WorldWideScience

Sample records for identifying molecular entourages

  1. Diabetes education of patients and their entourage: out-of-hospital national study (EDUCATED 2).

    Science.gov (United States)

    Lapostolle, Frédéric; Hamdi, Nadia; Barghout, Majed; Soulat, Louis; Faucher, Anna; Lambert, Yves; Peschanski, Nicolas; Ricard-Hibon, Agnès; Chassery, Carine; Roti, Maryline; Bounes, Vincent; Debaty, Guillaume; Mokni, Tarak; Egmann, Gérald; Fort, Pierre-Arnaud; Boudenia, Karim; Alayrac, Laurent; Safraou, Mohamed; Galinski, Michel; Adnet, Frédéric

    2017-04-01

    To determine the contributing factors in the successful diabetes education of patients and their entourage. Prospective observational study conducted in a pre-hospital setting by 17 emergency services across France (September 2009-January 2011) included all insulin-treated patients (≥18 years) provided that at least one family member was present on scene. Data were collected from patients and their entourage: (1) personal details including language proficiency and educational attainment, (2) treatments, (3) diabetes-related data (log sheets, glucose meter, glucagon, glycated hemoglobin, prior hypoglycemic episodes); (4) care by diabetologist, general practitioner and/or visiting nurse. The main end points were ability to measure capillary blood sugar (patient) and awareness of hypoglycemia symptoms and ability to administer glucagon (entourage). Overall, 561 patients and 736 family members were included; 343 patients (61%) were experiencing a hypoglycemic episode (patients and 343 (50%) family members could measure capillary blood sugar. They could name a median of 2 [0-3‰] hypoglycemia symptoms although 217 (39%) patients and 262 (39%) family members could name no symptom. Few patients (33%) had glucagon available. In multivariate analyses, the main factor associated with better patient education was care by a diabetologist. Lack of an educational qualification and visits by a nurse were associated with poor patient education, and French mother tongue and care by a diabetologist with better education of the entourage. In France, diabetic patients and their entourage are inadequately educated. Their education benefits most from care by a diabetologist.

  2. Living like a king? The entourage of Odet de Foix, vicomte de Lautrec, governor of Milan.

    Directory of Open Access Journals (Sweden)

    Philippa Woodcock

    2015-11-01

    Full Text Available In the early sixteenth century, the de Foix family were both kin and intimate councillors to the Valois kings, Louis XII and François I. With a powerbase in Guyenne, the de Foix tried to use their connections at court to profit from the French conquest of Milan, 1499-1522. This paper will explore the career of one prominent family member, Odet de Foix, vicomte de Lautrec (1483-1528. Lautrec was a Marshal of France, who served in Italy as a soldier and governor. He was key to the royal entourage, amongst François I’s intimates at the Field of the Cloth of Gold. His sister, Françoise, was also the king’s mistress. The paper will examine Lautrec’s entourage from two aspects. Firstly, it asks how Lautrec established his entourage from his experience in Navarre and Italy and as a member of the royal retinue. It establishes the importance of familial and regional ties, but also demonstrates the important role played by men of talent. Secondly, it explores Lautrec's relationship to his entourage once governor of Milan. Were ties of blood, career or positions of Italian prestige the most important for a governor when he chose his intimates? Were compromises made with Italian traditions and elites to sustain his rule? Did he learn from the experience and failures of previous governors?  The article contributes to a gap in scholarship for the later period of French Milan from 1515-1522. It also adds to our knowledge of the behaviour and ambitions of early modern governors.

  3. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    Science.gov (United States)

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. LINKED ARTICLES

  4. [Not without my family! The importance of the entourage in primary care medicine with youth].

    Science.gov (United States)

    Devillé, Cédric; Narring, Françoise

    2016-06-08

    At the doctor's office primary care, symptomatology of young is often vague or nonspecific. Faced with such symptoms, via the analysis of a clinical case, significant in many clinical situations, we show the importance of considering the significant members of the entourage and invite them to the surgery. A therapeutic alliance better weaves between the youth and his doctor if the environment is taken into account and will lead to better therapeutic response.

  5. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    Science.gov (United States)

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  6. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  7. Comparing hair-morphology and molecular methods to identify fecal samples from Neotropical felids.

    Directory of Open Access Journals (Sweden)

    Carlos C Alberts

    Full Text Available To avoid certain problems encountered with more-traditional and invasive methods in behavioral-ecology studies of mammalian predators, such as felids, molecular approaches have been employed to identify feces found in the field. However, this method requires a complete molecular biology laboratory, and usually also requires very fresh fecal samples to avoid DNA degradation. Both conditions are normally absent in the field. To address these difficulties, identification based on morphological characters (length, color, banding, scales and medullar patterns of hairs found in feces could be employed as an alternative. In this study we constructed a morphological identification key for guard hairs of eight Neotropical felids (jaguar, oncilla, Geoffroy's cat, margay, ocelot, Pampas cat, puma and jaguarundi and compared its efficiency to that of a molecular identification method, using the ATP6 region as a marker. For this molecular approach, we simulated some field conditions by postponing sample-conservation procedures. A blind test of the identification key obtained a nearly 70% overall success rate, which we considered equivalent to or better than the results of some molecular methods (probably due to DNA degradation found in other studies. The jaguar, puma and jaguarundi could be unequivocally discriminated from any other Neotropical felid. On a scale ranging from inadequate to excellent, the key proved poor only for the margay, with only 30% of its hairs successfully identified using this key; and have intermediate success rates for the remaining species, the oncilla, Geoffroy's cat, ocelot and Pampas cat, were intermediate. Complementary information about the known distributions of felid populations may be necessary to substantially improve the results obtained with the key. Our own molecular results were even better, since all blind-tested samples were correctly identified. Part of these identifications were made from samples kept in suboptimal

  8. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    Science.gov (United States)

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  9. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  10. Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of Tuberous Sclerosis

    Science.gov (United States)

    2016-07-01

    tsc1 and tsc2 loss of function mutations in Schizosaccharomyces pombe. Northeast Regional Yeast Meeting, June 16-17, University at Buffalo, The State...AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of...SUBTITLE Using Genetic Buffering Relationships Identified in Fission 5a. CONTRACT NUMBER W81XWH-14-1-0169 Yeast to Elucidate the Molecular Pathology

  11. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  12. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. II. MOLECULAR CLOUD ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)

    2013-06-01

    We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.

  14. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie

    2013-01-01

    distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(-) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, mi...

  15. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    Science.gov (United States)

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  16. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    OpenAIRE

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2015-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristi...

  17. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers

    OpenAIRE

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E.M.

    2016-01-01

    Background The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequ...

  18. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  19. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach

    Science.gov (United States)

    Scott, Milcah C.; Sarver, Aaron L.; Gavin, Katherine J.; Thayanithy, Venugopal; Getzy, David M.; Newman, Robert A.; Cutter, Gary R.; Lindblad-Toh, Kerstin; Kisseberth, William C.; Hunter, Lawrence E.; Subramanian, Subbaya; Breen, Matthew; Modiano, Jaime F.

    2011-01-01

    The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may increase the likelihood to uncover molecular subtypes for this complex disease. We thus hypothesized that molecular profiles derived from canine osteosarcoma would aid in molecular subclassification of this disease when applied to humans. To test the hypothesis, we performed genome wide gene expression profiling in a cohort of dogs with osteosarcoma, primarily from high-risk breeds. To further reduce inter-sample heterogeneity, we assessed tumor-intrinsic properties through use of an extensive panel of osteosarcoma-derived cell lines. We observed strong differential gene expression that segregated samples into two groups with differential survival probabilities. Groupings were characterized by the inversely correlated expression of genes associated with G2/M transition and DNA damage checkpoint and microenvironment-interaction categories. This signature was preserved in data from whole tumor samples of three independent dog osteosarcoma cohorts, with stratification into the two expected groups. Significantly, this restricted signature partially overlapped a previously defined, predictive signature for soft tissue sarcomas, and it unmasked orthologous molecular subtypes and their corresponding natural histories in five independent data sets from human patients with osteosarcoma. Our results indicate that the narrower genetic diversity of dogs can be utilized to group complex human osteosarcoma into biologically and clinically relevant molecular subtypes. This in turn may enhance prognosis and prediction, and identify relevant therapeutic targets. PMID:21621658

  20. Using molecular tools to identify the geographical origin of a case of human brucellosis.

    Science.gov (United States)

    Muchowski, J K; Koylass, M S; Dainty, A C; Stack, J A; Perrett, L; Whatmore, A M; Perrier, C; Chircop, S; Demicoli, N; Gatt, A B; Caruana, P A; Gopaul, K K

    2015-10-01

    Although Malta is historically linked with the zoonosis brucellosis, there had not been a case of the disease in either the human or livestock population for several years. However, in July 2013 a case of human brucellosis was identified on the island. To determine whether this recent case originated in Malta, four isolates from this case were subjected to molecular analysis. Molecular profiles generated using multilocus sequence analysis and multilocus variable number tandem repeat for the recent human case isolates and 11 Brucella melitensis strains of known Maltese origin were compared with others held on in-house and global databases. While the 11 isolates of Maltese origin formed a distinct cluster, the recent human isolation was not associated with these strains but instead clustered with isolates originating from the Horn of Africa. These data was congruent with epidemiological trace-back showed that the individual had travelled to Malta from Eritrea. This work highlights the potential of using molecular typing data to aid in epidemiological trace-back of Brucella isolations and assist in monitoring of the effectiveness of brucellosis control schemes.

  1. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  2. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  3. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.

    Science.gov (United States)

    Ren, Zhonglu; Wang, Wenhui; Li, Jinming

    2016-02-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups.

  4. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).

    Science.gov (United States)

    Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D

    2012-09-01

    Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.

  5. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  6. Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of bugula neritina

    KAUST Repository

    Zhang, Huoming

    2011-01-07

    The marine invertebrate Bugula neritina has a biphasic life cycle that consists of a swimming larval stage and a sessile juvenile and adult stage. The attachment of larvae to the substratum and their subsequent metamorphosis have crucial ecological consequences. Despite many studies on this species, little is known about the molecular mechanism of these processes. Here, we report a comparative study of swimming larvae and metamorphosing individuals at 4 and 24 h postattachment using label-free quantitative proteomics. We identified more than 1100 proteins at each stage, 61 of which were differentially expressed. Specifically, proteins involved in energy metabolism and structural molecules were generally down-regulated, whereas proteins involved in transcription and translation, the extracellular matrix, and calcification were strongly up-regulated during metamorphosis. Many tightly regulated novel proteins were also identified. Subsequent analysis of the temporal and spatial expressions of some of the proteins and an assay of their functions indicated that they may have key roles in metamorphosis of B. neritina. These findings not only provide molecular evidence with which to elucidate the substantial changes in morphology and physiology that occur during larval attachment and metamorphosis but also identify potential targets for antifouling treatment. © 2011 American Chemical Society.

  7. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  8. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes.

    Science.gov (United States)

    Schwartz, Tonia S; Bronikowski, Anne M

    2013-02-01

    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H(2)O(2)); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes. © 2012 Blackwell Publishing Ltd.

  9. Molecular defects identified by whole exome sequencing in a child with Fanconi anemia.

    Science.gov (United States)

    Zheng, Zhaojing; Geng, Juan; Yao, Ru-En; Li, Caihua; Ying, Daming; Shen, Yongnian; Ying, Lei; Yu, Yongguo; Fu, Qihua

    2013-11-10

    Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia. © 2013 Elsevier B.V. All rights reserved.

  10. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.

    Science.gov (United States)

    Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd

    2013-12-20

    Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

  11. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    International Nuclear Information System (INIS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A.D.P.; Valsakumar, M.C.

    2017-01-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  12. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Warrier, M., E-mail: manoj.warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A.D.P., E-mail: adp_rao_99@yahoo.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Valsakumar, M.C., E-mail: mc.valsakumar@gmail.com [IIT Palakkad, Kozhippara P.O., Palakkad 678557, Kerala (India)

    2017-02-15

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  13. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    OpenAIRE

    Taïbi, Khaled; Campo, Antonio D. del; Vilagrosa Carmona, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of pre...

  14. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  15. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  16. New technique of identifying the hierarchy of dynamic domains in proteins using a method of molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Yesylevskyy S. O.

    2010-04-01

    Full Text Available Aim. Despite a large number of existing domain identification techniques there is no universally accepted method, which identifies the hierarchy of dynamic domains using the data of molecular dynamics (MD simulations. The goal of this work is to develop such technique. Methods. The dynamic domains are identified by eliminating systematic motions from MD trajectories recursively in a model-free manner. Results. The technique called the Hierarchical Domain-Wise Alignment (HDWA to identify hierarchically organized dynamic domains in proteins using the MD trajectories has been developed. Conclusion. A new method of domain identification in proteins is proposed

  17. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  18. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  19. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers.

    Science.gov (United States)

    Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  20. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Khaled Taïbi

    2017-07-01

    Full Text Available Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  1. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure.

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-17

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  2. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  3. Molecular marker to identify radiolarian species -toward establishment of paleo-environmental proxy-

    Science.gov (United States)

    Ishitani, Y.

    2017-12-01

    Marine fossilized unicellular plankton are known to have many genetically divergent species (biological species) in the single morphological species and these biological species show the species-specific environments much more precisely than that of morphological species. Among these plankton, Radiolaria are one of the best candidates for time- and environmental-indicators in the modern and past oceans, because radiolarians are the only group which represent entire water column from shallow to deep waters. However, the ecology and evolution of radiolarian were traditionally studied in paleontology and paleoceanography by morphological species. Even Radiolaria has a huge potential for novel proxy of wide and deep environments, there is no criterion to identify the biological species. The motivation for this study is setting the quantitative delimitation to establish the biological species of radiolarians based on molecular data, for leading the future ecological and paleo-environmental study. Identification of the biological species by ribosomal DNA sequences are mainly based on two ways: one is the evolutionary distance of the small subunit (SSU) rDNA, the internal transcribed spacer region of ribosomal DNA (ITS1 and 2), and the large subunit (LSU) rDNA; and the other is the secondary structure of ITS2. In the present study, all four possible genetic markers (SSU, ITS1, ITS2, and LSU rDNA) were amplified from 232 individuals of five radiolarian morphological species and applied to examine the evolutionary distance and secondary structure of rDNA. Comprehensive survey clearly shows that evolutionary distance of ITS1 rDNA and the secondary structure of ITS2 is good to identify the species. Notably, evolutionary distance of ITS1 rDNA is possible to set the common delimitation to identify the biological species, as 0.225 substitution per site. The results show that the ITS1 and ITS 2 rDNA could be the criterion for radiolarian species identification.

  4. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    Science.gov (United States)

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  5. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  6. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    Science.gov (United States)

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  8. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  9. Duodenoscope-Related Outbreak of a Carbapenem-Resistant Klebsiella pneumoniae Identified Using Advanced Molecular Diagnostics.

    Science.gov (United States)

    Humphries, Romney M; Yang, Shuan; Kim, Stephen; Muthusamy, Venkatara Raman; Russell, Dana; Trout, Alisa M; Zaroda, Teresa; Cheng, Quen J; Aldrovandi, Grace; Uslan, Daniel Zachary; Hemarajata, Peera; Rubin, Zachary Aaron

    2017-10-01

    Carbapenem-resistant Klebsiella pneumoniae infections are increasingly prevalent in North American hospitals. We describe an outbreak of carbapenem-resistant K. pneumoniae containing the blaOXA-232 gene transmitted by contaminated duodenoscopes during endoscopic retrograde cholangiopancreatography (ERCP) procedures. An outbreak investigation was performed when 9 patients with blaOXA-232 carbapenem-resistant K. pneumoniae infections were identified at a tertiary care hospital. The investigation included 2 case-control studies, review of duodenoscope reprocessing procedures, and culture of devices. Carbapenem-resistant Enterobacteriacieae (CRE) isolates were evaluated with polymerase chain reaction analysis for carbapenemase genes, and isolates with the blaOXA-232 gene were subjected to whole-genome sequencing and chromosome single-nucleotide polymorphism analysis. On recognition of ERCP as a key risk factor for infection, targeted patient notification and CRE screening cultures were performed. Molecular testing ultimately identified 17 patients with blaOxa-232 carbapenem-resistant K. pneumoniae isolates, including 9 with infections, 7 asymptomatic carriers who had undergone ERCP, and 1 additional patient who had been hospitalized in India and was probably the initial carrier. Two case-control studies established a point-source outbreak associated with 2 specific duodenoscopes. A field investigation of the use, reprocessing, and storage of deuodenoscopes did not identify deviations from US Food and Drug Administration or manufacturer recommendations for reprocessing. This outbreak demonstrated the previously underappreciated potential for duodenoscopes to transmit disease, even after undergoing high-level disinfection according to manufacturers' guidelines.

  10. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  11. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  12. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection.

    Science.gov (United States)

    Prasad, Shiv S; Russell, Marsha; Nowakowska, Margeryta; Williams, Andrew; Yauk, Carole

    2012-06-01

    Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways

  13. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    Science.gov (United States)

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  14. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    Science.gov (United States)

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  15. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Science.gov (United States)

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  16. Children's First Experience of Taking Anabolic-Androgenic Steroids can Occur before Their 10th Birthday: A Systematic Review Identifying 9 Factors That Predicted Doping among Young People

    Science.gov (United States)

    Nicholls, Adam R.; Cope, Ed; Bailey, Richard; Koenen, Katrin; Dumon, Detlef; Theodorou, Nikolaos C.; Chanal, Benoit; Saint Laurent, Delphine; Müller, David; Andrés, Mar P.; Kristensen, Annemarie H.; Thompson, Mark A.; Baumann, Wolfgang; Laurent, Jean-Francois

    2017-01-01

    Taking performance-enhancing drugs (PEDs) can cause serious and irreversible health consequences, which can ultimately lead to premature death. Some young people may take PEDs without fully understanding the ramifications of their actions or based on the advice from others. The purpose of this systematic review was to identify the main factors that predicted doping among young people. The literature was systematically reviewed using search engines, manually searching specialist journals, and pearl growing. Fifty-two studies, which included 187,288 young people aged between 10 and 21 years of age, 883 parents of adolescent athletes, and 11 adult coaches, who were interviewed regarding young athletes, were included in this review. Nine factors predicted doping among young people: gender; age; sports participation; sport type; psychological variables; entourage; ethnicity; nutritional supplements; and health harming behaviors. In regards to psychological variables, 22 different constructs were associated with doping among young people. Some psychological constructs were negatively associated with doping (e.g., self-esteem, resisting social pressure, and perfectionist strivings), whereas other were positively associated with doping (e.g., suicide risk, anticipated regret, and aggression). Policy makers and National Anti-Doping Organizations could use these findings to help identify athletes who are more at risk of doping and then expose these individuals to anti-doping education. Based on the current findings, it also appears that education programs should commence at the onset of adolescence or even late childhood, due to the young age in which some individuals start doping. PMID:28676778

  17. Children's First Experience of Taking Anabolic-Androgenic Steroids can Occur before Their 10th Birthday: A Systematic Review Identifying 9 Factors That Predicted Doping among Young People.

    Science.gov (United States)

    Nicholls, Adam R; Cope, Ed; Bailey, Richard; Koenen, Katrin; Dumon, Detlef; Theodorou, Nikolaos C; Chanal, Benoit; Saint Laurent, Delphine; Müller, David; Andrés, Mar P; Kristensen, Annemarie H; Thompson, Mark A; Baumann, Wolfgang; Laurent, Jean-Francois

    2017-01-01

    Taking performance-enhancing drugs (PEDs) can cause serious and irreversible health consequences, which can ultimately lead to premature death. Some young people may take PEDs without fully understanding the ramifications of their actions or based on the advice from others. The purpose of this systematic review was to identify the main factors that predicted doping among young people. The literature was systematically reviewed using search engines, manually searching specialist journals, and pearl growing. Fifty-two studies, which included 187,288 young people aged between 10 and 21 years of age, 883 parents of adolescent athletes, and 11 adult coaches, who were interviewed regarding young athletes, were included in this review. Nine factors predicted doping among young people: gender; age; sports participation; sport type; psychological variables; entourage; ethnicity; nutritional supplements; and health harming behaviors. In regards to psychological variables, 22 different constructs were associated with doping among young people. Some psychological constructs were negatively associated with doping (e.g., self-esteem, resisting social pressure, and perfectionist strivings), whereas other were positively associated with doping (e.g., suicide risk, anticipated regret, and aggression). Policy makers and National Anti-Doping Organizations could use these findings to help identify athletes who are more at risk of doping and then expose these individuals to anti-doping education. Based on the current findings, it also appears that education programs should commence at the onset of adolescence or even late childhood, due to the young age in which some individuals start doping.

  18. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    Science.gov (United States)

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  19. MelanomaDB: a Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways

    Directory of Open Access Journals (Sweden)

    Alexander Joseph Trevarton

    2013-07-01

    Full Text Available Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g. mutations in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html . A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research . This illustrates dysregulation of specific signalling pathways, both across 310 exome-sequenced melanomas and in individual tumours and identifies novel features about the distribution of somatic variants in melanoma. We suggest that this database can provide a context in which to interpret the tumour molecular profiles of individual melanoma patients relative to biological information and available

  20. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Miranda van Uitert

    Full Text Available Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite and protein-protein associations (STRING. This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome. The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300 and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  1. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  2. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  3. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders.

    Science.gov (United States)

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-10-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. © 2014 The British Pharmacological Society.

  4. Genomic, Epigenomic, and Transcriptomic Profiling towards Identifying Omics Features and Specific Biomarkers That Distinguish Uterine Leiomyosarcoma and Leiomyoma at Molecular Levels

    Directory of Open Access Journals (Sweden)

    Tomoko Miyata

    2015-01-01

    Full Text Available Uterine leiomyosarcoma (LMS is the worst malignancy among the gynecologic cancers. Uterine leiomyoma (LM, a benign tumor of myometrial origin, is the most common among women of childbearing age. Because of their similar symptoms, it is difficult to preoperatively distinguish the two conditions only by ultrasound and pelvic MRI. While histopathological diagnosis is currently the main approach used to distinguish them postoperatively, unusual histologic variants of LM tend to be misdiagnosed as LMS. Therefore, development of molecular diagnosis as an alternative or confirmatory means will help to diagnose LMS more accurately. We adopted omics-based technologies to identify genome-wide features to distinguish LMS from LM and revealed that copy number, gene expression, and DNA methylation profiles successfully distinguished these tumors. LMS was found to possess features typically observed in malignant solid tumors, such as extensive chromosomal abnormalities, overexpression of cell cycle-related genes, hypomethylation spreading through large genomic regions, and frequent hypermethylation at the polycomb group target genes and protocadherin genes. We also identified candidate expression and DNA methylation markers, which will facilitate establishing postoperative molecular diagnostic tests based on conventional quantitative assays. Our results demonstrate the feasibility of establishing such tests and the possibility of developing preoperative and noninvasive methods.

  5. Molecular markers for identifying a new selected variety of Pacific white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Yu, Yang; Zhang, Xiaojun; Liu, Jingwen; Li, Fuhua; Huang, Hao; Li, Yijun; Liu, Xiaolin; Xiang, Jianhai

    2015-01-01

    Selective breeding of the Pacific white shrimp Litopenaeus vannamei during the last decade has produced new varieties exhibiting high growth rates and disease resistance. However, the identification of new varieties of shrimps from their phenotypic characters is difficult. This study introduces a new approach for identifying varieties of shrimps using molecular markers of microsatellites and mitochondrial control region sequences. The method was employed to identify a new selected variety, Kehai No. 1 (KH-1), from three representative stocks (control group): Zhengda; Tongwei; and a stock collected from Fujian Province, which is now cultured in mainland China. By pooled genotyping of KH-1 and the control group, five microsatellites showing differences between KH-1 and the control group were screened out. Individual genotyping data confirmed the results from pooled genotyping. The genotyping data for the five microsatellites were applied to the assignment analysis of the KH-1 group and the control group using the partial Bayesian assignment method in GENECLASS2. By sequencing the mitochondrial control regions of individuals from the KH-1 and control group, four haplotypes were observed in the KH-1 group, whereas 14 haplotypes were obtained in the control group. By combining the microsatellite assignment analysis with mitochondrial control region analysis, the average accuracy of identification of individuals in the KH-1 group and control group reached 89%. The five selected microsatellite loci and mitochondrial control region sequences were highly polymorphic and could be used to distinguish new selected varieties of L. vannamei from other populations cultured in China.

  6. Molecular profiling of short-term and long-term surviving patients identifies CD34 mRNA level as prognostic for glioblastoma survival

    DEFF Research Database (Denmark)

    Michaelsen, Signe Regner; Urup, Thomas; Olsen, Lars Rønn

    2018-01-01

    Despite extensive treatment, overall survival (OS) for glioblastoma (GBM) remains poor. A small proportion of patients present long survival over 3 years, but the underlying molecular background separating these long-term survivors (LTS) from short-term survivors (STS) are insufficiently understood....... Accordingly, study aim was to identify independent prognostic biomarkers for survival. Study cohort consisted of 93 primary GBM patients treated with radiation-, chemo- and bevacizumab therapy, among which 14 STS (OS ≤ 12 months) and 6 LTS (OS ≥ 36 months) were identified, all confirmed being IDH wild......-type. RNA expression levels in diagnostic tumor specimen for 792 genes were analyzed by NanoString technology. While no differences were found with regard to GBM subtype between LTS versus STS, comparative analysis of individual genes identified 14 significantly differently expressed candidate genes...

  7. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    Science.gov (United States)

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  8. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    Science.gov (United States)

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  9. Molecular genetic studies in Saudi population; identified variants from GWAS and meta-analysis in stroke.

    Science.gov (United States)

    Alharbi, Khalid Khalaf; Ali Khan, Imran; Alotaibi, Mohammad Abdullah; Saud Aloyaid, Abdullah; Al-Basheer, Haifa Abdulaziz; Alghamdi, Naelah Abdullah; Al-Baradie, Raid Saleem; Al-Sulaiman, A M

    2018-01-01

    Stroke is a multifactorial and heterogeneous disorder, correlates with heritability and considered as one of the major diseases. The prior reports performed the variable models such as genome-wide association studies (GWAS), replication, case-control, cross-sectional and meta-analysis studies and still, we lack diagnostic marker in the global world. There are limited studies were carried out in Saudi population, and we aim to investigate the molecular association of single nucleotide polymorphisms (SNPs) identified through GWAS and meta-analysis studies in stroke patients in the Saudi population. In this case-control study, we have opted gender equality of 207 cases and 207 controls from the capital city of Saudi Arabia in King Saud University Hospital. The peripheral blood (5 ml) sample will be collected in two different vacutainers, and three mL of the coagulated blood will be used for lipid analysis (biochemical tests) and two mL will be used for DNA analysis (molecular tests). Genomic DNA will be extracted with the collected blood samples, and specific primers will be designed for the opted SNPs ( SORT1 -rs646218 and OLR1 -rs11053646 polymorphisms) and PCR-RFLP will be performed and randomly DNA sequencing will be carried out to cross check the results. The rs646218 and rs11053646 polymorphisms were significantly associated with allele, genotype and dominant models with and without crude odds ratios (OR's) and Multiple logistic regression analysis (p Saudi population. The current results were in the association with the prior study results documented through GWAS and meta-analysis association. However, other ethnic population studies should be performed to rule out in the human hereditary diseases.

  10. Children's First Experience of Taking Anabolic-Androgenic Steroids can Occur before Their 10th Birthday: A Systematic Review Identifying 9 Factors That Predicted Doping among Young People

    Directory of Open Access Journals (Sweden)

    Adam R. Nicholls

    2017-06-01

    Full Text Available Taking performance-enhancing drugs (PEDs can cause serious and irreversible health consequences, which can ultimately lead to premature death. Some young people may take PEDs without fully understanding the ramifications of their actions or based on the advice from others. The purpose of this systematic review was to identify the main factors that predicted doping among young people. The literature was systematically reviewed using search engines, manually searching specialist journals, and pearl growing. Fifty-two studies, which included 187,288 young people aged between 10 and 21 years of age, 883 parents of adolescent athletes, and 11 adult coaches, who were interviewed regarding young athletes, were included in this review. Nine factors predicted doping among young people: gender; age; sports participation; sport type; psychological variables; entourage; ethnicity; nutritional supplements; and health harming behaviors. In regards to psychological variables, 22 different constructs were associated with doping among young people. Some psychological constructs were negatively associated with doping (e.g., self-esteem, resisting social pressure, and perfectionist strivings, whereas other were positively associated with doping (e.g., suicide risk, anticipated regret, and aggression. Policy makers and National Anti-Doping Organizations could use these findings to help identify athletes who are more at risk of doping and then expose these individuals to anti-doping education. Based on the current findings, it also appears that education programs should commence at the onset of adolescence or even late childhood, due to the young age in which some individuals start doping.

  11. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    Science.gov (United States)

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering

  12. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders

    Science.gov (United States)

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-01-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)–amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC–amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC–amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC–amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC–amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  13. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  14. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    International Nuclear Information System (INIS)

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-01-01

    Research highlights: → We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. → 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. → 12 Gy induced significant histopathologic changes and cellular apoptosis. → 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this is an important first

  15. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p 0.05, 21 (five VGI, five VGII, four VGIII and seven VGIV were less virulent (p <0.05 while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001. No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05. The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature, that maybe crucial for the development and progression of cryptococcosis.

  16. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation

    Directory of Open Access Journals (Sweden)

    Ashvin Iyer

    2017-10-01

    Full Text Available Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD, a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

  17. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase\\/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such

  18. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. ApoE4-specific Misfolded Intermediate Identified by Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Benfeard Williams

    2015-10-01

    Full Text Available The increased risk of developing Alzheimer's disease (AD is associated with the APOE gene, which encodes for three variants of Apolipoprotein E, namely E2, E3, E4, differing only by two amino acids at positions 112 and 158. ApoE4 is known to be the strongest risk factor for AD onset, while ApoE3 and ApoE2 are considered to be the AD-neutral and AD-protective isoforms, respectively. It has been hypothesized that the ApoE isoforms may contribute to the development of AD by modifying the homeostasis of ApoE physiological partners and AD-related proteins in an isoform-specific fashion. Here we find that, despite the high sequence similarity among the three ApoE variants, only ApoE4 exhibits a misfolded intermediate state characterized by isoform-specific domain-domain interactions in molecular dynamics simulations. The existence of an ApoE4-specific intermediate state can contribute to the onset of AD by altering multiple cellular pathways involved in ApoE-dependent lipid transport efficiency or in AD-related protein aggregation and clearance. We present what we believe to be the first structural model of an ApoE4 misfolded intermediate state, which may serve to elucidate the molecular mechanism underlying the role of ApoE4 in AD pathogenesis. The knowledge of the structure for the ApoE4 folding intermediate provides a new platform for the rational design of alternative therapeutic strategies to fight AD.

  20. Molecular outflows in the L1641 region of Orion

    International Nuclear Information System (INIS)

    Morgan, J.A.

    1990-01-01

    Little is known about the interaction between molecular outflows associated with young stellar objects and the parent molecular cloud that produced them. This is because molecular outflows are a recently discovered phenomenon and, so, have not had their global properties studied in great detail and molecular clouds were not mapped to sufficiently high spatial resolution to resolve the interaction. The interaction between molecular outflows and the L1641 molecular cloud is addressed by both identifying and mapping all the molecular outflows as well as the detailed structure of the cloud. Candidate molecular outflows were found from single point 12-CO observations of young stellar objects identified from the IRAS survey data. The candidate sources were then mapped to confirm their molecular outflow nature. From these maps, molecular outflow characteristics such as their morphology, orientation, and energetics were determined. In addition, the Orion molecular cloud was mapped to compare directly with the molecular outflows. The molecular outflows identified were found to have rising infrared spectra, radio continuum emission that suggests a stellar wind or optically thick H II region, and molecular line strengths that indicate that they are embedded within a very dense environment. The lack of an optical counterpart for many molecular outflows suggests that they occur at the earliest stages of stellar evolution. The lack of an optical counterpart for many molecular outflows suggest that they occur at the earliest stages of stellar evolution. The orientations of the molecular outflows appear to lie in no preferred direction and they have shapes that indicate that the molecular cloud is responsible for determining their direction and collimation

  1. Molecular Imaging to Identify Tumor Recurrence following Chemoradiation in a Hostile Surgical Environment

    Directory of Open Access Journals (Sweden)

    Olugbenga T. Okusanya

    2015-01-01

    Full Text Available Surgical biopsy of potential tumor recurrence is a common challenge facing oncologists, surgeons, and cancer patients. Imaging modalities have limited ability to accurately detect recurrent cancer in fields affected by previous surgery, chemotherapy, or radiation. However, definitive tissue diagnosis is often needed to initiate treatment and to direct therapy. We sought to determine if a targeted fluorescent intraoperative molecular imaging technique could be applied in a clinical setting to assist a surgical biopsy in a “hostile” field. We describe the use of a folate-fluorescein conjugate to direct the biopsy of a suspected recurrent lung adenocarcinoma invading the mediastinum that had been previously treated with chemoradiation. We found that intraoperative imaging allowed the identification of small viable tumor deposits that were otherwise indistinguishable from scar and necrosis. Our operative observations were confirmed by histology, fluorescence microscopy, and immunohistochemistry. Our results demonstrate one possible application and clinical value of intraoperative molecular imaging.

  2. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Deodutta Roy

    2015-10-01

    Full Text Available We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs, bisphenols (BPs, and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors.

  3. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  4. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  5. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  6. Evaluation of serological and molecular tests used to identify Toxoplasma gondii infection in pregnant women attended in a public health service in São Paulo state, Brazil.

    Science.gov (United States)

    Murata, Fernando Henrique Antunes; Ferreira, Marina Neves; Pereira-Chioccola, Vera Lucia; Spegiorin, Lígia Cosentino Junqueira Franco; Meira-Strejevitch, Cristina da Silva; Gava, Ricardo; Silveira-Carvalho, Aparecida Perpétuo; de Mattos, Luiz Carlos; Brandão de Mattos, Cinara Cássia

    2017-09-01

    Toxoplasmosis during pregnancy can have severe consequences. The use of sensitive and specific serological and molecular methods is extremely important for the correct diagnosis of the disease. We compared the ELISA and ELFA serological methods, conventional PCR (cPCR), Nested PCR and quantitative PCR (qPCR) in the diagnosis of Toxoplasma gondii infection in pregnant women without clinical suspicion of toxoplasmosis (G1=94) and with clinical suspicion of toxoplasmosis (G2=53). The results were compared using the Kappa index, and the sensitivity, specificity, positive predictive value and negative predictive value were calculated. The results of the serological methods showed concordance between the ELISA and ELFA methods even though ELFA identified more positive cases than ELISA. Molecular methods were discrepant with cPCR using B22/23 primers having greater sensitivity and lower specificity compared to the other molecular methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Molecular imaging: current status and emerging strategies

    International Nuclear Information System (INIS)

    Pysz, M.A.; Gambhir, S.S.; Willmann, J.K.

    2010-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.

  8. Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp. through GC–MS and molecular docking

    Directory of Open Access Journals (Sweden)

    Deepu Mathew

    2017-12-01

    Full Text Available Molecular mechanism behind the therapeutic potential of pigeon pea over the human diseases such as rheumatoid arthritis, breast cancer, type II diabetes, malaria, measles and sickle cell disease were revealed through docking of GC–MS identified phyto-compound ligands with candidate disease proteins. Of the 242 ligands, three dimensional structures of 47 compounds had to be drawn using ChemSketch and the remaining structures were retrieved from PubChem and docked with the active sites of candidate proteins. The molecules identified through docking were further subjected to ADMET analysis and promising drug candidates were identified for each disease. This paper presents a precise account of the chemoprofile of pigeon pea leaves, stems and seeds, interaction of these molecules with target proteins and suggests 26 highly potential molecules which are drug candidates for multiple human diseases. Pigeon pea seeds are especially proven as invaluable source for therapeutic molecules. Keywords: Breast cancer, Drug discovery, Herbal medicine, In silico, Malaria, Measles, Phyto-compounds, Rheumatoid arthritis, Sickle cell disease, Type II diabetes

  9. Molecular profiling of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin

    2017-01-01

    . Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could......INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor...... be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise...

  10. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  11. Molecular pathology of bone tumours: diagnostic implications.

    Science.gov (United States)

    Puls, Florian; Niblett, Angela J; Mangham, D Chas

    2014-03-01

    Alongside histomorphology and immunohistochemistry, molecular pathology is now established as one of the cornerstones in the tissue diagnosis of bone tumours. We describe the principal molecular pathological techniques employed, and each of the bone tumour entities where their identified characteristic molecular pathological changes can be detected to support and confirm the suspected histological diagnosis. Tumours discussed include fibrous dysplasia, classical and subtype osteosarcomas, central and surface cartilaginous tumours, Ewing's sarcoma, vascular tumours, aneurysmal bone cyst, chordoma, myoepithelioma, and angiomatoid fibrous histiocytoma. This is a rapidly evolving field with discoveries occurring every few months, and some of the newer entities (the Ewing's-like sarcomas), which are principally identified by their molecular pathology characteristics, are discussed. © 2013 John Wiley & Sons Ltd.

  12. Patient safety: culture eats strategy for breakfast.

    Science.gov (United States)

    Halligan, Aidan

    2011-10-01

    'One morning recently, a professor conducted a ward round on an elderly medicine ward in a London teaching hospital. The entourage stopped at an 82-year-old man's bed. The elderly patient was confused and so, unfortunately, was the junior doctor who presented the case.

  13. Bringing molecules back into molecular evolution.

    Directory of Open Access Journals (Sweden)

    Claus O Wilke

    Full Text Available Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.

  14. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate....... The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  15. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, Rikke L. V.; Oettinger, Thomas; Rosenkrands, Ida

    2000-01-01

    . The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P, B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  16. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  17. Molecular Foundry

    Science.gov (United States)

    . New Study Indicates Greater Capacity for Carbon Storage in the Earth's Subsurface A team of Foundry minerals which make up the dominant clays in the Earth's deep subsurface. Doubling Down on Energy Storage identify molecular components within small volumes of biological samples, such as blood or urine. Industry

  18. Fungal peroxidases : molecular aspects and applications

    NARCIS (Netherlands)

    Conesa, A.; Punt, P.J.; Hondel, C.A.M.J.J.

    2002-01-01

    Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this

  19. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer

    NARCIS (Netherlands)

    Wang, Kai; Yuen, Siu Tsan; Xu, Jiangchun; Lee, Siu Po; Yan, Helen H N; Shi, Stephanie T; Siu, Hoi Cheong; Deng, Shibing; Chu, Kent Man; Law, Simon; Chan, Kok Hoe; Chan, Annie S Y; Tsui, Wai Yin; Ho, Siu Lun; Chan, Anthony K W; Man, Jonathan L K; Foglizzo, Valentina; Ng, Man Kin; Chan, April S; Ching, Yick Pang; Cheng, Grace H W; Xie, Tao; Fernandez, Julio; Li, Vivian S W; Clevers, Hans; Rejto, Paul A; Mao, Mao; Leung, Suet Yi

    Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and

  20. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  1. Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Ibata, R.; Murdin, P.

    2000-11-01

    The Sagittarius DWARF GALAXY is the closest member of the Milky Way's entourage of satellite galaxies. Discovered by chance in 1994, its presence had previously been overlooked because it is largely hidden by the most crowded regions of our own Galaxy with which it is merging....

  2. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  3. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  4. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    Science.gov (United States)

    Lupo, Giuseppe; Nisi, Paola S; Esteve, Pilar; Paul, Yu-Lee; Novo, Clara Lopes; Sidders, Ben; Khan, Muhammad A; Biagioni, Stefano; Liu, Hai-Kun; Bovolenta, Paola; Cacci, Emanuele; Rugg-Gunn, Peter J

    2018-06-01

    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease.

    Science.gov (United States)

    Reppe, Sjur; Datta, Harish K; Gautvik, Kaare M

    2017-08-01

    The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Healthcare waste management: qualitative and quantitative appraisal of nurses in a tertiary care hospital of India.

    Science.gov (United States)

    Shivalli, Siddharudha; Sanklapur, Vasudha

    2014-01-01

    The nurse's role in healthcare waste management is crucial. (1) To appraise nurses quantitatively and qualitatively regarding healthcare waste management; (2) to elicit the determinants of knowledge and attitudes of healthcare waste management. A cross-sectional study was undertaken at a tertiary care hospital of Mangalore, India. Self-administered pretested questionnaire and "nonparticipatory observation" were used for quantitative and qualitative appraisals. Percentage knowledge score was calculated based on their total knowledge score. Nurses' knowledge was categorized as excellent (>70%), good (50-70%), and poor (70% score). Most (86%) expressed the need of refresher training. No study variable displayed significant association (P > 0.05) with knowledge. Apt segregation practices were followed except in casualty. Patients and entourages misinterpreted the colored containers. Nurses' knowledge and healthcare waste management practices were not satisfactory. There is a need of refresher trainings at optimum intervals to ensure sustainability and further improvement. Educating patients and their entourages and display of segregation information board in local language are recommended.

  7. Interpreting closed-loop learning control of molecular fragmentation in terms of wave-packet dynamics and enhanced molecular ionization

    International Nuclear Information System (INIS)

    Cardoza, David; Baertschy, Mark; Weinacht, Thomas

    2005-01-01

    We interpret a molecular fragmentation experiment using shaped, ultrafast laser pulses in terms of enhanced molecular ionization during dissociation. A closed-loop learning control experiment was performed to maximize the CF 3 + /CH 3 + production ratio in the dissociative ionization of CH 3 COCF 3 . Using ab inito molecular structure calculations and quasistatic molecular ionization calculations along with data from pump-probe experiments, we identify the primary control mechanism which is quite general and should be applicable to a broad class of molecules

  8. Molecular packing in 1-hexanol-DMPC bilayers studied by molecular dynamics simulation

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Westh, P.

    2007-01-01

    The structure and molecular packing density of a “mismatched” solute, 1-hexanol, in lipid membranes of dimyristoyl phosphatidylcholine (DMPC) was studied by molecular dynamics simulations. We found that the average location and orientation of the hexanol molecules matched earlier experimental data...... on comparable systems. The local density or molecular packing in DMPC–hexanol was elucidated through the average Voronoi volumes of all heavy (non-hydrogen) atoms. Analogous analysis was conducted on trajectories from simulations of pure 1-hexanol and pure (hydrated) DMPC bilayers. The results suggested...... of the alcohol upon partitioning and an even stronger loosening in the packing of the lipid. Furthermore, analysis of Voronoi volumes along the membrane normal identifies a distinctive depth dependence of the changes in molecular packing. The outer (interfacial) part of the lipid acyl chains (up to C8...

  9. Quasi-molecular states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Kubono, S.; Ikeda, N.; Nomura, T.

    1988-08-01

    Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)

  10. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  11. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV. While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector.

  12. A review of molecular biomarkers for bladder cancer | Miakhil ...

    African Journals Online (AJOL)

    Background: Numerous molecular markers for bladder cancer have been identified and investigated with various laboratory techniques. Molecular markers are isolated from tissue, serum and urine. They fall into proteomic, genetic and epigenetic categories. Some of molecular markers show promising results in terms of ...

  13. Array-based molecular karyotyping in 115 VATER/VACTERL and VATER/VACTERL-like patients identifies disease-causing copy number variations.

    Science.gov (United States)

    Zhang, Rong; Marsch, Florian; Kause, Franziska; Degenhardt, Franziska; Schmiedeke, Eeberhard; Märzheuser, Stefanie; Hoppe, Bernd; Bachour, Haitham; Boemers, Thomas M; Schäfer, Matthias; Spychalski, Nicole; Neser, Jörg; Leonhardt, Johannes; Kosch, Ferdinand; Ure, Benno; Gómez, Barbara; Lacher, Martin; Deffaa, Oliver J; Palta, Markus; Wittekindt, Boris; Kleine, Katharina; Schmedding, Andrea; Grasshoff-Derr, Sabine; Ven, Amelie van der; Heilmann-Heimbach, Stefanie; Zwink, Nadine; Jenetzky, Ekkehart; Ludwig, Michael; Reutter, Heiko

    2017-07-17

    The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CF): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia, renal malformations (R), and limb defects (L). Patients presenting with at least three CFs are diagnosed as having VATER/VACTERL association while patients presenting with only two CFs are diagnosed as having VATER/VACTERL-like phenotypes. Recently, rare causative copy number variations (CNVs) have been identified in patients with VATER/VACTERL association and VATER/VACTERL-like phenotypes. To detect further causative CNVs we performed array based molecular karyotyping in 75 VATER/VACTERL and 40 VATER/VACTERL-like patients. Following the application of stringent filter criteria, we identified 13 microdeletions and seven microduplications in 20 unrelated patients all of which were absent in 1,307 healthy inhouse controls (n microdeletion at 17q12 was confirmed to be de novo. Three microdeletions at 5q23.1, 16q23.3, 22q11.21, and one microduplication at 10q11.21 were all absent in the available parent. Microdeletion of chromosomal region 22q11.21 was previously found in VATER/VACTERL patients rendering it to be causative in our patient. The remaining 15 CNVs were inherited from a healthy parent. In two of 115 patients' causative CNVs were found (2%). The remaining identified rare CNVs represent candidates for further evaluation. Rare inherited CNVs may constitute modifiers of, or contributors to, multifactorial VATER/VACTERL or VATER/VACTERL-like phenotypes. Birth Defects Research 109:1063-1069, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  15. Molecular signatures define two main classes of meningiomas

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2007-10-01

    Full Text Available Abstract Background Meningiomas are common brain tumors that are classified into three World Health Organization grades (benign, atypical and malignant and are molecularly ill-defined tumors. The purpose of this study was identify molecular signatures unique to the different grades of meningiomas and to unravel underlying molecular mechanisms driving meningioma tumorigenesis. Results We have used a combination of gene expression microarrays and array comparative genomic hybridization (aCGH to show that meningiomas of all three grades fall into two main molecular groups designated 'low-proliferative' and 'high-proliferative' meningiomas. While all benign meningiomas fall into the low-proliferative group and all malignant meningiomas fall into the high-proliferative group, atypical meningiomas distribute into either one of these groups. High-proliferative atypical meningiomas had an elevated median MIB-1 labeling index and a greater frequency of copy number aberrations (CNAs compared to low-proliferative atypical meningiomas. Additionally, losses on chromosome 6q, 9p, 13 and 14 were found exclusively in the high-proliferative meningiomas. We have identified genes that distinguish benign low-proliferative meningiomas from malignant high-proliferative meningiomas and have found that gain of cell-proliferation markers and loss of components of the transforming growth factor-beta signaling pathway were the major molecular mechanisms that distinguish these two groups. Conclusion Collectively, our data suggests that atypical meningiomas are not a molecularly distinct group but are similar to either benign or malignant meningiomas. It is anticipated that identified molecular and CNA markers will potentially be more accurate prognostic markers of meningiomas.

  16. [Molecular heterogeneity of malignant pleural mesotheliomas].

    Science.gov (United States)

    Tranchant, Robin; Montagne, François; Jaurand, Marie-Claude; Jean, Didier

    2018-01-01

    Malignant pleural mesothelioma (MPM) is predominantly an occupational cancer, most often linked to asbestos exposure. Malignant pleural mesothelioma prognosis is poor with a short survival median, due to the aggressiveness of tumor cells and the weak efficiency of conventional anti-cancer therapies. Clinical, histological, and molecular data suggest tumor heterogeneity between patients as it was also shown for other cancer types. Consequently, there is an urgent need to develop new therapies that take into account this heterogeneity and the molecular characteristics of malignant pleural mesothelioma, in particular by identifying new anti-cancer drugs targeting the molecular specificities of each malignant pleural mesothelioma. Malignant pleural mesothelioma is characterized by numerous molecular alterations at the chromosomal, genetic and epigenetic levels. Molecular classification based on gene expression profile has firstly defined two tumor groups, C1 and C2, and more recently, four groups. By integrating genetic and transcriptomic analysis, a C2 LN tumor subgroup of the C2 group has been identified and characterized. In addition to tumor heterogeneity between patients, intra-tumor heterogeneity is supported by several evidences. Most therapeutic strategies that take into account the tumor molecular characteristics have focused on targeted therapies based on mutated genes. A more appropriate strategy would be to consider better-defined tumor groups on the basis of several molecular alterations types as it has been proposed for the C2 LN subgroup. A robust definition of homogeneous tumor groups sharing common molecular characteristics is necessary for the development of effective precision medicine for malignant pleural mesothelioma. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Molecular radio-oncology

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils

    2016-01-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  18. Molecular radio-oncology

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils (eds.) [Technische Univ. Dresden (Germany). Faculty of Medicine and University Hospital

    2016-07-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  19. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  20. Molecular pathology and thyroid FNA.

    Science.gov (United States)

    Poller, D N; Glaysher, S

    2017-12-01

    This review summarises molecular pathological techniques applicable to thyroid FNA. The molecular pathology of thyroid tumours is now fairly well understood. Molecular methods may be used as a rule-in test for diagnosis of malignancy in thyroid nodules, eg BRAF V600E point mutation, use of a seven-gene mutational panel (BRAF V600E, RAS genes, RET/PTC or PAX8/PPARG rearrangement), or as a comprehensive multigene next-generation sequencing panel, eg ThyroSeq v2. Molecular methods can also be applied as rule-out tests for malignancy in thyroid nodules, eg Afirma or ThyroSeq v2 or as markers of prognosis, eg TERT promoter mutation or other gene mutations including BRAF V600E, TP53 and AKT1, and as tests for newly defined tumour entities such as non-invasive follicular thyroid neoplasm with papillary like nuclei, or as a molecular marker(s) for targeted therapies. This review describes practical examples of molecular techniques as applied to thyroid FNA in routine clinical practice and the value of molecular diagnostics in thyroid FNA. It describes the range of molecular abnormalities identified in thyroid nodules and thyroid cancers with some practical applications of molecular methods to diagnosis and prognosis of thyroid nodules and thyroid cancer. © 2017 John Wiley & Sons Ltd.

  1. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  2. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome

    Directory of Open Access Journals (Sweden)

    Beleut Manfred

    2012-07-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach. Methods We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor groups by means of Single Nuclear Polymorphism (SNP technology. Finally, the achieved results were immunohistochemically analyzed using a tissue microarray (TMA composed of 254 RCC. Results We found robust, genome wide expression signatures, which split RCC into three distinct molecular subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis with group-specific markers showed a prognostic significance of the different groups. Conclusion We propose the existence of characteristic and histologically independent genome-wide expression outputs in RCC with potential biological and clinical relevance.

  3. Molecular subtyping of cancer: current status and moving toward clinical applications.

    Science.gov (United States)

    Zhao, Lan; Lee, Victor H F; Ng, Michael K; Yan, Hong; Bijlsma, Maarten F

    2018-04-12

    Cancer is a collection of genetic diseases, with large phenotypic differences and genetic heterogeneity between different types of cancers and even within the same cancer type. Recent advances in genome-wide profiling provide an opportunity to investigate global molecular changes during the development and progression of cancer. Meanwhile, numerous statistical and machine learning algorithms have been designed for the processing and interpretation of high-throughput molecular data. Molecular subtyping studies have allowed the allocation of cancer into homogeneous groups that are considered to harbor similar molecular and clinical characteristics. Furthermore, this has helped researchers to identify both actionable targets for drug design as well as biomarkers for response prediction. In this review, we introduce five frequently applied techniques for generating molecular data, which are microarray, RNA sequencing, quantitative polymerase chain reaction, NanoString and tissue microarray. Commonly used molecular data for cancer subtyping and clinical applications are discussed. Next, we summarize a workflow for molecular subtyping of cancer, including data preprocessing, cluster analysis, supervised classification and subtype characterizations. Finally, we identify and describe four major challenges in the molecular subtyping of cancer that may preclude clinical implementation. We suggest that standardized methods should be established to help identify intrinsic subgroup signatures and build robust classifiers that pave the way toward stratified treatment of cancer patients.

  4. Gender Identification in Date Palm Using Molecular Markers.

    Science.gov (United States)

    Awan, Faisal Saeed; Maryam; Jaskani, Muhammad J; Sadia, Bushra

    2017-01-01

    Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.

  5. TCGA study identifies genomic features of cervical cancer

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have identified novel genomic and molecular characteristics of cervical cancer that will aid in subclassification of the disease and may help target therapies that are most appropriate for each patient.

  6. Gene hunting: molecular analysis of the chicken genome

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.

    2000-01-01

    This dissertation describes the development of molecular tools to identify genes that are involved in production and health traits in poultry. To unravel the chicken genome, fluorescent molecular markers (microsatellite markers) were developed and optimized to perform high throughput

  7. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  8. [Prognostic and predictive molecular markers for urologic cancers].

    Science.gov (United States)

    Hartmann, A; Schlomm, T; Bertz, S; Heinzelmann, J; Hölters, S; Simon, R; Stoehr, R; Junker, K

    2014-04-01

    Molecular prognostic factors and genetic alterations as predictive markers for cancer-specific targeted therapies are used today in the clinic for many malignancies. In recent years, many molecular markers for urogenital cancers have also been identified. However, these markers are not clinically used yet. In prostate cancer, novel next-generation sequencing methods revealed a detailed picture of the molecular changes. There is growing evidence that a combination of classical histopathological and validated molecular markers could lead to a more precise estimation of prognosis, thus, resulting in an increasing number of patients with active surveillance as a possible treatment option. In patients with urothelial carcinoma, histopathological factors but also the proliferation of the tumor, mutations in oncogenes leading to an increasing proliferation rate and changes in genes responsible for invasion and metastasis are important. In addition, gene expression profiles which could distinguish aggressive tumors with high risk of metastasis from nonmetastasizing tumors have been recently identified. In the future, this could potentially allow better selection of patients needing systemic perioperative treatment. In renal cell carcinoma, many molecular markers that are associated with metastasis and survival have been identified. Some of these markers were also validated as independent prognostic markers. Selection of patients with primarily organ-confined tumors and increased risk of metastasis for adjuvant systemic therapy could be clinically relevant in the future.

  9. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  10. Molecular characterisation of sinonasal carcinomas and their clinical implications.

    Science.gov (United States)

    López, Fernando; Llorente, José Luis; Costales, María; García-Inclán, Cristina; Pérez-Escuredo, Jhudit; Alvarez-Marcos, César; Hermsen, Mario; Suárez, Carlos

    2013-01-01

    Sinonasal carcinomas are rare tumours with an unfavourable prognosis whose management is difficult and complex, leading to high morbidity and mortality despite improvements in the field of surgery and radiotherapy. An elevated number of these tumours can be attributed to occupational exposure. In comparison with other head and neck malignancies, studies of molecular changes in these tumours are infrequent. This review was focused on findings about the epidemiology and molecular and phenotypic characterisation of sinonasal carcinomas, which can potentially be useful for diagnosis and treatment. The increasing knowledge about the molecular biology that underlies their carcinogenesis may help to identify precursor lesions, prognostic markers and markers that predict chemoradiotherapy response and, finally, to identify potential molecular targets that will expand treatment options. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  11. Utilizing Endoscopic Ultrasound-Guided Fine Needle Aspiration in Identifying Molecular Targets for Pancreatic Cancer

    OpenAIRE

    Onyekachi Henry Ogbonna; Muhammad Wasif Saif

    2013-01-01

    Pancreatic cancer remains a devastating disease, with poor survival rates and high recurrence rates with current treatmentregimens. Over the years we have come to understand the complex biology of this cancer, involving cross-talking signalingpathways that proffers resistance to current therapy. Several molecularly targeted agents remain in development. At the2013 American Society of Clinical Oncology (ASCO) Annual Meeting, an abstract (#4051) was presented which exploredusing endoscopic ultr...

  12. Hidden diversity and evolutionary trends in malacosporean parasites (Cnidaria: Myxozoa) identified using molecular phylogenetics

    Czech Academy of Sciences Publication Activity Database

    Bartošová, Pavla; Hrabcová, M.; Pecková, Hana; Patra, Sneha; Kodádková, Alena; Jurajda, Pavel; Tyml, Tomáš; Holzer, Astrid S.

    2014-01-01

    Roč. 44, č. 8 (2014), s. 565-577 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GPP506/11/P724; GA ČR GBP505/12/G112; GA AV ČR(CZ) M200961205 Institutional support: RVO:60077344 ; RVO:68081766 Keywords : Buddenbrockia * Tetracapsuloides * diversity * phylogeny * Bryozoa * fish * cryptic * worm Subject RIV: EB - Genetics ; Molecular Biology; EG - Zoology (UBO-W) Impact factor: 3.872, year: 2014

  13. Issues in identifying germ tube positive yeasts by conventional methods.

    Science.gov (United States)

    Yazdanpanah, Atta; Khaithir, Tzar Mohd Nizam

    2014-01-01

    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details. © 2013 Wiley Periodicals, Inc.

  14. Informing Antibiotic Treatment Decisions: Evaluating Rapid Molecular Diagnostics To Identify Susceptibility and Resistance to Carbapenems against Acinetobacter spp. in PRIMERS III.

    Science.gov (United States)

    Evans, Scott R; Hujer, Andrea M; Jiang, Hongyu; Hill, Carol B; Hujer, Kristine M; Mediavilla, Jose R; Manca, Claudia; Tran, Thuy Tien T; Domitrovic, T Nicholas; Higgins, Paul G; Seifert, Harald; Kreiswirth, Barry N; Patel, Robin; Jacobs, Michael R; Chen, Liang; Sampath, Rangarajan; Hall, Thomas; Marzan, Christine; Fowler, Vance G; Chambers, Henry F; Bonomo, Robert A

    2017-01-01

    The widespread dissemination of carbapenem-resistant Acinetobacter spp. has created significant therapeutic challenges. At present, rapid molecular diagnostics (RMDs) that can identify this phenotype are not commercially available. Two RMD platforms, PCR combined with electrospray ionization mass spectrometry (PCR/ESI-MS) and molecular beacons (MB), for detecting genes conferring resistance/susceptibility to carbapenems in Acinetobacter spp. were evaluated. An archived collection of 200 clinical Acinetobacter sp. isolates was tested. Predictive values for susceptibility and resistance were estimated as a function of susceptibility prevalence and were based on the absence or presence of beta-lactamase (bla) NDM, VIM, IMP, KPC, and OXA carbapenemase genes (e.g., bla OXA-23 , bla OXA-24/40 , and bla OXA-58 found in this study) against the reference standard of MIC determinations. According to the interpretation of MICs, 49% (n = 98) of the isolates were carbapenem resistant (as defined by either resistance or intermediate resistance to imipenem). The susceptibility sensitivities (95% confidence interval [CI]) for imipenem were 82% (74%, 89%) and 92% (85%, 97%) for PCR/ESI-MS and MB, respectively. Resistance sensitivities (95% CI) for imipenem were 95% (88%, 98%) and 88% (80%, 94%) for PCR/ESI-MS and MB, respectively. PRIMERS III establishes that RMDs can discriminate between carbapenem resistance and susceptibility in Acinetobacter spp. In the context of a known prevalence of resistance, SPVs and RPVs can inform clinicians regarding the best choice for empiric antimicrobial therapy against this multidrug-resistant pathogen. Copyright © 2016 American Society for Microbiology.

  15. White piedra: molecular identification of Trichosporon inkin in members of the same family.

    Science.gov (United States)

    Richini-Pereira, Virgínia Bodelão; Camargo, Rosângela Maria Pires de; Bagagli, Eduardo; Marques, Silvio Alencar

    2012-06-01

    White piedra is a superficial mycosis caused by the genus Trichosporon and characterized by nodules on hair shaft. The authors report a family referred to as pediculosis. Mycological culture on Mycosel® plus molecular identification was performed to precisely identify the etiology. A Trichosporon spp. infection was revealed. The molecular procedure identified the agent as Trichosporon inkin. White piedra and infection caused by T. inkin are rarely reported in Southern Brazil. The molecular tools are essentials on identifying the Trichosporon species.

  16. Galactosemia: A strategy to identify new biochemical phenotypes and molecular genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Langley, S.; Steele, E.; Evinger, J.; Brown, A.; Singh, R.; Fernhoff, P.; Hjelm, L.N.; Dembure, P.P.; Fridovich-Keil, J.L. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We describe a stratagem for identifying new mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. GALT enzyme activity and isoforms were defined in erythrocytes from probands and their first-degree relatives. If the biochemical phenotypes segregated in an autosomal recesssive pattern, we screened for common mutations by using multiplex PCR and restriction endonuclease digestions. If common mutant alleles were not present, the 11 exons of the GALT gene were amplified by PCR, and variations from the normal nucleotide sequences were identified by SSCP. The suspected region(s) was then analyzed by direct DNA sequencing. We identified 86 mutant GALT alleles that reduced erythrocyte GALT activity. Seventy-five of these GALT genomes had abnormal SSCP patterns, of which 41 were sequenced, yielding 12 new and 21 previously reported, rare mutations. Among the novel group of 12 new mutations, an unusual biochemical phenotype was found in a family whose newborn proband has classical galactosemia. He had inherited two mutations in cis (N314D-E204K) from his father, whose GALT activity was near normal, and an additional GALT mutation in the splice-acceptor site of intron C (IVSC) from his mother. The substitution of a positively charged E204K mutation created a unique isoform-banding pattern. An asymptomatic sister`s GALT genes carries three mutations (E203K-N314D/N314D) with eight distinct isoform bands. Surprisingly, her erythrocytes have normal GALT activity. We conclude that the synergism of pedigree, biochemical, SSCP, and direct GALT gene analyses is an efficient protocol for identifying new mutations and speculate that E203K and N314D codon changes produce intra-allelic complementation when in cis. 40 refs., 4 figs., 3 tabs.

  17. Approche socio-culturelle de l'epilepsie en Cote d'Ivoire | Boa Yapo ...

    African Journals Online (AJOL)

    Contexte En Afrique, l'épileptique est encore trop souvent stigmatisé, du fait de la méconnaissance de la maladie et des croyances surnaturelles ou mystiques. Objectif Analyser la connaissance et la perception de l'épilepsie par l'entourage proche des personnes épileptiques suivies en milieu hospitalier neurologique, afin ...

  18. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  19. Healthcare Waste Management: Qualitative and Quantitative Appraisal of Nurses in a Tertiary Care Hospital of India

    Directory of Open Access Journals (Sweden)

    Siddharudha Shivalli

    2014-01-01

    Full Text Available Background. The nurse’s role in healthcare waste management is crucial. Objectives. (1 To appraise nurses quantitatively and qualitatively regarding healthcare waste management; (2 to elicit the determinants of knowledge and attitudes of healthcare waste management. Method. A cross-sectional study was undertaken at a tertiary care hospital of Mangalore, India. Self-administered pretested questionnaire and “nonparticipatory observation” were used for quantitative and qualitative appraisals. Percentage knowledge score was calculated based on their total knowledge score. Nurses’ knowledge was categorized as excellent (>70%, good (50–70%, and poor (70% score. Most (86% expressed the need of refresher training. No study variable displayed significant association (P>0.05 with knowledge. Apt segregation practices were followed except in casualty. Patients and entourages misinterpreted the colored containers. Conclusion. Nurses’ knowledge and healthcare waste management practices were not satisfactory. There is a need of refresher trainings at optimum intervals to ensure sustainability and further improvement. Educating patients and their entourages and display of segregation information board in local language are recommended.

  20. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  1. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  2. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  3. Red blood cell phenotype prevalence in blood donors who self-identify as Hispanic

    DEFF Research Database (Denmark)

    Sheppard, Chelsea A; Bolen, Nicole L; Eades, Beth

    2017-01-01

    CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non-Hispanic ......CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non...

  4. Molecular cytogenetic characterization of a new wheat Secale ...

    Indian Academy of Sciences (India)

    A stable, highly fertile wheat Secale africanum substitution line LF24, derived from the F7 generation of a cross between Mianyang11 (MY11) and Triticum durum, S. africanum amphiploid (YF) was identified through molecular cytogenetic analysis. Application of C-banding, in situ hybridization and molecular markers ...

  5. Failure to End the Kivu Conflict: Is Rwanda’s Security and Stability at Stake?

    Science.gov (United States)

    2011-12-16

    faculty: Mr. Dave Seigel, Mr. Bill Latham, Mr. Gene King, Dr. Randy Mullis, and Lt Col White. My thanks also go out to my colleagues of Staff Group 2A who...ruled by the “Mafia- 17 type” organizations serving the selfish interests of Mobutu and his entourage, he continues to say. The same view is

  6. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients.

    Science.gov (United States)

    Bonnet, Crystel; Riahi, Zied; Chantot-Bastaraud, Sandra; Smagghe, Luce; Letexier, Mélanie; Marcaillou, Charles; Lefèvre, Gaëlle M; Hardelin, Jean-Pierre; El-Amraoui, Aziz; Singh-Estivalet, Amrit; Mohand-Saïd, Saddek; Kohl, Susanne; Kurtenbach, Anne; Sliesoraityte, Ieva; Zobor, Ditta; Gherbi, Souad; Testa, Francesco; Simonelli, Francesca; Banfi, Sandro; Fakin, Ana; Glavač, Damjan; Jarc-Vidmar, Martina; Zupan, Andrej; Battelino, Saba; Martorell Sampol, Loreto; Claveria, Maria Antonia; Catala Mora, Jaume; Dad, Shzeena; Møller, Lisbeth B; Rodriguez Jorge, Jesus; Hawlina, Marko; Auricchio, Alberto; Sahel, José-Alain; Marlin, Sandrine; Zrenner, Eberhart; Audo, Isabelle; Petit, Christine

    2016-12-01

    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.

  7. Molecular diagnostics to identify fungal plant pathogens – A review of current methods

    OpenAIRE

    Bernreiter, Andreas

    2017-01-01

    La siguiente revisión ofrece una visión amplia de los métodos actuales utilizados para la identificación de hongos fitopatógenos. Además, se presentan estudios previos centrados en patógenos relevantes para el Ecuador y una breve discusión sobre el futuro del diagnóstico en fitopatología. En la actualidad, las herramientas de diagnóstico que aplican biología molecular se basan en la tecnología de reacción en cadena de la polimerasa (PCR). Se presenta una selección de tecnologías basadas en PC...

  8. Molecular diagnostics of myeloproliferative neoplasms.

    Science.gov (United States)

    Langabeer, Stephen E; Andrikovics, Hajnalka; Asp, Julia; Bellosillo, Beatriz; Carillo, Serge; Haslam, Karl; Kjaer, Lasse; Lippert, Eric; Mansier, Olivier; Oppliger Leibundgut, Elisabeth; Percy, Melanie J; Porret, Naomi; Palmqvist, Lars; Schwarz, Jiri; McMullin, Mary F; Schnittger, Susanne; Pallisgaard, Niels; Hermouet, Sylvie

    2015-10-01

    Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations, and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future play an increasing role in the molecular diagnosis of MPN. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Molecular and Conventional Analysis of Acute Diarrheal Isolates Identifies Epidemiological Trends, Antibiotic Resistance and Virulence Profiles of Common Enteropathogens in Shanghai

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2018-02-01

    Full Text Available Objective: To investigate prevalence of acute diarrhea in Shanghai and analyze virulence associated-genes and antibiotic resistance of major enteropathogens using combination of conventional and molecular epidemiology methods.Method: The 412 stool specimens were obtained by systematic sampling from diarrhea patients throughout entire year 2016. Bacterial and viral pathogens were identified and bacterial isolates were cultured and screened for antibiotic resistance profiles. Two most prevalent bacteria, Vibrio parahaemolyticus and Salmonella were further typed by multi-locus sequence typing (MLST and analyzed for presence of virulence-associated genes. The association between virulence genes, resistance phenotypes and genetic diversities was analyzed.Results: Among stool specimens testing positive for pathogens (23.1%, 59 bacterial and 36 viral pathogens were identified. V. parahaemolyticus (27/412, 6.6%, Salmonella (23/412, 5.6% and norovirus GII (21/412, 5.1% were three most-commonly found. Most bacterial isolates exhibited high levels of antibiotic resistance with high percentage of MDR. The drug resistance rates of V. parahaemolyticus and Salmonella isolates to cephalosporins were high, such as 100.0 and 34.8% to CFX, 55.6 and 43.4% to CTX, 92.6 and 95.7% to CXM, respectively. The most common resistance combination of V. parahaemolyticus and Salmonella was cephalosporins and quinolone. The dominant sequence types (STs of V. parahaemolyticus and Salmonella were ST3 (70.4% and ST11 (43.5%, respectively. The detection rates of virulence genes in V. parahaemolyticus were tlh (100% and tdh (92.6%, without trh and ureR. Most of the Salmonella isolates were positive for the Salmonella pathogenicity islands (SPIs genes (87–100%, and some for Salmonella plasmid virulence (SPV genes (34.8% for spvA and spvB, 43.5% for spvC. In addition, just like the drug resistance, virulence genes exhibited wide-spread distribution among the different STs albeit

  10. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  11. Molecular dynamics modeling of polymer flammability

    International Nuclear Information System (INIS)

    Nyden, M.R.; Brown, J.E.; Lomakin, S.M.

    1992-01-01

    Molecular dynamic simulations were used to identify factors which promote char formation during the thermal degradation of polymers. Computer movies based on these simulations, indicate that cross-linked model polymers tend to undergo further cross-linking when burned, eventually forming a high molecular weight, thermally stable char. This paper reports that the prediction was confirmed by char yield measurements made on γ and e - -irradiated polyethylene and chemically cross-linked poly(methyl methacrylate)

  12. Molecular Gas toward the Gemini OB1 Molecular Cloud Complex. II. CO Outflow Candidates with Possible WISE Associations

    Science.gov (United States)

    Li, Yingjie; Li, Fa-Cheng; Xu, Ye; Wang, Chen; Du, Xin-Yu; Yang, Wenjin; Yang, Ji

    2018-03-01

    We present a large-scale survey of CO outflows in the Gem OB1 molecular cloud complex and its surroundings, using the Purple Mountain Observatory Delingha 13.7 m telescope. A total of 198 outflow candidates were identified over a large area (∼58.5 square degrees), of which 193 are newly detected. Approximately 68% (134/198) are associated with the Gem OB1 molecular cloud complex, including clouds GGMC 1, GGMC 2, BFS 52, GGMC 3, and GGMC 4. Other regions studied are: the Local arm (Local Lynds, West Front), Swallow, Horn, and Remote cloud. Outflow candidates in GGMC 1, BFS 52, and Swallow are mainly located at ring-like or filamentary structures. To avoid excessive uncertainty in distant regions (≳3.8 kpc), we only estimated the physical parameters for clouds in the Gem OB1 molecular cloud complex and in the Local arm. In those clouds, the total kinetic energy and the energy injection rate of the identified outflow candidates are ≲1% and ≲3% of the turbulent energy and the turbulent dissipation rate of each cloud, indicating that the identified outflow candidates cannot provide enough energy to balance turbulence of their host cloud at the scale of the entire cloud (several to dozens of parsecs). The gravitational binding energy of each cloud is ≳135 times the total kinetic energy of the identified outflow candidates within the corresponding cloud, indicating that the identified outflow candidates cannot cause major disruptions to the integrity of their host cloud at the scale of the entire cloud.

  13. Guidelines on the use of molecular genetics in reintroduction programs

    Science.gov (United States)

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  14. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L

  15. A Phylogenomic Census of Molecular Functions Identifies Modern Thermophilic Archaea as the Most Ancient Form of Cellular Life

    Directory of Open Access Journals (Sweden)

    Arshan Nasir

    2014-01-01

    Full Text Available The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.

  16. A phylogenomic census of molecular functions identifies modern thermophilic archaea as the most ancient form of cellular life.

    Science.gov (United States)

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2014-01-01

    The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.

  17. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    Science.gov (United States)

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics

  18. Diet of pumas (Puma concolor) in Sonora, Mexico, as determined by GPS kill sites and molecular identified scat, with comments on jaguar (Panthera onca) diet

    Science.gov (United States)

    Cassaigne, Ivonne; Medellin, Rodrigo A.; Thompson, Ron W.; Culver, Melanie; Ochoa, Alexander; Vargas, Karla; Childs, Jack L.; Sanderson, Jim; List, Rurik; Torres-Gomez, Armando

    2016-01-01

    We documented puma (Puma concolor) and jaguar (Panthera onca) prey consumption in northeastern Sonora, Mexico, by investigating global positioning system cluster sites (n = 220), and conducting molecular analyses of scat (n = 116) collected between 2011 and 2013. We used camera trap data (n = 8,976 camera days) to estimate relative abundances of pumas and jaguars. Deer (Odocoileus virginianus) was the most frequent prey for puma found at kill sites (67%) and identified from scat (74%), although based on relative numbers of prey consumed, deer represented 45% and lagomorphs 20% of the proportion of all individuals eaten. A variety of small prey (weighing Sonora.

  19. Nõela all : Igakuine vinüülitutvustus / DJ Drummie

    Index Scriptorium Estoniae

    DJ Drummie

    1999-01-01

    Plaatidest Sandy Rivera feat. LT Brown "Come Into My Room", Deep Sensation "Somehow, Shomewhere (Soul Heaven)", Brothers of Soul "Eyes of Love", Dr.Gary Henry "'Faith", Royal Palm "Hecho En Inglaterra", La Cellule "Sweet Entourage EP", Antonio "Hyperfunk", DJ Paco & Terry Laird feat. MC Adrian "M.U.G. EP vol 1", DJ Brockie & Ed Solo "Represents/Shodown", Fresh and Vegas "Otto's Way/ Heatwave"

  20. El Monasterio de Valbuena de Duero (Valladolid: la decoración manierista de su Claustro bajo

    Directory of Open Access Journals (Sweden)

    Arias Martínez, Manuel

    1997-03-01

    Full Text Available The Cistercian monastery located in Valbuena de Duero, Valladolid, boats well-preserved wall painting remains in the lower cloister. A number of Jesus Christ passion scenes situated by the vault ornamentation, suggest the existence of an outstanding group of artists settled in Valladolid by the late XVIth century and connected to the royal entourage and the Italian fashion.No disponible

  1. A historical vignette (20). A royal otitis.

    Science.gov (United States)

    Tainmont, J

    2010-01-01

    A royal otitis. The young king of France, Francis II, the eldest son of Henry II and Catherine de Medici, died in Orleans from the effects of the complications of a chronic otitis on 6 December 1560. Based on texts of the time, the paper discusses the nature of the illness, the treatment, and the medical and political entourage of the king.

  2. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma.

    Science.gov (United States)

    Gajjala, Prathibha R; Jankowski, Vera; Heinze, Georg; Bilo, Grzegorz; Zanchetti, Alberto; Noels, Heidi; Liehn, Elisa; Perco, Paul; Schulz, Anna; Delles, Christian; Kork, Felix; Biessen, Erik; Narkiewicz, Krzysztof; Kawecka-Jaszcz, Kalina; Floege, Juergen; Soranna, Davide; Zidek, Walter; Jankowski, Joachim

    2017-08-01

    Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R 2 was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, P hypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, P hypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension. © 2017 American Heart Association, Inc.

  3. The molecular basis of hereditary enamel defects in humans.

    Science.gov (United States)

    Wright, J T; Carrion, I A; Morris, C

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for

  4. The Molecular Basis of Hereditary Enamel Defects in Humans

    Science.gov (United States)

    Carrion, I.A.; Morris, C.

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004

  5. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    Science.gov (United States)

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  6. Molecular clouds without detectable CO

    International Nuclear Information System (INIS)

    Blitz, L.; Bazell, D.; Desert, F.X.

    1990-01-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to be an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase 18 refs

  7. Investigation of pollutant gases with molecular absorption spectroscopy

    International Nuclear Information System (INIS)

    Izairi, N; Ajredini, F.; Shehabi, M.

    2011-01-01

    This paper contains the molecular absorption spectroscopic investigation on environmental pollution by many pollutants. For this purpose a laser absorption spectroscopy at 630 nm wavelength has been applied to excite the molecular spectra in order to identify the presence of main gas pollutants. The following was the experimental procedure. Preliminary the presence of pollutants was identified. The gas champions were taken in live environment, in Tetovo streets where cars moved, and in some points in Tetovo suburbia, during different periods of the day. A special civet, part of the apparatus, has been filled by environmental air, and latter, put into the apparatus. A laser beam pulse passes throughout absorbing gas medium in the civet to excite the gas, and the absorbing spectra were automatically registered. The molecular band spectra registration has been performed by an FT-IR Spectrometer (Spectrum BX FT-IR Perkin Elmer). For this purpose the measurements were focused in spectral region of 2075 cm -1 to 2384 cm -1 for CO 2 and CO bands investigation. The importance of such measurements is to investigate the spectral properties of absorption spectra and molecular structure, and for monitoring the environmental pollution. (Author)

  8. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.

    Science.gov (United States)

    Lu, Shunwen; Edwards, Michael C

    2018-04-01

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.

  9. A combination of molecular markers and clinical features improve the classification of pancreatic cysts.

    Science.gov (United States)

    Springer, Simeon; Wang, Yuxuan; Dal Molin, Marco; Masica, David L; Jiao, Yuchen; Kinde, Isaac; Blackford, Amanda; Raman, Siva P; Wolfgang, Christopher L; Tomita, Tyler; Niknafs, Noushin; Douville, Christopher; Ptak, Janine; Dobbyn, Lisa; Allen, Peter J; Klimstra, David S; Schattner, Mark A; Schmidt, C Max; Yip-Schneider, Michele; Cummings, Oscar W; Brand, Randall E; Zeh, Herbert J; Singhi, Aatur D; Scarpa, Aldo; Salvia, Roberto; Malleo, Giuseppe; Zamboni, Giuseppe; Falconi, Massimo; Jang, Jin-Young; Kim, Sun-Whe; Kwon, Wooil; Hong, Seung-Mo; Song, Ki-Byung; Kim, Song Cheol; Swan, Niall; Murphy, Jean; Geoghegan, Justin; Brugge, William; Fernandez-Del Castillo, Carlos; Mino-Kenudson, Mari; Schulick, Richard; Edil, Barish H; Adsay, Volkan; Paulino, Jorge; van Hooft, Jeanin; Yachida, Shinichi; Nara, Satoshi; Hiraoka, Nobuyoshi; Yamao, Kenji; Hijioka, Susuma; van der Merwe, Schalk; Goggins, Michael; Canto, Marcia Irene; Ahuja, Nita; Hirose, Kenzo; Makary, Martin; Weiss, Matthew J; Cameron, John; Pittman, Meredith; Eshleman, James R; Diaz, Luis A; Papadopoulos, Nickolas; Kinzler, Kenneth W; Karchin, Rachel; Hruban, Ralph H; Vogelstein, Bert; Lennon, Anne Marie

    2015-11-01

    The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. ARID1B alterations identify aggressive tumors in neuroblastoma.

    Science.gov (United States)

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  11. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  12. Quasi-molecular processes in dense plasmas

    International Nuclear Information System (INIS)

    Younger, S.M.

    1991-01-01

    Quasi-molecular phenomena occur in dense plasmas when the interatomic spacing is comparable to the characteristic wavelength of the electrons. If the electronic states are bound, covalent orbitals arise with different excitation energies, radiative rates, and collisional rates than for isolated ions. For continuum electrons, charge localization near transient clusters of nuclei can influence many scattering and transport processes. We identify several novel consequences of quasi-molecular phenomena in plasmas and give a possible explanation of high energy features associated with helium-like emissions lines observed in recent inertial fusion experiments. 7 refs

  13. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    G6PD) deficiency among staff and students of a university community in Malaysia as well as to identify molecular genetics by determination of G6PD mutations. Methods: Cross-sectional and experimental studies were carried out on the staff ...

  14. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    Science.gov (United States)

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  15. Molecular studies of achondroplasia

    Directory of Open Access Journals (Sweden)

    Nahar Risha

    2009-01-01

    Full Text Available Background: Achondroplasia (ACH is the most frequent form of short-limbed dwarfi sm, caused by mutations in the FGFR3 gene. It follows an autosomal dominant inheritance, though most cases are sporadic. The molecular techniques are the only available methods to confi rm the diagnosis of a skeletal dysplasia. Clinical and radiological features are only suggestive and not confi rmatory. The present study was conducted to fi nd out how often the clinical diagnosis of achondroplasia is verifi ed on molecular studies. Materials and Methods: From 1998 through 2007, we carried out molecular analysis for the two common mutations in the FGFR3 gene in 130 cases clinically suspected to have ACH. Results: A diagnostic mutation was identifi ed in 53 (40.8% cases. The common mutation (1138G>A was present in 50 (94.7% of the positive cases, while the rare 1138 G>C substitution was found in three (5.3%. Conclusion: This study shows that confi rmation of clinical diagnosis of ACH by molecular genetic testing is essential to distinguish it from other skeletal dysplasias, to plan therapeutic options, and to offer genetic counseling. Management (medical and surgical in patients confi rmed to have ACH, is briefl y discussed.

  16. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Lionel Kankeu Fonkoua

    2018-03-01

    Full Text Available Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC. Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2 amplification and programmed death-ligand 1 (PD-L1 expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS on molecular profile (MP-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

  17. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets.

    Science.gov (United States)

    Kankeu Fonkoua, Lionel; Yee, Nelson S

    2018-03-09

    Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC). Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2) amplification and programmed death-ligand 1 (PD-L1) expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

  18. Basal gene expression by lung CD4+ T cells in chronic obstructive pulmonary disease identifies independent molecular correlates of airflow obstruction and emphysema extent.

    Directory of Open Access Journals (Sweden)

    Christine M Freeman

    Full Text Available Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry; by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent. Aberrant lung CD4+ T cells polarization appears to be common in advanced

  19. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  20. First human rabies case in French Guiana, 2008: epidemiological investigation and control.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Meynard

    Full Text Available BACKGROUND: Until 2008, human rabies had never been reported in French Guiana. On 28 May 2008, the French National Reference Center for Rabies (Institut Pasteur, Paris confirmed the rabies diagnosis, based on hemi-nested polymerase chain reaction on skin biopsy and saliva specimens from a Guianan, who had never travelled overseas and died in Cayenne after presenting clinically typical meningoencephalitis. METHODOLOGY/PRINCIPAL FINDINGS: Molecular typing of the virus identified a Lyssavirus (Rabies virus species, closely related to those circulating in hematophagous bats (mainly Desmodus rotundus in Latin America. A multidisciplinary Crisis Unit was activated. Its objectives were to implement an epidemiological investigation and a veterinary survey, to provide control measures and establish a communications program. The origin of the contamination was not formally established, but was probably linked to a bat bite based on the virus type isolated. After confirming exposure of 90 persons, they were vaccinated against rabies: 42 from the case's entourage and 48 healthcare workers. To handle that emergence and the local population's increased demand to be vaccinated, a specific communications program was established using several media: television, newspaper, radio. CONCLUSION/SIGNIFICANCE: This episode, occurring in the context of a Department far from continental France, strongly affected the local population, healthcare workers and authorities, and the management team faced intense pressure. This observation confirms that the risk of contracting rabies in French Guiana is real, with consequences for population educational program, control measures, medical diagnosis and post-exposure prophylaxis.

  1. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  2. Molecular interaction of PCB153 to human serum albumin: Insights from spectroscopic and molecular modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao; Fang, Senbiao; Cao, Huiming; Lu, Yan; Ma, Yaqiong [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Wei, Dongfeng [Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Xie, Xiaoyun [College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000 (China); Liu, Xiaohua [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Xin [College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003 (China); Fei, Dongqing [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Zhao, Chunyan, E-mail: zhaochy07@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    Highlights: ► We identify the binding mode of PCB153 to human serum albumin (HSA). ► Spectroscopic and molecular modeling results reveal that PCB153 binds at the site II. ► The interaction is mainly governed by hydrophobic and hydrogen bond forces. ► The work helps to probe transporting, distribution and toxicity effect of PCBs. -- Abstract: Polychlorinated biphenyls (PCBs) possessed much potential hazard to environment because of its chemical stability and biological toxicity. Here, we identified the binding mode of a representative compound, PCB153, to human serum albumin (HSA) using fluorescence and molecular dynamics simulation methods. The fluorescence study showed that the intrinsic fluorescence of HSA was quenched by addition of PCB153 through a static quenching mechanism. The thermodynamic analysis proved the binding behavior was mainly governed by hydrophobic force. Furthermore, as evidenced by site marker displacement experiments using two probe compounds, it revealed that PCB153 acted exactly on subdomain IIIA (site II) of HSA. On the other hand, the molecular dynamics studies as well as free energy calculations made another important contribution to understand the conformational changes of HSA and the stability of HSA-PCB153 system. Molecular docking revealed PCB153 can bind in a large hydrophobic activity of subdomain IIIA by the hydrophobic interaction and hydrogen bond interactions between chlorine atoms and residue ASN391. The present work provided reasonable models helping us further understand the transporting, distribution and toxicity effect of PCBs when it spread into human blood serum.

  3. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2015-02-01

    Full Text Available Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR. Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC, a nucleotide binding (NB-ARC and a leucine rich repeat (LRR domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  4. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Science.gov (United States)

    Wang, Guan-Feng; Ji, Jiabing; El-Kasmi, Farid; Dangl, Jeffery L; Johal, Guri; Balint-Kurti, Peter J

    2015-02-01

    Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  5. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends.

    Directory of Open Access Journals (Sweden)

    José Ramos-Castañeda

    2017-01-01

    Full Text Available Dengue, the predominant arthropod-borne viral disease affecting humans, is caused by one of four distinct serotypes (DENV-1, -2, -3 or -4. A literature analysis and review was undertaken to describe the molecular epidemiological trends in dengue disease and the knowledge generated in specific molecular topics in Latin America, including the Caribbean islands, from 2000 to 2013 in the context of regional trends in order to identify gaps in molecular epidemiological knowledge and future research needs. Searches of literature published between 1 January 2000 and 30 November 2013 were conducted using specific search strategies for each electronic database that was reviewed. A total of 396 relevant citations were identified, 57 of which fulfilled the inclusion criteria. All four dengue virus serotypes were present and co-circulated in many countries over the review period (with the predominance of individual serotypes varying by country and year. The number of countries in which more than one serotype circulated steadily increased during the period under review. Molecular epidemiology data were found for Argentina, Bolivia, Brazil, the Caribbean region, Colombia, Ecuador, Mexico and Central America, Paraguay, Peru and Venezuela. Distinct lineages with different dynamics were found in each country, with co-existence, extinction and replacement of lineages occurring over the review period. Despite some gaps in the literature limiting the possibility for comparison, our review has described the molecular epidemiological trends of dengue infection. However, several gaps in molecular epidemiological information across Latin America and the Caribbean were identified that provide avenues for future research; in particular, sequence determination of the dengue virus genome is important for more precise phylogenetic classification and correlation with clinical outcome and disease severity.

  6. New Features of Molecular Diagnostics of Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    A.S. Volkov

    2016-03-01

    Full Text Available The purpose of this study was to search for new molecular markers for the diagnosis of ulcerative colitis (UC. The study included 65 patients (range from 22 to 35 years, 24 men and 41 women with left-sided UC (Montréal classification, mild and moderate activity, infrequent (≤1/year relapses according to the inclusion/exclusion criteria in the research. Criteria of the diagnosis of UC corresponded to ECCO Consensus [11]. The duration of UC was 5.3 years. The control group included 30 healthy individuals. Molecular phenotyping of colon mucosa was processed with methods of proteomics. The data of the molecular interactions were received with STRING 10.0 database. Potentially new molecular markers of the development of UC were identified.

  7. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  8. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  9. Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

    Science.gov (United States)

    Chemical features observed using high-resolution mass spectrometry can be tentatively identified using online chemical reference databases by searching molecular formulae and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria. The most li...

  10. Molecular Features of Humic Acids and Fulvic Acids from Contrasting Environments

    NARCIS (Netherlands)

    Schellekens, Judith; Buurman, Peter; Kalbitz, Karsten; Zomeren, van Andre; Vidal-Torrado, Pablo; Cerli, Chiara; Comans, Rob N.J.

    2017-01-01

    Insight in the molecular structure of humic acid (HA) and fulvic acid (FA) can contribute to identify relationships between their molecular properties, and further our quantitative abilities to model important organic matter functions such as metal complexation and association with mineral

  11. Molecular characterization of PCN populations from Serbia

    Directory of Open Access Journals (Sweden)

    Oro Violeta

    2012-01-01

    Full Text Available The morphology of potato cyst nematodes (PCN was until recently almost the only way to identify these quarantine organisms. In the last two decades, molecular analyses contributed to faster and more efficient identification of two Globodera species (Globodera pallida and G. rostochiensis and allowed insight into the genetic structure of those parts that were practically inaccessible by morphological studies. Molecular characterization was performed in ITS1-5.8S-ITS2 region. The comparison was made with sequences of different foreign PCN populations via NCBI GenBank database. The results of molecular studies showed similarities and differences between local and foreign PCN populations in the part of genome that was studied.

  12. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.

    Science.gov (United States)

    Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman

    2018-02-06

    Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.

  13. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY HEPATITIS E VIRUS IN WATER

    Science.gov (United States)

    Hepatitis E virus (HEV) causes an infectious form of hepatitis associated with contaminated water. By analyzing the sequence of several HEV isolates, a reverse transciption-polymerase chain reaction method was developed and optimized that should be able to identify all of the kn...

  14. Screening disrupted molecular functions and pathways associated with clear cell renal cell carcinoma using Gibbs sampling.

    Science.gov (United States)

    Nan, Ning; Chen, Qi; Wang, Yu; Zhai, Xu; Yang, Chuan-Ce; Cao, Bin; Chong, Tie

    2017-10-01

    To explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling. Gene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes. In this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway - oxidative phosphorylation. We identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA

    DEFF Research Database (Denmark)

    Malmström, Helena; Svensson, Emma M; Gilbert, M Thomas P

    2007-01-01

    concerning the authenticity of such data. Although several methods have been developed to the purpose of authenticating ancient DNA (aDNA) results, while they are useful in faunal research, most of the methods have proven complicated to apply to ancient human DNA. Here, we investigate in detail...... the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing...

  16. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    Science.gov (United States)

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2018-06-01

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding  = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  17. Molecular biology applications to infectious diseases diagnostic; Aplicaciones de la Biologica Molecular al diagnostico de enfermedades infecciosas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus.

  18. A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

    NARCIS (Netherlands)

    Berger, Ashton C.; Korkut, Anil; Kanchi, Rupa S.; Hegde, Apurva M.; Lenoir, Walter; Liu, Wenbin; Liu, Yuexin; Fan, Huihui; Shen, Hui; Ravikumar, Visweswaran; Rao, Arvind; Schultz, Andre; Li, Xubin; Sumazin, Pavel; Williams, Cecilia; Mestdagh, Pieter; Gunaratne, Preethi H.; Yau, Christina; Bowlby, Reanne; Robertson, A. Gordon; Tiezzi, Daniel G.; Wang, Chen; Cherniack, Andrew D.; Godwin, Andrew K.; Kuderer, Nicole M.; Rader, Janet S.; Zuna, Rosemary E.; Sood, Anil K.; Lazar, Alexander J.; Ojesina, Akinyemi I.; Adebamowo, Clement; Adebamowo, Sally N.; Baggerly, Keith A.; Chen, Ting Wen; Chiu, Hua Sheng; Lefever, Steve; Liu, Liang; MacKenzie, Karen; Orsulic, Sandra; Roszik, Jason; Shelley, Carl Simon; Song, Qianqian; Vellano, Christopher P.; Wentzensen, Nicolas; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Weinstein, John N.; Mills, Gordon B.; Levine, Douglas A.; Akbani, Rehan

    2018-01-01

    We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations

  19. Molecular modeling in the development of metal radiopharmaceuticals

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-10-01

    We began this project with a compilation of a structural library to serve as a data base containing descriptions of the molecular features of metal-labeled radiopharmaceuticals known to efficiently cross the blood-brain barrier. Such a data base is needed in order to identify structural features (size, shape, molecular surface areas and volumes) that are critical in allowing blood-brain barrier penetration. Nine metal complexes have been added to this structural library. We have completed a detailed comparison of four molecular mechanics computer programs QUANTA, SYBYL, BOYD, and MM2DREW to assess their applicability to modeling the structures of low molecular weight metal complexes. We tested the ability of each program to reproduce the crystallographic structures of 38 complexes between nickel(II) and saturated N-donor ligands. The programs were evaluated in terns of their ability to reproduce structural features such as bond lengths, bond angles, and torsion angles. Recently, we investigated the synthesis and characterization of lipophilic cationic gallium complexes with hexadentate bis(salicylaldimine) ligands. This work identified the first gallium-68 radiopharrnaceuticals that can be injected intravenously and that subsequently exhibit significant myocardial uptake followed by prolonged myocardial retention of 68 Ga radioactivity. Tracers of this type remain under investigation as agents for evaluation of myocardial perfusion with positron emission tomography

  20. PCR-based karyotyping of Anopheles gambiae inversion 2Rj identifies the BAMAKO chromosomal form

    Directory of Open Access Journals (Sweden)

    Conway David J

    2007-10-01

    Full Text Available Abstract Background The malaria vector Anopheles gambiae is polymorphic for chromosomal inversions on the right arm of chromosome 2 that segregate nonrandomly between assortatively mating populations in West Africa. One such inversion, 2Rj, is associated with the BAMAKO chromosomal form endemic to southern Mali and northern Guinea Conakry near the Niger River. Although it exploits a unique ecology and both molecular and chromosomal data suggest reduced gene flow between BAMAKO and other A. gambiae populations, no molecular markers exist to identify this form. Methods To facilitate study of the BAMAKO form, a PCR assay for molecular karyotyping of 2Rj was developed based on sequences at the breakpoint junctions. The assay was extensively validated using more than 700 field specimens whose karyotypes were determined in parallel by cytogenetic and molecular methods. As inversion 2Rj also occurs in SAVANNA populations outside the geographic range of BAMAKO, samples were tested from Senegal, Cameroon and western Guinea Conakry as well as from Mali. Results In southern Mali, where 2Rj polymorphism in SAVANNA populations was very low and most of the 2Rj homozygotes were found in BAMAKO karyotypes, the molecular and cytogenetic methods were almost perfectly congruent. Elsewhere agreement between the methods was much poorer, as the molecular assay frequently misclassified 2Rj heterozygotes as 2R+j standard homozygotes. Conclusion Molecular karyotyping of 2Rj is robust and accurate on 2R+j standard and 2Rj inverted homozygotes. Therefore, the proposed approach overcomes the lack of a rapid tool for identifying the BAMAKO form across developmental stages and sexes, and opens new perspectives for the study of BAMAKO ecology and behaviour. On the other hand, the method should not be applied for molecular karyotyping of j-carriers within the SAVANNA chromosomal form.

  1. Global Microbial Identifier

    DEFF Research Database (Denmark)

    Wielinga, Peter; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2017-01-01

    ) will likely also enable a much better understanding of the pathogenesis of the infection and the molecular basis of the host response to infection. But the full potential of these advances will only transpire if the data in this area become transferable and thereby comparable, preferably in open-source...... of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect outbreaks and emerging pathogens. To harness the full potential of WGS, a shared global database of genomes linked to relevant metadata and the necessary software tools needs to be generated, hence the global...... microbial identifier (GMI) initiative. This tool will ideally be used in amongst others in the diagnosis of infectious diseases in humans and animals, in the identification of microorganisms in food and environment, and to track and trace microbial agents in all arenas globally. This will require...

  2. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  3. Prognostic value of Ki-67 index in adult medulloblastoma after accounting for molecular subgroup: a retrospective clinical and molecular analysis.

    Science.gov (United States)

    Zhao, Fu; Zhang, Jing; Li, Peng; Zhou, Qiangyi; Zhang, Shun; Zhao, Chi; Wang, Bo; Yang, Zhijun; Li, Chunde; Liu, Pinan

    2018-04-23

    Medulloblastoma (MB) is a rare primary brain tumor in adults. We previously evaluated that combining both clinical and molecular classification could improve current risk stratification for adult MB. In this study, we aimed to identify the prognostic value of Ki-67 index in adult MB. Ki-67 index of 51 primary adult MBs was reassessed using a computer-based image analysis (Image-Pro Plus). All patients were followed up ranging from 12 months up to 15 years. Gene expression profiling and immunochemistry were used to establish the molecular subgroups in adult MB. Combined risk stratification models were designed based on clinical characteristics, molecular classification and Ki-67 index, and identified by multivariable Cox proportional hazards analysis. In our cohort, the mean Ki-67 value was 30.0 ± 11.3% (range 6.56-63.55%). The average Ki-67 value was significantly higher in LC/AMB than in CMB and DNMB (P = .001). Among three molecular subgroups, Group 4-tumors had the highest average Ki-67 value compared with WNT- and SHH-tumors (P = .004). Patients with Ki-67 index large than 30% displayed poorer overall survival (OS) and progression free survival (PFS) than those with Ki-67 less than 30% (OS: P = .001; PFS: P = .006). Ki-67 index (i.e. > 30%, < 30%) was identified as an independent significant prognostic factor (OS: P = .017; PFS: P = .024) by using multivariate Cox proportional hazards model. In conclusion, Ki-67 index can be considered as a valuable independent prognostic biomarker for adult patients with MB.

  4. In silico discovery of terpenoid metabolism in Cannabis sativa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Luca Massimino

    2017-02-01

    Full Text Available Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa.

  5. In silico discovery of terpenoid metabolism in Cannabis sativa.

    Science.gov (United States)

    Massimino, Luca

    2017-01-01

    Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa .

  6. Molecular diagnosis and immunotherapy.

    Science.gov (United States)

    Sastre, Joaquín; Sastre-Ibañez, Marina

    2016-12-01

    To describe recent insights into how molecular diagnosis can improve indication and selection of suitable allergens for specific immunotherapy and increase the safety of this therapy. As specific allergen immunotherapy targets specific allergens, identification of the disease-eliciting allergen is a prerequisite for accurate prescription of treatment. In areas of complex sensitization to aeroallergens or in cases of hymenoptera venom allergy, the use of molecular diagnosis has demonstrated that it may lead to a change in indication and selection of allergens for immunotherapy in a large proportion of patients when compared with diagnosis based on skin prick testing and/or specific IgE determination with commercial extracts. These changes in immunotherapy prescription aided by molecular diagnosis have been demonstrated to be cost-effective in some scenarios. Certain patterns of sensitization to grass or olive pollen and bee allergens may identify patients with higher risk of adverse reaction during immunotherapy. Molecular diagnosis, when used with other tools and patients' clinical records, can help clinicians better to select the most appropriate patients and allergens for specific immunotherapy and, in some cases, predict the risk of adverse reactions. The pattern of sensitization to allergens could potentially predict the efficacy of allergen immunotherapy provided that these immunotherapy products contain a sufficient amount of these allergens. Nevertheless, multiplex assay remains a third-level approach, not to be used as screening method in current practice.

  7. A molecular key for building hyphae aggregates: the role of the newly identified Streptomyces protein HyaS.

    Science.gov (United States)

    Koebsch, Ilona; Overbeck, Jens; Piepmeyer, Sophie; Meschke, Holger; Schrempf, Hildgund

    2009-05-01

    Streptomycetes produce many metabolites with medical and biotechnological applications. During fermentations, their hyphae build aggregates, a process in which the newly identified protein HyaS plays an important role. The corresponding hyaS gene is present within all investigated Streptomyces species. Reporter fusions indicate that transcription of hyaS occurs within substrate hyphae of the Streptomyces lividans wild type (WT). The HyaS protein is dominantly associated with the substrate hyphae. The WT strain forms cylindrically shaped clumps of densely packed substrate hyphae, often fusing to higher aggregates (pellets), which remain stably associated during shaking. Investigations by electron microscopy suggest that HyaS induces tight fusion-like contacts among substrate hyphae. In contrast, the pellets of the designed hyaS disruption mutant ΔH are irregular in shape, contain frequently outgrowing bunches of hyphae, and fuse less frequently. ΔH complemented with a plasmid carrying hyaS resembles the WT phenotype. Biochemical studies indicate that the C-terminal region of HyaS has amine oxidase activity. Investigations of ΔH transformants, each carrying a specifically mutated gene, lead to the conclusion that the in situ oxidase activity correlates with the pellet-inducing role of HyaS, and depends on the presence of certain histidine residues. Furthermore, the level of undecylprodigiosin, a red pigment with antibiotic activity, is influenced by the engineered hyaS subtype within a strain. These data present the first molecular basis for future manipulation of pellets, and concomitant production of secondary metabolites during biotechnological processes. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Morphological and molecular characterization of L-methioninase ...

    African Journals Online (AJOL)

    Six species of L-methioninase producing Aspergillus species, isolated from Egyptian soil, were selected for comprehensive morphotypic and molecular characterization. Based on morphological and physiological features, these isolates were identified as Aspergillus flavipes, Aspergillus carneus, Aspergillus flavus, ...

  9. Molecular characterization of Cryptosporidium isolates from humans in Equatorial Guinea.

    Science.gov (United States)

    Blanco, María Alejandra; Iborra, Asunción; Vargas, Antonio; Nsie, Eugenia; Mbá, Luciano; Fuentes, Isabel

    2009-12-01

    The aim of the study was to perform a molecular characterization of clinical isolates of Cryptosporidium species from Equatorial Guinea. Standard laboratory methods were used to identify 35 cryptosporidiosis cases among 185 patients. PCR-RFLP successfully identified 34 Cryptosporidium species from these 35 cases, comprising C. parvum (52.9%), C. hominis (44.1%) and C. meleagridis (2.9%); over 90% of the species were isolated from HIV-positive patients. This is the first report of the molecular characterization of Cryptosporidium species isolated from humans in Equatorial Guinea and shows that zoonotic and anthroponotic transmission is present in this country.

  10. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  11. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis☆

    Science.gov (United States)

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-01-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by “intermediate osteopetrosis”, which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. PMID:24269275

  12. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  13. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  14. Molecular Identification of Methicillin-Resistant Staphylococcus ...

    African Journals Online (AJOL)

    We use the molecular techniques of PCR and PFGE to identify MRSA from clinical isolates of Staphylococcus aureus causing infections among hospitalized patients in Benin-City, Nigeria. A total of 36 isolates were obtained from the University of Benin Teaching Hospital between July-September, 2007. The MRSA strains ...

  15. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  16. Molecular Imaging of Inflammation in Atherosclerosis

    Science.gov (United States)

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  17. The Role of Molecular Diagnostics in the Management of Patients with Gliomas.

    Science.gov (United States)

    Wirsching, Hans-Georg; Weller, Michael

    2016-10-01

    The revised World Health Organization (WHO) classification of tumors of the central nervous system of 2016 combines biology-driven molecular marker diagnostics with classical histological cancer diagnosis. Reclassification of gliomas by molecular similarity beyond histological boundaries improves outcome prediction and will increasingly guide treatment decisions. This change in paradigms implies more personalized and eventually more efficient therapeutic approaches, but the era of molecular targeted therapies for gliomas is yet at its onset. Promising results of molecularly targeted therapies in genetically less complex gliomas with circumscribed growth such as subependymal giant cell astrocytoma or pilocytic astrocytoma support further development of molecularly targeted therapies. In diffuse gliomas, several molecular markers that predict benefit from alkylating agent chemotherapy have been identified in recent years. For example, co-deletion of chromosome arms 1p and 19q predicts benefit from polychemotherapy with procarbazine, CCNU (lomustine), and vincristine (PCV) in patients with anaplastic oligodendroglioma, and the presence of 1p/19q co-deletion was integrated as a defining feature of oligodendroglial tumors in the revised WHO classification. However, the tremendous increase in knowledge of molecular drivers of diffuse gliomas on genomic, epigenetic, and gene expression levels has not yet translated into effective molecular targeted therapies. Multiple reasons account for the failure of early clinical trials of molecularly targeted therapies in diffuse gliomas, including the lack of molecular entry controls as well as pharmacokinetic and pharmacodynamics issues, but the key challenge of specifically targeting the molecular backbone of diffuse gliomas is probably extensive clonal heterogeneity. A more profound understanding of clonal selection, alternative activation of oncogenic signaling pathways, and genomic instability is warranted to identify effective

  18. Determination of morphological features and molecular interactions ...

    African Journals Online (AJOL)

    This research focused on identifying the morphological features and molecular interactions of the Nigerian Bentonitic clays using Scanning Electron Microscope (SEM) characterisation technique. The SEM microstructure images indicated that the bentonite samples are generally moderately dispersive to dispersive with ...

  19. Exploring the influence of EGCG on the β-sheet-rich oligomers of human islet amyloid polypeptide (hIAPP1-37 and identifying its possible binding sites from molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    Full Text Available EGCG possesses the ability of disaggregating the existing amyloid fibrils which were associated with many age-related degenerative diseases. However, the molecular mechanism of EGCG to disaggregate these fibrils is poorly known. In this work, to study the influence of EGCG on the full-length human islet amyloid polypeptide 1-37 (hIAPP1-37 oligomers, molecular dynamics simulations of hIAPP1-37 pentamer and decamer with EGCG were performed, respectively. The obtained results indicate that EGCG indeed destabilized the hIAPP1-37 oligomers. The nematic order parameter and secondary structure calculations coupled with the free-energy landscape indicate that EGCG broke the initial ordered pattern of two polymers, greatly reduced their β-sheet content and enlarged their conformational space. On this basis, three possible target sites were identified with the binding capacity order of S1>S2>S3. After a deeper analysis of each site, we found that S1 was the most possible site on which residues B-Ile26/Ala25, A-Phe23, B/C-Leu27 and E-Tyr37 played an important role for their binding. The proposal of this molecular mechanism can not only provide a prospective interaction figure between EGCG and β-sheet-rich fibrils of hIAPP1-37, but also is useful for further discovering other potential inhibitors.

  20. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  1. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...... with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state....... The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes...

  2. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.

    Science.gov (United States)

    Stires, Hillary; Heckler, Mary M; Fu, Xiaoyong; Li, Zhao; Grasso, Catherine S; Quist, Michael J; Lewis, Joseph A; Klimach, Uwe; Zwart, Alan; Mahajan, Akanksha; Győrffy, Balázs; Cavalli, Luciane R; Riggins, Rebecca B

    2018-08-15

    Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Serologic and molecular biomarkers for recurrence of hepatocellular carcinoma after liver transplantation

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, Jakob Hornstrup Frølunde; Rosenberg, Jacob

    2016-01-01

    INTRODUCTION: Recurrence after liver transplantation (LT) for hepatocellular carcinoma (HCC) is a major cause of mortality. Knowledge on biomarkers may contribute to better surveillance based on the patients' risk of recurrence. Reviewing the literature, we aimed to identify serological...... and molecular biomarkers for recurrence of hepatocellular carcinoma after liver transplantation. METHODS: A literature search was performed in the databases PubMed and Scopus to identify observational studies evaluating serological or molecular biomarkers for recurrence of HCC after LT using adjusted analysis...

  5. Clustering the Orion B giant molecular cloud based on its molecular emission.

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.

  6. A molecular marker map for roses

    NARCIS (Netherlands)

    Debener, T.; Mattiesch, L.; Vosman, B.

    2001-01-01

    n addition to an existing core map for diploid roses which comprised 305 molecular markers 60 additional markers were mapped to extend the map. As a first application of the information contained in the map, the map position of a resistance gene from roses, Rdr1, was determined by identifying

  7. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  8. [Establishing Individualized Medicine for Intractable Cancer Based on Clinical Molecular Pathogenesis].

    Science.gov (United States)

    Jono, Hirofumi

    2018-01-01

     Although cancer treatment has dramatically improved with the development of molecular-targeted agents over the past decade, identifying eligible patients and predicting the therapeutic effects remain a major challenge. Because intratumoral heterogeneity represents genetic and molecular differences affecting patients' responses to these therapeutic agents, establishing individualized medicine based on precise molecular pathological analysis of tumors is urgently required. This review focuses on the pathogenesis of oral squamous cell carcinoma (OSCC), a common head and neck neoplasm, and introduces our approaches toward developing novel anticancer therapies particularly based on clinical molecular pathogenesis. Deeper understanding of more precise molecular pathogenesis in clinical settings may open up novel strategies for establishing individualized medicine for OSCC.

  9. Molecular identification of clinical Nocardia isolates from India.

    Science.gov (United States)

    Rudramurthy, Shivaprakash M; Honnavar, Prasanna; Kaur, Harsimran; Samanta, Palash; Ray, Pallab; Ghosh, Anup; Chakrabarti, Arunaloke

    2015-10-01

    The epidemiology of nocardiosis is evolving with increasing number of Nocardia spp. causing human infection. In recent years, molecular techniques have been used to identify Nocardia spp. There are limited data available on the spectrum of Nocardia spp. isolated from clinical samples in India. Here, a molecular study was carried on 30 clinical isolates maintained in our National Culture Collection to evaluate the techniques used for identifying the agents. The isolates were identified by sequencing two promising genes: the 16S rRNA gene and hsp65. Both hsp65 and the 16S rRNA gene could reliably identify 90 % of Nocardia isolates, i.e. N. farcinica, N. cyriacigeorgica, N. brasiliensis, N. otitidiscaviarum, N. amamiensis and N. pneumoniae. The mean percentage dissimilarity of sequence identification was higher using the hsp65 gene (4 %, range 0-7.9 %) compared with the 16S rRNA gene (2.3 %, range 0-8.9 %). Two isolates that showed ambiguous results in both the short segment of the 16S rRNA gene and hsp65 sequences could be resolved by sequencing a larger fragment (∼1000 bp) of the 16S rRNA gene. Both of these isolates were identified as N. beijingensis with similarities of 99.8 and 100 % compared with the standard strain. Genotyping of N. cyriacigeorgica strains was performed using hsp65 gene sequences and compared with previously described genotypes. Our N. cyriacigeorgica isolates belonged to genotype 1 (n = 4) and genotype 2 (n = 2). The present study highlights a wide spectrum of Nocardia spp. in India and emphasizes the need for molecular techniques for identification to the species level.

  10. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  11. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  12. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.

    Science.gov (United States)

    Tothill, Richard W; Tinker, Anna V; George, Joshy; Brown, Robert; Fox, Stephen B; Lade, Stephen; Johnson, Daryl S; Trivett, Melanie K; Etemadmoghadam, Dariush; Locandro, Bianca; Traficante, Nadia; Fereday, Sian; Hung, Jillian A; Chiew, Yoke-Eng; Haviv, Izhak; Gertig, Dorota; DeFazio, Anna; Bowtell, David D L

    2008-08-15

    The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.

  13. Molecular signatures of thyroid follicular neoplasia

    DEFF Research Database (Denmark)

    Borup, R.; Rossing, M.; Henao, Ricardo

    2010-01-01

    The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid...... a mechanism for cancer progression, which is why we exploited the results in order to generate a molecular classifier that could identify 95% of all carcinomas. Validation employing public domain and cross-platform data demonstrated that the signature was robust and could diagnose follicular nodules...... and robust genetic signature for the diagnosis of FA and FC. Endocrine-Related Cancer (2010) 17 691-708...

  14. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE

    Directory of Open Access Journals (Sweden)

    Constantinos Yeles

    2017-11-01

    Full Text Available Ionizing radiation-induced bystander effects (RIBE encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR, something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

  15. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    2001-01-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  16. Molecular markers linked to apomixis in Panicum maximum Jacq.

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... The objective of this work was to identify molecular markers linked to apomixis in ... Four RAPD markers linked to apomixis were identified and mapped in this .... Data analysis. The amplification of the potential markers was analyzed as binary, with 1 for presence and 0 for absence of the marker. The binary.

  17. Ovarian cancer: Novel molecular aspects for clinical assessment.

    Science.gov (United States)

    Palmirotta, Raffaele; Silvestris, Erica; D'Oronzo, Stella; Cardascia, Angela; Silvestris, Franco

    2017-09-01

    Ovarian cancer is a very heterogeneous tumor which has been traditionally characterized according to the different histological subtypes and differentiation degree. In recent years, innovative molecular screening biotechnologies have allowed to identify further subtypes of this cancer based on gene expression profiles, mutational features, and epigenetic factors. These novel classification systems emphasizing the molecular signatures within the broad spectrum of ovarian cancer have not only allowed a more precise prognostic prediction, but also proper therapeutic strategies for specific subgroups of patients. The bulk of available scientific data and the high refinement of molecular classifications of ovarian cancers can today address the research towards innovative drugs with the adoption of targeted therapies tailored for single molecular profiles leading to a better prediction of therapeutic response. Here, we summarize the current state of knowledge on the molecular bases of ovarian cancer, from the description of its molecular subtypes derived from wide high-throughput analyses to the latest discoveries of the ovarian cancer stem cells. The latest personalized treatment options are also presented with recent advances in using PARP inhibitors, anti-angiogenic, anti-folate receptor and anti-cancer stem cells treatment approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular structure and correlations in liquid D-2-propanol through neutron diffraction

    International Nuclear Information System (INIS)

    Sahoo, A.; Sarkar, S.; Joarder, R.N.; Krishna, P.S.R.

    2003-01-01

    Like t-butanol, 2-propanol molecules are quite big with substantial amount of asymmetry in the structure and so the analysis of the neutron diffraction data is tricky. A modified method of analysis, similar to one for liquid t-butanol, enables extraction of the detailed molecular conformation and intermolecular correlations through neutron diffraction. The pre-peak in the structure function, a signature of chain molecular association together with partially identified inter-molecular correlations yield some information about the nature of possible H-bonded molecular clusters in the liquid state. (author)

  19. Systematic Representation of Molecular Biology Knowledge.

    Science.gov (United States)

    Fisher, Kathleen M.

    A small set of relationships has been identified which appears to be sufficient for describing all molecular and cellular reactions and structures discussed in an introductory biology course. A precise definition has been developed for each relationship. These 20 relationships are of four types: (1) analytical; (2) spatial; (3) temporal; and (4)…

  20. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  1. Molecular sensors and molecular logic gates

    International Nuclear Information System (INIS)

    Georgiev, N.; Bojinov, V.

    2013-01-01

    Full text: The rapid grow of nanotechnology field extended the concept of a macroscopic device to the molecular level. Because of this reason the design and synthesis of (supra)-molecular species capable of mimicking the functions of macroscopic devices are currently of great interest. Molecular devices operate via electronic and/or nuclear rearrangements and, like macroscopic devices, need energy to operate and communicate between their elements. The energy needed to make a device work can be supplied as chemical energy, electrical energy, or light. Luminescence is one of the most useful techniques to monitor the operation of molecular-level devices. This fact determinates the synthesis of novel fluorescence compounds as a considerable and inseparable part of nanoscience development. Further miniaturization of semiconductors in electronic field reaches their limit. Therefore the design and construction of molecular systems capable of performing complex logic functions is of great scientific interest now. In semiconductor devices the logic gates work using binary logic, where the signals are encoded as 0 and 1 (low and high current). This process is executable on molecular level by several ways, but the most common are based on the optical properties of the molecule switches encoding the low and high concentrations of the input guest molecules and the output fluorescent intensities with binary 0 and 1 respectively. The first proposal to execute logic operations at the molecular level was made in 1988, but the field developed only five years later when the analogy between molecular switches and logic gates was experimentally demonstrated by de Silva. There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR and XNOR and all of them were achieved by molecules, the fluorescence switching as well. key words: fluorescence, molecular sensors, molecular logic gates

  2. Relevance of a molecular tumour board (MTB) for patients' enrolment in clinical trials: experience of the Institut Curie.

    Science.gov (United States)

    Basse, Clémence; Morel, Claire; Alt, Marie; Sablin, Marie Paule; Franck, Coralie; Pierron, Gaëlle; Callens, Céline; Melaabi, Samia; Masliah-Planchon, Julien; Bataillon, Guillaume; Gardrat, Sophie; Lavigne, Marion; Bonsang, Benjamin; Vaflard, Pauline; Pons Tostivint, Elvire; Dubot, Coraline; Loirat, Delphine; Marous, Miguelle; Geiss, Romain; Clément, Nathalie; Schleiermacher, Gudrun; Kamoun, Choumouss; Girard, Elodie; Ardin, Maude; Benoist, Camille; Bernard, Virginie; Mariani, Odette; Rouzier, Roman; Tresca, Patricia; Servois, Vincent; Vincent-Salomon, Anne; Bieche, Ivan; Le Tourneau, Christophe; Kamal, Maud

    2018-01-01

    High throughput molecular screening techniques allow the identification of multiple molecular alterations, some of which are actionable and can be targeted by molecularly targeted agents (MTA). We aimed at evaluating the relevance of using this approach in the frame of Institut Curie Molecular Tumor Board (MTB) to guide patients with cancer to clinical trials with MTAs. We included all patients presented at Institut Curie MTB from 4 October 2014 to 31 October 2017. The following information was extracted from the chart: decision to perform tumour profiling, types of molecular analyses, samples used, molecular alterations identified and those which are actionable, and inclusion in a clinical trial with matched MTA. 736 patients were presented at the MTB. Molecular analyses were performed in 442 patients (60%). Techniques used included next-generation sequencing, comparative genomic hybridisation array and/or other techniques including immunohistochemistry in 78%, 51% and 58% of patients, respectively. Analyses were performed on a fresh frozen biopsy in 91 patients (21%), on archival tissue (fixed or frozen) in 326 patients (74%) and on both archival and fresh frozen biopsy in 25 patients (6%). At least one molecular alteration was identified in 280 analysed patients (63%). An actionable molecular alteration was identified in 207 analysed patients (47%). Forty-five analysed patients (10%) were enrolled in a clinical trial with matched MTA and 29 additional patients were oriented and included in a clinical trial based on a molecular alteration identified prior to the MTB analysis. Median time between date of specimen reception and molecular results was 28 days (range: 5-168). The implementation of an MTB at Institut Curie enabled the inclusion of 10% of patients into a clinical trial with matched therapy.

  3. Molecular subtype classification of urothelial carcinoma in Lynch syndrome.

    Science.gov (United States)

    Therkildsen, Christina; Eriksson, Pontus; Höglund, Mattias; Jönsson, Mats; Sjödahl, Gottfrid; Nilbert, Mef; Liedberg, Fredrik

    2018-05-23

    Lynch syndrome confers an increased risk for urothelial carcinoma (UC). Molecular subtypes may be relevant to prognosis and therapeutic possibilities, but have to date not been defined in Lynch syndrome-associated urothelial cancer. We aimed to provide a molecular description of Lynch syndrome-associated UC. Thus, Lynch syndrome-associated UC of the upper urinary tract and the urinary bladder were identified in the Danish hereditary non-polyposis colorectal cancer (HNPCC) register and were transcriptionally and immunohistochemically profiled and further related to data from 307 sporadic urothelial carcinomas. Whole genome mRNA expression profiles of 41 tumors and immunohistochemical stainings against FGFR3, KRT5, CCNB1, RB1, and CDKN2A (p16) of 37 tumors from Lynch syndrome patients were generated. Pathological data, microsatellite instability, anatomic location, and overall survival data was analyzed and compared with sporadic bladder cancer. The 41 Lynch syndrome-associated UC developed at a mean age of 61 years with 59% women. mRNA expression profiling and immunostaining classified the majority of the Lynch syndrome-associated UC as Urothelial-like tumors with only 20% being Genomically Unstable, Basal/SCC-like or other subtypes. The subtypes were associated with stage, grade, and microsatellite instability. Comparison to larger data sets revealed that Lynch syndrome-associated UC share molecular similarities with sporadic UC. In conclusion, transcriptomic and immunohistochemical profiling identifies a predominance of the Urothelial-like molecular subtype in Lynch syndrome and reveals that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset. This article is protected by copyright. All rights reserved. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  4. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3].

    Science.gov (United States)

    Xue, You-Lin; Wang, Hao; Riedy, Michael; Roberts, Brittany-Lee; Sun, Yuna; Song, Yong-Bo; Jones, Gary W; Masison, Daniel C; Song, Youtao

    2018-05-01

    Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.

  5. Using combined morphological, allometric and molecular approaches to identify species of the genus Raillietiella (Pentastomida.

    Directory of Open Access Journals (Sweden)

    Crystal Kelehear

    Full Text Available Taxonomic studies of parasites can be severely compromised if the host species affects parasite morphology; an uncritical analysis might recognize multiple taxa simply because of phenotypically plastic responses of parasite morphology to host physiology. Pentastomids of the genus Raillietiella are endoparasitic crustaceans primarily infecting the respiratory system of carnivorous reptiles, but also recorded from bufonid anurans. The delineation of pentastomids at the generic level is clear, but the taxonomic status of many species is not. We collected raillietiellids from lungs of the invasive cane toad (Rhinella marina, the invasive Asian house gecko (Hemidactylus frenatus, and a native tree frog (Litoria caerulea in tropical Australia, and employed a combination of genetic analyses, and traditional and novel morphological methods to clarify their identity. Conventional analyses of parasite morphology (which focus on raw values of morphological traits revealed two discrete clusters in terms of pentastome hook size, implying two different species of pentastomes: one from toads and a tree frog (Raillietiella indica and another from lizards (Raillietiella frenatus. However, these clusters disappeared in allometric analyses that took pentastome body size into account, suggesting that only a single pentastome taxon may be involved. Our molecular data revealed no genetic differences between parasites in toads versus lizards, confirming that there was only one species: R. frenatus. This pentastome (previously known only from lizards clearly is also capable of maturing in anurans. Our analyses show that the morphological features used in pentastomid taxonomy change as the parasite transitions through developmental stages in the definitive host. To facilitate valid descriptions of new species of pentastomes, future taxonomic work should include both morphological measurements (incorporating quantitative measures of body size and hook bluntness and

  6. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  7. Molecular computational elements encode large populations of small objects

    Science.gov (United States)

    Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  8. Molecular methods for diagnosis of odontogenic infections.

    Science.gov (United States)

    Flynn, Thomas R; Paster, Bruce J; Stokes, Lauren N; Susarla, Srinivas M; Shanti, Rabie M

    2012-08-01

    Historically, the identification of microorganisms has been limited to species that could be cultured in the microbiology laboratory. The purpose of the present study was to apply molecular techniques to identify microorganisms in orofacial odontogenic infections (OIs). Specimens were obtained from subjects with clinical evidence of OI. To identify the microorganisms involved, 16S rRNA sequencing methods were used on clinical specimens. The name and number of the clones of each species identified and the combinations of species present were recorded for each subject. Descriptive statistics were computed for the study variables. Specimens of pus or wound fluid were obtained from 9 subjects. A mean of 7.4 ± 3.7 (standard deviation) species per case were identified. The predominant species detected in the present study that have previously been associated with OIs were Fusobacterium spp, Parvimonas micra, Porphyromonas endodontalis, and Prevotella oris. The predominant species detected in our study that have not been previously associated with OIs were Dialister pneumosintes and Eubacterium brachy. Unculturable phylotypes accounted for 24% of the species identified in our study. All species detected were obligate or facultative anaerobes. Streptococci were not detected. Molecular methods have enabled us to detect previously cultivated and not-yet-cultivated species in OIs; these methods could change our understanding of the pathogenic flora of orofacial OIs. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Selected Translations on International Communist Developments (Number 9).

    Science.gov (United States)

    1960-04-07

    Sokolniki Park, one of the most frequented parks of Moscow and the most romantic , to boot, the Stars and Stripes had endured the heat and inclemency of...furtherance of peaceful coexistence. In opposition to the disgusting comedy by Staal and other "re- sistance heroes" in Oberlaender*s entourage...concerned. We, therefore, do not need any revolutionary romanticism in order to inspire the work- ing classes;; but we can offer the perspective that

  10. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  11. Identification of molecular species of acylglycerols of Philippine wild edible mushroom, Ganoderma lucidum

    Science.gov (United States)

    Wild edible mushrooms are widely consumed in many countries. We successfully cultivated four edible, medicinal Philippine mushrooms in liquid culture. Recently, we identified the molecular species of acylglycerols in the lipid extract of mushroom G. lucidum NRRL66208. One hundred and three molecular...

  12. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    Science.gov (United States)

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  13. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis.

    Science.gov (United States)

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-02-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  15. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities.

    Science.gov (United States)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B; Papamarkou, Theodore; Huber, Kilian V M; Mutz, Cornelia; Toretsky, Jeffrey A; Bennett, Keiryn L; Olsen, Jesper V; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    Science.gov (United States)

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  17. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific...

  19. Molecular diagnostics in the management of rhabdomyosarcoma.

    Science.gov (United States)

    Arnold, Michael A; Barr, Fredric G

    2017-02-01

    A classification of rhabdomyosarcoma (RMS) with prognostic relevance has primarily relied on clinical features and histologic classification as either embryonal or alveolar RMS. The PAX3-FOXO1 and PAX7-FOXO1 gene fusions occur in 80% of cases with the alveolar subtype and are more predictive of outcome than histologic classification. Identifying additional molecular hallmarks that further subclassify RMS is an active area of research. Areas Covered: The authors review the current state of the PAX3-FOXO1 and PAX7-FOXO1 fusions as prognostic biomarkers. Emerging biomarkers, including mRNA expression profiling, MYOD1 mutations, RAS pathway mutations and gene fusions involving NCOA2 or VGLL2 are also reviewed. Expert commentary: Strategies for modifying RMS risk stratification based on molecular biomarkers are emerging with the potential to transform the clinical management of RMS, ultimately improving patient outcomes by tailoring therapy to predicted patient risk and identifying targets for novel therapies.

  20. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.

    Directory of Open Access Journals (Sweden)

    Matthew Ruffalo

    2015-12-01

    Full Text Available Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these "silent players". For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.

  1. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  2. Molecular Cytogenetic Characterization Identified the Murine B-Cell Lymphoma Cell Line A-20 as a Model for Sporadic Burkitt's Lymphoma.

    Science.gov (United States)

    Guja, Karolina; Liehr, Thomas; Rincic, Martina; Kosyakova, Nadezda; Hussein Azawi, Shaymaa S

    2017-11-01

    Here, we report the first molecular cytogenetic characterization of the BALB/cAnN mouse derived B-cell non-Hodgkin lymphoma (B-cell NHL) cell lines A-20. Even though previously used as a model for testing of, for example, dexametason, up to present, no data in the genetic properties of A-20 were available. The present study closed this gap and provides evidence that A-20 is a model for B-cell NHL subgroup sporadic Burkitt's lymphoma. C-myc oncogene is involved in a translocation and copy number alterations as gain of murine 14q material could be observed. Interestingly, the cell line showed the karyotype 39,X,-X or -Y,t(2;15)(qE5;qD2),del(6)(qB3qC3),del(9)(qA3qA4),dup(14)(qE1qE4) in ~95% of the cells, being exceptionally stable for cell lines being established 38 years ago. Still, ~5% of the cells showed polyploidization followed by chromothripsis. It remains to be determined if this can be observed also in other cell lines, just has not been reported yet, and/or if it is a unique feature of A-20. Overall, finally here, the necessary genetic data to identify A-20 as a model for human sporadic Burkitt's lymphoma are provided.

  3. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Directory of Open Access Journals (Sweden)

    Jose A Santiago

    Full Text Available Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level.Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP, previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS and the Prognostic Biomarker Study (PROBE, revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients.These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first

  4. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Science.gov (United States)

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that

  5. Toward the identification of molecular cogs.

    Science.gov (United States)

    Dziubiński, Maciej; Lesyng, Bogdan

    2016-04-05

    Computer simulations of molecular systems allow determination of microscopic interactions between individual atoms or groups of atoms, as well as studies of intramolecular motions. Nevertheless, description of structural transformations at the mezoscopic level and identification of causal relations associated with these transformations is very difficult. Structural and functional properties are related to free energy changes. Therefore, to better understand structural and functional properties of molecular systems, it is required to deepen our knowledge of free energy contributions arising from molecular subsystems in the course of structural transformations. The method presented in this work quantifies the energetic contribution of each pair of atoms to the total free energy change along a given collective variable. Next, with the help of a genetic clustering algorithm, the method proposes a division of the system into two groups of atoms referred to as molecular cogs. Atoms which cooperate to push the system forward along a collective variable are referred to as forward cogs, and those which work in the opposite direction as reverse cogs. The procedure was tested on several small molecules for which the genetic clustering algorithm successfully found optimal partitionings into molecular cogs. The primary result of the method is a plot depicting the energetic contributions of the identified molecular cogs to the total Potential of Mean Force (PMF) change. Case-studies presented in this work should help better understand the implications of our approach, and were intended to pave the way to a future, publicly available implementation. © 2015 Wiley Periodicals, Inc.

  6. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors

    Directory of Open Access Journals (Sweden)

    Elisângela Knoblauch Viega de Andrade

    2017-08-01

    Full Text Available This study aimed to evaluate the genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. The experiment was conducted in the Olericulture Sector at Federal University of Jequitinhonha and Mucuri Valleys (UFVJM and evaluated 60 sweet potato genotypes. For morphological characterization, 24 descriptors were used. For molecular characterization, 11 microsatellite primers specific for sweet potatoes were used, obtaining 210 polymorphic bands. Morphological and molecular diversity was obtained by dissimilarity matrices based on the coefficient of simple matching and the Jaccard index for morphological and molecular data, respectively. From these matrices, dendrograms were built. There is a large amount of genetic variability among sweet potato genotypes of the germplasm bank at UFVJM based on morphological and molecular characterizations. There was no duplicate suspicion or strong association between morphological and molecular analyses. Divergent accessions have been identified by molecular and morphological analyses, which can be used as parents in breeding programmes to produce progenies with high genetic variability.

  7. L'entourage d'un Fait d'expression Comme Guide a la Traduction ...

    African Journals Online (AJOL)

    Speech is an act of communication. The speech environment consists of the context, situation of communication, mimicry and intonation which surround the act of enunciation resulting in meaning. The translator is always faced with choices to make, but the speech environment helps to delimit speech and enables him ...

  8. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Huiding Xie

    2015-11-01

    Full Text Available In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD simulation and binding free energy (ΔGbind calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA, and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  9. Molecular hydrogen in sports medicine: new therapeutic perspectives.

    Science.gov (United States)

    Ostojic, S M

    2015-04-01

    In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further. In particular, hydrogen therapy may be an effective and specific innovative treatment for exercise-induced oxidative stress and sports injury, with potential for the improvement of exercise performance. This review will summarize recent research findings regarding the clinical aspects of molecular hydrogen use, emphasizing its application in the field of sports medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Physics through the 1990s: Atomic, molecular, and optical physics

    International Nuclear Information System (INIS)

    1986-01-01

    This report was prepared by the Panel on Atomic, Molecular, and Optical Physics of the Physics Survey Committee in response to its charge to describe the field, to characterize the recent advances, and to identify the current frontiers of research. Some of the areas discussed are: atomic structure, atomic dynamics, accelerator-based atomic physics, molecular photoionization and electron-molecule scattering, astrophysics, laser spectroscopy, atmospheric physics, plasma physics, and applications

  11. Molecular analysis of mutants of the Neurospora adenylosuccinate ...

    Indian Academy of Sciences (India)

    2012-08-07

    Aug 7, 2012 ... and mutants induced with X-ray, UV or chemical mutagens. ... We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature ..... mutants in yeast by selection for constitutive behavior in pig-.

  12. Kinetics of molecular transformations in connective tissue hyaluronic acid

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1990-01-01

    When exposed to ionizing radiations or inflammatory disease, the glycosaminolycan component of connective tissue is preferentially degraded, probably by a free-radical mediate pathway. The resulting changes in molecular structure adversely change the properties of the matrix. Rooster comb hyaluronic acid of high molecular weight was used to investigate the mechanisms of these structural changes at macro and molecular level. Intrinsic viscosity and gel permeation chromatography measurements are suitable for demonstrating that random chain session occurs. Fast kinetic techniques are necessary to identify the mechanisms of single strand breaks. Pulse conductivity and low-angle laser light scattering pulse radiolysis can quantify the rate and yield of strand breaks. Competitive radical scavenging methods have also allowed the quantification of the rate of spontaneous and alkali-catalyzed hydrolysis of a-hydroxy radicals on polysaccharide chains, which control molecular structure changes

  13. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  14. Application of computational methods to the design and characterisation of porous molecular materials.

    Science.gov (United States)

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  15. Molecular pathology of intraductal papillary mucinous neoplasms of the pancreas.

    Science.gov (United States)

    Paini, Marina; Crippa, Stefano; Partelli, Stefano; Scopelliti, Filippo; Tamburrino, Domenico; Baldoni, Andrea; Falconi, Massimo

    2014-08-07

    Since the first description of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas in the eighties, their identification has dramatically increased in the last decades, hand to hand with the improvements in diagnostic imaging and sampling techniques for the study of pancreatic diseases. However, the heterogeneity of IPMNs and their malignant potential make difficult the management of these lesions. The objective of this review is to identify the molecular characteristics of IPMNs in order to recognize potential markers for the discrimination of more aggressive IPMNs requiring surgical resection from benign IPMNs that could be observed. We briefly summarize recent research findings on the genetics and epigenetics of intraductal papillary mucinous neoplasms, identifying some genes, molecular mechanisms and cellular signaling pathways correlated to the pathogenesis of IPMNs and their progression to malignancy. The knowledge of molecular biology of IPMNs has impressively developed over the last few years. A great amount of genes functioning as oncogenes or tumor suppressor genes have been identified, in pancreatic juice or in blood or in the samples from the pancreatic resections, but further researches are required to use these informations for clinical intent, in order to better define the natural history of these diseases and to improve their management.

  16. Lung eQTLs to help reveal the molecular underpinnings of asthma.

    Directory of Open Access Journals (Sweden)

    Ke Hao

    Full Text Available Genome-wide association studies (GWAS have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151. The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases.

  17. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  18. Studies on molecular structure, vibrational spectra and molecular docking analysis of 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate

    Science.gov (United States)

    Suresh, D. M.; Amalanathan, M.; Hubert Joe, I.; Bena Jothy, V.; Diao, Yun-Peng

    2014-09-01

    The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.

  19. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    Science.gov (United States)

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  20. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  1. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    Science.gov (United States)

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-05

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.

  2. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  3. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma

    Science.gov (United States)

    Ceccarelli, Michele; Barthel, Floris P.; Malta, Tathiane M.; Sabedot, Thais S.; Salama, Sofie R.; Murray, Bradley A.; Morozova, Olena; Newton, Yulia; Radenbaugh, Amie; Pagnotta, Stefano M.; Anjum, Samreen; Wang, Jiguang; Manyam, Ganiraju; Zoppoli, Pietro; Ling, Shiyung; Rao, Arjun A.; Grifford, Mia; Cherniack, Andrew D.; Zhang, Hailei; Poisson, Laila; Carlotti, Carlos Gilberto; Pretti da Cunha Tirapelli, Daniela; Rao, Arvind; Mikkelsen, Tom; Lau, Ching C.; Yung, W.K. Alfred; Rabadan, Raul; Huse, Jason; Brat, Daniel J.; Lehman, Norman L.; Barnholtz-Sloan, Jill S.; Zheng, Siyuan; Hess, Kenneth; Rao, Ganesh; Meyerson, Matthew; Beroukhim, Rameen; Cooper, Lee; Akbani, Rehan; Wrensch, Margaret; Haussler, David; Aldape, Kenneth D.; Laird, Peter W.; Gutmann, David H.; Noushmehr, Houtan; Iavarone, Antonio; Verhaak, Roel G.W.

    2015-01-01

    SUMMARY Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH-mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wildtype diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes. PMID:26824661

  4. Molecular Diagnosis of Thalassemias and Hemoglobinopathies: An ACLPS Critical Review.

    Science.gov (United States)

    Sabath, Daniel E

    2017-07-01

    To describe the use of molecular diagnostic techniques for patients with hemoglobin disorders. A clinical scenario is presented in which molecular diagnosis is important for genetic counseling. Globin disorders, techniques for their diagnosis, and the role of molecular genetic testing in managing patients with these disorders are described in detail. Hemoglobin disorders, including thalassemias and hemoglobinopathies, are among the commonest genetic diseases, and the clinical laboratory is essential for the diagnosis of patients with these abnormalities. Most disorders can be diagnosed with protein-based techniques such as electrophoresis and chromatography. Since severe syndromes can result due to inheritance of combinations of globin genetic disorders, genetic counseling is important to prevent adverse outcomes. Protein-based methods cannot always detect potentially serious thalassemia disorders; in particular, α-thalassemia may be masked in the presence of β-thalassemia. Deletional forms of β-thalassemia are also sometimes difficult to diagnose definitively with standard methods. Molecular genetic testing serves an important role in identifying individuals carrying thalassemia traits that can cause adverse outcomes in offspring. Furthermore, prenatal genetic testing can identify fetuses with severe globin phenotypes. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. Molecular Profiling to Optimize Treatment in Non-Small Cell Lung Cancer: A Review of Potential Molecular Targets for Radiation Therapy by the Translational Research Program of the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Ausborn, Natalie L.; Le, Quynh Thu; Bradley, Jeffrey D.; Choy, Hak; Dicker, Adam P.; Saha, Debabrata; Simko, Jeff; Story, Michael D.; Torossian, Artour; Lu, Bo

    2012-01-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) have been mainly based on disease stage, performance status, and co-morbidities, and rarely on histological or molecular classification. Rather than applying broad treatments to unselected patients that may result in survival increase of only weeks to months, research efforts should be, and are being, focused on identifying predictive markers for molecularly targeted therapy and determining genomic signatures that predict survival and response to specific therapies. The availability of such targeted biologics requires their use to be matched to tumors of corresponding molecular vulnerability for maximum efficacy. Molecular markers such as epidermal growth factor receptor (EGFR), K-ras, vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and anaplastic lymphoma kinase (ALK) represent potential parameters guide treatment decisions. Ultimately, identifying patients who will respond to specific therapies will allow optimal efficacy with minimal toxicity, which will result in more judicious and effective application of expensive targeted therapy as the new paradigm of personalized medicine develops.

  6. Identification of a myometrial molecular profile for dystocic labor.

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-01

    The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.

  7. Committee on Atomic, Molecular, and Optical Sciences (CAMOS)

    International Nuclear Information System (INIS)

    1992-01-01

    The Committee on Atomic, Molecular and Optical Sciences (CAMOS) of the National Research Council (NRC) is charged with monitoring the health of the field of atomic, molecular, and optical (AMO) science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the CAMOS to meet its charge. This progress report presents a review of CAMOS activities from February 1, 1992 to January 31, 1993. This report also includes the status of activities associated with the CAMOS study on the field that is being conducted by the Panel on the Future of Atomic, Molecular, and Optical Sciences (FAMOS)

  8. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  9. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  10. Molecular connectivity disruptions in males with major depressive disorder.

    Science.gov (United States)

    Pillai, Rajapillai Li; Zhang, Mengru; Yang, Jie; Mann, J John; Oquendo, Maria A; Parsey, Ramin V; DeLorenzo, Christine

    2018-01-01

    In most positron emission tomography (PET) molecular brain imaging studies, regions of interest have been defined anatomically and examined in isolation. However, by defining regions based on physiology and examining relationships between them, we may derive more sensitive measures of receptor abnormalities in conditions such as major depressive disorder (MDD). Using an average of 52 normalized binding potential maps, acquired using radiotracer [ 11 C]-WAY100635 and full arterial input analysis, we identified two molecular volumes of interest (VOIs) with contiguously high serotonin 1A receptor (5-HT 1A ) binding sites: the olfactory sulcus (OLFS) and a band of tissue including piriform, olfactory, and entorhinal cortex (PRF). We applied these VOIs to a separate cohort of 25 healthy control males and 16 males with MDD who received [ 11 C]-WAY100635 imaging. Patients with MDD had significantly higher binding than controls in both VOIs, ( p molecular connectivity, i.e. the correlation between binding of raphe nucleus (RN) 5-HT 1A autoreceptors and post-synaptic receptors in molecular VOIs. Molecular connectivity was significant in healthy controls ( p molecular connectivity allowed identification of MDD cases with high sensitivity (81%) and specificity (88%).

  11. Molecular and Pathotype Identification of Potato Cyst Nematodes

    Directory of Open Access Journals (Sweden)

    Mulyadi Mulyadi

    2014-07-01

    Full Text Available In Indonesia, potato cyst nematode (PCN was first reported in Bumiaji, Kota Batu, East Java by PT Syngenta and was identified as Globodera rostochiensis. Based on the surveillances, G. rostochiensis were also found in Batur, Banjarnegara, and Kejajar, Wonosobo, and Pangalengan, Bandung. In addition, in Batur, Banjarnegara, another species which was identified as G. pallida was found. The aim of this research were to identify the species of PCN using molecular method, pathotype identification, and to study the distributions of PCN especially in Java. The PCN are collected from potato planting areas in Kota Batu, East Java; Wonosobo and Banjarnegara, Central Java; and Pangalengan, Bandung, West Java. PCN were extracted and isolated from soil, and then identified by  morphological and molecular analysis. PCN were found in potato planting areas in Kota Batu, East Java; Wonosobo and Banjarnegara, Central Java; and Pangalengan, West Java. Based on the morphological characters, molecular method, and the differential host test, the PCN identified as G. rostochiensis are amplified an approximately 434 bp with pathotype Ro2.   Di Indonesia, nematoda sista kentang (NSK pertama dilaporkan di Bumiaji, Kota Batu, Jawa Timur oleh PT Syngenta yang diidentifikasi sebagai Globodera rostochiensis. Berdasarkan hasil survei, NSK ditemukan di Batur, Banjarnegara dan Kejajar, Wonosobo, Pangalengan. Spesies G. pallida juga ditemukan Batur, Banjarnegara. Penelitian ini bertujuan untuk mengidentifikasi spesies NSK menggunakan metode molekuler, identifikasi patotipe NSK, dan untuk mengetahui penyebaran NSK khususnya di Pulau Jawa. Sampel NSK dikumpulkan dari lahan pertanaman kentang di Bumiaji, Kota Batu, Jawa Timur; Wonosobo dan Banjarnegara, Jawa Tengah; serta Pangalengan, Bandung, Jawa Tengah. NSK diekstraksi dan diisolasi dari tanah yang selanjutnya diidentifikasi secara morfologi dan analisis molekuler. NSK yang terdapat pada lahan pertanaman kentang ditemukan di

  12. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  13. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  14. Molecular Characterization of Clostridium difficile Isolates in China From 2010 to 2015

    Directory of Open Access Journals (Sweden)

    Xiao-shu Liu

    2018-04-01

    Full Text Available Clostridium difficile infection (CDI has become a worldwide public health problem causing high mortality and a large disease burden. Molecular typing and analysis is important for surveillance and infection control of CDI. However, molecular characterization of C. difficile across China is extremely rare. Here, we report on the toxin profiles, molecular subtyping with multilocus sequence typing (MLST and PCR ribotyping, and epidemiological characteristics of 199 C. difficile isolates collected between 2010 through 2015 from 13 participating centers across China. We identified 35 STs and 27 ribotypes (RTs among the 199 C. difficile isolates: ST35 (15.58%, ST3 (15.08%, ST37 (12.06%, and RT017 (14.07%, RT001 (12.06%, RT012 (11.56% are the most prevalent. One isolate with ST1 and 8 isolates with ST 11 were identified. We identified a new ST in this study, denoted ST332. The toxin profile tcdA+tcdB+tcdC+tcdR+tcdE+CDT- (65.83% was the predominant profile. Furthermore, 11 isolates with positive binary toxin genes were discovered. According to the PCR ribotyping, one isolate with RT 027, and 6 isolates with RT 078 were confirmed. The epidemiological characteristics of C. difficile in China shows geographical differences, and both the toxin profile and molecular types exhibit great diversity across the different areas.

  15. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  16. Molecular ingredients of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  17. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  18. Visions of a Semantic Molecular Future

    OpenAIRE

    Murray-Rust, Peter; Brooks, Brian; Bolton, Charlotte

    2011-01-01

    Booklet handout distributed at the VSMF Symposium held at the Unilever Centre on 2011-01-17 The event looks forward. Scholarship (universities, research, teaching, publishing) has been slow to take up the opportunities of this digital century. This is an opportunity to identify and build the future. EPSRC (Pathways to Impact Award). Unilever plc (Unilever Centre for Molecular Science Informatics)

  19. Visions of a Semantic Molecular Future

    OpenAIRE

    Murray-Rust, Peter

    2011-01-01

    Additional booklet insert distributed at the VSMF Symposium held at the Unilever Centre on 2011-01-17 The event looks forward. Scholarship (universities, research, teaching, publishing) has been slow to take up the opportunities of this digital century. This is an opportunity to identify and build the future. EPSRC (Pathways to Impact award). Unilever plc (Unilever Centre for Molecular Science Informatics)

  20. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    Energy Technology Data Exchange (ETDEWEB)

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  1. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu

    2014-01-01

    -based approaches, which however may fail when only poorly diffracting derivative crystals are available, as often the case for e.g. membrane proteins. Here we present an approach for heavy atom site identification based on a Molecular Replacement Parameter Matrix (MRPM) search. It involves an n-dimensional search...... to test a wide spectrum of molecular replacement parameters, such as clusters of different conformations. The result is scored by the ability to identify heavy-atom positions, from anomalous difference Fourier maps, that allow meaningful phases to be determined. The strategy was successfully applied...... but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts....

  2. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  4. Indexing molecules with chemical graph identifiers.

    Science.gov (United States)

    Gregori-Puigjané, Elisabet; Garriga-Sust, Rut; Mestres, Jordi

    2011-09-01

    Fast and robust algorithms for indexing molecules have been historically considered strategic tools for the management and storage of large chemical libraries. This work introduces a modified and further extended version of the molecular equivalence number naming adaptation of the Morgan algorithm (J Chem Inf Comput Sci 2001, 41, 181-185) for the generation of a chemical graph identifier (CGI). This new version corrects for the collisions recognized in the original adaptation and includes the ability to deal with graph canonicalization, ensembles (salts), and isomerism (tautomerism, regioisomerism, optical isomerism, and geometrical isomerism) in a flexible manner. Validation of the current CGI implementation was performed on the open NCI database and the drug-like subset of the ZINC database containing 260,071 and 5,348,089 structures, respectively. The results were compared with those obtained with some of the most widely used indexing codes, such as the CACTVS hash code and the new InChIKey. The analyses emphasize the fact that compound management activities, like duplicate analysis of chemical libraries, are sensitive to the exact definition of compound uniqueness and thus still depend, to a minor extent, on the type and flexibility of the molecular index being used. Copyright © 2011 Wiley Periodicals, Inc.

  5. Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Chaisaingmongkol, Jittiporn; Budhu, Anuradha; Dang, Hien

    2017-01-01

    Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are clinically disparate primary liver cancers with etiological and biological heterogeneity. We identified common molecular subtypes linked to similar prognosis among 199 Thai ICC and HCC patients through systems integratio...

  6. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  7. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

    Science.gov (United States)

    Zhang, Jie; Shao, Jinchen; Zhu, Lei; Zhao, Ruiying; Xing, Jie; Wang, Jun; Guo, Xiaohui; Tu, Shichun; Han, Baohui; Yu, Keke

    2017-09-26

    We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.

  8. Molecular fingerprinting of the myxozoan community in common carp suffering Swim Bladder Inflammation (SBI) identifies multiple etiological agents

    Czech Academy of Sciences Publication Activity Database

    Holzer, Astrid S.; Hartigan, Ashlie; Patra, Sneha; Pecková, Hana; Eszterbauer, E.

    2014-01-01

    Roč. 7, AUG 28 2014 (2014), s. 398 ISSN 1756-3305 R&D Projects: GA AV ČR(CZ) M200961205; GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Cyprinus carpio carpio * swim bladder inflammation * fish disease * Myxozoa * molecular diagnostic * rDNA * in situ hybridisation Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.430, year: 2014

  9. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  10. Molecular detection of Phytophthora ramorum by real-time PCR using Taqman, SYBR Green and molecular beacons with three genes

    Science.gov (United States)

    G.J. Bilodeau; C.A. Lévesque; A.W.A.M. De Cock; C. Duchaine; G. Kristjansson; R.C. Hamelin

    2006-01-01

    Sudden oak death, caused by Phytophthora ramorum, is a severe disease that can affect numerous species of trees and shrubs. This pathogen has been spread via nursery stock, and quarantine measures are currently in place to prevent further spread. Molecular assays have been developed to rapidly detect and identify P. ramorum, but...

  11. Molecular components and toxicity of the venom of the solitary wasp, Anoplius samariensis

    International Nuclear Information System (INIS)

    Hisada, Miki; Satake, Honoo; Masuda, Katsuyoshi; Aoyama, Masato; Murata, Kazuya; Shinada, Testuro; Iwashita, Takashi; Ohfune, Yasufumi; Nakajima, Terumi

    2005-01-01

    The solitary spider wasp, Anoplius samariensis, is known to exhibit a unique long-term, non-lethal paralysis in spiders that it uses as a food source for its larvae. However, neither detailed venom components nor paralytic compounds have ever been characterized. In this study, we examined the components in the low molecular weight fraction of the venom and the paralytic activity of the high molecular weight fraction. The major low molecular weight components of the venom were identified as γ-aminobutyric acid and glutamic acid by micro-liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectrometry analysis. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass analysis revealed that the A. samariensis venom contained the various proteins with weights of 4-100 kDa. A biological assay using Joro spiders (Nephila clavata) clearly showed that the high molecular weight fraction of the venom prepared by ultrafiltration exerted as potent non-lethal long-term paralysis as the whole venom, whereas the low molecular weight fraction was devoid of any paralytic activity. These results indicated that several venomous proteins in the high molecular weight fraction are responsible for the paralytic activity. Furthermore, we determined the primary structure of one component designated As-fr-19, which was a novel multiple-cysteine peptide with high sequence similarity to several sea anemone and snake toxins including dendrotoxins, rather than any insect toxic peptides identified so far. Taken together, our data showed the unprecedented molecular and toxicological profiles of wasp venoms

  12. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  13. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  14. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure

    NARCIS (Netherlands)

    Jong, W.H. de; Arts, J.H.E.; Klerk, A. de; Schijf, M.A.; Ezendam, J.; Kuper, C.F.; Loveren, H. van

    2009-01-01

    There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also

  15. Clustering the Orion B giant molecular cloud based on its molecular emission

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    identified, likely related to the higher critical density of the CN and HCO+ (1-0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions: Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. Data products associated with this paper are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A12 and at http://www.iram.fr/ pety/ORION-B

  16. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome.

    Science.gov (United States)

    Burkhart, Keith K; Abernethy, Darrell; Jackson, David

    2015-06-01

    Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models.

  17. Proceedings of a workshop on molecular nuclear medicine

    International Nuclear Information System (INIS)

    Reba, R.C.

    1992-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy (DOE) has increased the emphasis on research in structural biology and molecular biology. The Department has increased support substantially in the area of basic molecular and structural biology research. To exploit the advances in these fields, OHER has sought to apply those advances in their other areas of responsibility, e.g., health effects research, environmental biology, and, in particular, nuclear medicine. The applications of biotechnology have contributed greatly to the productive research efforts of molecular biology. These techniques include gene manipulation for targeted gene delivery; characterization of molecular probes for hormone, tumor, and neuroreceptors; the receptor-agonist/antagonist binding interactions; studies of mechanisms of cellular communication; and the development of in vitro diagnostics such as molecular probes for studying the aging process and patients with mental disorders, cancer, and atherosclerosis. The importance of this work is the reasonable expectation that mainly, through an appreciation of the molecular basis of disease, will the most effective and rapid progress be made toward understanding, identifying, solving, and preventing specific disease processes. Critical questions arising before and during the Workshop are how the following technologies can be applied in a practical clinical research or patient management setting: the recombinant DNA methodology, the technology of engineered monoclonal antibodies, the new methods for protein production and purification, and the production of transgenic animals

  18. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  19. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and...

  20. Molecular docking for thrombolytic activity of some isolated compounds from Clausena lansium.

    Directory of Open Access Journals (Sweden)

    Arkajyoti Paul

    2017-03-01

    Full Text Available Clausena lansium (Family- Rutaceae is commonly known as wampee, is found in fallow lands throughout Bangladesh. Our aim of the study to performed molecular docking studies to identify potential binding affinities of the phytocompounds from Clausena lansium, namely Clausemarin B, Clausenaline C, Clausenaline E, Murrayanine, vanillic acid and Xanthotoxol for searching of lead molecule for thrombolytic activity. A wide range of docking score found during molecular docking by Schrodinger. Clausemarin B , Clausenaline C , Clausenaline E, Murrayanine , vanillic acid and Xanthotoxol showed the docking score -6.926, -4.041, -4.889 , -4.356, -3.007 and -5.816 respectively. Among all the compounds Clausemarin B showed the best docking score. So, Clausemarin B is the best compounds for thrombolytic activity, as it possessed the best value in Molecular docking. Further in vivo investigation need to identify the thrombolytic activity of isolated compounds from Clausena lansium.

  1. Molecular Epidemiology for Vector Research on Leishmaniasis

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa

    2010-01-01

    Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches. PMID:20617005

  2. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  3. Molecular Epidemiology for Vector Research on Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Hirotomo Kato

    2010-03-01

    Full Text Available Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches.

  4. Molecular epidemiology for vector research on leishmaniasis.

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa

    2010-03-01

    Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches.

  5. Feasibility of using microbeads with holographic barcodes to track DNA specimens in the clinical molecular laboratory

    Directory of Open Access Journals (Sweden)

    Jason D. Merker

    2013-07-01

    Full Text Available We demonstrate the feasibility of using glass microbeads with a holographic barcode identifier to track DNA specimens in the molecular pathology laboratory. These beads can be added to peripheral blood specimens and are carried through automated DNA extraction protocols that use magnetic glass particles. We found that an adequate number of microbeads are consistently carried over during genomic DNA extraction to allow specimen identification, that the beads do not interfere with the performance of several different molecular assays, and that the beads and genomic DNA remain stable when stored together under regular storage conditions in the molecular pathology laboratory. The beads function as an internal, easily readable specimen barcode. This approach may be useful for identifying DNA specimens and reducing errors associated with molecular laboratory testing.

  6. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    International Nuclear Information System (INIS)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R.

    2014-01-01

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  7. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R., E-mail: edenmar@auburn.edu [Department of Chemical Engineering, Auburn University, Auburn, AL (United States)

    2014-06-10

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  8. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liao

    2015-10-01

    Full Text Available Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD. Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group, for sham-operation (Sham or bilateral ovariectomy (Ovx. Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST and alanine aminotranferease (ALT levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0% and 48 (8.2% were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD.

  9. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  10. Cancer diagnostics: The journey from histomorphology to molecular profiling.

    Science.gov (United States)

    Ahmed, Atif A; Abedalthagafi, Malak

    2016-09-06

    Although histomorphology has made significant advances into the understanding of cancer etiology, classification and pathogenesis, it is sometimes complicated by morphologic ambiguities, and other shortcomings that necessitate the development of ancillary tests to complement its diagnostic value. A new approach to cancer patient management consists of targeting specific molecules or gene mutations in the cancer genome by inhibitory therapy. Molecular diagnostic tests and genomic profiling methods are increasingly being developed to identify tumor targeted molecular profile that is the basis of targeted therapy. Novel targeted therapy has revolutionized the treatment of gastrointestinal stromal tumor, renal cell carcinoma and other cancers that were previously difficult to treat with standard chemotherapy. In this review, we discuss the role of histomorphology in cancer diagnosis and management and the rising role of molecular profiling in targeted therapy. Molecular profiling in certain diagnostic and therapeutic difficulties may provide a practical and useful complement to histomorphology and opens new avenues for targeted therapy and alternative methods of cancer patient management.

  11. Molecular phenotypes associated with anomalous stamen development in Alternanthera philoxeroides

    Directory of Open Access Journals (Sweden)

    Zhu eZhu

    2015-04-01

    Full Text Available Alternanthera philoxeroides is a perennial amphibious weed native to South America but has now spread to diverse parts of the world. A. philoxeroides reproduces both sexually and asexually in its native range, but propagates solely through vegetative means in its introduced range. Traits associated with sexual reproduction become degraded for sexual dysfunction, with flowers possessing either pistillate stamens or male-sterile anthers. Degradations of sexual characters for loss of sexuality commonly take place in clonal plants. The underlying molecular-genetic processes remain largely unknown. We compared the gene expression profiles of abnormal stamens with that of normal stamens by RNA-Seq analysis, and identified a large number of differentially expressed genes between abnormal and normal stamens. In accordance with flower morphology, the expression of B-class MADS-box genes (ApAP3, ApTM6 and ApPI was markedly reduced in pistillate stamens. However, most of the genes involved in meiosis were expressed normally in stamens with male-sterile anthers. In addition to verifying the expression patterns of genes previously known to be related to stamen and pollen grain development, we also identified previously unknown molecular phenotypes associated with sexual dysfunction in A. philoxeroides, that is helpful for dissecting the molecular mechanisms underpinning various male-sterile phenotypes and the molecular processes underlying the transition from sexuality to asexuality in clonal plants.

  12. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  13. Molecular identification of the Sporothrix schenckii complex.

    Science.gov (United States)

    Oliveira, Manoel Marques Evangelista; Almeida-Paes, Rodrigo; Gutierrez-Galhardo, Maria Clara; Zancope-Oliveira, Rosely M

    2014-01-01

    Sporothrix schenckii, an ascomycetous dimorphic organism that for over a century was recognized as the sole agent of sporotrichosis, a subcutaneous mycosis with a worldwide distribution. However, it has been proposed, based on physiologic and molecular aspects, that S. schenckii is a complex of distinct species: Sporothrix brasiliensis, Sporothrix mexicana, Sporothrix globosa, S. schenckii sensu strictu, Sporothrix luriei, and Sporothrix albicans (formerly Sporothrix pallida). Human disease has a broad range of clinical manifestations and can be classified into fixed cutaneous, lymphocutaneous, disseminated cutaneous, and extracutaneous sporotrichosis. The gold standard for the diagnosis of sporotrichosis is the culture; however, serologic, histopathologic and molecular approaches have been recently adopted for the diagnosis of this mycosis. Few molecular methods have been applied to the diagnosis of sporotrichosis to detect S. schenckii DNA from clinical specimens, and to identify Sporothrix spp. in culture. Until now, Sporothrix is the unique clinically relevant dimorphic fungus without an elucidated genome sequence, thus limiting molecular knowledge about the cryptic species of this complex, and the sexual form of all S. schenckii complex species. In this review we shall focus on the current diagnosis of the sporotrichosis, and discuss the current molecular tools applied to the diagnosis and identification of the Sporothrix complex species. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  15. Characterization-Based Molecular Design of Biofuel Additives Using Chemometric and Property Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Subin eHada

    2014-06-01

    Full Text Available In this work, multivariate characterization data such as infrared (IR spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis (PCA allowed capturing important features of the molecular architecture from complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods (GCM based on characterization data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  16. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    Science.gov (United States)

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  17. Molecular Method Development to Identify Foodborne Sarcocystishominis in Raw Beef Commercial Hamburger

    Directory of Open Access Journals (Sweden)

    Bahador Hajimohammadi

    2014-11-01

    Full Text Available Background: Sarcocystisspp. is zoonotic parasitic pathogen endangering safety of meat and derived meat products such as hamburgers which is among the most popular fast foods worldwide. Objectives: The current study aimed to design a protocol for molecular identification of Sarcocystis hominis in commercial hamburgers using PCR-RFLP with target of 18S rRNA. Materials and Methods: A total of 25 raw commercial hamburger samples were randomly collected from supermarkets of Yazd city, Iran. Five mm slices from different parts of each sample were selected, well mixed, and then preserved in ethanol 70% at -20°C for the next steps. The genomic DNA was extracted using salting out method. Detection and identification of Sarcocystis isolates were performed using PCR RFLP. The 18s rRNA gene sequence was mined from GenBank and the specific primer pair was designed using Primer3 software. Restriction fragment length polymorphims (RFLP analysis was performed using BfaI and RsaI restriction enzymes. The digestion was analyzed, using agarose gel electrophoresis alongside 100base pair DNA ladder. Results: Among 25 commercial hamburger samples, 17 samples showed a PCR product around 900 bp which could detect Sarcocyst Spp. After RFLP with BfaI, the restriction fragments of 376 bp and 397 bp detected S. hominis or S. hirsuta and fragments of 184 bp, 371 bp and 382 bp detected S. cruzi. After RFLP with RsaI, the restriction fragments of 376 bp and 557 bp detected S. hirsuta and fragment of 926 bp, without any digestion, detected S. hominis. For verification, each species detected in samples was randomly selected and sent for sequencing and the results were analyzed with BLAST. Conclusions: In conclusion, the current study developed a practical technique to detect the prevalence of S. hominis in meat products such as hamburgers.

  18. Tiered High-Throughput Screening Approach to Identify ...

    Science.gov (United States)

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  19. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  20. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  1. Using current molecular techniques for rapid differentiation of ...

    African Journals Online (AJOL)

    Typhoid fever is responsible for the deaths of many people annually. However, conventional and timeconsuming detection methods for Salmonella Typhi still dominate. By using a molecular based approach, it was possible to identify Salmonella Typhi by amplifying two specific genes (viaB and tyv) and by using RFLP ...

  2. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  3. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  4. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    Science.gov (United States)

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  5. PCR-RFLP diagnostic method for identifying Globodera species in Slovenia

    Directory of Open Access Journals (Sweden)

    Sasa ŠIRCA

    2011-01-01

    Full Text Available Species identification within the genus Globodera is based on the morphological and morphometrical characters of the cysts and second stage juveniles, and these are included in the majority of identification keys. Morphometrical methods are fast and can be applied to most of samples but they demand a trained and experienced specialist. Furthermore, some morphometrical characters may overlap between populations and beetwen species, leading to inaccurate identification. To confirm and complement the morphometrical identification of Globodera species molecular methods have been developed. Sequences of the internal transcribed spacer regions ITS1 and ITS2 of the rDNA gene cluster proved to be useful for identifying nematode species identification. A PCR-RFLP molecular method was used to identify Globodera rostochiensis, G. pallida, G. tabacum and G. achilleae. Globodera rostochiensis, G. pallida, G. tabacum and G. achilleae can be distinguished with PCR-RFLP analysis of the rDNA ITS fragment using five restriction enzymes. The RFLP patterns of G. rostochiensis, G. tabacum and G. achilleae were species-specific, while those of G. pallida varied. South American populations of G. pallida differed from other populations as their RFLP patterns were demonstrated to be distinct by in silico restriction of the ITS sequences deposited at NCBI.

  6. THE CURRENT METHODS FOR MOLECULAR DIAGNOSTICS OF FISH DISEASES (REVIEW

    Directory of Open Access Journals (Sweden)

    O. Zaloilo

    2016-06-01

    Full Text Available Purpose. The methods of molecular diagnostic (MMD gradually become widespread in modern fish farming. MMD contain a wide variety of specific approaches, each of which has distinct limits of their possible applications and is characterized by individual peculiarities in practical performance. In addition to high sensitivity and the possibility of rapid diagnostics, the main advantage of molecular methods is to determine the uncultivated infectious agents. DNA amplification allows identifying pathogenic microorganisms at very small quantities even in the minimum sample volume. Molecular methods of diagnostic enable the determination of infection in latent or acute phases. These methods allow showing the differences between pathogens with similar antigenic structures. The current literature data on this subject usually show a methodology in the narrow context of the tasks or practical results obtained through such approaches. Thus, a synthesis of existing information on the mechanisms of action and the limits of the typical problems of basic methods of molecular diagnostics are an urgent task of fish breeding. In particular, the following description will more effectively choose one or several approaches to identify pathogens in fish. Findings. This paper reviews the basic molecular methods that are used in the world's aquaculture for diagnosis of various diseases in commercial fish species. Originality. This work is a generalization of data on the principles and mechanisms for the implementation of diagnostics based on modern molecular techniques. For each of the mentioned approaches, the most promising areas of application were shown. The information is provided in the form of a comparative analysis of each methodology, indicating positive and negative practical aspects. Practical value. The current review of modern methods of molecular diagnostic in aquaculture is focused on practical application. Generalizing and analytical information can be

  7. Molecular epidemiology, and possible real-world applications in breast cancer.

    Science.gov (United States)

    Ito, Hidemi; Matsuo, Keitaro

    2016-01-01

    Gene-environment interaction, a key idea in molecular epidemiology, has enabled the development of personalized medicine. This concept includes personalized prevention. While genome-wide association studies have identified a number of genetic susceptibility loci in breast cancer risk, however, the application of this knowledge to practical prevention is still underway. Here, we briefly review the history of molecular epidemiology and its progress in breast cancer epidemiology. We then introduce our experience with the trial combination of GWAS-identified loci and well-established lifestyle and reproductive risk factors in the risk prediction of breast cancer. Finally, we report our exploration of the cumulative risk of breast cancer based on this risk prediction model as a potential tool for individual risk communication, including genetic risk factors and gene-environment interaction with obesity.

  8. Modern uses of proteome to identify the biological effects of radiation

    International Nuclear Information System (INIS)

    Ashry, O.M.

    2014-01-01

    Recent advances in molecular biology, genetics, and clinical research are transforming the understanding of the molecular mechanisms of human diseases and in particular of endocrine disorders. It is now clear, more than ever, that disease is a function of genes, whether they are involved directly or indirectly through the environment. The significant advances have occurred through the completion of the sequencing of human genome. Proteomics have gained much attention as a drug development platform because disease processes and treatments are often manifested at the protein level. Protein expression profiles are used in cancer research to identify tumor subtypes and to achieve a more reliable and objective classification. Molecular analysis allows for subgrouping based on genomic or proteomic profiles together with histopathology evaluation in colorectal cancer, breast cancer, lung cancer, lymphomas and others. The identification of markers for bladder cancer was reported that defines the degree of differentiation. It could be a new field for studying and detecting irradiation induced physiological changes on protein expressions rather than on the chromosome as a whole. (author)

  9. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  10. Molecular biology of pancreatic cancer.

    Science.gov (United States)

    Zavoral, Miroslav; Minarikova, Petra; Zavada, Filip; Salek, Cyril; Minarik, Marek

    2011-06-28

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  11. An Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections

    Science.gov (United States)

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated wi...

  12. Upon Their Shoulders: A History of the Mississippi River Commission from Its Inception through the Advent of the Modern Mississippi River and Tributaries Project

    Science.gov (United States)

    2004-01-01

    cannot bar its path with an obstruction which it will not tear dOl\\’l1, dance over, and laugh at. Bllt a discreet man will not put these things...greeted his entourage in the ballroom of the Mayflower Hotel, "where he sat enthroned in a bower of flowers and banners." Following the brief festivi...Babcock, " Pineapple Politics," The Nation 126 (3277), 16 April 1928: 480-81 ; Douglas Bukowski, Big Bill Thompson. Chicago. and the Politics of

  13. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients

    NARCIS (Netherlands)

    Broyl, Annemiek; Hose, Dirk; Lokhorst, Henk; de Knegt, Yvonne; Peeters, Justine; Jauch, Anna; Bertsch, Uta; Buijs, Arjan; Stevens-Kroef, Marian; Beverloo, H. Berna; Vellenga, Edo; Zweegman, Sonja; Kersten, Marie-Josée; van der Holt, Bronno; el Jarari, Laila; Mulligan, George; Goldschmidt, Hartmut; van Duin, Mark; Sonneveld, Pieter

    2010-01-01

    To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6

  14. A survey of physician receptivity to molecular diagnostic testing and readiness to act on results for early-stage colon cancer patients.

    Science.gov (United States)

    Myers, Ronald E; Wolf, Thomas; Shwae, Phillip; Hegarty, Sarah; Peiper, Stephen C; Waldman, Scott A

    2016-10-03

    We sought to assess physician interest in molecular prognosic testing for patients with early stage colon cancer, and identify factors associated with the likelihood of test adoption. We identified physicians who care for patients with early-stage (pN0) colon cancer patients, mailed them a survey, and analyzed survey responses to assess clinician receptivity to the use of a new molecular test (GUCY2C) that identifies patients at risk for recurrence, and clinician readiness to act on abnormal test results. Of 104 eligible potential respondents, 41 completed and returned the survey. Among responding physicians, 56 % were receptive to using the new prognostic test. Multivariable analyses showed that physicians in academic medical centers were significantly more receptive to molecular test use than those in non-academic settings. Forty-one percent of respondents were ready to act on abnormal molecular test results. Physicians who viewed current staging methods as inaccurate and were confident in their capacity to incorporate molecular testing in practice were more likely to say they would act on abnormal test results. Physician receptivity to molecular diagnostic testing for early-stage colon cancer patients is likely to be influenced by practice setting and perceptions related to delivering quality care to patients. ClinicalTrials.gov Identifier: NCT01972737.

  15. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  16. Light and redox switchable molecular components for molecular electronics.

    Science.gov (United States)

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  17. International bulletin on atomic and molecular data for fusion. No. 46

    International Nuclear Information System (INIS)

    Botero, J.

    1993-06-01

    The bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In Part I the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths; transition probabilities, oscillator strengths; interatomic potentials); (ii) atomic and molecular collisions (photon collisions; electron collisions; heavy-particle collisions; homonuclear sequences; isoelectronic sequences), and (iii) surface interactions (sputtering; chemical reactions; trapping and detrapping; surface damage; blistering, flaking; secondary electron emission). Part II contains the bibliographic data for the above listed topics and for high energy laser- and beam-matter interaction; interaction of atomic particles with fields. The atomic and molecular data needs in fusion research, as identified during the IAEA Consultants' Meeting on 'Atomic and Molecular Database for Hydrogen Recycling and Helium Exhaust from Fusion Reactors', June 1992, Vienna, are listed, covering (i) atomic and molecular collision processes, (ii) particle-surface interaction processes, and (iii) the status of data bases on atomic and molecular data and plasma-surface interactions. News on the ALADDIN (A labelled Atomic Data INterface) system is provided. Finally, a list of evaluated atomic and molecular data bases is provided

  18. Molecular HIV screening.

    Science.gov (United States)

    Bourlet, Thomas; Memmi, Meriam; Saoudin, Henia; Pozzetto, Bruno

    2013-09-01

    Nuclear acid testing is more and more used for the diagnosis of infectious diseases. This paper focuses on the use of molecular tools for HIV screening. The term 'screening' will be used under the meaning of first-line HIV molecular techniques performed on a routine basis, which excludes HIV molecular tests designed to confirm or infirm a newly discovered HIV-seropositive patient or other molecular tests performed for the follow-up of HIV-infected patients. The following items are developed successively: i) presentation of the variety of molecular tools used for molecular HIV screening, ii) use of HIV molecular tools for the screening of blood products, iii) use of HIV molecular tools for the screening of organs and tissue from human origin, iv) use of HIV molecular tools in medically assisted procreation and v) use of HIV molecular tools in neonates from HIV-infected mothers.

  19. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    Science.gov (United States)

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia

    NARCIS (Netherlands)

    van Uitert, Miranda; Moerland, Perry D.; Enquobahrie, Daniel A.; Laivuori, Hannele; van der Post, Joris A. M.; Ris-Stalpers, Carrie; Afink, Gijs B.

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia

  1. Neutron molecular spectroscopy: future prospects

    International Nuclear Information System (INIS)

    Tomkinson, J.; Carlile, C.J.; Krishna, P.S.R.

    1994-07-01

    The recent revolution in Neutron Molecular Spectroscopy, caused by extending the spectral range, is briefly reviewed. The need to constantly improve the spectral resolution is underlined and the likely benefits are identified. Recent work on improving the energy resolution on TFXA is presented and three future options for TFXA are outlined. Some preliminary high resolution results, from a mock-up spectrometer, are reported. These clearly show that narrow bands are available in solids and improved resolutions can be achieved to observe them. (Author)

  2. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts.

    Directory of Open Access Journals (Sweden)

    Michael E Johnson

    Full Text Available Genome-wide expression profiling in systemic sclerosis (SSc has identified four 'intrinsic' subsets of disease (fibroproliferative, inflammatory, limited, and normal-like, each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling.

  3. Common Lung Microbiome Identified among Mechanically Ventilated Surgical Patients.

    Directory of Open Access Journals (Sweden)

    Ashley D Smith

    Full Text Available The examination of the pulmonary microbiome in patients with non-chronic disease states has not been extensively examined. Traditional culture based screening methods are often unable to identify bacteria from bronchoalveolar lavage samples. The advancement of next-generation sequencing technologies allows for a culture-independent molecular based analysis to determine the microbial composition in the lung of this patient population. For this study, the Ion Torrent PGM system was used to assess the microbial complexity of culture negative bronchoalveolar lavage samples. A group of samples were identified that all displayed high diversity and similar relative abundance of bacteria. This group consisted of Hydrogenophaga, unclassified Bacteroidetes, Pedobacter, Thauera, and Acinetobacter. These bacteria may be representative of a common non-pathogenic pulmonary microbiome associated within this population of patients.

  4. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  5. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed ...

  6. Heterogeneity of mammary lesions represent molecular differences

    International Nuclear Information System (INIS)

    Namba, Ruria; Gregg, Jeffrey P; Maglione, Jeannie E; Davis, Ryan R; Baron, Colin A; Liu, Stephenie; Carmack, Condie E; Young, Lawrence JT; Borowsky, Alexander D; Cardiff, Robert D

    2006-01-01

    Human breast cancer is a heterogeneous disease, histopathologically, molecularly and phenotypically. The molecular basis of this heterogeneity is not well understood. We have used a mouse model of DCIS that consists of unique lines of mammary intraepithelial neoplasia (MIN) outgrowths, the premalignant lesion in the mouse that progress to invasive carcinoma, to understand the molecular changes that are characteristic to certain phenotypes. Each MIN-O line has distinguishable morphologies, metastatic potentials and estrogen dependencies. We utilized oligonucleotide expression arrays and high resolution array comparative genomic hybridization (aCGH) to investigate whole genome expression patterns and whole genome aberrations in both the MIN-O and tumor from four different MIN-O lines that each have different phenotypes. From the whole genome analysis at 35 kb resolution, we found that chromosome 1, 2, 10, and 11 were frequently associated with whole chromosome gains in the MIN-Os. In particular, two MIN-O lines had the majority of the chromosome gains. Although we did not find any whole chromosome loss, we identified 3 recurring chromosome losses (2F1-2, 3E4, 17E2) and two chromosome copy number gains on chromosome 11. These interstitial deletions and duplications were verified with a custom made array designed to interrogate the specific regions at approximately 550 bp resolution. We demonstrated that expression and genomic changes are present in the early premalignant lesions and that these molecular profiles can be correlated to phenotype (metastasis and estrogen responsiveness). We also identified expression changes associated with genomic instability. Progression to invasive carcinoma was associated with few additional changes in gene expression and genomic organization. Therefore, in the MIN-O mice, early premalignant lesions have the major molecular and genetic changes required and these changes have important phenotypic significance. In contrast, the changes

  7. Cutibacterium acnes molecular typing: time to standardize the method.

    Science.gov (United States)

    Dagnelie, M-A; Khammari, A; Dréno, B; Corvec, S

    2018-03-12

    The Gram-positive, anaerobic/aerotolerant bacterium Cutibacterium acnes is a commensal of healthy human skin; it is subdivided into six main phylogenetic groups or phylotypes: IA1, IA2, IB, IC, II and III. To decipher how far specific subgroups of C. acnes are involved in disease physiopathology, different molecular typing methods have been developed to identify these subgroups: i.e. phylotypes, clonal complexes, and types defined by single-locus sequence typing (SLST). However, as several molecular typing methods have been developed over the last decade, it has become a difficult task to compare the results from one article to another. Based on the scientific literature, the aim of this narrative review is to propose a standardized method to perform molecular typing of C. acnes, according to the degree of resolution needed (phylotypes, clonal complexes, or SLST types). We discuss the existing different typing methods from a critical point of view, emphasizing their advantages and drawbacks, and we identify the most frequently used methods. We propose a consensus algorithm according to the needed phylogeny resolution level. We first propose to use multiplex PCR for phylotype identification, MLST9 for clonal complex determination, and SLST for phylogeny investigation including numerous isolates. There is an obvious need to create a consensus about molecular typing methods for C. acnes. This standardization will facilitate the comparison of results between one article and another, and also the interpretation of clinical data. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. A Multi-step and Multi-level approach for Computer Aided Molecular Design

    DEFF Research Database (Denmark)

    . The problem formulation step incorporates a knowledge base for the identification and setup of the design criteria. Candidate compounds are identified using a multi-level generate and test CAMD solution algorithm capable of designing molecules having a high level of molecular detail. A post solution step...... using an Integrated Computer Aided System (ICAS) for result analysis and verification is included in the methodology. Keywords: CAMD, separation processes, knowledge base, molecular design, solvent selection, substitution, group contribution, property prediction, ICAS Introduction The use of Computer...... Aided Molecular Design (CAMD) for the identification of compounds having specific physic...

  9. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates...... of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...... by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases....

  10. Molecular characterisation of a mycorrhizal inoculant that enhances ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... lum used as biological models originated from the same desert area. In order to identify this mycorrhizal fungal inoculum, a molecular approach developed by Helgason et al. (1999) was adapted. The small subunit 18S from the roots of mycorrhizal T. alexandrium was amplified using primers NS31 and ...

  11. Molecular genetics of hemophilia A: Clinical perspectives | Tantawy ...

    African Journals Online (AJOL)

    Since the publication of the sequence of the factor VIII (F8) gene in 1984, a large number of mutations that cause hemophilia A have been identified and a significant progress has been made in translating this knowledge for clinical diagnostic and therapeutic purposes. Molecular genetic testing is used to determine the ...

  12. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  13. [Molecular biology for sarcoma: useful or necessary?].

    Science.gov (United States)

    Neuville, Agnès; Coindre, Jean-Michel; Chibon, Frédéric

    2015-01-01

    Sarcomas are a heterogeneous group of tumors. Their diagnosis is based on morphology and immunohistochemical profile, with categories of tumors according to the type of tissue that they resemble. Nevertheless, for several tumors, cellular origin is unknown. Molecular analysis performed in recent years allowed, combining histophenotype and genomics, better classifying such sarcomas, individualizing new entities and grouping some tumors. Simple and recurrent genetic alterations, such as translocation, mutation, amplification, can be identified in one of two sarcomas and appear as new diagnostic markers. Their identification in specialized laboratories in molecular pathology of sarcomas is often useful and sometimes necessary for a good diagnosis, leading to a heavy and multidisciplinary multi-step treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    Science.gov (United States)

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  16. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations.

    Science.gov (United States)

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2017-10-01

    Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.

  17. BISQUE: locus- and variant-specific conversion of genomic, transcriptomic and proteomic database identifiers.

    Science.gov (United States)

    Meyer, Michael J; Geske, Philip; Yu, Haiyuan

    2016-05-15

    Biological sequence databases are integral to efforts to characterize and understand biological molecules and share biological data. However, when analyzing these data, scientists are often left holding disparate biological currency-molecular identifiers from different databases. For downstream applications that require converting the identifiers themselves, there are many resources available, but analyzing associated loci and variants can be cumbersome if data is not given in a form amenable to particular analyses. Here we present BISQUE, a web server and customizable command-line tool for converting molecular identifiers and their contained loci and variants between different database conventions. BISQUE uses a graph traversal algorithm to generalize the conversion process for residues in the human genome, genes, transcripts and proteins, allowing for conversion across classes of molecules and in all directions through an intuitive web interface and a URL-based web service. BISQUE is freely available via the web using any major web browser (http://bisque.yulab.org/). Source code is available in a public GitHub repository (https://github.com/hyulab/BISQUE). haiyuan.yu@cornell.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. A comparison of morphological and molecular-based surveys to estimate the species richness of Chaetoceros and Thalassiosira (bacillariophyta, in the Bay of Fundy.

    Directory of Open Access Journals (Sweden)

    Sarah E Hamsher

    Full Text Available The goal of this study was to compare the ability of morphology and molecular-based surveys to estimate species richness for two species-rich diatom genera, Chaetoceros Ehrenb. and Thalassiosira Cleve, in the Bay of Fundy. Phytoplankton tows were collected from two sites at intervals over two years and subsampled for morphology-based surveys (2010, 2011, a culture-based DNA reference library (DRL; 2010, and a molecular-based survey (2011. The DRL and molecular-based survey utilized the 3' end of the RUBISCO large subunit (rbcL-3P to identify genetic species groups (based on 0.1% divergence in rbcL-3P, which were subsequently identified morphologically to allow comparisons to the morphology-based survey. Comparisons were compiled for the year (2011 by site (n = 2 and by season (n = 3. Of the 34 taxa included in the comparisons, 50% of taxa were common to both methods, 35% were unique to the molecular-based survey, and 12% were unique to the morphology-based survey, while the remaining 3% of taxa were unidentified genetic species groups. The morphology-based survey excelled at identifying rare taxa in individual tow subsamples, which were occasionally missed with the molecular approach used here, while the molecular methods (the DRL and molecular-based survey, uncovered nine cryptic species pairs and four previously overlooked species. The last mentioned were typically difficult to identify and were generically assigned to Thalassiosira spp. during the morphology-based survey. Therefore, for now we suggest a combined approach encompassing routine morphology-based surveys accompanied by periodic molecular-based surveys to monitor for cryptic and difficult to identify taxa. As sequencing technologies improve, molecular-based surveys should become routine, leading to a more accurate representation of species composition and richness in monitoring programs.

  19. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  20. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    Science.gov (United States)

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  1. Molecular Electronic Terms and Molecular Orbital Configurations.

    Science.gov (United States)

    Mazo, R. M.

    1990-01-01

    Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)

  2. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    Science.gov (United States)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  3. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    Science.gov (United States)

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  4. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve; Influencia do metodo de incorporacao da zirconia sulfatada na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V., E-mail: eduardopereira.eq@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencia e Tecnologia

    2016-07-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  5. Autoimmunity due to molecular mimicry as a cause of neurological disease.

    Science.gov (United States)

    Levin, Michael C; Lee, Sang Min; Kalume, Franck; Morcos, Yvette; Dohan, F Curtis; Hasty, Karen A; Callaway, Joseph C; Zunt, Joseph; Desiderio, Dominic; Stuart, John M

    2002-05-01

    One hypothesis that couples infection with autoimmune disease is molecular mimicry. Molecular mimicry is characterized by an immune response to an environmental agent that cross-reacts with a host antigen, resulting in disease. This hypothesis has been implicated in the pathogenesis of diabetes, lupus and multiple sclerosis (MS). There is limited direct evidence linking causative agents with pathogenic immune reactions in these diseases. Our study establishes a clear link between viral infection, autoimmunity and neurological disease in humans. As a model for molecular mimicry, we studied patients with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease that can be indistinguishable from MS (refs. 5,6,7). HAM/TSP patients develop antibodies to neurons. We hypothesized these antibodies would identify a central nervous system (CNS) autoantigen. Immunoglobulin G isolated from HAM/TSP patients identified heterogeneous nuclear ribonuclear protein-A1 (hnRNP-A1) as the autoantigen. Antibodies to hnRNP-A1 cross-reacted with HTLV-1-tax, the immune response to which is associated with HAM/TSP (refs. 5,9). Immunoglobulin G specifically stained human Betz cells, whose axons are preferentially damaged. Infusion of autoantibodies in brain sections inhibited neuronal firing, indicative of their pathogenic nature. These data demonstrate the importance of molecular mimicry between an infecting agent and hnRNP-A1 in autoimmune disease of the CNS.

  6. Molecular profiling of childhood cancer: Biomarkers and novel therapies.

    Science.gov (United States)

    Saletta, Federica; Wadham, Carol; Ziegler, David S; Marshall, Glenn M; Haber, Michelle; McCowage, Geoffrey; Norris, Murray D; Byrne, Jennifer A

    2014-06-01

    Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.

  7. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    Science.gov (United States)

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  8. Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo

    DEFF Research Database (Denmark)

    Jovanovic, Goran; Sheng, Xia; Ale, Angelique

    2015-01-01

    the functional relevance of the dimerization of a non-orthodox or hybrid histidine kinase along which the phosphorelay takes place has been a subject of debate. We use a combination of molecular and genetic approaches, coupled to mathematical and statistical modelling, to demonstrate that the different possible...... intra- and inter-molecular mechanisms of phosphotransfer are formally non-identifiable in Escherichia coli expressing the ArcB non-orthodox histidine kinase used in anoxic redox control. In order to resolve this issue we further analyse the mathematical model in order to identify discriminatory...

  9. Gliomatosis cerebri: Prognosis based on current molecular markers.

    Science.gov (United States)

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cytogenetic and molecular cytogenetic methods in hemato-oncology

    International Nuclear Information System (INIS)

    Novakova, P.; Ilencikova, D.

    2010-01-01

    Cancer, either sporadic or hereditary, is a genetic disease that develops through multiple genetic changes. Specific genetic defects have been found to be associated non randomly with the predisposition, genesis, progression, and metastasis of various kinds of neoplasia. Cytogenetics in haematological malignancy to aid in diagnosis and in identifying recurrent chromosomal rearrangements, an essential prerequisite to identifying genes involved in leukaemia and lymphoma pathogenesis. In the late 1980s, a series of technologies based around fluorescence in situ hybridisation (FISH) revolutionised the field. FISH technology, a combination of molecular and conventional cytogenetic techniques, has brought modern cytogenetics to a new era with significantly higher resolutions and much wider testing spectrum. Since then, numerous new FISH-based technologies have been emerging, from metaphase FISH to interphase FISH, from single-color FISH to multicolor FISH, from comparative gnenomic hybridisation (CGH) to array CGH, and so on. In this review the advantages and limitations of each of the various types of conventional and molecular cytogenetic methodologies are discussed with regard to their application in human neoplasia. (author)

  11. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  12. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  13. Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima

    Directory of Open Access Journals (Sweden)

    Caijin Chen

    2017-11-01

    Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.

  14. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Molecular heterogeneity of Malassezia pachydermatis through RAPD-PCR = Heterogeneidade molecular da Malassezia pachydermatis através de RAPD-PCR

    Directory of Open Access Journals (Sweden)

    Patrícia da Silva Nascente

    2010-04-01

    Full Text Available Several methodologies in molecular biology have been used in theinvestigation of Malassezia pachydermatis and its differentiation into subtypes. Recent molecular research of this species includes the use of samples isolated from canine otitis externa and dermatitis, as well as from healthy animals, having in view an epidemiologicalstudy of the yeast. The aim of this study was to identify molecular differences in M. pachydermatis samples isolated from dogs with otitis externa. The M. pachydermatis strains were analyzed by means of the Random Amplification Primer DNA - Polimerase Chain Reaction (RAPD–PCR for molecular heterogeneity research. DNA extraction was carried out with phenol-chloroform and the RAPD technique using the AGAATCCGCC primer. A variation was observed in the number and arrangement of the bands among the 49 studied isolates, grouped into nine patterns. Isolate groupings were not found to be related to animal breed, age or sex. It was concluded that M. pachydermatis has differences in its molecular profile, as shown by the molecular technique (RAPD – PCR, which allows isolates to be classified into nine subtypes.Várias metodologias em biologia molecular têm sido aplicadas para estudar a M. pachydermatis diferenciando-a em subgrupos. Recentemente utiliza-se a investigação molecular desta espécie isolada de otite externa e dermatite, e também de isolados da mesma de animais hígidos, para um estudo epidemiológico da levedura. O objetivo deste trabalho foi identificar diferenças moleculares entre isolados de M. pachydermatis obtidos de casos de otite externa canina. Para isto, amostras da levedura provenientes de cães com esta enfermidade foram estudadas através da técnica de Polimorfismo de DNA Amplificado aoAcaso - Reação da Polimerase em Cadeia (RAPD–PCR para pesquisa de heterogeneidade molecular. A extração de DNA foi realizada no processo fenol-cloroformio e a técnica de RAPD foi estudada com o primer

  16. Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Sarli Giuseppe

    2010-01-01

    Full Text Available Abstract Background Human breast cancer is classified by gene expression profile into subtypes consisting of two hormone (oestrogen and/or progesterone receptor-positive types (luminal-like A and luminal-like B and three hormone receptor-negative types [human epidermal growth factor receptor 2-expressing, basal-like, and unclassified ("normal-like"]. Immunohistochemical surrogate panels are also proposed to potentially identify the molecular-based groups. The present study aimed to apply an immunohistochemical panel (anti-ER, -PR, -ERB-B2, -CK 5/6 and -CK14 in a series of canine malignant mammary tumours to verify the molecular-based classification, its correlation with invasion and grade, and its use as a prognostic aid in veterinary practice. Results Thirty-five tumours with luminal pattern (ER+ and PR+ were subgrouped into 13 A type and 22 B type, if ERB-B2 positive or negative. Most luminal-like A and basal-like tumours were grade 1 carcinomas, while the percentage of luminal B tumours was higher in grades 2 and 3 (Pearson Chi-square P = 0.009. No difference in the percentage of molecular subtypes was found between simple and complex/mixed carcinomas (Pearson Chi-square P = 0.47. No significant results were obtained by survival analysis, even if basal-like tumours had a more favourable prognosis than luminal-like lesions. Conclusion The panel of antibodies identified only three tumour groups (luminal-like A and B, and basal-like in the dog. Even though canine mammary tumours may be a model of human breast cancer, the existence of the same carcinoma molecular subtypes in women awaits confirmation. Canine mammary carcinomas show high molecular heterogeneity, which would benefit from a classification based on molecular differences. Stage and grade showed independent associations with survival in the multivariate regression, while molecular subtype grouping and histological type did not show associations. This suggests that caution should be

  17. Orange rust in sugarcane: molecular identification in Rio de Janeiro State

    Directory of Open Access Journals (Sweden)

    Carla Vanessa Borges Castro

    2013-09-01

    Full Text Available Sugarcane (Saccharum spp. cultivation is one of the major agricultural activities in the Brazilian states. This study aimed to molecularly identify the pathogen associated with rust in sugarcane cultivars in the state of Rio de Janeiro and to suggest a control strategy. Among the 14 PCR-tested cultivars, Puccinia kuehnii infection was identified for RB947520, RB92606, RB835486, RB72454, SP89-11I5, SP83-2847, both from infected leaf sample and from urediniospores. Puccinia kuehnii was not detected by PCR for the cultivars RB955971, RB951541, RB92579, RB867515, RB855536, SP91-1049, SP80-3280, SP80-1816. This is the first molecular detection of this fungus in the state of Rio de Janeiro for six of the 14 analyzed cultivars.

  18. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  19. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  20. Gene Expression Meta-Analysis identifies Cytokine Pathways and 5q Aberrations involved in Metastasis of ERBB2 Amplified and Basal Breast Cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Burton, Mark

    2013-01-01

    Background: Breast tumors have been described by molecular subtypes characterized by pervasively different gene expression profiles. The subtypes are associated with different clinical parameters and origin of precursor cells. However, the biological pathways and chromosomal aberrations that differ...... the subgroups impact metastasis. Results: We have scrutinized publicly available gene expression datasets and identified molecular subtypes in 1,394 breast tumors with outcome data. By analysis of chromosomal regions and pathways using “Gene set enrichment analysis” followed by a meta-analysis, we identified...... between the subgroups are less well characterized. The molecular subtypes are associated with different risk of metastatic recurrence of the disease. Nevertheless, the performance of these overall patterns to predict outcome is far from optimal, suggesting that biological mechanisms that extend beyond...

  1. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Xiaodong Gao

    2016-05-01

    Full Text Available Checkpoint kinase 1 (Chk1 is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure–activity relationship (3D-QSAR modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q2 values (0.531, 0.726, fitted correlation r2 coefficients (higher than 0.90, and standard error of prediction (less than 0.250. These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  2. Formalizing the definition of meta-analysis in Molecular Ecology.

    Science.gov (United States)

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  3. [Gene doping: gene transfer and possible molecular detection].

    Science.gov (United States)

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  4. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  5. Molecular diagnosis of multiple endocrine neoplasia type 2A ...

    African Journals Online (AJOL)

    Molecular diagnosis of multiple endocrine neoplasia type 2A. RJ Pegoraro, DJ Hacking, RH Buck, L Rom, PA Lanning, GMB Berger. Abstract. Objective. To identify by means of genetic analyses individuals who are at risk of developing medullary thyroid cancer that is a component of multiple endocrine neoplasia. Subjects.

  6. MOLECULAR DIAGNOSTICS OF YERSINIA RUCKERI

    Directory of Open Access Journals (Sweden)

    Yu. Rud

    2014-06-01

    Full Text Available Purpose. The analysis of nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri and to develop the method of molecular diagnostic of enteric redmouth disease. Methodology. By the method of CLUSTALW algorithm in MEGA software version 6.0 the nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri were analysed. For development of molecular diagnostic of Y. ruckeri the method of polymerase chain reaction (PCR was used. Primer selection was carried out in software VectorNTI11 and on-line-service BLAST. The PCR products were investigated by the methods of sequencing and nucleotide analysis. Findings. Based on PCR assay the method of molecular diagnostic of enteric redmouth disease agent, bacterium Y. ruckeri was developed. It was shown that specific oligonucleotide primers generated PCR products in size of 600 base pairs. PCR products were investigated by the sequencing that showed right targeting of primers in reaction. Originality. Among high-conservative gene of 16S rDNA of Y. ruckeri the fragment of DNA was determined to which the specific primers for rapid diagnostic of virulent strains were selected. Practical Value. Rapid diagnostic of yersiniosis will allow to identify an agent of this infectious disease, bacterium Y. ruckeri, and to provide the prophylactic or medical measures in the fish farming of Ukraine.

  7. Sexual transgression on the American stage: Clyde Fitch, Sapho, and the 'American Girl'

    OpenAIRE

    Saxon, Theresa

    2013-01-01

    Clyde Fitch's play, Sapho (1900), is significant in the history of theatre censorship in America as a result of the arrests of the leading actress, Olga Nethersole, and several of her entourage. Critical analyses have focussed explicitly on the role of Nethersole in the censorship of the production. But the play as a dramatic production and the role of the playwright have been obscured by the media frenzy that led to the arrests and the subsequent furore. This article looks to expand the crit...

  8. Progress on molecular imaging

    International Nuclear Information System (INIS)

    Chen Quan; Zhang Yongxue

    2011-01-01

    Molecular imaging is a new era of medical imaging,which can non-invasively monitor biological processes at the cellular and molecular level in vivo, including molecular imaging of nuclear medicine, magnetic resonance molecular imaging, ultrasound molecular imaging,optical molecular imaging and molecular imaging with X-ray. Recently, with the development of multi-subjects amalgamation, multimodal molecular imaging technology has been applied in clinical imaging, such as PET-CT and PET-MRI. We believe that with development of molecular probe and multi-modal imaging, more and more molecular imaging techniques will be applied in clinical diagnosis and treatment. (authors)

  9. Molecular Characterization of Copepod Photoreception.

    Science.gov (United States)

    Porter, Megan L; Steck, Mireille; Roncalli, Vittoria; Lenz, Petra H

    2017-08-01

    Copepod crustaceans are an abundant and ecologically significant group whose basic biology is guided by numerous visually guided behaviors. These behaviors are driven by copepod eyes, including naupliar eyes and Gicklhorn's organs, which vary widely in structure and function among species. Yet little is known about the molecular aspects of copepod vision. In this study we present a general overview of the molecular aspects of copepod vision by identifying phototransduction genes from newly generated and publicly available RNA-sequencing data and assemblies from 12 taxonomically diverse copepod species. We identify a set of 10 expressed transcripts that serve as a set of target genes for future studies of copepod phototransduction. Our more detailed evolutionary analyses of the opsin gene responsible for forming visual pigments found that all of the copepod species investigated express two main groups of opsins: middle-wavelength-sensitive (MWS) opsins and pteropsins. Additionally, there is evidence from a few species (e.g., Calanus finmarchicus, Eurytemora affinis, Paracyclopina nana, and Lernaea cyprinacea) for the expression of two additional groups of opsins-the peropsins and rhodopsin 7 (Rh7) opsins-at low levels or distinct developmental stages. An ontogenetic analysis of opsin expression in Calanus finmarchicus found the expression of a single dominant MWS opsin, as well as evidence for differences in expression across development in some MWS, pteropsin, and Rh7 opsins, with expression peaking in early naupliar through early copepodite stages.

  10. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment.

    Science.gov (United States)

    An, Yang; Wang, Shuzhen; Li, Songlin; Zhang, Lulu; Wang, Dayong; Wang, Haojie; Zhu, Shibai; Zhu, Wan; Li, Yongqiang; Chen, Wenwu; Ji, Shaoping; Guo, Xiangqian

    2017-09-11

    Uterine leiomyosarcoma (ULMS) is an aggressive form of soft tissue tumors. The molecular heterogeneity and pathogenesis of ULMS are not well understood. Expression profiling data were used to determine the possibility and optimal number of ULMS molecular subtypes. Next, clinicopathological characters and molecular pathways were analyzed in each subtype to prospect the clinical applications and progression mechanisms of ULMS. Two distinct molecular subtypes of ULMS were defined based on different gene expression signatures. Subtype I ULMS recapitulated low-grade ULMS, the gene expression pattern of which resembled normal smooth muscle cells, characterized by overexpression of smooth muscle function genes such as LMOD1, SLMAP, MYLK, MYH11. In contrast, subtype II ULMS recapitulated high-grade ULMS with higher tumor weight and invasion rate, and was characterized by overexpression of genes involved in the pathway of epithelial to mesenchymal transition and tumorigenesis, such as CDK6, MAPK13 and HOXA1. We identified two distinct molecular subtypes of ULMS responding differently to chemotherapy treatment. Our findings provide a better understanding of ULMS intrinsic molecular subtypes, and will potentially facilitate the development of subtype-specific diagnosis biomarkers and therapy strategies for these tumors.

  11. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases

    Science.gov (United States)

    Jacob, Sherry R.; Srinivasan, Kalyani; Radhamani, J.; Parimalan, R.; Sivaswamy, M.; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N. S.; Chowdhury, A. K.; Saha, B. C.; Bhattacharya, P. M.; Kumari, Jyoti; Singh, M. C.; Gangwar, O. P.; Prasad, P.; Bharadwaj, S. C.; Gogoi, Robin; Sharma, J. B.; GM, Sandeep Kumar; Saharan, M. S.; Bag, Manas; Roy, Anirban; Prasad, T. V.; Sharma, R. K.; Dutta, M.; Sharma, Indu; Bansal, K. C.

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels. PMID:27942031

  12. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases.

    Directory of Open Access Journals (Sweden)

    Sundeep Kumar

    Full Text Available A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat-Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011-14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu, a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab, a hotspot for stripe rust and at Cooch Behar (West Bengal, a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.

  13. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases.

    Science.gov (United States)

    Kumar, Sundeep; Archak, Sunil; Tyagi, R K; Kumar, Jagdish; Vk, Vikas; Jacob, Sherry R; Srinivasan, Kalyani; Radhamani, J; Parimalan, R; Sivaswamy, M; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N S; Chowdhury, A K; Saha, B C; Bhattacharya, P M; Kumari, Jyoti; Singh, M C; Gangwar, O P; Prasad, P; Bharadwaj, S C; Gogoi, Robin; Sharma, J B; Gm, Sandeep Kumar; Saharan, M S; Bag, Manas; Roy, Anirban; Prasad, T V; Sharma, R K; Dutta, M; Sharma, Indu; Bansal, K C

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat-Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011-14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.

  14. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    Science.gov (United States)

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  15. Identification of some Rice Mutants using Morphological and Molecular Methods

    International Nuclear Information System (INIS)

    Sobieh, S.E.S.

    2006-01-01

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, abu zaabal in order to verify four rice genotypes i.e sakha 102, giza 178, high yielding mutant (Ms 6) and high yielding mutant (MG 16). the (UPOV) rice descriptor was used to identify the germplasm morphologically .Molecular RAPD-PCR was used to identify genetic variability on the molecular level for the tested genotypes. 1- the results indicated that according to (UPOV) rice descriptor eight morphological traits were completely different between mutant Ms 6 in comparison with the parent sakha 102 and mut. MG 16 in comparison parent giza 178, the traits were ; stem thickness, stem length, panicle length, 1000-grain weight, grain length, grain width decorticated grain length and decorticated grain width. 2- using 10 arbitrary primers, through four rice genotypes on the molecular level using RAPD markers. the size of the amplified fragments were ranged from 0.201 to 2.036 k bp. two primers OPB-13 and OPB-16 showed no polymorphism among genotypes tested. 3- the total number of amplicons produced by the 8 polymorphic RAPD profiels was 66. the total number of monomorphic amplicons was 32. however, the total number of polymorphic amplicons was 34. 4- the percentage of polymorphism ranged from (22.22%) for primer OPA-18 to (90%) for primer OPB-11. 5-the highest genetic similarity (90.3%) was between sakha 102 and high yielding mut. (Ms 6). the genetic similarity (75.5%) was between giza 178 and high yielding mut.(MG 16). 6- one positive unique marker amplified by OPA-18 Primer identified the high yielding mutant Ms 6 but three positive unique markers amplified by OPB-17 primer and OPA-18 primer identified the high yielding mutant MG 16

  16. Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology.

    Science.gov (United States)

    Walker, Steven M; Knight, Laura A; McCavigan, Andrena M; Logan, Gemma E; Berge, Viktor; Sherif, Amir; Pandha, Hardev; Warren, Anne Y; Davidson, Catherine; Uprichard, Adam; Blayney, Jaine K; Price, Bethanie; Jellema, Gera L; Steele, Christopher J; Svindland, Aud; McDade, Simon S; Eden, Christopher G; Foster, Chris; Mills, Ian G; Neal, David E; Mason, Malcolm D; Kay, Elaine W; Waugh, David J; Harkin, D Paul; Watson, R William; Clarke, Noel W; Kennedy, Richard D

    2017-10-01

    Approximately 4-25% of patients with early prostate cancer develop disease recurrence following radical prostatectomy. To identify a molecular subgroup of prostate cancers with metastatic potential at presentation resulting in a high risk of recurrence following radical prostatectomy. Unsupervised hierarchical clustering was performed using gene expression data from 70 primary resections, 31 metastatic lymph nodes, and 25 normal prostate samples. Independent assay validation was performed using 322 radical prostatectomy samples from four sites with a mean follow-up of 50.3 months. Molecular subgroups were identified using unsupervised hierarchical clustering. A partial least squares approach was used to generate a gene expression assay. Relationships with outcome (time to biochemical and metastatic recurrence) were analysed using multivariable Cox regression and log-rank analysis. A molecular subgroup of primary prostate cancer with biology similar to metastatic disease was identified. A 70-transcript signature (metastatic assay) was developed and independently validated in the radical prostatectomy samples. Metastatic assay positive patients had increased risk of biochemical recurrence (multivariable hazard ratio [HR] 1.62 [1.13-2.33]; p=0.0092) and metastatic recurrence (multivariable HR=3.20 [1.76-5.80]; p=0.0001). A combined model with Cancer of the Prostate Risk Assessment post surgical (CAPRA-S) identified patients at an increased risk of biochemical and metastatic recurrence superior to either model alone (HR=2.67 [1.90-3.75]; pmolecular subgroup of primary prostate cancers with metastatic potential. The metastatic assay may improve the ability to detect patients at risk of metastatic recurrence following radical prostatectomy. The impact of adjuvant therapies should be assessed in this higher-risk population. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  18. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  19. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances

    Science.gov (United States)

    Dhanasekaran, Renumathy; Bandoh, Salome; Roberts, Lewis R.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has an increasing incidence worldwide. HCC can be induced by multiple etiologies, is influenced by many risk factors, and has a complex pathogenesis. Furthermore, HCCs exhibit substantial heterogeneity, which compounds the difficulties in developing effective therapies against this highly lethal cancer. With advances in cancer biology and molecular and genetic profiling, a number of different mechanisms involved in the development and progression of HCC have been identified. Despite the advances in this area, the molecular pathogenesis of hepatocellular carcinoma is still not completely understood. This review aims to elaborate our current understanding of the most relevant genetic alterations and molecular pathways involved in the development and progression of HCC, and anticipate the potential impact of future advances on therapeutic drug development. PMID:27239288

  20. Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia

    Science.gov (United States)

    Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan

    2018-04-01

    This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.

  1. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia.

    Science.gov (United States)

    Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick

    2009-06-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.

  2. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  3. Identification of the molecular species of acylglycerols containing hydroxy fatty acids in wild edible mushroom Ganoderma lucidum

    Science.gov (United States)

    Edible Philippine mushrooms including Ganoderma lucidum have many health benefits. Seventy-two molecular species of triacylglycerols and five molecular species of diacylglycerols containing hydroxy fatty acids (FA) in the lipid extract of this mushroom were identified by HPLC and MS. The mono-, di- ...

  4. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  5. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    International Nuclear Information System (INIS)

    Torres-Roca, Javier F.; Fulp, William J.; Caudell, Jimmy J.; Servant, Nicolas; Bollet, Marc A.; Vijver, Marc van de; Naghavi, Arash O.; Harris, Eleanor E.; Eschrich, Steven A.

    2015-01-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  6. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Roca, Javier F., E-mail: javier.torresroca@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Department of Chemical Biology and Molecular Medicine, Moffitt Cancer Center, Tampa, Florida (United States); Fulp, William J. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States); Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida (United States); Caudell, Jimmy J. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Servant, Nicolas [Institut Curie, INSERM U900, Paris (France); Mines ParisTech, Paris (France); Bollet, Marc A. [Institut Curie, INSERM U900, Paris (France); Vijver, Marc van de [Netherlands Cancer Institute, Amsterdam (Netherlands); Naghavi, Arash O. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Harris, Eleanor E. [East Carolina University, Greensborough, North Carolina (United States); Eschrich, Steven A. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States)

    2015-11-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  7. [Histopathological Diagnosis of Invasive Fungal Infections in Formalin-Fixed and Paraffin-Embedded Tissues in Conjunction with Molecular Methods].

    Science.gov (United States)

    Shinozaki, Minoru; Tochigi, Naobumi; Sadamoto, Sota; Yamagata Murayama, Somay; Wakayama, Megumi; Nemoto, Tetsuo

    2018-01-01

    The main objective of this study was to evaluate the relationship between histopathology, polymerase chain reaction (PCR), and in situ hybridization (ISH) for the identification of causative fungi in formalin-fixed and paraffin-embedded (FFPE) tissue specimens. Since pathogenic fungi in tissue specimens can be difficult to identify morphologically, PCR and ISH have been usually employed as auxiliary procedures. However, little comparison has been made on the sensitivity and specificity of PCR and ISH using FFPE specimens. Therefore, to compare and clarify the reproducibility and usefulness of PCR and ISH as auxiliary procedures for histological identification, we performed histopathological review, PCR assays, and ISH to identify pathogenic fungi in 59 FFPE tissue specimens obtained from 49 autopsies. The following are the main findings for this retrospective review: i) even for cases classified as "mold not otherwise specified" (MNOS), two cases could be identified as Aspergillus species by molecular methods; ii) all cases classified as non-zygomycetes mold (NZM) were Aspergillus species and were not identified by molecular methods as other fungi; iii) all 3 cases classified as zygomycetes mold (ZM) could be identified by molecular methods as Mucorales; iv) except for 1 case identified by molecular methods as Trichosporon spp., 5 cases were originally identified as dimorphic yeast (DY). As a measure of nucleic acid integrity, PCR and ISH successfully detected human and fungal nucleic acids in approximately 60% of the specimens. Detection of Aspergillus DNA by nested PCR assay and by ISH against the A. fumigatus ALP gene were similarly sensitive and significant (pmolecular methods such as ISH and PCR on FFPE specimens with pathological diagnosis should improve diagnostic accuracy of fungal infection.

  8. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve; Sintese de catalisadores de oxido de cerio suportados na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de, E-mail: emylle.souza@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica

    2016-07-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  9. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-01-28

    The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized by hydrogen bonds with protein residues. Here we show by hybrid quantum mechanics/classical mechanics (QM/MM) molecular dynamics simulations, and first-principles calculations of optical properties, that the optical shifts in the early steps of the PYP photocycle originate from the conversion of light energy into molecular strain, stored in the pR0 state, and its relaxation in subsequent reaction steps. Our calculations quantitatively reproduce experimental data, which enables us to identify molecular origins of the optical shifts. Our combined approach suggests that the short-lived pR0 intermediate stores ∼1/3 of the photon energy as molecular strain, thus providing the thermodynamic driving force for later conformational changes in the protein.

  10. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Yuan, X.L.; Munster, J.M. van; Ram, A.F.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  11. Sparse feature selection identifies H2A.Z as a novel, pattern-specific biomarker for asymmetrically self-renewing distributed stem cells

    Directory of Open Access Journals (Sweden)

    Yang Hoon Huh

    2015-03-01

    Full Text Available There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow. Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify such useful and specific DSC biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells, with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ.

  12. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  13. Phospholipids composition and molecular species of large yellow croaker ( Pseudosciaena crocea ) roe

    DEFF Research Database (Denmark)

    Liang, Peng; Li, Ruifen; Sun, He

    2018-01-01

    The research aims to study phospholipids (PL) classes and molecular species of large yellow croaker (Pseudosciaena crocea) roe. Both gas chromatographymass spectroscopy (GC-MS) and high-performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD) were utilized to anal......-Q-TOF-MS). A total of 92 PLs molecular species was identified, including 49 PCs, 13 PEs, 10 phosphatidic acids (PAs), 13 phosphatidylserines (PSs), 3 phosphatidylglycerols (PGs), 2 sphingomyelins (SMs), and 2 PIs of the P. crocea roe....

  14. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    Science.gov (United States)

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  15. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics

    DEFF Research Database (Denmark)

    Harper, Andrea L.; McKinney, Lea Vig; Nielsen, Lene Rostgaard

    2016-01-01

    panel scored for disease symptoms and identified markers strongly associated with canopy damage in infected trees. Using these markers we predicted phenotypes in a test panel of unrelated trees, successfully identifying individuals with a low level of susceptibility to the disease. Co......Tree disease epidemics are a global problem, impacting food security, biodiversity and national economies. The potential for conservation and breeding in trees is hampered by complex genomes and long lifecycles, with most species lacking genomic resources. The European Ash tree Fraxinus excelsior...

  16. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok

    2017-08-01

    BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.

  17. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    2009-11-01

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  18. Molecular similarity measures.

    Science.gov (United States)

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  19. Featured Image: A Molecular Cloud Outside Our Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  20. Laura Laur, personnage hologramme. De l'intersubjectivité dans la littérature

    Directory of Open Access Journals (Sweden)

    Isabelle Boisclair

    2015-01-01

    Full Text Available La construction particulière de Laura Laur, de Suzanne Jacob (1983, effaçant la voix du personnage principal au profit de quatre personnages de son entourage (deux frères et deux amants, est ici prise en exemple pour aborder l’intersubjectivité, selon laquelle tout échange entre deux sujets participe à la production des subjectivités de chacun d’entre eux. Compte tenu du sexe des instances narratives (ce sont quatre hommes qui dessinent, depuis leurs positions respectives, une femme, est aussi considérée la dimension genrée du travail des rapports intersubjectifs dans la constitution du soi. Laura Laur apparaît ainsi comme un hologramme trahissant les attentes des uns et des autres envers le féminin. The singular construction of Suzanne Jacob’s Laura Laur (1983, which effaces the voice of the main character in favour of that of four characters from her entourage (two brothers and two lovers is taken here as an example for approaching intersubjectivity, an approach according to which every exchange between two subjects contributes to the production of their subjectivity. Taking into account the sex of the narrative instances (four men depicting a woman from their various perspectives, the gendered dimension of the role of intersubjective relations in the constitution of the self is also considered. Laura Laur then appears as a hologram that betrays the various expectations associated with the feminine.

  1. Cross-cohort analysis identifies a TEAD4 ↔ MYCN positive-feedback loop as the core regulatory element of high-risk neuroblastoma. | Office of Cancer Genomics

    Science.gov (United States)

    High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator (MR) proteins that were conserved across independent cohorts.

  2. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  3. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  4. Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

    NARCIS (Netherlands)

    Hao, Ke; Bosse, Yohan; Nickle, David C.; Pare, Peter D.; Postma, Dirkje S.; Laviolette, Michel; Sandford, Andrew; Hackett, Tillie L.; Daley, Denise; Hogg, James C.; Elliott, W. Mark; Couture, Christian; Lamontagne, Maxime; Brandsma, Corry-Anke; van den Berge, Maarten; Koppelman, Gerard; Reicin, Alise S.; Nicholson, Donald W.; Malkov, Vladislav; Derry, Jonathan M.; Suver, Christine; Tsou, Jeffrey A.; Kulkarni, Amit; Zhang, Chunsheng; Vessey, Rupert; Opiteck, Greg J.; Curtis, Sean P.; Timens, Wim; Sin, Don D.

    2012-01-01

    Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung

  5. The place of molecular methods in the identification of dermatophytes and the determination of their feasibility

    Directory of Open Access Journals (Sweden)

    Fatma Bıyık

    2013-03-01

    Full Text Available Background and Design: Unlike opportunistic fungi, dermatophytes cannot be isolated on the conventional culture media in a few days. Their growing periods cover approximately two weeks in a suitable media and identification are made with conventional methods as typical macroscopic and microscopic appearance. However, successful results are not always obtained with the phenotypic features, and thus, diagnostic problems and delay in diagnosis and treatment may arise. For this reason, the methods based on nucleic acid amplification have been necessary. In this study, we aimed to identify 56 dermatophytes strains, which were identified by conventional methods, by molecular methods and to investigate the correlation between the two methods and to determine the usability of molecular methods in routine laboratories. Materials and Methods: Several clinical samples of 270 patients with suspected dermatophytoses (hair+scalp, skin and nail scrapings were examined by conventional methods; Sabouraud dextrose agar, corn meal agar and potato dextrose agar were used for isolation. In case of necessity to hydrolyze urea, to be used different vitamins in Trichophyton agar media were investigated. Polymerase chain reaction (PCR and sequence analyses were done for the molecular diagnosis. Results: Using conventional methods, 37 strains (66,1% were identified as Trichophyton(T rubrum, four (7.1% - T.mentagrophytes, four (7.1% - T.tonsurans, one (1.8% - T.violaceum, eight (14.3% - Trichophyton spp., one (1.8% - Microsporum(M canis, and one (1.8% - Microsporum spp. According to the molecular and sequence analyses results (T1PCR, 25GAPCR, ITSPCR-RFLP and sequence analyses, 41 (73.8% strains were identified as T.rubrum, 10 (17.8% - T.interdigitale, one (1.8% - T. violaceum, two (3.6% - M. canis, one (1.8% - Peacilomyces lilacinus, and one (1,8% - Aspergillus fumigatus. Discussion: This study suggests that, molecular methods offer fast and reliable results in

  6. Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark.

    Science.gov (United States)

    Grifoni, Daniela; Sollazzo, Manuela; Fontana, Elisabetta; Froldi, Francesca; Pession, Annalisa

    2015-03-12

    Angiogenesis is the term used to describe all the alterations in blood vessel growth induced by a tumour mass following hypoxic stress. The occurrence of multiple strategies of vessel recruitment favours drug resistance, greatly complicating the treatment of certain tumours. In Drosophila, oxygen is conveyed to the internal organs by the tracheal system, a closed tubular network whose role in cancer growth is so far unexplored. We found that, as observed in human cancers, Drosophila malignant cells suffer from oxygen shortage, release pro-tracheogenic factors, co-opt nearby vessels and get incorporated into the tracheal walls. We also found that the parallelisms observed in cellular behaviours are supported by genetic and molecular conservation. Finally, we identified a molecular circuitry associated with the differentiation of cancer cells into tracheal cells. In summary, our findings identify tracheogenesis as a novel cancer hallmark in Drosophila, further expanding the power of the fly model in cancer research.

  7. Proximity-based differential single cell analysis of the niche to identify stem/progenitor cell regulators

    Science.gov (United States)

    Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Celso, Cristina Lo; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-fu; Scadden, David T

    2016-01-01

    SUMMARY Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on differential single-cell gene expression analysis of mesenchymal osteolineage cells close to and further removed from hematopoietic stem/progenitor cells to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. Amongst the genes which were preferentially expressed in proximal cells, we functionally examined three secreted or cell surface molecules not previously connected to HSPC biology: the secreted RNase Angiogenin, the cytokine IL18 and the adhesion molecule Embigin and discovered that all of these factors are HSPC quiescence regulators. Our proximity-based differential single cell approach therefore reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance understanding of microenvironmental regulation of stem cell function. PMID:27524439

  8. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Science.gov (United States)

    2010-01-01

    Background Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts

  9. Molecular genotyping of ABO blood groups in some population groups from India.

    Science.gov (United States)

    Ray, Sabita; Gorakshakar, Ajit C; Vasantha, K; Nadkarni, Anita; Italia, Yazdi; Ghosh, Kanjaksha

    2014-01-01

    Indian population is characterized by the presence of various castes and tribal groups. Various genetic polymorphisms have been used to differentiate among these groups. Amongst these, the ABO blood group system has been extensively studied. There is no information on molecular genotyping of ABO blood groups from India. Therefore, the main objective of this study was to characterize the common A, B and O alleles by molecular analysis in some Indian population groups. One hundred samples from the mixed population from Mumbai, 101 samples from the Dhodia tribe and 100 samples from the Parsi community were included in this study. Initially, the samples were phenotyped by standard serologic techniques. PCR followed by single strand conformational polymorphsim (SSCP) was used for molecular ABO genotyping. Samples showing atypical SSCP patterns were further analysed by DNA sequencing to characterize rare alleles. Seven common ABO alleles with 19 different genotypes were found in the mixed population. The Dhodias showed 12 different ABO genotypes and the Parsis revealed 15 different ABO genotypes with six common ABO alleles identified in each of them. Two rare alleles were also identified. This study reports the distribution of molecular genotypes of ABO alleles among some population groups from India. Considering the extremely heterogeneous nature of the Indian population, in terms of various genotype markers like blood groups, red cell enzymes, etc., many more ABO alleles are likely to be encountered.

  10. Molecular signatures associated with HCV-induced hepatocellular carcinoma and liver metastasis.

    Directory of Open Access Journals (Sweden)

    Valeria De Giorgi

    Full Text Available Hepatocellular carcinomas (HCCs are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.A diagnostic molecular signature complementing conventional pathologic assessment was identified.

  11. A global survey of low-molecular weight carbohydrates in lentils

    Science.gov (United States)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  12. SPARQL-enabled identifier conversion with Identifiers.org.

    Science.gov (United States)

    Wimalaratne, Sarala M; Bolleman, Jerven; Juty, Nick; Katayama, Toshiaki; Dumontier, Michel; Redaschi, Nicole; Le Novère, Nicolas; Hermjakob, Henning; Laibe, Camille

    2015-06-01

    On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql. © The Author 2015. Published by Oxford University Press.

  13. SPARQL-enabled identifier conversion with Identifiers.org

    Science.gov (United States)

    Wimalaratne, Sarala M.; Bolleman, Jerven; Juty, Nick; Katayama, Toshiaki; Dumontier, Michel; Redaschi, Nicole; Le Novère, Nicolas; Hermjakob, Henning; Laibe, Camille

    2015-01-01

    Motivation: On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. Results: We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. Availability and implementation: The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql. Contact: sarala@ebi.ac.uk PMID:25638809

  14. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  15. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    Science.gov (United States)

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. Computational challenges of large-scale, long-time, first-principles molecular dynamics

    International Nuclear Information System (INIS)

    Kent, P R C

    2008-01-01

    Plane wave density functional calculations have traditionally been able to use the largest available supercomputing resources. We analyze the scalability of modern projector-augmented wave implementations to identify the challenges in performing molecular dynamics calculations of large systems containing many thousands of electrons. Benchmark calculations on the Cray XT4 demonstrate that global linear-algebra operations are the primary reason for limited parallel scalability. Plane-wave related operations can be made sufficiently scalable. Improving parallel linear-algebra performance is an essential step to reaching longer timescales in future large-scale molecular dynamics calculations

  17. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots.

    Science.gov (United States)

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-02-06

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.

  18. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  19. Squamous cell carcinomas of the lung and of the head and neck: new insights on molecular characterization

    Science.gov (United States)

    Polo, Valentina; Pasello, Giulia; Frega, Stefano; Favaretto, Adolfo; Koussis, Haralabos; Conte, Pierfranco; Bonanno, Laura

    2016-01-01

    Squamous cell carcinomas of the lung and of the head and neck district share strong association with smoking habits and are characterized by smoke-related genetic alterations. Driver mutations have been identified in small percentage of lung squamous cell carcinoma. In parallel, squamous head and neck tumors are classified according to the HPV positivity, thus identifying two different clinical and molecular subgroups of disease. This review depicts different molecular portraits and potential clinical application in the field of targeted therapy, immunotherapy and chemotherapy personalization. PMID:26933818

  20. Molecular characterization of Marek's disease herpesvirus B antigen

    International Nuclear Information System (INIS)

    Isfort, R.J.; Sithole, I.; Kung, H.J.; Velicer, L.F.

    1986-01-01

    The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [ 35 S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [ 35 S] methionine- and 14 C-labeled infected cells into two other sera shown to have anti-B activity. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum

  1. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Realistic molecular model of kerogen's nanostructure.

    Science.gov (United States)

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J-M; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  3. Molecular markers linked to apomixis in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    Panicum maximum Jacq. is an important forage grass of African origin largely used in the tropics. The genetic breeding of this species is based on the hybridization of sexual and apomictic genotypes and selection of apomictic F1 hybrids. The objective of this work was to identify molecular markers linked to apomixis in P.

  4. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  5. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  6. Proposed biomimetic molecular sensor array for astrobiology applications

    Science.gov (United States)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  7. Molecular grading of tumors of the upper urothelial tract using FGFR3 mutation status identifies patients with favorable prognosis

    OpenAIRE

    Fernandez, Cecilia; Lyle,Stephen; Hsieh,; Shuber,Anthony

    2012-01-01

    Stephen R Lyle,1 Chung-Cheng Hsieh,1 Cecilia A Fernandez,2 Anthony P Shuber21University of Massachusetts, Worcester, MA, 2Predictive Biosciences Inc., Lexington, MA, USABackground: Mutations in FGFR3 have been shown to occur in tumors of the upper urothelial tract and may be indicative of a good prognosis. In bladder tumors, the combination of FGFR3 mutation status and Ki-67 level has been used to define a tumor's molecular grade and predict survival. Pathological evaluation of upper ...

  8. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  9. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  10. Česká próza v periodě 1945-1948

    OpenAIRE

    HÜBELBAUEROVÁ, Kristýna

    2013-01-01

    The thesis focuses on the reception of existentialism in the Czech entourage in 1945-1948. The theoretical part of the chapter is dedicated to Václav Černý and his understanding of existensialism. We are going to be focusing on the professional and theoretical texts from Jaroslav Červinka, Jindřich Chalupecký, Václav Navrátil, Jan Patočka and Ladislav Rieger, which are processing the theme. In the practical part we are going to analyze the pieces from Dušan Pala, Miroslav Hanuš and Egon Hosto...

  11. Microsoft Office 2008 for Mac Bible

    CERN Document Server

    Kinkoph Gunter, Sherry; Kettell, Greg

    2009-01-01

    Written by an expert in the field of technology training and author of nearly two dozen titles, this complete guide offers readers thorough yet clear instruction on using the Microsoft Office suite: Word, Excel, PowerPoint, and EntourageApple has welcomed Microsoft Office into its world and this reference is the ultimate resource for learning how to best capitalize on each application of OfficeReviews creating, editing, formatting, and sharing digital documents with Word; gathering and analyzing information with Excel; creating dynamic presentations with PowerPoint; and using the e-mail and ca

  12. A strategy for molecular diagnostics of Fanconi anemia in Brazilian patients.

    Science.gov (United States)

    Pilonetto, Daniela V; Pereira, Noemi F; Bonfim, Carmem M S; Ribeiro, Lisandro L; Bitencourt, Marco A; Kerkhoven, Lianne; Floor, Karijn; Ameziane, Najim; Joenje, Hans; Gille, Johan J P; Pasquini, Ricardo

    2017-07-01

    Fanconi anemia (FA) is a predominantly autosomal recessive disease with wide genetic heterogeneity resulting from mutations in several DNA repair pathway genes. To date, 21 genetic subtypes have been identified. We aimed to identify the FA genetic subtypes in the Brazilian population and to develop a strategy for molecular diagnosis applicable to routine clinical use. We screened 255 patients from Hospital de Clínicas, Universidade Federal do Paraná for 11 common FA gene mutations. Further analysis by multiplex ligation-dependent probe amplification (MLPA) for FANCA and Sanger sequencing of all coding exons of FANCA , -C , and - G was performed in cases who harbored a single gene mutation. We identified biallelic mutations in 128/255 patients (50.2%): 89, 11, and 28 carried FANCA , FANCC , and FANCG mutations, respectively. Of these, 71 harbored homozygous mutations, whereas 57 had compound heterozygous mutations. In 4/57 heterozygous patients, both mutations were identified by the initial screening, in 51/57 additional analyses was required for classification, and in 2/57 the second mutation remained unidentified. We found 52 different mutations of which 22 were novel. The proposed method allowed genetic subtyping of 126/255 (49.4%) patients at a significantly reduced time and cost, which makes molecular diagnosis of FA Brazilian patients feasible.

  13. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets.

    Science.gov (United States)

    Trofimov, Valentin; Kicka, Sébastien; Mucaria, Sabrina; Hanna, Nabil; Ramon-Olayo, Fernando; Del Peral, Laura Vela-Gonzalez; Lelièvre, Joël; Ballell, Lluís; Scapozza, Leonardo; Besra, Gurdyal S; Cox, Jonathan A G; Soldati, Thierry

    2018-03-02

    Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13-14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential "universal" targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK.

  14. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  15. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker.

    Science.gov (United States)

    Ray, Partha; Rialon-Guevara, Kristy L; Veras, Emanuela; Sullenger, Bruce A; White, Rebekah R

    2012-05-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.

  16. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability.

    Science.gov (United States)

    Chen, Chen-Peng; Chen, Chan-Cheng; Huang, Chia-Wen; Chang, Yen-Ching

    2018-04-15

    The skin permeability ( Kp ) defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR) based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical's skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  17. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. From 3D to 2D: a review of the molecular imprinting of proteins.

    Science.gov (United States)

    Turner, Nicholas W; Jeans, Christopher W; Brain, Keith R; Allender, Christopher J; Hlady, Vladimir; Britt, David W

    2006-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches.

  19. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  20. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  1. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features.

    Directory of Open Access Journals (Sweden)

    Marcel Kool

    Full Text Available BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases, SHH signaling (B; 15 cases, expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively or photoreceptor genes (D and E; both 11 cases. Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E

  2. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    Science.gov (United States)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  3. Identifying, studying and making good use of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Calero, Guillermo [University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States); Cohen, Aina E. [SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Luft, Joseph R. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Newman, Janet [CSIRO Collaborative Crystallisation Centre, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States)

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

  4. Identifying, studying and making good use of macromolecular crystals

    International Nuclear Information System (INIS)

    Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.; Newman, Janet; Snell, Edward H.

    2014-01-01

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed

  5. Cytogenetic and molecular profile of endometrial stromal sarcoma.

    Science.gov (United States)

    Micci, Francesca; Gorunova, Ludmila; Agostini, Antonio; Johannessen, Lene E; Brunetti, Marta; Davidson, Ben; Heim, Sverre; Panagopoulos, Ioannis

    2016-11-01

    Recent cytogenetic and molecular investigations have improved our understanding of endometrial stromal tumors, including sarcomas (ESS), and helped redefine their classification into more pathogenetically meaningful categories. Because much more can be gained through such studies, we add information on another 22 ESS examined by karyotyping, PCR analysis, expression array analysis, and transcriptome sequencing. In spite of the known preference for certain pathogenetic pathways, we found considerable genetic heterogeneity in high-grade (HG) as well as in low-grade (LG) ESS. Not all HG tumors showed a YWHAE-NUTM chimeric transcript and as many as six LGESS showed no hitherto known ESS-related fusions. Among the transcripts identified by transcriptome sequencing and verified by Sanger sequencing, new variants of ZC3H7-BCOR and its reciprocal BCOR-ZC3H7 were identified as was involvement of the CREBBP and MLLT4 genes (both well known leukemia-related genes) in two new fusions. FISH analysis identified a known EPC1-PHF1 fusion which led to the identification of a new variant at the molecular level. The fact that around 70 genes were found differentially expressed, by microarray analysis, when comparing LGESS showing ESS-related fusions with LGESS without such transcripts, underscores the biochemical importance of the observed genetic heterogeneity and hints that new subgroups/entities in LGESS still remain undiscovered. © 2016 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. © 2016 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.

  6. Molecular dynamics simulations of nucleation and phase transitions in molecular clusters of hexafluorides

    International Nuclear Information System (INIS)

    Xu, S.

    1993-01-01

    Molecular dynamics simulations of nucleation and phase transitions in TeF 6 and SeF 6 clusters containing 100-350 molecules were carried out. Simulations successfully reproduced the crystalline structures observed in electron diffraction studies of large clusters (containing about 10 4 molecules) of the same materials. When the clusters were cooled, they spontaneously underwent the same bcc the monoclinic phase transition in simulations as in experiment, despite the million-fold difference in the time scales involved. Other transitions observed included melting and freezing. Several new techniques based on molecular translation and orientation were introduced to identify different condensed phases, to study nucleation and phase transitions, and to define characteristic temperatures of transitions. The solid-state transition temperatures decreased with cluster size in the same way as did the melting temperature, in that the depression of transition temperature was inversely proportional to the cluster radius. Rotational melting temperatures, as inferred from the rotational diffusion of molecules, coincided with those of the solid-state transition. Nucleation in liquid-solid and bcc-monoclinic transitions started in the interior of clusters on cooling, and at the surface on heating. Transition temperatures on cooling were always lower than those on heating due to the barriers to nucleation. Linear growth rates of nuclei in freezing were an order of magnitude lower than those in the bcc-monoclinic transition. Revealing evidence about the molecular behavior associated with phase changes was found. Simulations showed the formation of the actual transition complexes along the transition pathway, i.e., the critical nuclei of the new phase. These nuclei, consisting of a few dozen molecules, were distinguishable in the midst of the surrounding matter

  7. Molecular epidemiology of Usher syndrome in Italy.

    Science.gov (United States)

    Vozzi, Diego; Aaspõllu, Anu; Athanasakis, Emmanouil; Berto, Anna; Fabretto, Antonella; Licastro, Danilo; Külm, Maigi; Testa, Francesco; Trevisi, Patrizia; Vahter, Marju; Ziviello, Carmela; Martini, Alessandro; Simonelli, Francesca; Banfi, Sandro; Gasparini, Paolo

    2011-01-01

    Usher syndrome is an autosomal recessive disorder characterized by hearing and vision loss. Usher syndrome is divided into three clinical subclasses (type 1, type 2, and type 3), which differ in terms of the severity and progression of hearing loss and the presence or absence of vestibular symptoms. Usher syndrome is defined by significant genetic heterogeneity, with at least 12 distinct loci described and 9 genes identified. This study aims to provide a molecular epidemiology report of Usher syndrome in Italy. Molecular data have been obtained on 75 unrelated Italian patients using the most up-to date technology available for the screening of Usher syndrome gene mutations, i.e., the genotyping microarray developed by Asper Biotech (Tartu, Estonia), which simultaneously investigates 612 different marker positions using the well established arrayed primer extension methodology (APEX). Using this method, we found that 12% of cases (9 out of 75) harbored homozygous or compound heterozygous mutations in the gene positions analyzed, whereas 20% (15 out of 75) of the patients were characterized by the presence of only one mutated allele based on the positions analyzed. One patient was found to be compound heterozygous for mutations in two different genes and this represents an example of possible digenic inheritance in Usher syndrome. A total of 66.6% of cases (50 out of 75) were found to be completely negative for the presence of Usher syndrome gene mutations in the detected positions. Mutations detected by the array were confirmed by direct sequencing. These findings highlight the efficacy of the APEX-based genotyping approach in the molecular assessment of Usher patients, suggesting the presence of alleles not yet identified and/or the involvement of additional putative genes that may account for the pathogenesis of Usher syndrome.

  8. Molecular epidemiology of Usher syndrome in Italy

    Science.gov (United States)

    Vozzi, Diego; Aaspõllu, Anu; Athanasakis, Emmanouil; Berto, Anna; Fabretto, Antonella; Licastro, Danilo; Külm, Maigi; Testa, Francesco; Trevisi, Patrizia; Vahter, Marju; Ziviello, Carmela; Martini, Alessandro; Simonelli, Francesca; Banfi, Sandro

    2011-01-01

    Purpose Usher syndrome is an autosomal recessive disorder characterized by hearing and vision loss. Usher syndrome is divided into three clinical subclasses (type 1, type 2, and type 3), which differ in terms of the severity and progression of hearing loss and the presence or absence of vestibular symptoms. Usher syndrome is defined by significant genetic heterogeneity, with at least 12 distinct loci described and 9 genes identified. This study aims to provide a molecular epidemiology report of Usher syndrome in Italy. Methods Molecular data have been obtained on 75 unrelated Italian patients using the most up-to date technology available for the screening of Usher syndrome gene mutations, i.e., the genotyping microarray developed by Asper Biotech (Tartu, Estonia), which simultaneously investigates 612 different marker positions using the well established arrayed primer extension methodology (APEX). Results Using this method, we found that 12% of cases (9 out of 75) harbored homozygous or compound heterozygous mutations in the gene positions analyzed, whereas 20% (15 out of 75) of the patients were characterized by the presence of only one mutated allele based on the positions analyzed. One patient was found to be compound heterozygous for mutations in two different genes and this represents an example of possible digenic inheritance in Usher syndrome. A total of 66.6% of cases (50 out of 75) were found to be completely negative for the presence of Usher syndrome gene mutations in the detected positions. Mutations detected by the array were confirmed by direct sequencing. Conclusions These findings highlight the efficacy of the APEX-based genotyping approach in the molecular assessment of Usher patients, suggesting the presence of alleles not yet identified and/or the involvement of additional putative genes that may account for the pathogenesis of Usher syndrome. PMID:21738395

  9. Hidden chromosomal abnormalities in pleuropulmonary blastomas identified by multiplex FISH

    International Nuclear Information System (INIS)

    Quilichini, Benoit; Andre, Nicolas; Bouvier, Corinne; Chrestian, Marie-Anne; Rome, Angelique; Intagliata, Dominique; Coze, Carole; Lena, Gabriel; Zattara, Helene

    2006-01-01

    Pleuropulmonary blastoma (PPB) is a rare childhood dysontogenetic intrathoracic neoplasm associated with an unfavourable clinical behaviour. We report pathological and cytogenetic findings in two cases of PPB at initial diagnosis and recurrence. Both tumors were classified as type III pneumoblastoma and histological findings were similar at diagnosis and relapse. In both cases, conventional cytogenetic techniques revealed complex numerical and structural chromosomal abnormalities. Molecular cytogenetic analysis (interphase/metaphase FISH and multicolor FISH) identified accurately chromosomal aberrations. In one case, TP53 gene deletion was detected on metaphase FISH. To date, only few cytogenetic data have been published about PPB. The PPB genetic profile remains to be established and compared to others embryonal neoplasia. Our cytogenetic data are discussed reviewing cytogenetics PPBs published cases, illustrating the contribution of multicolor FISH in order to identify pathogenetically important recurrent aberrations in PPB

  10. NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Alina Kuryłowicz

    2017-12-01

    Full Text Available Both obesity and weight loss may cause molecular changes in adipose tissue. This study aimed to characterize changes in adipose tissue miRNome in order to identify molecular pathways affected by obesity and weight changes. Next generation sequencing (NGS was applied to identify microRNAs (miRNAs differentially expressed in 47 samples of visceral (VAT and subcutaneous (SAT adipose tissues from normal-weight (N, obese (O and obese after surgery-induced weight loss (PO individuals. Subsequently miRNA expression was validated by real-time PCR in 197 adipose tissues and bioinformatics analysis performed to identify molecular pathways affected by obesity-related changes in miRNA expression. NGS identified 344 miRNAs expressed in adipose tissues with ≥5 reads per million. Using >2 and <−2 fold change as cut-offs we showed that the expression of 54 miRNAs differed significantly between VAT-O and SAT-O. Equally, between SAT-O and SAT-N, the expression of 20 miRNAs differed significantly, between SAT-PO and SAT-N the expression of 79 miRNAs differed significantly, and between SAT-PO and SAT-O, the expression of 61 miRNAs differed significantly. Ontological analyses disclosed several molecular pathways regulated by these miRNAs in adipose tissue. NGS-based miRNome analysis characterized changes of the miRNA profile of adipose tissue, which are associated with changes of weight possibly responsible for a differential regulation of molecular pathways in adipose tissue when the individual is obese and after the individual has lost weight.

  11. Discovery and molecular characterization of a new luteovirus identified by high-throughput sequencing from apple

    Science.gov (United States)

    ‘Rapid Apple Decline’ (RAD) is a newly emerging problem of young, dwarf apple trees in the northeastern USA. The affected trees show trunk necrosis, bark cracking and canker formation before collapsing in the summer. In this study, a new luteovirus and three common viruses were identified from apple...

  12. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  13. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  14. Molecular mechanisms of carcinogenesis

    International Nuclear Information System (INIS)

    Hall, E.J.

    1997-01-01

    The possibility that chromosomal changes are responsible for neoplasia was proposed in the early years of this century. A combination of improved cytogenetics and the advent of recombinant technology has settled the issue. As recently as 20 years ago, however, the genetic and molecular basis of familiar predisposition to cancer were a mystery, and it is only in the last few years that light has been shed on a few specific types of malignancies. As the genetic basis of human cancer had been documented, a number of genes have been identified as functioning either as oncogenes which act in a dominant fashion to promote tumor growth when mutated, or as tumor suppressor genes which act in a recessive fashion

  15. Phylogenetic estimates of diversification rate are affected by molecular rate variation.

    Science.gov (United States)

    Duchêne, D A; Hua, X; Bromham, L

    2017-10-01

    Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  17. Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex.

    Science.gov (United States)

    Fame, Ryann M; Dehay, Colette; Kennedy, Henry; Macklis, Jeffrey D

    2017-03-01

    Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular Diagnostics, Targeted Therapy, and the Indication for Allogeneic Stem Cell Transplantation in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Anthony Oyekunle

    2011-01-01

    Full Text Available In recent years, the panel of known molecular mutations in acute lymphoblastic leukemia (ALL has been continuously increased. In Philadelphia-positive ALL, deletions of the IKZF1 gene were identified as prognostically adverse factors. These improved insights in the molecular background and the clinical heterogeneity of distinct cytogenetic subgroups may allow most differentiated therapeutic decisions, for example, with respect to the indication to allogeneic HSCT within genetically defined ALL subtypes. Quantitative real-time PCR allows highly sensitive monitoring of the minimal residual disease (MRD load, either based on reciprocal gene fusions or immune gene rearrangements. Molecular diagnostics provided the basis for targeted therapy concepts, for example, combining the tyrosine kinase inhibitor imatinib with chemotherapy in patients with Philadelphia-positive ALL. Screening for BCR-ABL1 mutations in Philadelphia-positive ALL allows to identify patients who may benefit from second-generation tyrosine kinase inhibitors or from novel compounds targeting the T315I mutation. Considering the central role of the molecular techniques for the management of patients with ALL, efforts should be made to facilitate and harmonize immunophenotyping, cytogenetics, and molecular mutation screening. Furthermore, the potential of high-throughput sequencing should be evaluated for diagnosis and follow-up of patients with B-lineage ALL.

  19. Crossed-molecular-beams reactive scattering of oxygen atoms

    International Nuclear Information System (INIS)

    Baseman, R.J.

    1982-11-01

    The reactions of O( 3 P) with six prototypical unsaturated hydrocarbons, and the reaction of O( 1 D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O( 3 P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively

  20. Molecular Responses to the Zika Virus in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Catalina Alfonso-Parra

    2018-05-01

    Full Text Available The Zika virus (ZIKV, originally discovered in 1947, did not become a major concern until the virus swept across the Pacific and into the Americas in the last decade, bringing with it news of neurological complications and birth defects in ZIKV affected areas. This prompted researchers to dissect the molecular interactions between ZIKV and the mosquito vector in an attempt to better understand not only the changes that occur upon infection, but to also identify molecules that may potentially enhance or suppress a mosquito’s ability to become infected and/or transmit the virus. Here, we review what is currently known regarding ZIKV-mosquito molecular interactions, focusing on ZIKV infection of Aedes aegypti and Aedes albopictus, the primary species implicated in transmitting ZIKV during the recent outbreaks.