

  20. Long Memory Models to Generate Synthetic Hydrological Series

    Directory of Open Access Journals (Sweden)

    Guilherme Armando de Almeida Pereira

    2014-01-01

    Full Text Available In Brazil, much of the energy production comes from hydroelectric plants whose planning is not trivial due to the strong dependence on rainfall regimes. This planning is accomplished through optimization models that use inputs such as synthetic hydrologic series generated from the statistical model PAR(p (periodic autoregressive. Recently, Brazil began the search for alternative models able to capture the effects that the traditional model PAR(p does not incorporate, such as long memory effects. Long memory in a time series can be defined as a significant dependence between lags separated by a long period of time. Thus, this research develops a study of the effects of long dependence in the series of streamflow natural energy in the South subsystem, in order to estimate a long memory model capable of generating synthetic hydrologic series.

  1. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  2. Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; De Leeuw, J.W.

    1984-01-01

    Curie-point pyrolysis-gas chromatography-mass spectrometry was applied to study the chemical structure of sound and fungus degraded, industrial and synthetic lignins. Pyrolysis products reflected in some detail the structural units present in the lignin polymer. Thus, sound spruce lignin yielded trans-isoeugenol coniferaldehyde and trans-coniferyl alcohol as major pyrolysis products. Biodegraded lignin yielded oxidized units, including vanillin, acetoguaiacone, methyl vanillate, propioguaiacone, vanilloyl methyl ketone and vanillic acid as major products. Kraft lignin also showed evidence of oxidation, although not as much as the biodegraded lignin. Major products from this industrial lignin were guaiacol, methylguaiacol, vinylguaiacol and homovanillic acid. Results indicated that synthetic lignin duplicates fairly well the structure of natural lignin. However, coniferylaldehyde and trans-coniferyl alcohol were the dominant products only from the synthetic lignin, indicating the presence of large amounts of coniferyl alcohol and coniferylaldehyde end groups. 21 references.

  3. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  4. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  5. The population genetics of X-autosome synthetic lethals and steriles.

    Science.gov (United States)

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  6. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  7. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  8. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  9. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  10. Playing God in Frankenstein's Footsteps: Synthetic Biology and the Meaning of Life.

    Science.gov (United States)

    van den Belt, Henk

    2009-12-01

    The emergent new science of synthetic biology is challenging entrenched distinctions between, amongst others, life and non-life, the natural and the artificial, the evolved and the designed, and even the material and the informational. Whenever such culturally sanctioned boundaries are breached, researchers are inevitably accused of playing God or treading in Frankenstein's footsteps. Bioethicists, theologians and editors of scientific journals feel obliged to provide an authoritative answer to the ambiguous question of the 'meaning' of life, both as a scientific definition and as an explication with wider existential connotations. This article analyses the arguments mooted in the emerging societal debates on synthetic biology and the way its practitioners respond to criticism, mostly by assuming a defiant posture or professing humility. It explores the relationship between the 'playing God' theme and the Frankenstein motif and examines the doctrinal status of the 'playing God' argument. One particularly interesting finding is that liberal theologians generally deny the religious character of the 'playing God' argument-a response which fits in with the curious fact that this argument is used mainly by secular organizations. Synthetic biology, it is therefore maintained, does not offend so much the God of the Bible as a deified Nature. While syntheses of artificial life forms cause some vague uneasiness that life may lose its special meaning, most concerns turn out to be narrowly anthropocentric. As long as synthetic biology creates only new microbial life and does not directly affect human life, it will in all likelihood be considered acceptable.

  11. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  12. A bio-synthetic interface for discovery of viral entry mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Gutzler, Mike; Maar, Dianna; Negrete, Oscar; Hayden, Carl C.; Sasaki, Darryl Yoshio; Stachowiak, Jeanne C.; Wang, Julia

    2010-09-01

    Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.

  13. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Natural-focal diseases: mapping experience in Russia.

    Science.gov (United States)

    Malkhazova, Svetlana M; Mironova, Varvara A; Kotova, Tatiana V; Shartova, Natalia V; Orlov, Dmitry S

    2014-06-14

    Natural-focal diseases constitute a serious hazard for human health. Agents and vectors of such diseases belong to natural landscapes. The aim of this study is to identify the diversity and geography of natural-focal diseases in Russia and to develop cartographic approaches for their mapping, including mathematical-cartographical modeling. Russian medico-geographical mapping of natural-focal diseases is highly developed regionally and locally but extremely limited at the national level. To solve this problem, a scientific team of the Faculty of Geography at Lomonosov Moscow State University has developed and implemented a project of a medico-geographical Atlas of Russia "Natural-Focal Diseases". The mapping is based on medical statistics data. The Atlas contains a series of maps on disease incidence, long-term dynamics of disease morbidity, etc. In addition, other materials available to the authors were used: mapping of the natural environment, field data, archival materials, analyzed satellite images, etc. The maps are processed using ArcGIS (ESRI) software application. Different methods of rendering of mapped phenomena are used (geographical ranges, diagrams, choropleth maps etc.). A series of analytical, integrated, and synthetic maps shows disease incidence in the population at both the national and regional levels for the last 15 years. Maps of the mean annual morbidity of certain infections and maps of morbidity dynamics and nosological profiles allow for a detailed analysis of the situation for each of 83 administrative units of the Russian Federation. The degree of epidemic hazard in Russia by natural-focal diseases is reflected in a synthetic medico-geographical map that shows the degree of epidemic risks due to such diseases in Russia and allows one to estimate the risk of disease manifestation in a given region. This is the first attempt at aggregation and public presentation of diverse and multifaceted information about natural-focal diseases in Russia

  15. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  16. Preclinical Evaluation of the Synthetic Adjuvant SQS-21 and its Constituent Isomeric Saponins

    Science.gov (United States)

    Ragupathi, Govind; Damani, Payal; Deng, Kai; Adams, Michelle M.; Hang, Jianfeng; George, Constantine; Livingston, Philip O.; Gin, David Y.

    2010-01-01

    The saponin fraction QS-21 from Quillaja saponaria has been demonstrated to be a potent immunological adjuvant when mixed with keyhole limpet hemocyanin conjugate vaccines, as well as with other classes of subunit antigen vaccines. QS-21 adjuvant is composed of two isomers that include the apiose and xylose forms in a ratio of 65:35, respectively. The chemical syntheses of these two isomers in pure form have recently been disclosed. Herein we describe detailed in vivo immunological evaluations of these synthetic QS-21 isomeric constituents, employing the GD3-KLH melanoma antigen. With this vaccine construct, high antibody titers against GD3 ganglioside and KLH were elicited when GD3-KLH was co-administered with adjuvant, either as the individual separate synthetic QS-21 isomers (SQS-21-Api or SQS-21-Xyl), or as its reconstituted 65:35 isomeric mixture (SQS-21). These antibody titer levels were comparable to that elicited by vaccinations employing naturally derived QS-21 (PQS-21). Moreover, toxicities of the synthetic saponin adjuvants were also found to be comparable to that of naturally derived PQS-21. These findings demonstrate unequivocally that the adjuvant activity of QS-21 resides in these two principal isomeric forms, and not in trace contaminants within the natural extracts. This lays the foundation for future exploration of structure-function correlations to enable the discovery of novel saponins with increased potency, enhanced stability, and attenuated toxicity. PMID:20450868

  17. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  18. Selection platforms for directed evolution in synthetic biology.

    Science.gov (United States)

    Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B

    2016-08-15

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. © 2016 The Author(s).

  19. Measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  20. Separation process design for isolation and purification of natural products

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.

    Natural products are defined as secondary metabolites produced by plants and form a vast pool of compounds with unlimited chemical and functional diversity. Many of these secondary metabolites are high value added chemicals that are frequently used as ingredients in food, cosmetics, pharmaceuticals...... and other consumer products. Therefore, process technology towards industrial scale production of such high value chemicals from plants has significant value. Natural products can be obtained in pure form via synthetic or semi-synthetic route, but due to their complicated nature these methods have not been...... developed to the extent of industrial production for majority of natural products. Thus, isolation and purification of such natural products from plants is the most viable way to obtain natural products in pure form. This PhD project is mainly concerned with the design of separation process to isolate...

  1. Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis

    International Nuclear Information System (INIS)

    Gonzalez Arzola, K.; Arevalo, M.C.; Falcon, M.A.

    2009-01-01

    The electrochemical properties of eighteen natural and synthetic compounds commonly used to expand the oxidative capacity of laccases were evaluated in an aqueous buffered medium using cyclic voltammetry. This clarifies which compounds fulfil the requisites to be considered as redox mediators or enhancers. Cyclic voltammetry was also applied as a rapid way to assess the catalytic efficiency (CE) of those compounds which oxidise a non-phenolic lignin model (veratryl alcohol, VA) and a kraft lignin (KL). With the exception of gallic acid and catechol, all assayed compounds were capable of oxidising VA with varying CE. However, only some of them were able to oxidise KL. Although the oxidised forms of HBT and acetovanillone were not electrochemically stable, their reduced forms were quickly regenerated in the presence of VA. They thus act as chemical catalysts. Importantly, HBT and HPI did not attack the KL via the same mechanism as in VA oxidation. Electrochemical evidence suggests that violuric acid oxidises both substrates by an electron transfer mechanism, unlike the other N-OH compounds HBT and HPI. Acetovanillone was found to be efficient in oxidising VA and KL, even better than the synthetic mediators TEMPO, violuric acid or ABTS. Most of the compounds produced a generalised increase in the oxidative charge of KL, probably attributed to chain reactions arising between the phenolic and non-phenolic components of this complex molecule

  2. Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Arzola, K. [Department of Microbiology and Cell Biology, Faculty of Pharmacy, University of La Laguna, 38206 La Laguna, Tenerife (Spain); Arevalo, M.C. [Department of Physical Chemistry, Faculty of Chemistry, University of La Laguna, 38206 La Laguna, Tenerife (Spain)], E-mail: carevalo@ull.es; Falcon, M.A. [Department of Microbiology and Cell Biology, Faculty of Pharmacy, University of La Laguna, 38206 La Laguna, Tenerife (Spain)], E-mail: mafalcon@ull.es

    2009-03-30

    The electrochemical properties of eighteen natural and synthetic compounds commonly used to expand the oxidative capacity of laccases were evaluated in an aqueous buffered medium using cyclic voltammetry. This clarifies which compounds fulfil the requisites to be considered as redox mediators or enhancers. Cyclic voltammetry was also applied as a rapid way to assess the catalytic efficiency (CE) of those compounds which oxidise a non-phenolic lignin model (veratryl alcohol, VA) and a kraft lignin (KL). With the exception of gallic acid and catechol, all assayed compounds were capable of oxidising VA with varying CE. However, only some of them were able to oxidise KL. Although the oxidised forms of HBT and acetovanillone were not electrochemically stable, their reduced forms were quickly regenerated in the presence of VA. They thus act as chemical catalysts. Importantly, HBT and HPI did not attack the KL via the same mechanism as in VA oxidation. Electrochemical evidence suggests that violuric acid oxidises both substrates by an electron transfer mechanism, unlike the other N-OH compounds HBT and HPI. Acetovanillone was found to be efficient in oxidising VA and KL, even better than the synthetic mediators TEMPO, violuric acid or ABTS. Most of the compounds produced a generalised increase in the oxidative charge of KL, probably attributed to chain reactions arising between the phenolic and non-phenolic components of this complex molecule.

  3. Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Ido Yofe

    2014-06-01

    Full Text Available Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.

  4. Synthetic biology and biosecurity: challenging the "myths".

    Science.gov (United States)

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  5. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  6. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  7. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  8. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  9. Combinatorial synthesis by nature: volatile organic sulfur-containing constituents of Ruta chalepensis L.

    Science.gov (United States)

    Escher, Sina; Niclass, Yvan; van de Waal, Matthijs; Starkenmann, Christian

    2006-09-01

    Ongoing interest in discovering new natural fragrance and flavor ingredients prompted us to examine a solvent extract of sulfurous-sweaty smelling Ruta chalepensis L. (Rutaceae) plant material more closely. Twenty-one sulfur-containing constituents of similar structures were identified by GC/MS techniques. Amongst them, 14 have never been described to occur in nature. The compounds 1-18 belong to a family of natural flavor and fragrance molecules having a 1,3-positioned O,S moiety in common. The identities of the natural constituents were confirmed by comparison with synthetic reference samples, and the organoleptic properties of the latter were studied. The relative and absolute configurations of the four stereoisomers of 4-methyl-3-sulfanylhexan-1-ol (5) were established by stereoselective synthesis. The natural isomers consisted of a 65 : 35 mixture of (3R,4S)-5 and (3S,4S)-5.

  10. Antiproliferative and genotoxic effects of nature identical and artificial synthetic food additives of aroma and flavor

    Directory of Open Access Journals (Sweden)

    R. D. M. Nunes

    Full Text Available Abstract This study aimed to analyze the antiproliferative and genotoxic potential of synthetic food flavorings, nature identical passion fruit and artificial vanilla. This assessment used root meristem cells of Allium cepa L., in exposure times of 24 and 48 hours and using doses of 0.2; 0.4 and 0.6 mL. Roots were fixed in Carnoy’s solution, hydrolyzed in hydrochloric acid, stained with acetic orcein and analyzed with optical microscope at 400× magnification, 5,000 cells for each treatment. For data analysis, it was used Chi-square test at 5%. Doses of 0.2 mL at ET 48 h; 0.4 and 0.6 mL at ET 24 and 48 h of passion fruit flavor, and the three doses of the vanilla flavor at ET 24 and 48 h significantly reduced the cell division rate in the meristems of roots, proving to be cytotoxic. Doses of 0.2; 0.4 and 0.6 mL of the passion fruit additive, and the three doses of vanilla tested, in the two exposure times, induced mitotic spindle changes and micronuclei formation in the cells of the test organism used, proving to be genotoxic. Therefore, under the studied conditions, flavoring solutions of vanilla and passion fruit, marketed nationally and internationally, significantly altered the functioning of the cell cycle in root meristem cells of A. cepa.

  11. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  12. Enzymatic modification of natural and synthetic polymers using lipases and proteases

    Science.gov (United States)

    Chakraborty, Soma

    Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and

  13. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  14. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  15. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    International Nuclear Information System (INIS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-01-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe 3 O 4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications. (paper)

  16. Rabbit IgG directed to a synthetic C-terminal peptide of the major grass pollen allergen Lol p I inhibits human basophil histamine release induced by natural Lol p I.

    Science.gov (United States)

    van Ree, R; Aalberse, R C

    1995-03-01

    The potential role of allergen-specific IgG antibodies as 'blocking' antibodies in allergen-induced human basophil histamine release was investigated. This was studied in a model with the major grass pollen allergen Lol p I and polyclonal rabbit antisera directed against this allergen and against a synthetic peptide of its C terminus. When allergen and antibodies were allowed to preincubate, Lol p I induced histamine release was inhibited up to 85% by the antiserum against Lol p I. By omitting preincubation, and thereby more closely mimicking an in vivo situation, up to 55% inhibition was realized. This indicates that allergen-specific IgG can act as 'blocking' antibody without preincubation. Immunization of rabbits with a synthetic C-terminal peptide of Lol p I resulted in antibodies reactive with natural Lol p I. Despite their 100-fold lower avidity for Lol p I (as compared with antinatural Lol p I), these antibodies had the capacity to inhibit Lol p I induced histamine release for > 90% (up to 50% without preincubation). This indicates that it is possible to block histamine release induced by a major allergen with low-avidity IgG antibodies directed against a minor proportion of the allergen (25 amino acids). IgE antibodies from the donors studied were unreactive with this synthetic peptide, indicating that for blocking activity identical epitope specificity of IgE and IgG is not essential. This opens interesting perspectives for application of synthetic peptides in immunotherapy, distinct from their effects on T cell reactivity.

  17. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  18. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    Science.gov (United States)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  19. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  20. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography

    NARCIS (Netherlands)

    Pirok, B.W.J.; Knip, J.; van Bommel, M.R.; Schoenmakers, P.J.

    2016-01-01

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid

  1. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  2. Synthetic glycopeptides and glycoproteins with applications in biological research

    Directory of Open Access Journals (Sweden)

    Ulrika Westerlind

    2012-05-01

    Full Text Available Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL, expressed protein ligation (EPL, and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.

  3. NATURALLY OCCURRING MELLEIN-TYPE 3,4 ...

    African Journals Online (AJOL)

    Dr Mdachi

    isolation, characterization and bioassay studies of melleins, a number of synthetic studies have also been ... from Cashew Nut Shell Liquid (CNSL) - a readily available natural resource. Utilization of ...... of the currently available methods.

  4. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  5. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  6. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. [Application of microelectronics CAD tools to synthetic biology].

    Science.gov (United States)

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  8. Identifying lubricant options for compressor bearing designs

    Science.gov (United States)

    Karnaz, J.; Seeton, C.; Dixon, L.

    2017-08-01

    Today’s refrigeration and air conditioning market is not only driven by the environmental aspects of the refrigerants, but also by the energy efficiency and reliability of system operation. Numerous types of compressor designs are used in refrigeration and air conditioning applications which means that different bearings are used; and in some cases, multiple bearing types within a single compressor. Since only one lubricant is used, it is important to try to optimize the lubricant to meet the various demands and requirements for operation. This optimization entails investigating different types of lubricant chemistries, viscosities, and various formulation options. What makes evaluating these options more challenging is the refrigerant which changes the properties of the lubricant delivered to the bearing. Once the lubricant and refrigerant interaction are understood, through various test methods, then work can start on collaborating with compressor engineers on identifying the lubricant chemistry and formulation options. These interaction properties are important to the design engineer to make decisions on the adequacy of the lubricant before compressor tests are started. This paper will discuss the process to evaluate lubricants for various types of compressors and bearing design with focus on what’s needed for current refrigerant trends. In addition, the paper will show how the lubricant chemistry choice can be manipulated through understanding of the bearing design and knowledge of interaction with the refrigerant to maximize performance. Emphasis will be placed on evaluation of synthetic lubricants for both natural and synthetic low GWP refrigerants.

  9. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  10. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  11. A new Markov-chain-related statistical approach for modelling synthetic wind power time series

    International Nuclear Information System (INIS)

    Pesch, T; Hake, J F; Schröders, S; Allelein, H J

    2015-01-01

    The integration of rising shares of volatile wind power in the generation mix is a major challenge for the future energy system. To address the uncertainties involved in wind power generation, models analysing and simulating the stochastic nature of this energy source are becoming increasingly important. One statistical approach that has been frequently used in the literature is the Markov chain approach. Recently, the method was identified as being of limited use for generating wind time series with time steps shorter than 15–40 min as it is not capable of reproducing the autocorrelation characteristics accurately. This paper presents a new Markov-chain-related statistical approach that is capable of solving this problem by introducing a variable second lag. Furthermore, additional features are presented that allow for the further adjustment of the generated synthetic time series. The influences of the model parameter settings are examined by meaningful parameter variations. The suitability of the approach is demonstrated by an application analysis with the example of the wind feed-in in Germany. It shows that—in contrast to conventional Markov chain approaches—the generated synthetic time series do not systematically underestimate the required storage capacity to balance wind power fluctuation. (paper)

  12. Modification of radiation damage by naturally occurring substances

    International Nuclear Information System (INIS)

    Prasad, K.N.

    1984-01-01

    The major objectives of studying the modification of radiation sensitivity have been (1) to identify a compound that will produce a differential protection or sensitization of the effect of irradiation on normal and tumor tissue, and (2) to understand more about the mechanisms of radiation damage. In spite of massive research on this particular problem since World War II, the first objective remains elusive. During this period, numerous radioprotective and radiosensitizing agents have been identified. These agents have served as important biologic tools for increasing our understanding of radiation injuries. Most of these substances are synthetic compounds and are very toxic to humans. In addition, very few of the compounds provide differential modifications of the effect of radiation on tumor and normal cells. This chapter presents objectives for identifying naturally occurring substances that modify the effect of x-radiation on mammalian cells and discusses the role of physiologic substances in modifying radiation injuries on mammalian normal and tumor cells

  13. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?

    International Nuclear Information System (INIS)

    Ding, Yanjun; Han, Weijian; Chai, Qinhu; Yang, Shuhong; Shen, Wei

    2013-01-01

    Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO 2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO 2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO 2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO 2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO 2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO 2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO 2 reduction. - Highlights: ► We evaluated life-cycle energy efficiency and CO 2 emissions of coal-derived SNG. ► We used GREET model and added a coal-based SNG and an end-use modules. ► The database was constructed with Chinese domestic data. ► Life-cycle energies and CO 2 emissions of coal-based SNG are 20–100% higher. ► Coal-based SNG is not a solution to both energy conservation and CO 2 reduction

  14. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Caroline [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Grimaldi, Marina; Boulahtouf, Abdelhay [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Pakdel, Farzad [Institut de Recherche sur la Santé, Environnement et Travail (IRSET), INSERM U1085, Université de Rennes 1, Rennes (France); Brion, François; Aït-Aïssa, Sélim [Unité Écotoxicologie In Vitro et In Vivo, INERIS, Parc ALATA, 60550 Verneuil-en-Halatte (France); Cavaillès, Vincent [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Bourguet, William [U1054, Centre de Biochimie Structurale, CNRS UMR5048, Université Montpellier 1 et 2, 34290 Montpellier (France); Gustafsson, Jan-Ake [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge (Sweden); and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  15. ‘Can Simple Biological Systems be Built from Standardized Interchangeable Parts?’:Negotiating Biology and Engineering in a Synthetic Biology Competition

    OpenAIRE

    Frow, Emma; Calvert, Jane

    2013-01-01

    Synthetic biology represents a recent attempt to bring engineering principles and practices to working with biology. In practice, the nature of the relationship between engineering and biology in synthetic biology is a subject of ongoing debate. The disciplines of biology and engineering are typically seen to involve differentways of knowing and doing, and to embody different assumptions and objectives. Tensions between these approaches are playing out as the field of synthetic biology is bei...

  16. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon.

    Science.gov (United States)

    Hasni, Narjes; Pinier, Centina; Imed, Cheraief; Ouhichi, Monêem; Couzi, Philippe; Chermiti, Brahim; Frérot, Brigitte; Saïd, Imen; Rochat, Didier

    2017-07-01

    Laboratory and field investigations to identify and evaluate plant co-attractants of the aggregation pheromone of the date palm pest Oryctes agamemnon are reported. Volatiles emitted by freshly cut palm core and palm core with feeding males, were collected, analyzed by gas chromatography coupled to mass spectrometry and evaluated in olfactometers alone or combined with synthetic pheromone. A collection of palm odor without male effluvia was attractive alone and enhanced attraction to synthetic pheromone in an olfactometer similar to that to a collection of palm odor emitted with feeding males and containing natural pheromone. Behavioral responses to collections of palm volatiles were correlated to the amount of volatiles material in them. Enhancement of the attractiveness of the pheromone was not correlated to chemicals specific to beetle feeding. The chemicals common to the active collections extracts were benzoate esters, mostly ethyl benzoate, anisole derivatives and sesquiterpenes. Blends of the most abundant components of the extracts were evaluated for enhancement of the attractiveness of pheromone (1 μg) in olfactometers at 1 or 10 μg doses. The mixtures were further evaluated by field trapping in Tunisia at 3-10 mg/day using reference (6 mg/day) or experimental pheromone formulations. A mixture of ethyl benzoate, 4-methylanisole and farnesol (1:1:1 w/w at 6.5 mg/day) enhanced captures in pheromone baited traps in 2014 and 2015 and this mixture was as active as the natural palm bait. The practical prospect of the result for the management for O. agamemnon, and other palm beetles is discussed.

  17. The use of nitrate isotopes to identify contamination sources in the Bou-Areg aquifer (Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Re, Viviana [Ca' Foscari University of Venice, Department of Molecular Sciences and Nanosystems, Dorsoduro 2137, Venice, 30123 (Italy); Sacchi, Elisa [University of Pavia, Department of Earth and Environmental Sciences, Via Ferrata 1, Pavia, 27100 (Italy); Allais, Enrico [ISO4 s.n.c., Via Ferrata 1, Pavia, 27100 (Italy)

    2013-07-01

    The Bou-Areg coastal aquifer (Morocco) is affected by high nitrate levels in groundwater, with possible consequences for the natural environment and human health. The use of environmental tracers, including δ{sup 15}NNO{sub 3} and δ{sup 18}ONO{sub 3}, allowed identifying the main sources of nitrate contamination in groundwater samples collected in 2010. These are manure and septic effluents, especially in urban areas, and synthetic fertilizers in agricultural areas. This work represents a preliminary step for a more detailed nitrate vulnerability assessment to support groundwater management and protection in the studied region. (authors)

  18. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  19. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  20. Molecular analysis of faecal samples from birds to identify potential crop pests and useful biocontrol agents in natural areas.

    Science.gov (United States)

    King, R A; Symondson, W O C; Thomas, R J

    2015-06-01

    Wild habitats adjoining farmland are potentially valuable sources of natural enemies, but also of pests. Here we tested the utility of birds as 'sampling devices', to identify the diversity of prey available to predators and particularly to screen for pests and natural enemies using natural ecosystems as refugia. Here we used PCR to amplify prey DNA from three sympatric songbirds foraging on small invertebrates in Phragmites reedbed ecosystems, namely the Reed Warbler (Acrocephalus scirpaceus), Sedge Warbler (Acrocephalus schoenobaenus) and Cetti's Warbler (Cettia cetti). A recently described general invertebrate primer pair was used for the first time to analyse diets. Amplicons were cloned and sequenced, then identified by reference to the Barcoding of Life Database and to our own sequences obtained from fresh invertebrates. Forty-five distinct prey DNA sequences were obtained from 11 faecal samples, of which 39 could be identified to species or genus. Targeting three warbler species ensured that species-specific differences in prey choice broadened the range of prey taken. Amongst the prey found in reedbeds were major pests (including the tomato moth Lacanobia oleracea) as well as many potentially valuable natural enemies including aphidophagous hoverflies and braconid wasps. Given the mobility of birds, this approach provides a practical way of sampling a whole habitat at once, providing growers with information on possible invasion by locally resident pests and the colonization potential of natural enemies from local natural habitats.