WorldWideScience

Sample records for identifying minor planets

  1. The Trojan minor planets

    Science.gov (United States)

    Spratt, Christopher E.

    1988-08-01

    There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

  2. Dictionary of Minor Planet Names

    CERN Document Server

    Schmadel, Lutz D

    2007-01-01

    Dictionary of Minor Planet Names, Fifth Edition, is the official reference for the field of the IAU, which serves as the internationally recognised authority for assigning designations to celestial bodies and any surface features on them. The accelerating rate of the discovery of minor planets has not only made a new edition of this established compendium necessary but has also significantly altered its scope: this thoroughly revised edition concentrates on the approximately 10,000 minor planets that carry a name. It provides authoritative information about the basis for all names of minor planets. In addition to being of practical value for identification purposes, this collection provides a most interesting historical insight into the work of those astronomers who over two centuries vested their affinities in a rich and colorful variety of ingenious names, from heavenly goddesses to more prosaic constructions. The fifth edition serves as the primary reference, with plans for complementary booklets with newl...

  3. Results from occultations by minor planets

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1982-01-01

    Since the minor planets are believed to consist of primordial matter dating from the time of the formation of the solar system there is great interest in determining their composition. It is therefore necessary to calculate their densities, for which we need accurate masses and sizes. On the rare occasions when a minor planet occults a star, timed observations of the event from a number of observing sites enable an accurate size of the minor planet to be determined. (Auth.)

  4. The circumstances of minor planet discovery

    International Nuclear Information System (INIS)

    Pilcher, F.

    1989-01-01

    The circumstances of discoveries of minor planets are presented in tabular form. Complete data are given for planets 2125-4044, together with notes pertaining to these planets. Information in the table includes the permanent number; the official name; for planets 330 and forward, the table includes the provisional designation attached to the discovery apparition and the year, month, the day of discovery, and the discovery place

  5. Low velocity encounters of minor bodies with the outer planets

    International Nuclear Information System (INIS)

    Carusi, A.; Perozzi, E.; Valsecchi, G.B.

    1983-01-01

    Previous studies of close encounters of minor bodies with Jupiter have shown that the perturbations are stronger either if the encounter is very deep or if the velocity of the minor body relative to the planet is low. In the present research the author investigates the effects of low velocity encounters between fictitious minor bodies and the four outer planets. Two possible outcomes of this type of encounter are the temporary satellite capture of the minor body by the planet, and the exchange of perihelion with aphelion of the minor body orbit. Different occurrence rates of these processes are found for different planets, and the implications for the orbital evolution of minor bodies in the outer Solar System are discussed. (Auth.)

  6. THE SURVIVAL OF WATER WITHIN EXTRASOLAR MINOR PLANETS

    International Nuclear Information System (INIS)

    Jura, M.; Xu, S.

    2010-01-01

    We compute that extrasolar minor planets can retain much of their internal H 2 O during their host star's red giant evolution. The eventual accretion of a water-rich body or bodies onto a helium white dwarf might supply an observable amount of atmospheric hydrogen, as seems likely for GD 362. More generally, if hydrogen pollution in helium white dwarfs typically results from accretion of large parent bodies rather than interstellar gas as previously supposed, then H 2 O probably constitutes at least 10% of the aggregate mass of extrasolar minor planets. One observational test of this possibility is to examine the atmospheres of externally polluted white dwarfs for oxygen in excess of that likely contributed by oxides such as SiO 2 . The relatively high oxygen abundance previously reported in GD 378 can be explained plausibly but not uniquely by accretion of an H 2 O-rich parent body or bodies. Future ultraviolet observations of white dwarf pollutions can serve to investigate the hypothesis that environments with liquid water that are suitable habitats for extremophiles are widespread in the Milky Way.

  7. Dictionary of minor planet names addendum to 6th edition 2012-2014

    CERN Document Server

    Schmadel, Lutz D

    2015-01-01

    The quantity of numbered minor planets is now approaching half a million. Together with this Addendum, the sixth edition of the Dictionary of Minor Planet Names, which is the IAU's official reference for the field, now covers more than 19,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This Addendum to the 6th edition of the Dictionary of Minor Planet Names adds approximately 2200 entries. It also contains many corrections, revisions and updates to the entries published in earlier editions. This work is an abundant source of information for anyone interested in minor planets and who enjoys reading about the ...

  8. Dictionary of Minor Planet Names Addendum to Fifth Edition: 2006 - 2008

    CERN Document Server

    Schmadel, Lutz

    2009-01-01

    The second Addendum to the Dictionary of Minor Planet Names, fifth edition, which is the IAU's official reference for the field, contains all newly published names from the period 2006-2008 as well as corrections and amendments to earlier editions. In total the Dictionary of Minor Planet Names now covers some 15000 named minor planets. It provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to more prosaic constructions.

  9. Evidence for water in the rocky debris of a disrupted extrasolar minor planet.

    Science.gov (United States)

    Farihi, J; Gänsicke, B T; Koester, D

    2013-10-11

    The existence of water in extrasolar planetary systems is of great interest because it constrains the potential for habitable planets and life. We have identified a circumstellar disk that resulted from the destruction of a water-rich and rocky extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating that the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.

  10. Effects of general relativity in the motion of minor planets and comets

    International Nuclear Information System (INIS)

    Sitarski, G.

    1983-01-01

    Basing on the solution of one-body Schwarzschild problem, the relativistic terms were included to the equations of motion of a minor planet or comet. It appeared that the using of Painleve's coordinates allowed to write the equations of motion in a very simple form. Equations of motion as well as the commonly used equations based on the Schwarzschild isotropic and nonisotropic line elements were numerically integrated by the recurrent power series method. The results of integration of the motion of Mercury and of the minor planet Icarus show strictly the perihelion motion predicted by the general relativity theory. The relativistic effects in the motion of some minor planets and comets were examined too. (author)

  11. The MAO NASU Plate Archive: ``observations in the past'' of minor planets

    Science.gov (United States)

    Sergeeva, T. P.; Golovnya, V. V.; Sergeev, A. V.

    2005-06-01

    The Plate Archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO NASU) includes 20 thousands of direct sky area plates, which have been taken for various astronomical projects during the period of about 50 years. Those plates contain more then hundred thousand images of minor planets with magnitude up to 16.7m. About 10% of minor planets, which may be found on our archive plates were firstly discovered after the time when plates have been taken. So, we can rediscovery them due to the so-called ``observations in the past''. In the paper the criteria for choose of objects and methods of their search, identification, and determination of their position are discussed. First results of the search for potentially hazardous asteroids in the MAO plate archive are presented.

  12. Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2017-11-01

    Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, or moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.

  13. Identifying Inputs to Leadership Development within an Interdisciplinary Leadership Minor

    Science.gov (United States)

    McKim, Aaron J.; Sorensen, Tyson J.; Velez, Jonathan J.

    2015-01-01

    Researchers conducted a qualitative analysis of students' experiences while enrolled in an interdisciplinary leadership minor with the intent to determine programmatic inputs that spur leadership development. Based on students' reflections, three domains of programmatic inputs for leadership development within the minor were identified. These…

  14. Using of UKRVO Data and Software for New Reductions of Photographic Observations of Selected Minor Planets

    Science.gov (United States)

    Protsyuk, Yu.; Maigurova, N.; Protsyuk, S.; Golovnia, V.

    The new reductions of available photographic plates of UkrVO digital archive containing images of selected minor planets were conducted. Data processing of these plates were carried out to check the possibility of obtaining the new positions with high accuracy in the system of Tycho2/UCAC4 reference catalogues. Archives of the Research Institute "Nikolaev Astronomical Observatory" (NAO) and Main Astronomical Observatory of National Academy of Science (MAO) were used. We have chosen near 60 plates from these archives. Observational epochs of the plates were in the range from 1974 to 1991. Usually, there were 3 exposures in each plate and each plate was scanned 6 times with 1600 dpi resolution. The full identification was conducted and coordinates of all objects were obtained with usage of different options of astrometric reductions. The inner accuracy of obtained positions is within of 0.03"-0.40". The comparison of the new topocentric positions of minor planets with Horizons ephemeris was made for calculation (O - C) residuals and their RMS. The matching with MPC data is present.

  15. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    Science.gov (United States)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  16. Identifying Young Kepler Planet Host Stars from Keck–HIRES Spectra of Lithium

    Science.gov (United States)

    Berger, Travis A.; Howard, Andrew W.; Boesgaard, Ann Merchant

    2018-03-01

    The lithium doublet at 6708 Å provides an age diagnostic for main sequence FGK dwarfs. We measured the abundance of lithium in 1305 stars with detected transiting planets from the Kepler mission using high-resolution spectroscopy. Our catalog of lithium measurements from this sample has a range of abundance from A(Li) = 3.11 ± 0.07 to an upper limit of ‑0.84 dex. For a magnitude-limited sample that comprises 960 of the 1305 stars, our Keck–HIRES spectra have a median signal-to-noise ratio of 45 per pixel at ∼6700 Å with spectral resolution \\tfrac{λ }{{{Δ }}λ } = R = 55,000. We identify 80 young stars that have A(Li) values greater than the Hyades at their respective effective temperatures; these stars are younger than ∼650 Myr, the approximate age of the Hyades. We then compare the distribution of A(Li) with planet size, multiplicity, orbital period, and insolation flux. We find larger planets preferentially in younger systems, with an A–D two-sided test p-value = 0.002, a > 3σ confidence that the older and younger planet samples do not come from the same parent distribution. This is consistent with planet inflation/photoevaporation at early ages. The other planet parameters (Kepler planet multiplicity, orbital period, and insolation flux) are uncorrelated with age. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of Hawaii, the University of California, and Caltech.

  17. Seek a Minor Sun: The Distribution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

    Science.gov (United States)

    Gaidos, Eric

    2015-07-01

    The Sun-Earth systems has long been used as a template to understand habitable planets around other stars and to develop missions to seek them. However, two decades of exoplanet studies have shown that many, if not most planetary systems around G dwarf stars do not resemble the Solar System. Moreover, an objective census of our Galaxy might ignore solar- type stars and focus on M dwarfs, which constitute some 80% of all stars in the neighborhood. Recent work has shown that M dwarfs have more close-in planets than solar-type stars, and perhaps more planets in the "habitable zone" defined by stellar irradiation. M dwarfs also burn hydrogen over a vastly longer time; slow evolution on the main sequence means a planet can remain habitable for much longer, providing a more permissive environment for the evo- lution of life and intelligence. If M dwarfs are such compelling locales to look for life, why are we ourselves not orbiting a red Sun?

  18. POST-MAIN SEQUENCE EVOLUTION OF ICY MINOR PLANETS: IMPLICATIONS FOR WATER RETENTION AND WHITE DWARF POLLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2016-12-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.

  19. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2017-06-10

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  20. POST-MAIN SEQUENCE EVOLUTION OF ICY MINOR PLANETS: IMPLICATIONS FOR WATER RETENTION AND WHITE DWARF POLLUTION

    International Nuclear Information System (INIS)

    Malamud, Uri; Perets, Hagai B.

    2016-01-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.

  1. Auto-Vetting Transiting Planet Candidates Identified by the Kepler Pipeline

    Science.gov (United States)

    Jenkins, Jon M.; McCauliff, Sean; Burke, Christopher; Seader, Shawn; Twicken, Joseph; Klaus, Todd; Sanderfer, Dwight; Srivastava, Ashok; Haas, Michael R.

    2014-04-01

    The Kepler Mission simultaneously measures the brightness of more than 150,000 stars every 29.4 minutes primarily for the purpose of transit photometry. Over the course of its 3.5-year primary mission Kepler has observed over 190,000 distinct stars, announcing 2,321 planet candidates, 2,165 eclipsing binaries, and 105 confirmed planets. As Kepler moves into its 4-year extended mission, the total number of transit-like features identified in the light curves has increased to as many as ~18,000. This number of signals has become intractable for human beings to inspect by eye in a thorough and timely fashion. To mitigate this problem we are developing machine learning approaches to perform the task of reviewing the diagnostics for each transit signal candidate to establish a preliminary list of planetary candidates ranked from most credible to least credible. Our preliminary results indicate that random forests can classify potential transiting planet signatures with an accuracy of more than 98.6% as measured by the area under a receiver-operating curve.

  2. Comets, Minor Planets and other developments: Bode's ``Astronomisches Jahrbuch'' as an international archive journal

    Science.gov (United States)

    Kokott, W.

    Following the example of the Connaissance des tem(p)s, the Astronomisches Jahrbuch founded by the Royal Academy of Sciences at Berlin was to include ``a collection of the most recent observations, news, remarks and contributions''. Established by J. H. Lambert and for four decades edited by J. E. Bode, this publication from the start became a ranking international publication, with Bode's modest Berlin Observatory serving as a clearinghouse of informations When, in 1792, the backlog of manuscripts became a critical factor, a series of ``Supplement'' volumes was established. F. X. von Zach at Gotha, who vigorously supported this effort, founded (in 1798) the monthly Allgemeine Geographische Ephemeriden, which he (with continuing emphasis on astronomy and astronomical geography) two years later replaced by the Monatliche Correspondenz. These journals and its successors (ZfA and Corr. astr.) took the supplementary load off Bode's yearbook and served as speedier means of communication. However, the yearbook retained its original role as a central place of documentation. Only with the publication of Schumacher's Astronomische Nachrichten the center of astronomical communication did shift Practically all European astronomers of his time and age are represented in the pages of Bode's yearbook. Beside the continuous effort of precise mapping the realm of fixed stars, a very important field were the newly discovered planets Uranus, Ceres, Pallas, Juno, and Vesta; observations and orbits of these objects and the growing number of comets were an important part of the ``news and remarks'' recorded in the BAJ. The names of Schröter, Olbers, Piazzi, and Bessel may be regarded as representative for many

  3. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system

    Science.gov (United States)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep

    2017-12-01

    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  4. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    International Nuclear Information System (INIS)

    Klein, B.; Jura, M.; Zuckerman, B.; Melis, C.; Koester, D.

    2010-01-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 ± 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  5. Identifying Resilience Resources for HIV Prevention Among Sexual Minority Men: A Systematic Review.

    Science.gov (United States)

    Woodward, Eva N; Banks, Regina J; Marks, Amy K; Pantalone, David W

    2017-10-01

    Most HIV prevention for sexual minority men and men who have sex with men targets risk behaviors (e.g., condom use) and helps sexual minority men. We reviewed PsycINFO, PsycARTICLES, MEDLINE, references, and Listservs for studies including sexual minority men with 1+ HIV risk factor (syndemics): childhood sexual abuse, partner abuse, substance abuse, or mental health symptoms. From 1356 articles screened, 20 articles met inclusion criteria. Across the articles, we identified and codified 31 resilience resources: socioeconomic (e.g., employment), behavioral coping strategies (e.g., mental health treatment), cognitions/emotions (e.g., acceptance), and relationships. Resilience resources were generally associated with lower HIV risk; there were 18 low-risk associations, 4 high-risk associations, 8 non-significant associations). We generated a set of empirically based resilience variables and a hypothesis to be evaluated further to improve HIV prevention.

  6. Keeping Minorities Happy: Hierarchy Maintenance and Whites' Decreased Support for Highly Identified White Politicians.

    Science.gov (United States)

    Jun, Sora; Lowery, Brian S; Guillory, Lucia

    2017-12-01

    We test the hypothesis that, to avoid provoking minorities, Whites will withhold their support for White political candidates who are highly identified with their race. In Study 1, we found that White Republicans were less supportive of White candidates the higher the perceived White identity of the candidate due to beliefs that such candidates would provoke racial minorities. In Study 2, we replicated this effect with a manipulation of candidates' White identity. Study 3 found that Whites reported less support for high-identity candidates when they were led to believe that the hierarchy was unstable rather than stable. Consistent with our hypothesis that those who have the most to lose are most likely to avoid provoking minorities, in Study 4, we found that Whites with high subjective socioeconomic status (SES) varied their support for provocative White candidates as a function of hierarchy stability, whereas those with low subjective SES did not.

  7. The IRAS Minor Planet Survey

    Science.gov (United States)

    1992-12-01

    Fig. 27 which is more severe for faint asteroids. The influence of this aliasing propagates through IMPS processing into the final products. The...aliasing propagates through IMPS processing (e.g., into Fig. 32a). The distribution of input magnitudes peaks near H = 13 and the distribution of...1 ... 111..1 ..... 1........ 967 Helionape 12.10 0.1782 0.034 11.97 1.0 0.10 2 2 0.29 .11... 1 .. 1.1...1 ..... 1........ 968 Petunia 10.01 0.2242

  8. "I Just Want to Be Myself": Adolescents with Disabilities Who Identify as a Sexual or Gender Minority

    Science.gov (United States)

    Kahn, Laurie Gutmann; Lindstrom, Lauren

    2015-01-01

    Adolescents with disabilities who identify as a sexual or gender minority are at high risk for negative school experiences and poor outcomes, including peer rejection, bullying, and dropping out. Using an intersectionality framework, this study examined how multiple marginalized identities influence sense of self and school experience for this…

  9. Identifying Ethical Issues in Mental Health Research with Minors Adolescents: Results of a Delphi Study

    Directory of Open Access Journals (Sweden)

    Elisabeta Ioana Hiriscau

    2016-05-01

    Full Text Available Research with minors, especially for preventive purposes, e.g., suicide prevention, investigating risk or self-destructive behaviors such as deviance, drug abuse, or suicidal behavior, is ethically sensitive. We present a Delphi study exploring the ethical implications of the needs formulated by researchers in an international pre-conference who would benefit from ethics support and guidance in conducting Mental Health Research with minors. The resulting List of Ethical Issues (LEI was submitted to a 2-rounds Delphi process via the Internet, including 34 multidisciplinary experts. In the first round, the experts reviewed the LEI and completed a questionnaire. Results from this round were analyzed and grouped in nine categories comprising 40 items. In the second round, the experts had to agree/disagree with the needs expressed in the LEI leading to a final list of 25 ethical issues considered relevant for Mental Health Research with minors such as: confidentiality of the sensitive data, competence for consenting alone and risk of harm and stigma related to the methodology used in research. It was shown that studies like SEYLE (Saving and Empowering Young Lives in Europe trigger among researchers wishes to obtain specific recommendations helping to comply with standards for good practice in conducting research with minors.

  10. Identifying Ethical Issues in Mental Health Research with Minors Adolescents: Results of a Delphi Study.

    Science.gov (United States)

    Hiriscau, Elisabeta Ioana; Stingelin-Giles, Nicola; Wasserman, Danuta; Reiter-Theil, Stella

    2016-05-11

    Research with minors, especially for preventive purposes, e.g., suicide prevention, investigating risk or self-destructive behaviors such as deviance, drug abuse, or suicidal behavior, is ethically sensitive. We present a Delphi study exploring the ethical implications of the needs formulated by researchers in an international pre-conference who would benefit from ethics support and guidance in conducting Mental Health Research with minors. The resulting List of Ethical Issues (LEI) was submitted to a 2-rounds Delphi process via the Internet, including 34 multidisciplinary experts. In the first round, the experts reviewed the LEI and completed a questionnaire. Results from this round were analyzed and grouped in nine categories comprising 40 items. In the second round, the experts had to agree/disagree with the needs expressed in the LEI leading to a final list of 25 ethical issues considered relevant for Mental Health Research with minors such as: confidentiality of the sensitive data, competence for consenting alone and risk of harm and stigma related to the methodology used in research. It was shown that studies like SEYLE (Saving and Empowering Young Lives in Europe) trigger among researchers wishes to obtain specific recommendations helping to comply with standards for good practice in conducting research with minors.

  11. Identifying Ethical Issues in Mental Health Research with Minors Adolescents: Results of a Delphi Study

    Science.gov (United States)

    Hiriscau, Elisabeta Ioana; Stingelin-Giles, Nicola; Wasserman, Danuta; Reiter-Theil, Stella

    2016-01-01

    Research with minors, especially for preventive purposes, e.g., suicide prevention, investigating risk or self-destructive behaviors such as deviance, drug abuse, or suicidal behavior, is ethically sensitive. We present a Delphi study exploring the ethical implications of the needs formulated by researchers in an international pre-conference who would benefit from ethics support and guidance in conducting Mental Health Research with minors. The resulting List of Ethical Issues (LEI) was submitted to a 2-rounds Delphi process via the Internet, including 34 multidisciplinary experts. In the first round, the experts reviewed the LEI and completed a questionnaire. Results from this round were analyzed and grouped in nine categories comprising 40 items. In the second round, the experts had to agree/disagree with the needs expressed in the LEI leading to a final list of 25 ethical issues considered relevant for Mental Health Research with minors such as: confidentiality of the sensitive data, competence for consenting alone and risk of harm and stigma related to the methodology used in research. It was shown that studies like SEYLE (Saving and Empowering Young Lives in Europe) trigger among researchers wishes to obtain specific recommendations helping to comply with standards for good practice in conducting research with minors. PMID:27187425

  12. Identifying differences in early literacy skills across subgroups of language-minority children: A latent profile analysis.

    Science.gov (United States)

    Lonigan, Christopher J; Goodrich, J Marc; Farver, JoAnn M

    2018-04-01

    Despite acknowledgment that language-minority children come from a wide variety of home language backgrounds and have a wide range of proficiency in their first (L1) and second (L2) languages, it is unknown whether differences across language-minority children in relative and absolute levels of proficiency in L1 and L2 predict subsequent development of literacy-related skills. The purpose of this study was to identify subgroups of language-minority children and evaluate whether differences in level and rate of growth of early literacy skills differed across subgroups. Five-hundred and twenty-six children completed measures of Spanish and English language and early literacy skills at the beginning, middle, and end of the preschool year. Latent growth models indicated that children's early literacy skills were increasing over the course of the preschool year. Latent profile analysis indicated that language-minority children could be classified into nine distinct groups, each with unique patterns of absolute and relative levels of proficiency in L1 and L2. Results of three-step mixture models indicated that profiles were closely associated with level of early literacy skills at the beginning of the preschool year. Initial level of early literacy skills was positively associated with growth in code-related skills (i.e., print knowledge, phonological awareness) and inversely associated with growth in language skills. These findings suggest that language-minority children are a diverse group with regard to their L1 and L2 proficiencies and that growth in early literacy skills is most associated with level of proficiency in the same language. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Synthetic Minority Oversampling Technique and Fractal Dimension for Identifying Multiple Sclerosis

    Science.gov (United States)

    Zhang, Yu-Dong; Zhang, Yin; Phillips, Preetha; Dong, Zhengchao; Wang, Shuihua

    Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski-Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.

  14. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals.

    Science.gov (United States)

    Yang, Yongxin; Zheng, Nan; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Yang, Jinhui; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Zang, Changjiang; Wang, Jiaqi

    2016-03-16

    Several milk metabolites are associated with breeds or species of dairy animals. A better understanding of milk metabolites from different dairy animals would advance their use in evaluating milk traits and detecting milk adulteration. The objective of this study was to characterize the milk metabolite profiles of Chinese Holstein, Jersey, yak, buffalo, goat, camel, and horse and identify any differences using non-targeted metabolomic approaches. Milk samples were tested using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS). Data were analyzed using a multivariate analysis of variance and differences in milk metabolites between Holstein and the other dairy animals were assessed using orthogonal partial least-squares discriminant analysis. Differential metabolites were identified and some metabolites, such as choline and succinic acid, were used to distinguish Holstein milk from that of the other studied animals. Metabolic pathway analysis of different metabolites revealed that glycerophospholipid metabolism as well as valine, leucine, and isoleucine biosynthesis were shared in the other ruminant animals (Jersey, buffalo, yak, and goat), and biosynthesis of unsaturated fatty acids was shared in the non-ruminant animals (camel and horse). These results can be useful for gaining a better understanding of the differences in milk synthesis between Holstein and the other dairy animals. Copyright © 2016. Published by Elsevier B.V.

  15. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  16. Connecting with the "Other" Side of Us: A Cooperative Inquiry by Self-Identified Minorities in a Teacher Preparation Program

    Science.gov (United States)

    Bower-Phipps, Laura; Homa, Thomas D.; Albaladejo, Cristina; Johnson, Arlette Mello; Cruz, Maria Cristina

    2013-01-01

    Minority teacher candidates' capacity to connect with diverse students in preK-12 settings is a driving force behind the demographic imperative to diversify the teaching professions (Achinstein, Ogawa, Sexton, & Freitas, 2010; Banks et al., 2005). Teacher candidates of color have great confidence in their abilities to relate to students of…

  17. LGBT Identity, Untreated Depression, and Unmet Need for Mental Health Services by Sexual Minority Women and Trans-Identified People.

    Science.gov (United States)

    Steele, Leah S; Daley, Andrea; Curling, Deone; Gibson, Margaret F; Green, Datejie C; Williams, Charmaine C; Ross, Lori E

    2017-02-01

    Previous studies have found that transgender, lesbian, and bisexual people report poorer mental health relative to heterosexuals. However, available research provides little information about mental health service access among the highest need groups within these communities: bisexual women and transgender people. This study compared past year unmet need for mental health care and untreated depression between four groups: heterosexual cisgender (i.e., not transgender) women, cisgender lesbians, cisgender bisexual women, and transgender people. This was a cross-sectional Internet survey. We used targeted sampling to recruit 704 sexual and gender minority people and heterosexual cisgendered adult women across Ontario, Canada. To ensure adequate representation of vulnerable groups, we oversampled racialized and low socioeconomic status (SES) women. Trans participants were 2.4 times (95% confidence intervals [CI] = 1.6-3.8, p mental healthcare as cisgender heterosexual women. Trans participants were also 1.6 times (95% CI = 1.0-27, p = 0.04) more likely to report untreated depression. These differences were not seen after adjustment for social context factors such as discrimination and social support. We conclude that there are higher rates of unmet need and untreated depression in trans and bisexual participants that are partly explained by differences in social factors, including experiences of discrimination, lower levels of social support, and systemic exclusion from healthcare. Our findings suggest that the mental health system in Ontario is not currently meeting the needs of many sexual and gender minority people.

  18. Planet Formation

    Science.gov (United States)

    Podolak, Morris

    2018-04-01

    Modern observational techniques are still not powerful enough to directly view planet formation, and so it is necessary to rely on theory. However, observations do give two important clues to the formation process. The first is that the most primitive form of material in interstellar space exists as a dilute gas. Some of this gas is unstable against gravitational collapse, and begins to contract. Because the angular momentum of the gas is not zero, it contracts along the spin axis, but remains extended in the plane perpendicular to that axis, so that a disk is formed. Viscous processes in the disk carry most of the mass into the center where a star eventually forms. In the process, almost as a by-product, a planetary system is formed as well. The second clue is the time required. Young stars are indeed observed to have gas disks, composed mostly of hydrogen and helium, surrounding them, and observations tell us that these disks dissipate after about 5 to 10 million years. If planets like Jupiter and Saturn, which are very rich in hydrogen and helium, are to form in such a disk, they must accrete their gas within 5 million years of the time of the formation of the disk. Any formation scenario one proposes must produce Jupiter in that time, although the terrestrial planets, which don't contain significant amounts of hydrogen and helium, could have taken longer to build. Modern estimates for the formation time of the Earth are of the order of 100 million years. To date there are two main candidate theories for producing Jupiter-like planets. The core accretion (CA) scenario supposes that any solid materials in the disk slowly coagulate into protoplanetary cores with progressively larger masses. If the core remains small enough it won't have a strong enough gravitational force to attract gas from the surrounding disk, and the result will be a terrestrial planet. If the core grows large enough (of the order of ten Earth masses), and the disk has not yet dissipated, then

  19. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  20. Survival Function Analysis of Planet Size Distribution

    OpenAIRE

    Zeng, Li; Jacobsen, Stein B.; Sasselov, Dimitar D.; Vanderburg, Andrew

    2018-01-01

    Applying the survival function analysis to the planet radius distribution of the Kepler exoplanet candidates, we have identified two natural divisions of planet radius at 4 Earth radii and 10 Earth radii. These divisions place constraints on planet formation and interior structure model. The division at 4 Earth radii separates small exoplanets from large exoplanets above. When combined with the recently-discovered radius gap at 2 Earth radii, it supports the treatment of planets 2-4 Earth rad...

  1. Origins and Destinations: Tracking Planet Composition through Planet Formation Simulations

    Science.gov (United States)

    Chance, Quadry; Ballard, Sarah

    2018-01-01

    There are now several thousand confirmed exoplanets, a number which far exceeds our resources to study them all in detail. In particular, planets around M dwarfs provide the best opportunity for in-depth study of their atmospheres by telescopes in the near future. The question of which M dwarf planets most merit follow-up resources is a pressing one, given that NASA’s TESS mission will soon find hundreds of such planets orbiting stars bright enough for both ground and spaced-based follow-up.Our work aims to predict the approximate composition of planets around these stars through n-body simulations of the last stage of planet formation. With a variety of initial disk conditions, we investigate how the relative abundances of both refractory and volatile compounds in the primordial planetesimals are mapped to the final planet outcomes. These predictions can serve to provide a basis for making an educated guess about (a) which planets to observe with precious resources like JWST and (b) how to identify them based on dynamical clues.

  2. Reactions to Participating in Intimate Partner Violence and Minority Stress Research: A Mixed Methodological Study of Self-Identified Lesbian and Gay Emerging Adults.

    Science.gov (United States)

    Edwards, Katie M; Sylaska, Kateryna M

    2016-01-01

    The purpose of this study was to examine lesbian and gay (LG) young adults' reactions to participating in intimate partner violence (IPV) and minority stress research using a mixed methodological design. Participants were 277 U.S. college students currently involved in same-sex relationships and self-identified cisgender LG who completed an online questionnaire that included closed- and open-ended questions. Results suggested that IPV research was well tolerated by the vast majority of participants; close to one in 10 participants reported being upset by the study questions, yet 75% of upset individuals reported some level of personal benefit. Reasons for upset as identified in the open-ended responses included thinking about personal experiences with IPV, as the perpetrator or friend of a victim, as well as thinking about the uncertainty of their future with their current partner. The correlates of emotional reactions and personal benefits to research participation were also examined, and these varied among gay men and lesbian women. Implications of these findings underscore the importance of accurate reflection of risk and benefits in informed consent documents as well as systematic evaluation of sexual minority participants' reactions to research participation in an effort to conduct ethically sound sexual science research.

  3. The Economics of Minorities

    Science.gov (United States)

    Coles, Flournoy A., Jr.

    1973-01-01

    This article discusses some of the more important economic problems of minorities in the United States, identifying the economics of minorities with the economics of poverty, discrimination, exploitation, urban life, and alienation. (JM)

  4. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  5. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  6. Dance of the Planets

    Science.gov (United States)

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  7. Planet Hunters: Kepler by Eye

    Science.gov (United States)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  8. THE RINGS OF CHARIKLO UNDER CLOSE ENCOUNTERS WITH THE GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, R. A. N.; Sfair, R.; Winter, O. C., E-mail: ran.araujo@gmail.com, E-mail: rsfair@feg.unesp.br, E-mail: ocwinter@gmail.com [UNESP - Univ. Estadual Paulista, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410, Guaratingueta, SP (Brazil)

    2016-06-20

    The Centaur population is composed of minor bodies wandering between the giant planets that frequently perform close gravitational encounters with these planets, leading to a chaotic orbital evolution. Recently, the discovery of two well-defined narrow rings was announced around the Centaur 10199 Chariklo. The rings are assumed to be in the equatorial plane of Chariklo and to have circular orbits. The existence of a well-defined system of rings around a body in such a perturbed orbital region poses an interesting new problem. Are the rings of Chariklo stable when perturbed by close gravitational encounters with the giant planets? Our approach to address this question consisted of forward and backward numerical simulations of 729 clones of Chariklo, with similar initial orbits, for a period of 100 Myr. We found, on average, that each clone experiences during its lifetime more than 150 close encounters with the giant planets within one Hill radius of the planet in question. We identified some extreme close encounters that were able to significantly disrupt or disturb the rings of Chariklo. About 3% of the clones lose their rings and about 4% of the clones have their rings significantly disturbed. Therefore, our results show that in most cases (more than 90%), the close encounters with the giant planets do not affect the stability of the rings in Chariklo-like systems. Thus, if there is an efficient mechanism that creates the rings, then these structures may be common among these kinds of Centaurs.

  9. PLANET HUNTERS: ASSESSING THE KEPLER INVENTORY OF SHORT-PERIOD PLANETS

    International Nuclear Information System (INIS)

    Schwamb, Megan E.; Lintott, Chris J.; Lynn, Stuart; Smith, Arfon M.; Simpson, Robert J.; Fischer, Debra A.; Giguere, Matthew J.; Brewer, John M.; Parrish, Michael; Schawinski, Kevin

    2012-01-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of ≥2 R ⊕ planets on short-period ( ⊕ Planet Hunters ≥85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler ≥4 R ⊕ planets suggests that the Kepler inventory of ≥4 R ⊕ short-period planets is nearly complete.

  10. Habitable Planets for Man

    National Research Council Canada - National Science Library

    Dole, Stephen H

    2007-01-01

    ..., and discusses how to search for habitable planets. Interestingly for our time, he also gives an appraisal of the earth as a planet and describes how its habitability would be changed if some of its basic properties were altered...

  11. Observsational Planet Formation

    Science.gov (United States)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  12. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  13. Search for a planet

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1986-01-01

    The problem of search for star planets is discussed in a popular form. Two methods of search for planets are considered: astrometric and spectral. Both methods complement one another. An assumption is made that potential possessors of planets are in the first place yellow and red dwarfs with slow axial rotation. These stars are the most numerous representatives of Galaxy population

  14. Black, queer, and looking for a job: an exploratory study of career decision making among self-identified sexual minorities at an urban historically black college/university.

    Science.gov (United States)

    Harris, Latashia N

    2014-01-01

    This thematically analyzed study seeks to explore the career decision perceptions of sexual minority college students at an urban historically black college/university (HBCU). This qualitative focus group study delved into how sexual minorities feel their visible variables of race, gender expression, and degree of disclosure influence their career thought process. Theories relative to the study included Krumboltz's social learning theory of career decision-making, gender role theory, racial socialization, Cass's homosexual identity model, and impression management. Though participants initially proclaimed they did not allow their sexual minority identity to affect their career decisions, their overall responses indicated otherwise.

  15. Extrasolar planets: constraints for planet formation models.

    Science.gov (United States)

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  16. Atmospheres of the terrestrial planets

    International Nuclear Information System (INIS)

    Kivelson, M.G.; Schubert, G.

    1986-01-01

    Properties of the planets are identified - such as size, spin rate, and distance from the sun - that are important in understanding the characteristics of their atmospheres. Venus, earth and Mars have surface-temperature differences only partly explained by the decrease of solar radiation flux with distance from the sun. More significant effects arise from the variations in the degree to which the atmospheres act as absorbers of planetary thermal reradiation. Atmospheric circulation on a global scale also varies markedly among the three planets. 5 references

  17. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  18. What causes disability after transient ischemic attack and minor stroke?: Results from the CT and MRI in the Triage of TIA and minor Cerebrovascular Events to Identify High Risk Patients (CATCH) Study.

    Science.gov (United States)

    Coutts, Shelagh B; Modi, Jayesh; Patel, Shiel K; Aram, Heidi; Demchuk, Andrew M; Goyal, Mayank; Hill, Michael D

    2012-11-01

    Minor stroke and transient ischemic attack portend a significant risk of disability. Three possible mechanisms for this include disability not captured by the National Institutes of Health Stroke Scale, symptom progression, or recurrent stroke. We sought to assess the relative impact of these mechanisms on disability in a population of patients with transient ischemic attack and minor stroke. Five hundred ten consecutive minor stroke (National Institutes of Health Stroke Scalefour of 499 (15%; 95% CI, 12%-18%) patients had a disabled outcome. Baseline factors predicting disability were: age≥60 years, diabetes mellitus, premorbid modified Rankin Scale 1, ongoing symptoms, baseline National Institutes of Health Stroke Scale, CT/CT angiography-positive metric, and diffusion-weighted imaging positivity. In the multivariable analysis ongoing symptoms (OR, 2.4; 95% CI, 1.3-4.4; P=0.004), diabetes mellitus (OR, 2.3; 95% CI, 1.2-4.3; P=0.009), female sex (OR, 1.8; 95% CI, 1.1-3; P=0.025), and CT/CT angiography-positive metric (OR, 2.4; 95% CI, 1.4-4; P=0.001) predicted disability. Of the 463 patients who did not have a recurrent event, 55 were disabled (12%). By contrast 19 of 36 (53%) patients were disabled after a recurrent event (risk ratio, 4.4; 95% CI, 3-6.6; Pstroke become disabled. In terms of absolute numbers, most patients have disability as a result of their presenting event; however, recurrent events have the largest relative impact on outcome.

  19. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  20. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  1. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  2. A septet of Earth-sized planets

    Science.gov (United States)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  3. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    Science.gov (United States)

    Khan, A. H.

    2011-10-01

    of earth affected by Sun ,Moon because these planet life conjugated relation with the planet life's. Can we realistically expect to identify all the pieces of this celestial puzzle and thereby decipher the full mosaic of our planetary origins? The answer, we think, is yes. Each planet contributes knowledge that widens our appreciation for planetary environment much as diverse stars add to our understanding of the stellar life cycle.

  4. True polar wander on convecting planets

    Science.gov (United States)

    Rose, Ian Robert

    Rotating planets are most stable when spinning around their maximum moment of inertia, and will tend to reorient themselves to achieve this configuration. Geological activity redistributes mass in the planet, making the moment of inertia a function of time. As the moment of inertia of the planet changes, the spin axis shifts with respect to a mantle reference frame in order to maintain rotational stability. This process is known as true polar wander (TPW). Of the processes that contribute to a planet's moment of inertia, convection in the mantle generates the largest and longest-period fluctuations, with corresponding shifts in the spin axis. True polar wander has been hypothesized to explain several physiographic features on planets and moons in our solar system. On Earth, TPW events have been invoked in some interpretations of paleomagnetic data. Large swings in the spin axis could have enormous ramifications for paleogeography, paleoclimate, and the history of life. Although the existence of TPW is well-verified, it is not known whether its rate and magnitude have been large enough for it to be an important process in Earth history. If true polar wander has been sluggish compared to plate tectonic speeds, then it would be difficult to detect and its consequences would be minor. I investigate rates of true polar wander on convecting planets using scaling, numerics, and inverse problems. I perform a scaling analysis of TPW on a convecting planet, identifying a minimal set of nondimensional parameters which describe the problem. The primary nondimensional numbers that control the rate of TPW are the ratio of centrifugal to gravitational forces m and the Rayleigh number Ra. The parameter m sets the size of a planet's rotational bulge, which determines the amount of work that needs to be done to move the spin axis. The Rayleigh number controls the size, distribution, and rate of change of moment of inertia anomalies, all of which affect the rate of TPW. I find that

  5. The hottest planet.

    Science.gov (United States)

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  6. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  7. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  8. Kepler's first rocky planet

    DEFF Research Database (Denmark)

    Batalha, N.M.; Borucki, W.J.; Bryson, S.T.

    2011-01-01

    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were...... tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright...

  9. A New Way to Confirm Planet Candidates

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  10. Planets for Man

    National Research Council Canada - National Science Library

    Dole, Stephen; Asimov, Isaac

    2007-01-01

    "Planets for Man" was written at the height of the space race, a few years before the first moon landing, when it was assumed that in the not-too-distant future human beings "will be able to travel...

  11. Jupiter: as a planet

    International Nuclear Information System (INIS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included

  12. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  13. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  14. Optimizing the TESS Planet Finding Pipeline

    Science.gov (United States)

    Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center

    2017-10-01

    The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.

  15. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to

  16. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    International Nuclear Information System (INIS)

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-01-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  17. SDSS-III MARVELS Planet Candidate RV Follow-up

    Science.gov (United States)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  18. Planets in a Room

    Science.gov (United States)

    Giacomini, l.; Aloisi, F.; De Angelis, I.

    2017-09-01

    Teaching planetary science using a spherical projector to show the planets' surfaces is a very effective but usually very expensive idea. Whatsmore, it usually assumes the availability of a dedicated space and a trained user. "Planets in a room" is a prototypal low cost version of a small, spherical projector that teachers, museum, planetary scientists and other individuals can easily build and use on their own, to show and teach the planets The project of "Planets in a Room" was made by the italian non-profit association Speak Science with the collaboration of INAF-IAPS of Rome and the Roma Tre University (Dipartimento di Matematica e Fisica). This proposal was funded by the Europlanet Outreach Funding Scheme in 2016. "Planets in a room" will be presented during EPSC 2017 to give birth to the second phase of the project, when the outreach and research community will be involved and schools from all over Europe will be invited to participate with the aim of bringing planetary science to a larger audience.

  19. Recipes for planet formation

    Science.gov (United States)

    Meyer, Michael R.

    2009-11-01

    Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.

  20. Planetesimals and Planet Formation

    Science.gov (United States)

    Chambers, John

    The first step in the standard model for planet formation is the growth of gravitationally bound bodies called ``planetesimals'' from dust grains in a protoplanetary disk. Currently, we do not know how planetesimals form, how long they take to form, or what their sizes and mechanical properties are. The goal of this proposal is to assess how these uncertainties affect subsequent stages of planetary growth and the kind of planetary systems that form. The work will address three particular questions: (i) Can the properties of small body populations in the modern Solar System constrain the properties of planetesimals? (ii) How do the properties of planetesimals affect the formation of giant planets? (iii) How does the presence of a water ice condensation front (the ``snow line'') in a disk affect planetesimal formation and the later stages of planetary growth? These questions will be examined with computer simulations of planet formation using new computer codes to be developed as part of the proposal. The first question will be addressed using a statistical model for planetesimal coagulation and fragmentation. This code will be merged with the proposer's Mercury N-body integrator code to model the dynamics of large protoplanets in order to address the second question. Finally, a self- consistent model of disk evolution and the radial transport of water ice and vapour will be added to examine the third question. A theoretical understanding of how planets form is one of the key goals of NASA and the Origins of Solar Systems programme. Researchers have carried out many studies designed to address this goal, but the questions of how planetesimals form and how their properties affect planet formation have received relatively little attention. The proposed work will help address these unsolved questions, and place other research in context by assessing the importance of planetesimal origins and properties for planet formation.

  1. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  2. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  3. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  4. More Planets in the Hyades Cluster

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    through the K2 light curves of young stars as part of the ZEIT (Zodiacal Exoplanets in Time) Survey. Using these data, they identified the presence of three planets in the EPIC 247589423 system:a roughly Earth-sized planet ( 1.0 Earth radii) with a period of 8.0 days,the mini-Neptune identified in the other study, with a size of 2.9 Earth radii and period of 17 days, anda super-Earth, with a size of 1.5 Earth radii and period of 26 days.Light curve of EPIC 247589423 from K2, with the lower panels showing the transits of the three discovered planets. [Mann et al. 2018]The smallest planet is among the youngest Earth-sized planets ever discovered, allowing us a rare glimpse into the history and evolution of planets similar to our own.But these planetary discoveries are additionally exciting because theyre orbiting a bright star thats relatively quiet for its age making the system an excellent target for dedicated radial-velocity observations to determine the planet masses.Since most young star clusters are much further away, they lie out of range of radial-velocity follow-up, rendering EPIC 247589423 a unique opportunity to explore the properties of young planets in detail. With more discoveries like these from Keplers data, we can hope to soon learn more about planets in all their stages of evolution.CitationAndrew W. Mann et al 2018 AJ 155 4. doi:10.3847/1538-3881/aa9791

  5. Protected urban planet

    NARCIS (Netherlands)

    Pereira Roders, A.R.; Veldpaus, L.; Verbruggen, R.C.

    2012-01-01

    PUP, abbreviation to Protected Urban Planet, is the first tool developed for visualizing, mapping and contributing to information exchange on the evolution of protected urban areas worldwide. Besides locating them, it also provides communities with means to disseminate and raise awareness for their

  6. Life in other planets

    International Nuclear Information System (INIS)

    Ghosh, S.N.

    1977-01-01

    Speculations of life on other planets in space are discussed. The life history of a star in terms of the high temperature fusion reactions taking place in it, is outlined. The phenomenon of gases escaping from planetary atmospheres which destroys life on them is explained. Solar radiation effects, pulsar detection etc. are briefly touched upon. (K.B.)

  7. Life in other planets

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S N [Calcutta Univ. (India). Dept. of Applied Physics

    1977-12-01

    Speculations of life on other planets in space are discussed. The life history of a star in terms of the high-temperature fusion reactions taking place in it is outlined. The phenomenon of gases escaping from planetary atmospheres which destroys life on them is explained. Solar radiation effects, pulsar detection, etc., are briefly touched upon.

  8. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  9. Planet Detection: The Kepler Mission

    Science.gov (United States)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    , only ˜0.5% will exhibit transits. By observing such a large number of stars, Kepler is guaranteed to produce a robust null result in the unhappy event that no Earth-size planets are detected in or near the habitable zone. Such a result would indicate that worlds like ours are extremely rare in the Milky Way galaxy and perhaps the cosmos, and that we might be solitary sojourners in the quest to answer the age-old question: "Are we alone?" Kepler is an audacious mission that places rigorous demands on the science pipeline used to process the ever-accumulating, large amount of data and to identify and characterize the minute planetary signatures hiding in the data haystack. Kepler observes over 160,000 stars simultaneously over a field of view (FOV) of 115 square degrees with a focal plane consisting of 42 charge-coupled devices‡ (CCDs), each of which images 2.75 square degrees of sky onto 2200×1024 pixels. The photometer, which contains the CCD array, reads out each CCD every 6.54 s [10,11] and co-adds the images for 29.4 min, called a long cadence (LC) interval. Due to storage and bandwidth constraints, only the pixels of interest, those that contain images of target stars, are saved onboard the solid-state recorder (SSR), which can store 66+ days of data. An average of 32 pixels per star is allowed for up to 170,000 stellar target definitions. In addition, a total of 512 targets are sampled at 58.85-s short cadence (SC) intervals, permitting further characterization of the planet-star systems for the brighter stars with a Kepler magnitude,* Kp, brighter than 12 (Kp machine learning and data mining. First, Section 17.2 gives a brief overview of the SOC science processing pipeline. This includes a special subsection detailing the adaptive, wavelet-based transit detector in the transiting planet search (TPS) pipeline component that performs the automated search through each of the hundreds of thousands of light curves for transit signatures of Earth-size planets

  10. Classifying Planets: Nature vs. Nurture

    Science.gov (United States)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  11. Extrasolar Planets in the Classroom

    Science.gov (United States)

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  12. Transiting Planets from Kepler, K2 & TESS

    Science.gov (United States)

    Lissauer, Jack

    2018-01-01

    NASA's Kepler spacecraft, launched in 2009, has been a resounding success. More than 4000 planet candidates have been identified using data from Kepler primary mission, which ended in 2013, and greater than 2000 of these candidates have been verified as bona fide exoplanets. After the loss of two reaction wheels ended the primary mission, the Kepler spacecraft was repurposed in 2014 to observe many fields on the sky for short periods. This new mission, dubbed K2, has led to the discovery of greater than 600 planet candidates, approximately 200 of which have been verified to date; most of these exoplanets are closer to us than the majority of exoplanets discovered by the primary Kepler mission. TESS, launching in 2018, will survey most of the sky for exoplanets, with emphasis on those orbiting nearby and/or bright host stars, making these planets especially well-suited for follow-up observations with other observatories to characterize atmospheric compositions and other properties. More than one-third of the planet candidates found by NASA's are associated with target stars that have more than one planet candidate, and such 'multis' account for the majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed Kepler & K2 multi-planet systems will also be discussed.

  13. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  14. Detection and characterization of extrasolar planets

    Directory of Open Access Journals (Sweden)

    Ferlet R.

    2009-02-01

    Full Text Available The main methods to detect planets orbiting stars other than our Sun are briefly described, together with their present results. Some characteristics of the known systems are emphasized. Particularly interesting are the transiting exoplanets which allow to reveal their atmospheres and ultimately identify biosignatures.

  15. TPS for Outer Planets

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, D.; Gage, P.; Gasch, M.; Hwang, H.; Prabhu, D.; Stackpoole, M.; Wercinski, Paul

    2018-01-01

    This invited talk will provide an assessment of the TPS needs for Outer Planet In-situ missions to destinations with atmosphere. The talk will outline the drivers for TPS from destination, science, mission architecture and entry environment. An assessment of the readiness of the TPS, both currently available and under development, for Saturn, Titan, Uranus and Neptune are provided. The challenges related to sustainability of the TPS for future missions are discussed.

  16. Planets in Inuit Astronomy

    Science.gov (United States)

    MacDonald, John

    2018-02-01

    phenomenon of the "polar night." For several reasons, the role of planets in Inuit astronomy is difficult to determine, due, in part, to the characteristics of the planets themselves. Naked-eye differentiation between the major visible planets is by no means straightforward, and for observers living north of the Arctic Circle, the continuous or semicontinuous periods of daylight/twilight obtaining throughout the late spring, summer, and early fall effectively prevent year-round viewing of the night sky, making much planetary movement unobservable, far less an appreciation of the planets' predictable synodic and sidereal periods. Mitigating against the significant use of planets in Inuit culture is also the principle that their applied astronomy, along with its cosmology and mythologies depend principally on—apart from the sun and the moon—the predictability of the "fixed stars." Inuit of course did see the major planets and took note of them when they moved through their familiar asterisms or appeared, irregularly, as markers of solstice, or harbingers of daylight after winter's dark. Generally, however, planets seem to have been little regarded until after the introduction of Christianity, when, in parts of the Canadian eastern Arctic, Venus, in particular, became associated with Christmas. While there are anecdotal accounts that some of the planets, again especially Venus, may have had a place in Greenlandic mythology, this assertion is far from certain. Furthermore, reports from Alaska and Greenland suggesting that the appearance of Venus was a regular marker of the new year, or a predictor of sun's return, need qualification, given the apparent irregularity of Venus's appearances above the horizon. A survey of relevant literature, including oral history, pertaining either directly or peripherally to Inuit astronomical traditions, reveals few bona fide mention of planets. References to planets in Inuit mythology and astronomy are usually speculative, typically lacking

  17. Minority Games

    International Nuclear Information System (INIS)

    Metzler, R

    2005-01-01

    New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the behaviour of the MG when

  18. Spectroscopic follow up of Kepler planet candidates

    DEFF Research Database (Denmark)

    Latham..[], D. W.; Cochran, W. D.; Marcy, G.W.

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from...... spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars...... and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using...

  19. Teaching minority children hygiene

    DEFF Research Database (Denmark)

    Rheinländer, Thilde; Samuelsen, Helle; Dalsgaard, Anders

    2015-01-01

    infrastructures were important barriers for the implementation of safe home child hygiene. Furthermore, the everyday life of highland villages, with parents working away from the households resulted in little daily adult supervision of safe child hygiene practices. While kindergartens were identified......Objectives. Ethnic minority children in Vietnam experience high levels of hygiene- and sanitation-related diseases. Improving hygiene for minority children is therefore vital for improving child health. The study objective was to investigate how kindergarten and home environments influence...... children were further disadvantaged as teaching was only provided in non-minority language. Conclusions. Kindergartens can be important institutions for the promotion of safe hygiene practices among children, but they must invest in the maintenance of hygiene and sanitation infrastructures and adopt...

  20. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  1. Extrasolar Planets: Towards Comparative Planetology beyond the Solar System

    Science.gov (United States)

    Khan, A. H.

    2012-09-01

    of earth affected by Sun ,Moon because these planet life conjugated relation with the planet life's. Can we realistically expect to identify all the pieces of this celestial puzzle and thereby decipher the full mosaic of our planetary origins? The answer, we think, is yes. Each planet contributes knowledge that widens our appreciation for planetary environment much as diverse stars add to our understanding of the stellar life cycle.

  2. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  3. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  4. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕ ) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters

  5. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  6. Planet-planet scattering leads to tightly packed planetary systems

    OpenAIRE

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-01-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masse...

  7. Minority Games

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, R [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

    2005-02-25

    New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the

  8. Finding A Planet Through the Dust

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    fellow at the Jet Propulsion Laboratory (JPL), a team of scientists now presents preliminary results from a near-infrared microlensing survey conducted with the United Kingdom Infrared Telescope (UKIRT) in Hawaii. Though the full study has not yet been published, the team reports on their first outcome: the detection of a giant planet in the galactic bulge.Giant Planet FoundThe light curve of UKIRT-2017-BLG-001. The inset shows a close-up of the anomaly in the curve, produced by the presence of the planet. [Shvartzvald et al. 2018]UKIRT-2017-BLG-001 is a giant planet detected at an angle of just 0.35 from the dusty, crowded Galactic center. It suffers from a high degree of extinction, implying that this planet could only have been detected via a near-infrared survey. The mass ratio of UKIRT-2017-BLG-001 to its host star is about 1.5 times that of Jupiter to the Sun, and its host star appears to be about 80% the mass of the Sun.The starplanet pair is roughly 20,500 light-years from us, which likely places it in the galactic bulge. Intriguingly, evidence suggests that the source star the star that the foreground starplanet lensed lies in the far galactic disk. If this is true, this would be the first source star of a microlensing event to be identified as belonging to the far disk.Artists impression of the WFIRST mission. [NASA]Looking AheadWhats next for microlensing exoplanet studies? The goal of the UKIRT near-infrared microlensing survey isnt just to discover planets its to characterize the exoplanet occurrence rates in different parts of the galaxy to inform future surveys.In particular, the UKIRT survey explored potential fields for the upcoming Wide Field Infrared Survey Telescope (WFIRST) mission, slated to launch in the mid-2020s. This powerful space telescope stands to vastly expand the reach of infrared microlensing detection, broadly surveying our galaxy for planets hiding in the dust.CitationY. Shvartzvald et al 2018 ApJL 857 L8. doi:10.3847/2041-8213/aab71b

  9. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  10. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  11. The ocean planet.

    Science.gov (United States)

    Hinrichsen, D

    1998-01-01

    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  12. Constitution of terrestrial planets

    International Nuclear Information System (INIS)

    Waenke, H.

    1981-01-01

    Reliable estimates of the bulk composition are restricted to the Earth, the Moon and the eucrite parent asteroid. The last, the parent body of the eucrite-diogenite family of meteorites, seems to have an almost chondritic composition except for a considerable depletion of all moderately volatile (Na, K, Rb, F, etc.) and highly volatile (Cl, Br, Cd, Pb, etc.) elements. The moon is also depleted in moderate volatile and volatile elements compared to carbonaceous chondrites of type 1 (C1) and to the Earth. Again normalized to C1 and Si the Earth's mantle and the Moon are slightly enriched in refractory lithophile elements and in magnesium. The striking depletion of the Earth's mantle for the elements V, Cr and Mn can be explained by their partial removal into the core. Apart from their contents of metallic iron, all siderophile elements, moderately volatile and volatile elements, Earth and Moon are chemically very similar. It might well be that, with these exceptions and that of a varying degree of oxidation, all the inner planets have a similar chemistry. The chemical composition of the Earth's mantle, yields important information about the accretion history of the Earth and that of the inner planets. (author)

  13. Starting a Planet Protectors Club

    Science.gov (United States)

    US Environmental Protection Agency, 2007

    2007-01-01

    If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

  14. The hunt for Planet X

    International Nuclear Information System (INIS)

    Croswell, Ken.

    1990-01-01

    This article examines the hypothesis that an, as yet unobserved, planet, beyond the orbit of Pluto is responsible for peculiarities in the orbits of Uranus and Neptune. A brief overview of the discovery and observation of the outer planets is offered. The evidence for and against the proposition is noted, and the work of two present day scientists, is mentioned both of whom agree with the idea, and are searching for optical proof of the planet's existence. U.K

  15. Professor: The Animal Planet Optimization

    OpenAIRE

    Satish Gajawada

    2014-01-01

    This paper is dedicated to everyone who is interested in making this planet a better place to live. In the past, researchers have explored behavior of several animals separately. But there is scope to explore in the direction where various artificial animals together solve the optimization problem. In this paper, Satish Gajawada proposed The AnimalPlanet Optimization. The concept of this paper is to imitate all the animals on this planet. The idea is to solve the optimization problem where al...

  16. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  17. Planets and Life

    Science.gov (United States)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  18. Inside-out planet formation

    International Nuclear Information System (INIS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors ≳ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (∼cm-m size) 'pebbles', drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ('dead zone') region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ∼1 M ⊕ planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  19. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  20. Radio images of the planets

    International Nuclear Information System (INIS)

    De Pater, I.

    1990-01-01

    Observations at radio wavelengths make possible detailed studies of planetary atmospheres, magnetospheres, and surface layers. The paper addresses the question of what can be learned from interferometric radio images of planets. Results from single-element radio observations are also discussed. Observations of both the terrestrial and the giant planets are considered. 106 refs

  1. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  2. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  3. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  4. WHY ARE PULSAR PLANETS RARE?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States)

    2016-12-01

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats the inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.

  5. Minority Language Rights.

    Science.gov (United States)

    O Riagain, Padraig; Shuibhne, Niamh Nic

    1997-01-01

    A survey of literature since 1990 on minority languages and language rights focuses on five issues: definition of minorities; individual vs. collective rights; legal bases for minority linguistic rights; applications and interpretations of minority language rights; and assessments of the impact of minority rights legislation. A nine-item annotated…

  6. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-01-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  7. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Room 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-20

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  8. Making Planet Nine: A Scattered Giant in the Outer Solar System

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-07-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  9. THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Li Hui

    2012-01-01

    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H] crit ≅ –1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z ∼> 0.1 Z ☉ . If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

  10. Planet Detectability in the Alpha Centauri System

    Science.gov (United States)

    Zhao, Lily; Fischer, Debra A.; Brewer, John; Giguere, Matt; Rojas-Ayala, Bárbara

    2018-01-01

    We use more than a decade of radial-velocity measurements for α {Cen} A, B, and Proxima Centauri from the High Accuracy Radial Velocity Planet Searcher, CTIO High Resolution Spectrograph, and the Ultraviolet and Visual Echelle Spectrograph to identify the M\\sin i and orbital periods of planets that could have been detected if they existed. At each point in a mass–period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about M\\sin i of 53 {M}\\oplus for α {Cen} A, 8.4 {M}\\oplus for α {Cen} B, and 0.47 {M}\\oplus for Proxima Centauri. Additionally, we examine the impact of systematic errors, or “red noise” in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the α {Centauri} stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the α {Cen} system may be compositionally similar to our terrestrial planets. Although the small projected separation of α {Cen} A and B currently hampers extreme-precision radial-velocity measurements, the angular separation is now increasing. By 2019, α {Cen} A and B will be ideal targets for renewed Doppler planet surveys.

  11. Minority engineering scholarships, 2012.

    Science.gov (United States)

    2014-02-01

    Scholarships for Minority Students Studying Engineering and Science: Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri S...

  12. Creating one planet communities

    International Nuclear Information System (INIS)

    Wilts, R.

    2010-01-01

    This presentation discussed low carbon communities that used a variety of sustainable energy technologies to reduce energy consumption and waste. The presentation was given by a company who has adopted a One Planet framework to ensure the development of zero carbon, zero waste, sustainable communities.The Dockside Green project was awarded North America's highest leadership in energy and environmental design (LEED) score. The community includes a waste biomass plant and an on-site wastewater treatment plant. Excess heat produced by the community's greenhouse gas (GHG) neutral biomass district heating system is sold to neighbouring communities. The BedZED project in the United Kingdom uses a high-density format to support a community living and workspace environment that uses rainwater harvesting, passive solar heating, high performance envelopes, and green roofs. The site includes 40 electric car charging stations. A combined heat and power (CHP) biomass plant provides electricity and hot water to all buildings. Neighbourhood-scale sustainable development is expected to have a significant impact on the ecological footprint of North American cities. Carbon neutral projects in Canada were also listed. tabs., figs.

  13. Comparative ionospheres: Terrestrial and giant planets

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  14. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Stevenson, David J.

    2013-01-01

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M ⊕ , multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  15. Formation of giant planets

    International Nuclear Information System (INIS)

    Perri, F.

    1975-01-01

    When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristic of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450 0 K and a pressure of 5 x 10 -6 atmospheres, the maximum core mass at which instability occurs is approximately 115 earth masses. It is concluded that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling

  16. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  17. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  18. Water Loss from Young Planets

    Science.gov (United States)

    Tian, Feng; Güdel, Manuel; Johnstone, Colin P.; Lammer, Helmut; Luger, Rodrigo; Odert, Petra

    2018-04-01

    Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.

  19. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  20. News and Views: Life on Mars? Astronomical model is world's biggest; Prizes for identifying dark matter; NAM 2013: call for sessions; Paintballing to save the planet; Happy Birthday ESO; Dark sky park grows

    Science.gov (United States)

    2012-12-01

    The University of Edinburgh, crowdsourcing website Kaggle and Winton Capital Management have joined forces to launch a competition to identify dark matter haloes. The Scientific Organizing Committee of the RAS National Astronomy Meeting 2013, the UK Solar Physics and Magnetosphere, Ionosphere and Solar-Terrestrial meetings, are seeking nominations for parallel discussion session themes. A winner of the 2012 Move an Asteroid Technical Paper Competition suggests painting asteroids white in order to boost their albedo and take advantage of solar radiation pressure to alter their orbits.

  1. ENHANCED INTERFEROMETRIC IDENTIFICATION OF SPECTRA IN HABITABLE EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Schwartz, Eyal; Lipson, Stephen G.; Ribak, Erez N.

    2012-01-01

    An Earth-like extrasolar planet emits light that is many orders of magnitude fainter than that of the parent star. We propose a method of identifying bio-signature spectral lines in light of known extrasolar planets based on Fourier spectroscopy in the infrared, using an off-center part of a Fourier interferogram only. This results in superior sensitivity to narrower molecular-type spectral bands, which are expected in the planet spectrum but are absent in the parent star. We support this idea by numerical simulations that include photon and thermal noise, and show it to be feasible at a luminosity ratio of 10 –6 for a Sun-like parent star in the infrared. We also carried out a laboratory experiment to illustrate the method. The results suggest that this method should be applicable to real planet searches.

  2. PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-01-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

  3. Homes for extraterrestrial life: extrasolar planets.

    Science.gov (United States)

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  4. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  5. STABILITY OF ADDITIONAL PLANETS IN AND AROUND THE HABITABLE ZONE OF THE HD 47186 PLANETARY SYSTEM

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Raymond, Sean N.; Barnes, Rory

    2009-01-01

    We study the dynamical stability of an additional, potentially habitable planet in the HD 47186 planetary system. Two planets are currently known in this system: a 'hot Neptune' with a period of 4.08 days and a Saturn-mass planet with a period of 3.7 years. Here we consider the possibility that one or more undetected planets exist between the two known planets and possibly within the habitable zone (HZ) in this system. Given the relatively low masses of the known planets, additional planets could have masses ∼ + , and hence be terrestrial-like and further improving potential habitability. We perform N-body simulations to identify the stable zone between planets b and c and find that much of the inner HZ can harbor a 10 M + planet. With the current radial velocity threshold of ∼1 m s -1 , an additional planet should be detectable if it lies at the inner edge of the habitable zone at 0.8 AU. We also show that the stable zone could contain two additional planets of 10 M + each if their eccentricities are lower than ∼0.3.

  6. Reaching for the red planet

    Science.gov (United States)

    David, L

    1996-05-01

    The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.

  7. Exploring Mercury: The Iron Planet

    OpenAIRE

    Stevenson, David J.

    2004-01-01

    Planet Mercury is both difficult to observe and difficult to reach by spacecraft. Just one spacecraft, Mariner 10, flew by the planet 30 years ago. An upcoming NASA mission, MESSENGER, will be launched this year and will go into orbit around Mercury at the end of this decade. A European mission is planned for the following decade. It's worth going there because Mercury is a strange body and the history of planetary exploration has taught us that strangeness gives us insight into planetary ori...

  8. Guldlok og de nye planeter

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke

    2007-01-01

    De såkaldte exoplaneter, som er planeter i andre solsystemer, beskrivelse af de de betingelser, der skal være opfyldt, før man kan gøre sig håb om at finde liv på dem og de metoder astronomer bruger til at finde planeterne.......De såkaldte exoplaneter, som er planeter i andre solsystemer, beskrivelse af de de betingelser, der skal være opfyldt, før man kan gøre sig håb om at finde liv på dem og de metoder astronomer bruger til at finde planeterne....

  9. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  10. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S.; Barclay, Thomas; Ma, Bo; Bowler, Brendan P.; Riddle, Reed; Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations

  11. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  12. Habitable zone limits for dry planets.

    Science.gov (United States)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  13. Minorities and majorities

    NARCIS (Netherlands)

    Nijman, J.E.; Fassbender, B.; Peters, A.

    2012-01-01

    This chapter discusses the paradox of minorities as a constitutive Other of international law. While minorities have been viewed as outside the international legal system for centuries, minorities have at the same time made a significant and fundamental contribution to precisely that system, as they

  14. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    Science.gov (United States)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  15. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  16. Tracking Planets around the Sun

    Science.gov (United States)

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  17. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  18. Venus and Mercury as Planets

    Science.gov (United States)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  19. How to build a planet

    Science.gov (United States)

    Preston, Louisa

    2017-12-01

    It is a difficult project to tackle, in a book - the subject of exoplanets - as it is one of the fastest-moving branches of planetary science. In The Planet Factory Elizabeth Tasker, an astrophysicist at Japan's JAXA space agency, has bravely taken on the role of navigator for this incredible journey of planetary discovery, and the book does not disappoint.

  20. Venus and Mercury as planets

    International Nuclear Information System (INIS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described

  1. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  2. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    International Nuclear Information System (INIS)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-01-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  3. From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

    Science.gov (United States)

    Lammer, Helmut; Blanc, Michel

    2018-03-01

    This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their

  4. The Radiometric Bode's law and Extrasolar Planets

    National Research Council Canada - National Science Library

    Lazio, T. J; Farrell, W. M; Dietrick, Jill; Greenlees, Elizabeth; Hogan, Emily; Jones, Christopher; Hennig, L. A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation the radiometric Bode's law determined from the five "magnetic" planets in the solar system...

  5. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  6. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  7. The Use of Planisphere to Locate Planets

    Science.gov (United States)

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  8. Hole-y Debris Disks, Batman! Where are the planets?

    Science.gov (United States)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  9. Security for a Smarter Planet

    Science.gov (United States)

    Nagaratnam, Nataraj

    Bit by bit, our planet is getting smarter. By this, we mean the systems that run, the way we live and work as a society. Three things have brought this about - the world is becoming instrumented, interconnected and intelligent. Given the planet is becoming instrumented and interconnected, this opens up more risks that need to be managed. Escalating security and privacy concerns along with a renewed focus on organizational oversight are driving governance, risk management and compliance (GRC) to the forefront of the business. Compliance regulations have increasingly played a larger role by attempting to establish processes and controls that mitigate the internal and external risks organizations have today. To effectively meet the requirements of GRC, companies must prove that they have strong and consistent controls over who has access to critical applications and data.

  10. Ecosystem stewardship: sustainability strategies for a rapidly changing planet

    Science.gov (United States)

    F. Stuart Chapin; Stephen R. Carpenter; Gary P. Kofinas; Carl Folke; Nick Abel; William C. Clark; Per Olsson; D. Mark Stafford Smith; Brian Walker; Oran R. Young; Fikret Berkes; Reinette Biggs; J. Morgan Grove; Rosamond L. Naylor; Evelyn Pinkerton; Will Steffen; Frederick J. Swanson

    2010-01-01

    Ecosystem stewardship is an action-oriented framework intended to foster the social-ecological sustainability of a rapidly changing planet. Recent developments identify three strategies that make optimal use of current understanding in an environment of inevitable uncertainty and abrupt change: reducing the magnitude of, and exposure and sensitivity to, known stresses...

  11. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  12. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  13. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  14. The planets and our culture a history and a legacy

    Science.gov (United States)

    Clarke, Theodore C.; Bolton, Scott J.

    2010-01-01

    This manuscript relates the great literature, great art and the vast starry vault of heaven. It relates the myths of gods and heroes for whom the planets and the Medicean moons of Jupiter are named. The myths are illustrated by great art works of the Renaissance, Baroque and Rococo periods which reveal poignant moments in the myths. The manuscript identifies constellations spun off of these myths. In addition to the images of great art are associated images of the moons and planets brought to us by spacecraft in our new age of exploration, the New Renaissance, in which we find ourselves deeply immersed.

  15. The Giant Planet Satellite Exospheres

    Science.gov (United States)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  16. Towards the Rosetta Stone of planet formation

    Directory of Open Access Journals (Sweden)

    Schmidt T.O.B.

    2011-02-01

    Full Text Available Transiting exoplanets (TEPs observed just ~10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs, the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young or accretion growth (being smaller when young. We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.

  17. Happiness and Sexual Minority Status.

    Science.gov (United States)

    Thomeer, Mieke Beth; Reczek, Corinne

    2016-10-01

    We used logistic regression on nationally representative data (General Social Survey, N = 10,668 and N = 6680) to examine how sexual minority status related to happiness. We considered two central dimensions of sexual minority status-sexual behavior and sexual identity. We distinguished between same-sex, both-sex, and different-sex-oriented participants. Because individuals transition between sexual behavior categories over the life course (e.g., from both-sex partners to only same-sex partners) and changes in sexual minority status have theoretical associations with well-being, we also tested the associations of transitions with happiness. Results showed that identifying as bisexual, gay, or lesbian, having both male and female partners since age 18, or transitioning to only different-sex partners was negatively related to happiness. Those with only same-sex partners since age 18 or in the past 5 years had similar levels of happiness as those with only different-sex partners since age 18. Additional tests showed that the majority of these happiness differences became non-significant when economic and social resources were included, indicating that the lower happiness was a product of structural and societal forces. Our findings clearly and robustly underscored the importance of taking a multi-faceted approach to understanding sexuality and well-being, demonstrating that not all sexual minority groups experience disadvantaged happiness. Our study calls for more attention to positive aspects of well-being such as happiness in examinations of sexual minorities and suggests that positive psychology and other happiness subfields should consider the role of sexual minority status in shaping happiness.

  18. Happiness and Sexual Minority Status

    Science.gov (United States)

    Thomeer, Mieke Beth; Reczek, Corinne

    2017-01-01

    We used logistic regression on nationally representative data (General Social Survey, N = 10,668 and N = 6,680) to examine how sexual minority status related to happiness. We considered two central dimensions of sexual minority status—sexual behavior and sexual identity. We distinguished between same-sex, both-sex, and different-sex oriented participants. Because individuals transition between sexual behavior categories over the life course (e.g., from both-sex partners to only same-sex partners) and changes in sexual minority status have theoretical associations with well-being, we also tested the effects of transitions on happiness. Results showed that identifying as bisexual, gay, or lesbian, having both male and female partners since age 18, or transitioning to only different-sex partners was negatively related to happiness. Those with only same-sex partners since age 18 or in the past five years had similar levels of happiness as those with only different-sex partners since age 18. Additional tests showed that the majority of these happiness differences became non-significant when economic and social resources were included, indicating that the lower happiness was a product of structural and societal forces. Our findings clearly and robustly underscored the importance of taking a multi-faceted approach to understanding sexuality and well-being, demonstrating that not all sexual minority groups experience disadvantaged happiness. Our study calls for more attention to positive aspects of well-being such as happiness in examinations of sexual minorities and suggests that positive psychology and other happiness subfields should consider the role of sexual minority status in shaping happiness. PMID:27102605

  19. The Detection and Characterization of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Ken Rice

    2014-09-01

    Full Text Available We have now confirmed the existence of > 1800 planets orbiting stars other thanthe Sun; known as extrasolar planets or exoplanets. The different methods for detectingsuch planets are sensitive to different regions of parameter space, and so, we are discoveringa wide diversity of exoplanets and exoplanetary systems. Characterizing such planets isdifficult, but we are starting to be able to determine something of their internal compositionand are beginning to be able to probe their atmospheres, the first step towards the detectionof bio-signatures and, hence, determining if a planet could be habitable or not. Here, Iwill review how we detect exoplanets, how we characterize exoplanetary systems and theexoplanets themselves, where we stand with respect to potentially habitable planets and howwe are progressing towards being able to actually determine if a planet could host life or not.

  20. PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1-Q8 (22 MONTHS)

    International Nuclear Information System (INIS)

    Burke, Christopher J.; Mullally, F.; Rowe, Jason F.; Thompson, Susan E.; Coughlin, Jeffrey L.; Caldwell, Douglas A.; Jenkins, Jon M.; Bryson, Stephen T.; Haas, Michael R.; Batalha, Natalie M.; Borucki, William J.; Christiansen, Jessie L.; Ciardi, David R.; Still, Martin; Barclay, Thomas; Chaplin, William J.; Clarke, Bruce D.; Cochran, William D.; Demory, Brice-Olivier; Esquerdo, Gilbert A.

    2014-01-01

    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 threshold crossing events, 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOIs) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2738 Kepler planet candidates distributed across 2017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ∼40% of the sample with R P ∼ 1 R ⊕ and represent ∼40% of the low equilibrium temperature (T eq < 300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample

  1. Kepler Planet Detection Metrics: Automatic Detection of Background Objects Using the Centroid Robovetter

    Science.gov (United States)

    Mullally, Fergal

    2017-01-01

    We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.

  2. Over 100 Validated and Candidate Planets Orbiting Bright Stars in K2 Campaigns 0-10

    Science.gov (United States)

    Mayo, Andrew; Vanderburg, Andrew; Latham, David; Bieryla, Allyson; Morton, Timothy

    2018-01-01

    Since 2014, NASA's K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here over 250 planet candidates observed during Campaigns 0-10 of the K2 mission that are orbiting stars brighter than 13th magnitude and for which we have obtained high-resolution spectra. We analyze these candidates using the VESPA package in order to calculate the false positive probability (FPP), and find that more than half are validated with a FPP less than 0.1%. We show that like the population of planets found during the original Kepler mission, large planets discovered by K2 tend to orbit metal-rich stars. We also show tentative evidence of a gap in the planet radius distribution. We compare our sample to the Kepler candidate sample investigated by Fulton and collaborators and conclude that more planets are required to confirm the gap. This work, in addition to increasing the population of validated K2 planets and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite (TESS), expected to launch in 2018.

  3. Minorities and Malnutrition.

    Science.gov (United States)

    Kornegay, Francis A.

    Various aspects of the relationship between minorities and malnutrition are discussed in this brief paper. Malnutrition, one of the byproducts of low economic status, is creating a crisis-proportion health problem affecting minority citizens. Malnutrition seriously affects children, older people in poverty, and chronically unemployed or…

  4. Surveying ethnic minorities

    NARCIS (Netherlands)

    Joost Kappelhof

    2015-01-01

    Obtaining accurate survey data on ethnic minorities is not easy. Ethnic minorities are usually underrepresented in surveys, and it is moreover not certain that those who do take part in surveys are representative of the group the researcher is interested in. For example, is it only people with

  5. Autonomy and minority rights

    DEFF Research Database (Denmark)

    Barten, Ulrike

    2008-01-01

    on the content of the syllabus. When autonomy is understood in the literal sense, of giving oneself one's own laws, then there is a clear connection. Autonomy is usually connected to politics and a geographically limited territory. Special political rights of minorities - e.g. is the Danish minority party SSW...

  6. ON THE VALIDITY OF THE 'HILL RADIUS CRITERION' FOR THE EJECTION OF PLANETS FROM STELLAR HABITABLE ZONES

    International Nuclear Information System (INIS)

    Cuntz, M.; Yeager, K. E.

    2009-01-01

    We challenge the customary assumption that the entering of an Earth-mass planet into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion for its ejection from the star-planet system. This assumption has widely been used in previous studies, especially those with an astrobiological focus. As intriguing examples, we explore the dynamics of the systems HD 20782 and HD 188015. Each system possesses a giant planet that remains in or crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is almost circular, whereas in the case of HD 20782, it is extremely elliptical. Although it is found that Earth-mass planets are eventually ejected from the habitable zones of these systems, the 'Hill Radius Criterion' is identified as invalid for the prediction of when the ejection is actually occurring.

  7. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  8. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  9. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  10. Planet earth a beginner's guide

    CERN Document Server

    Gribbin, John

    2012-01-01

    In this incredible expedition into the origins, workings, and evolution of our home planet, John Gribbin, bestselling author of In Search of Schrödinger's Cat, The Scientists, and In Search of the Multiverse, does what he does best: taking four and a half billion years of mind-boggling science and digging out the best bits. From the physics of Newton and the geology of Wegener, to the environmentalism of Lovelock, this is a must read for Earth's scientists and residents alike. Trained as an astrophysicist at Cambridge University, John Gribbin is currently Visiting Fellow in Astronomy at the University of Sussex, England.

  11. Progress for a small planet

    International Nuclear Information System (INIS)

    Ward, B.

    1979-01-01

    The subject is covered in three parts, entitled: new directions for the industrial order (energy - how big is the gap; nuclear option; energy alternatives; saving fuel; recycling revolution; industry - rewards and risks; role for the citizen; waters and wastes; fuel for food; safer diets, wiser means; farming for tomorrow; launching pad; back to full employment; towards 'private socialism'; cities - survival or else); priorities for development (time for choice; 'land to the tiller'; fuel for basic needs; water and food supplies; 'walking on two legs'; taming the cities); a conserving planet (emerging world community; cost of justice; how new an order; final constraints). (U.K.)

  12. Structure of the terrestrial planets

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Recent reviews (cf. Runcorn, 1968; or Cook, 1972, 1975) on the structure of the planets omit reference to the phase-change hypothesis for the nature of the terrestrial core, despite that numerous prior predictions of the theory based on this hypothesis have subsequently been borne out as correct. These reviews also ignore the existence of theoretical calculations of the internal structure of Venus which can be computed with high accuracy by use of the terrestrial seismic data. Several examples of numerous mistakes committed in these reviews are pointed out. (Auth.)

  13. New illustrated stars and planets

    CERN Document Server

    Cooper, Chris; Nicolson, Iain; Stott, Carole

    2002-01-01

    Stars & Plantes, written by experts and popular science writers, is a comprehensive overview of our Universe - what is it, where it came from and how we discovered it. This intriguing, information-rich new reference book contains over 300 stunning images from the Hubble Telescope and leading observatories from around the world as well as diagrams to explain the finer points of theory. With extensive sections on everything from the Solar System to how stars form Stars & Planets will appeal to beginners and the serious stargazer alike.

  14. Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Shin, In-Gu; Jung, Youn Kil [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2017-02-01

    Chang–Refsdal (C–R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C–R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C–R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C–R lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C–R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C–R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C–R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.

  15. #AltPlanets: Exploring the Exoplanet Catalogue with Neural Networks

    Science.gov (United States)

    Laneuville, M.; Tasker, E. J.; Guttenberg, N.

    2017-12-01

    The launch of Kepler in 2009 brought the number of known exoplanets into the thousands, in a growth explosion that shows no sign of abating. While the data available for individual planets is presently typically restricted to orbital and bulk properties, the quantity of data points allows the potential for meaningful statistical analysis. It is not clear how planet mass, radius, orbital path, stellar properties and neighbouring planets influence one another, therefore it seems inevitable that patterns will be missed simply due to the difficulty of including so many dimensions. Even simple trends may be overlooked if they fall outside our expectation of planet formation; a strong risk in a field where new discoveries have destroyed theories from the first observations of hot Jupiters. A possible way forward is to take advantage of the capabilities of neural network autoencoders. The idea of such algorithms is to learn a representation (encoding) of the data in a lower dimension space, without a priori knowledge about links between the elements. This encoding space can then be used to discover the strongest correlations in the original dataset.The key point is that trends identified by a neural network are independent of any previous analysis and pre-conceived ideas about physical processes. Results can reveal new relationships between planet properties and verify existing trends. We applied this concept to study data from the NASA Exoplanet Archive and while we have begun to explore the potential use of neural networks for exoplanet data, there are many possible extensions. For example, the network can produce a large number of 'alternative planets' whose statistics should match the current distribution. This larger dataset could highlight gaps in the parameter space or indicate observations are missing particular regimes. This could guide instrument proposals towards objects liable to yield the most information.

  16. Volatile components and continental material of planets

    International Nuclear Information System (INIS)

    Florenskiy, K.P.; Nikolayeva, O.V.

    1984-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H 2 0, CO 2 , etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes

  17. Extrasolar planets searches today and tomorrow

    CERN Multimedia

    2000-01-01

    So far the searches for extrasolar planets have found 40 planetary companions orbiting around nearby stars. In December 1999 a transit has been observed for one of them, providing the first independent confirmation of the reality of close-in planets as well as a measurement of its density. The techniques used to detect planets are limited and the detection threshold is biased but a first picture of the planet diversity and distribution emerges. Results of the search for extra-solar planets and their impacts on planetary formation will be reviewed. Future instruments are foreseen to detect Earth-like planets and possible signatures of organic activity. An overview of these future projects will be presented and more particularly the Darwin-IRSI mission studied by ESA for Horizon 2015.

  18. Hope for the Crowded Planet

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2005-01-01

    The basic environmental problem of population growth is discussed on the background of low bith rates in many countries, primarely in affluent countries plus China. This gives hope for. The problems from declining population raised by some economists, such as ageing population, are minor compared...

  19. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  20. All for the Planet, the Planet for everyone!

    Science.gov (United States)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  1. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  2. Pathway to the galactic distribution of planets

    DEFF Research Database (Denmark)

    Novati, S. Calchi; Gould, A.; Udalski, A.

    2015-01-01

    distance estimates for each lens, with error bars that are small compared to the Sun's Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same...... experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated....

  3. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  4. BCDC Minor Permits

    Data.gov (United States)

    California Natural Resource Agency — An administrative permit can be issued for an activity that qualifies as a minor repair or improvement in a relatively short period of time and without a public...

  5. Minority Veteran Report 2014

    Data.gov (United States)

    Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...

  6. Minorities in Iran

    DEFF Research Database (Denmark)

    Elling, Rasmus Christian

    Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims, and deba......Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims......, and debates on diversity have entered public discourse and politics. In 2005–2007, Iran was rocked by the most widespread ethnic unrest experienced in that country since the revolution. The same period was also marked by the re-emergence of nationalism. This interdisciplinary book takes a long-overdue step...

  7. Minority Veteran Report

    Data.gov (United States)

    Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...

  8. Infrared radiation from an extrasolar planet

    OpenAIRE

    Deming, Drake; Seager, Sara; Richardson, L. Jeremy; Harrington, Joseph

    2005-01-01

    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero o...

  9. Evolutionary tracks of the terrestrial planets

    International Nuclear Information System (INIS)

    Matsui, Takafumi; Abe, Yutaka

    1987-01-01

    On the basis of the model proposed by Matsui and Abe, the authors show that two major factors - distance from the Sun and the efficiency of retention of accretional energy - control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an 'aqua'-planet. 15 refs; 3 figs

  10. Extrasolar planets formation, detection and dynamics

    CERN Document Server

    Dvorak, Rudolf

    2008-01-01

    This latest, up-to-date resource for research on extrasolar planets covers formation, dynamics, atmospheres and detection. After a look at the formation of giant planets, the book goes on to discuss the formation and dynamics of planets in resonances, planets in double stars, atmospheres and habitable zones, detection via spectra and transits, and the history and prospects of ESPs as well as satellite projects.Edited by a renowned expert in solar system dynamics with chapters written by the leading experts in the method described -- from the US and Europe -- this is an ideal textbook for g

  11. Direct Imaging of Warm Extrasolar Planets

    International Nuclear Information System (INIS)

    Macintosh, B

    2005-01-01

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  12. The Fate of Unstable Circumbinary Planets

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  13. Multichoice minority game

    International Nuclear Information System (INIS)

    Ein-Dor, Liat; Metzler, Richard; Kanter, Ido; Kinzel, Wolfgang

    2001-01-01

    The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations

  14. Constraints on planet formation from Kepler’s multiple planet systems

    Science.gov (United States)

    Quintana, Elisa V.

    2015-01-01

    The recent haul of hundreds of multiple planet systems discovered by Kepler provides a treasure trove of new clues for planet formation theories. The substantial amount of protoplanetary disk mass needed to form the most commonly observed multi-planet systems - small (Earth-sized to mini-Neptune-sized) planets close to their stars - argues against pure in situ formation and suggests that the planets in these systems must have undergone some form of migration. I will present results from numerical simulations of terrestrial planet formation that aim to reproduce the sizes and architecture of Kepler's multi-planet systems, and will discuss the observed resonances and giant planets (or the lack thereof) associated with these systems.

  15. Factors Affecting the Habitability of Earth-like Planets

    Science.gov (United States)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital

  16. Minority engineering scholarships renewal, 2011.

    Science.gov (United States)

    2012-08-01

    Scholarships for Minority Students Studying Engineering and Science : Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri ...

  17. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  18. Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill

    2018-06-01

    Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  19. Ethnic Minority Personnel Careers: Hindrances and Hopes

    OpenAIRE

    Ross, Catharine

    2004-01-01

    Personnel departments often have particular responsibility for equal opportunities within their organizations. This paper explores equal opportunities within personnel departments themselves, in relation to the careers of ethnic minority personnel practitioners. Through primary research, it identifies a range of criteria which can affect personnel careers, of which ethnic origin is often one. However, although being categorized as of ethnic minority origin often hinders personnel careers, the...

  20. Habitability Properties of Circumbinary Planets

    Science.gov (United States)

    Shevchenko, Ivan I.

    2017-06-01

    It is shown that several habitability conditions (in fact, at least seven such conditions) appear to be fulfilled automatically by circumbinary planets of main-sequence stars (CBP-MS), whereas on Earth, these conditions are fulfilled only by chance. Therefore, it looks natural that most of the production of replicating biopolymers in the Galaxy is concentrated on particular classes of CBP-MS, and life on Earth is an outlier, in this sense. In this scenario, Lathe’s mechanism for the tidal “chain reaction” abiogenesis on Earth is favored as generic for CBP-MS, due to photo-tidal synchronization inherent to them. Problems with this scenario are discussed in detail.

  1. Global stratigraphy. [of planet Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  2. THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b

    International Nuclear Information System (INIS)

    Orosz, Jerome A.; Welsh, William F.; Short, Donald R.; Windmiller, Gur; Carter, Joshua A.; Torres, Guillermo; Geary, John C.; Brugamyer, Erik; Cochran, William D.; Endl, Michael; MacQueen, Phillip; Buchhave, Lars A.; Ford, Eric B.; Agol, Eric; Barclay, Thomas; Caldwell, Douglas A.; Clarke, Bruce D.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader

    2012-01-01

    We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M A = 0.949 ± 0.059 M ☉ and R A = 1.757 ± 0.034 R ☉ ) paired with a low-mass star (M B = 0.249 ± 0.010 M ☉ and R B = 0.2724 ± 0.0053 R ☉ ) in a mildly eccentric (e = 0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1-11), from which a planetary period of 105.595 ± 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 ± 0.11 R ⊕ , or equivalently 1.12 ± 0.03 R Nep . Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 M ⊕ (7.11 M Nep or equivalently 0.384 M Jup ) at 95% confidence. This upper limit should decrease as more Kepler data become available.

  3. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  4. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  5. Infrared radiation from an extrasolar planet.

    Science.gov (United States)

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  6. Characterization of Extrasolar Planets Using SOFIA

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  7. Detecting planets around stars in nearby galaxies

    NARCIS (Netherlands)

    Covone, G; de Ritis, R; Dominik, M; Marino, AA

    The only way to detect planets around stars at distances greater than or similar to several kpc is by (photometric or astrometric) microlensing (mu L) observations. In this paper, we show that the capability of photometric mu L extends to the detection of signals caused by planets around stars in

  8. Planet map generation by tetrahedral subdivision

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2010-01-01

    We present a method for generating pseudo-random, zoomable planet maps for games and art.  The method is based on spatial subdivision using tetrahedrons.  This ensures planet maps without discontinuities caused by mapping a flat map onto a sphere. We compare the method to other map...

  9. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  10. Rocky Planet Formation: Quick and Neat

    Science.gov (United States)

    Kenyon, Scott J.; Najita, Joan R.; Bromley, Benjamin C.

    2016-11-01

    We reconsider the commonly held assumption that warm debris disks are tracers of terrestrial planet formation. The high occurrence rate inferred for Earth-mass planets around mature solar-type stars based on exoplanet surveys (˜20%) stands in stark contrast to the low incidence rate (≤2%-3%) of warm dusty debris around solar-type stars during the expected epoch of terrestrial planet assembly (˜10 Myr). If Earth-mass planets at au distances are a common outcome of the planet formation process, this discrepancy suggests that rocky planet formation occurs more quickly and/or is much neater than traditionally believed, leaving behind little in the way of a dust signature. Alternatively, the incidence rate of terrestrial planets has been overestimated, or some previously unrecognized physical mechanism removes warm dust efficiently from the terrestrial planet region. A promising removal mechanism is gas drag in a residual gaseous disk with a surface density ≳10-5 of the minimum-mass solar nebula.

  11. Defining minors' abortion rights.

    Science.gov (United States)

    Rhodes, A M

    1988-01-01

    The right to abortion is confirmed in the Roe versus Wade case, by the US Supreme Court. It is a fundamental right of privacy but not an absolute right, and must consider state interests. During the first trimester of pregnancy abortion is a decision of the woman and her doctor. During the second trimester of pregnancy the state may control the abortion practice to protect the mothers health, and in the last trimester, it may prohibit abortion, except in cases where the mother's life or health are in danger. The states enacted laws, including one that required parents to give written consent for a unmarried minor's abortion. This law was struck down by the US Court, but laws on notification were upheld as long as there was alternative procedures where the minor's interests are upheld. Many of these law have been challenged successfully, where the minor was judged mature and where it served her best interests. The state must enact laws on parental notification that take into consideration basic rights of the minor woman. Health professionals and workers should be aware of these laws and should encourage the minor to let parents in on the decision making process where possible.

  12. KEPLER PLANETS: A TALE OF EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Owen, James E. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  13. KEPLER PLANETS: A TALE OF EVAPORATION

    International Nuclear Information System (INIS)

    Owen, James E.; Wu, Yanqin

    2013-01-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕ . Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and

  14. Reflected eclipses on circumbinary planets

    Directory of Open Access Journals (Sweden)

    Deeg H.J.

    2011-02-01

    Full Text Available A photometric method to detect planets orbiting around shortperiodic binary stars is presented. It is based on the detection of eclipse-signatures in the reflected light of circumbinary planets. Amplitudes of such ’reflected eclipses’ will depend on the orbital configurations of binary and planet relative to the observer. Reflected eclipses will occur with a period that is distinct from the binary eclipses, and their timing will also be modified by variations in the light-travel time of the eclipse signal. For the sample of eclipsing binaries found by the Kepler mission, reflected eclipses from close circumbinary planets may be detectable around at least several dozen binaries. A thorough detection effort of such reflected eclipses may then detect the inner planets present, or give solid limits to their abundance.

  15. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  16. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  17. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen (Denmark); Ciardi, David R. [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ford, Eric B.; Morehead, Robert C. [University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Gilliland, Ronald L., E-mail: Jack.Lissauer@nasa.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  19. Open System Architecture design for planet surface systems

    Science.gov (United States)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  20. Studies of thermal wave phenomena on the Jovian planets

    Science.gov (United States)

    Deming, Drake

    1991-01-01

    Ground-based and Voyager observations of Jupiter provided evidence that the tropospheric temperature shows global-scale longitudinal variations which are often wavelike in character. The investigation is presented which is directed toward obtaining additional ground-based data in IR spectral bands whose contribution functions are optimized for specific atmospheric regions, in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets.

  1. SEBACEOUS CYSTS MINOR SURGERY

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Laksemi

    2013-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Minor surgery is small surgery or localized example cut ulcers and boils, cyst excision, and suturing. Somethings that need to be considered in the preparation of the surgery is minor tools, operating rooms and operating tables, lighting, maintenance of tools and equipment, sterilization and desinfection equipment, preparation of patients and anesthesia. In general cysts is walled chamber that consist of fluid, cells and the remaining cells. Cysts are formed not due to inflammation although then be inflamed. Lining of the cysts wall is composed of fibrous tissue and usually coated epithelial cells or endothelial. Cysts formed by dilated glands and closed channels, glands, blood vessels, lymph channels or layers of the epidermis. Contents of the cysts wall consists of the results is serum, lymph, sweat sebum, epithelial cells, the stratum corneum, and hair. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  2. Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems

    International Nuclear Information System (INIS)

    Rowe, Jason F.; Bryson, Stephen T.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Marcy, Geoffrey W.; Issacson, Howard; Gilliland, Ronald L.; Ford, Eric; Steffen, Jason H.; Fortney, Jonathan; Gautier, T. N. III

    2014-01-01

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ∼two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  3. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  4. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    Science.gov (United States)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  5. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    Science.gov (United States)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  6. Kepler Data Validation I: Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    Science.gov (United States)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter; hide

    2018-01-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  7. Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    Science.gov (United States)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tenenbaum, Peter; Wohler, Bill; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.

    2018-06-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ∼200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  8. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  9. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  10. Housing Problems of Minorities

    Science.gov (United States)

    Weaver, Robert

    1975-01-01

    This testimony, before a public hearing of the New York City Commission on Human Rights in May 1974, reviews the status of minority group housing and the effects of federal programs upon it, advocating an approach which recognizes the intrinsic locational and real estate value of many black ghettos. (Author/JM)

  11. Minority Language Teaching

    NARCIS (Netherlands)

    Monique Turkenburg

    2001-01-01

    Original title: Onderwijs in alochtone levende talen. At the request of the Dutch Ministry of Education, Culture and Science, an exploratory study was carried out of minority Language teaching for primary school pupils. This exploratory study in seven municipalities not only shows the way in

  12. Ethnic Minorities and Integration

    NARCIS (Netherlands)

    Mérove Gijsberts

    2005-01-01

    There has been a great deal of discussion in the Netherlands recently about the integration of ethnic minorities. The tenor of that discussion is sombre: some observers speak of a 'multicultural drama', while others claim that the government's integration policy has failed completely. Recent

  13. Becoming (ethnic minority) teenagers

    DEFF Research Database (Denmark)

    Tørslev, Mette Kirstine; Nørredam, Marie Louise; Vitus, Kathrine

    2017-01-01

    and majority students in two school classes from the fifth to seventh grades. Taking a practice approach, the article first analyses school as a social site before turning phenomenological attention to experiences and expectations of becoming teenagers, focusing on the experiences of ethnic minority students...

  14. Britain's Ethnic Minorities.

    Science.gov (United States)

    Central Office of Information, London (England).

    This pamphlet discusses the situation of ethnic minorities--particularly those of Caribbean, Asian, or African origin--in the United Kingdom. Following introductory material, the background to immigration in Britain is described and the numbers and geographic distribution of the different ethnic groups are discussed. Next comes a general…

  15. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  16. No Snowball on Habitable Tidally Locked Planets

    Energy Technology Data Exchange (ETDEWEB)

    Checlair, Jade; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Menou, Kristen, E-mail: jadecheclair@uchicago.edu [Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4 (Canada)

    2017-08-20

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO{sub 2} outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  17. No Snowball on Habitable Tidally Locked Planets

    International Nuclear Information System (INIS)

    Checlair, Jade; Abbot, Dorian S.; Menou, Kristen

    2017-01-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO 2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  18. Kepler Confirmation of Multi-Planet Systems

    Science.gov (United States)

    Cochran, W. D.

    2011-10-01

    The NASA Kepler spacecraft has detected 170 candidate multi-planet systems in the first two quarters of data released in February 2011 by Borucki et al. (2011). These systems comprise 115 double candidate systems, 45 triple candidate sys- tems, and 10 systems with 4 or more candidate planets. The architecture and dynamics of these systems were discussed by Lissauer et al. (2011), and a comparison of candidates in single- and multi-planet systems was presented by Latham et al. (2011). Proceeding from "planetary candidate" systems to confirmed and validated multi-planet systems is a difficult process, as most of these systems orbit stars too faint to obtain extremely precise (1ms-1) radial velocity confimation. Here, we discuss in detail the use of transit timing vari- ations (cf. e.g. Holman et al., 2010) to confirm planets near a mean motion resonance. We also discuss extensions to the BLENDER validation (Torres et al., 2004, 2011; Fressin et al., 2011) to validate planets in multi-planet systems. Kepler was competitively selected as the tenth Discovery mission. Funding for the Kepler Mis- sion is provided by NASA's Science Mission Direc- torate. We are deeply grateful for the very hard work of the entire Kepler team.

  19. Prognosis for a sick planet.

    Science.gov (United States)

    Maslin, Mark

    2008-12-01

    Global warming is the most important science issue of the 21st century, challenging the very structure of our global society. The study of past climate has shown that the current global climate system is extremely sensitive to human-induced climate change. The burning of fossil fuels since the beginning of the industrial revolution has already caused changes with clear evidence for a 0.75 degrees C rise in global temperatures and 22 cm rise in sea level during the 20th century. The Intergovernmental Panel on Climate Change synthesis report (2007) predicts that global temperatures by 2100 could rise by between 1.1 degrees C and 6.4 degrees C. Sea level could rise by between 28 cm and 79 cm, more if the melting of the polar ice caps accelerates. In addition, weather patterns will become less predictable and the occurrence of extreme climate events, such as storms, floods, heat waves and droughts, will increase. The potential effects of global warming on human society are devastating. We do, however, already have many of the technological solutions to cure our sick planet.

  20. Exploring the planets a memoir

    CERN Document Server

    Taylor, Fred

    2016-01-01

    This book is an informal, semi-autobiographical history, from the particular viewpoint of someone who was involved, of the exploration of the Solar System using spacecraft. The author is a Northumbrian, a Liverpudlian, a Californian, and an Oxford Don with half a century of experience of devising and deploying experiments to study the Earth and the planets, moons, and small bodies of the Solar System. Along with memories and anecdotes about his experiences as a participant in the space programme from its earliest days to the present, he describes in non-technical terms the science goals that drove the projects as well as the politics, pressures, and problems that had to be addressed and overcome on the way. The theme is the scientific intent of these ambitious voyages of discovery, and the joys and hardships of working to see them achieved. The narrative gives a first-hand account of things like how Earth satellites came to revolutionize weather forecasting, starting in the 1960s; how observations from space ...

  1. Gas Velocities Reveal Newly Born Planets in a Disk

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    , which can be reproduced by the presence of a 2-Jupiter-mass planet at 260 AU. [Pinte et al. 2018]Watching Gas MoveIn two papers published today in ApJL one led by Richard Teague (University of Michigan) and the other led by Christophe Pinte (Monash University in Australia and Grenoble Alpes University in France) astronomers have announced the detection of distinctive signs of planets in the gas motion of the disk surrounding HD 163296. This young star, located about 330 light-years away, is only 4 million years old.Unlike studies that hinge on observations of a disks dust which only makes up 1% of the disks mass! both studies here took a new approach: they used detailed ALMA observations revealing the dynamics of the disks carbon monoxide gas. By studying the gass motion, the teams found deviations from the Keplerian velocity that would be expected if there were no planets present. The authors then ran simulations to demonstrate that the deviations are consistent with local pressure perturbations caused by the passage of giant planets.Rotational velocity deviations due to changes in the local pressure, caused in this simulation by the presence of planets. [Teague et al. 2018]Giants FoundWhat did they find? Teague and collaborators, whose technique to identify velocity variations is best suited to explore the inner regions of the disk, discovered evidence for two separate Jupiter-mass planets orbiting at distances of 83 AU and 137 AU in the disk. Pinte and collaborators, whose velocity-measurement technique better explores the outer regions of the disk, found evidence for a two-Jupiter-mass planet orbiting at 260 AU.These results will rely on additional imaging in the coming years to confirm the presence of these newly born planets and a detection of point sources at these radii remains a hopeful goal for the future. Nonetheless, the new techniques explored here by Teague, Pinte, and collaborators are a promising route for young exoplanet discovery and characterization

  2. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-01-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M + from 10 to 20 AU. For large planet masses (M ∼> M Sat ), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a ∼ -1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive

  3. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    Science.gov (United States)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  4. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Timpe, Miles; Barnes, Rory [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Kopparapu, Ravikumar; Raymond, Sean N. [Virtual Planetary Laboratory, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Gorelick, Noel, E-mail: apskier@astro.washington.edu [Google, Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043 (United States)

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We then performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.

  5. Extrasolar planets : - From gaseous giant planets to rocky planets. - Steps towards the detection of life biomarkers.

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Today, great efforts are made to detect Earth-mass rocky planets in the so-called habitable zone of their host stars. What are the difficulties, the instrumental projects  and the already detected interesting systems ?

  6. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  7. Properties of Planet-Forming Prostellar Disks

    Science.gov (United States)

    Lindstrom, David (Technical Monitor); Lubow, Stephen

    2005-01-01

    The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.

  8. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  9. Planet traps and first planets: The critical metallicity for gas giant formation

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki

    2014-01-01

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R rapid 〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R rapid 〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  10. A SEARCH FOR SHORT-PERIOD ROCKY PLANETS AROUND WDs WITH THE COSMIC ORIGINS SPECTROGRAPH (COS)

    Energy Technology Data Exchange (ETDEWEB)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-05-20

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.

  11. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Science.gov (United States)

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  12. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  13. Giant planets. Holweck prize lecture 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hide, R. (Meteorological Office, Bracknell (UK))

    1982-10-01

    The main characteristics of the giant planets, Jupiter and Saturn, are outlined. Studies which have been made of the circulation of their atmospheres, the structure of their interiors and the origin of their magnetic fields are discussed.

  14. Characterizing Cool Giant Planets in Reflected Light

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  15. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  16. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  17. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  18. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    Science.gov (United States)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  19. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  20. Thermal elastic deformations of the planet Mercury.

    Science.gov (United States)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  1. UNIVERSAL GRAVITATION AND MAGNETISM OF THE PLANETS

    Directory of Open Access Journals (Sweden)

    E.V. Savich

    2013-10-01

    Full Text Available The cores of the Solar System planets and the Sun are magnetized bodies, with the field of S-intensity, molten by the temperature of over million degrees. As similarly charged bodies, they interact with each other via repulsive forces that are considered, in the mechanism of gravitational attraction action, as resultant forces retaining the planets on the orbits at their inertial motion about the Sun.

  2. Three Small Planets Transiting a Hyades Star

    DEFF Research Database (Denmark)

    Livingston, John H.; Dai, Fei; Hirano, Teruyuki

    2018-01-01

    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757 ± 0.0011, {17.30681}-0.00036+0.00034, and {25.5715}-0.0040+0.0038 {days}, and radii of 1.05 ± 0.16, 3.14 ± 0.36, and {1.55}-0.21...

  3. The lonely life of a double planet

    International Nuclear Information System (INIS)

    Pearson, Jerome

    1988-01-01

    The paper concerns extraterrestrial intelligence, and the requirements for a terrestrial planet and life. The effect of the Moon on the Earth, the presence of the Earth's atmosphere and oceans, the Earth's magnetic field, and the Earth's molten core, the distance between the sun and Earth where life is possible, and estimates of the number of habitable planets in the galaxies, are all discussed. (U.K.)

  4. Planets: Integrated Services for Digital Preservation

    OpenAIRE

    Farquhar, Adam; Hockx-Yu, Helen

    2007-01-01

    The Planets Project is developing services and technology to address core challenges in digital preservation. This article introduces the motivation for this work, describes the extensible technical architecture and places the Planets approach into the context of the Open Archival Information System (OAIS) Reference Model. It also provides a scenario demonstrating Planets’ usefulness in solving real-life digital preservation problems and an overview of the project’s progress to date.

  5. Planets: Integrated Services for Digital Preservation

    Directory of Open Access Journals (Sweden)

    Adam Farquhar

    2007-12-01

    Full Text Available The Planets Project is developing services and technology to address core challenges in digital preservation. This article introduces the motivation for this work, describes the extensible technical architecture and places the Planets approach into the context of the Open Archival Information System (OAIS Reference Model. It also provides a scenario demonstrating Planets’ usefulness in solving real-life digital preservation problems and an overview of the project’s progress to date.

  6. Lonely life of a double planet

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Jerome

    1988-08-25

    The paper concerns extraterrestrial intelligence, and the requirements for a terrestrial planet and life. The effect of the Moon on the Earth, the presence of the Earth's atmosphere and oceans, the Earth's magnetic field, and the Earth's molten core, the distance between the sun and Earth where life is possible, and estimates of the number of habitable planets in the galaxies, are all discussed. (U.K.).

  7. Trapping planets in an evolving protoplanetary disk: preferred time, locations and planet mass

    OpenAIRE

    Baillié, Kévin; Charnoz, Sébastien; Pantin, Éric

    2016-01-01

    Planet traps are necessary to prevent forming planets from falling onto their host star by type I migration. Surface mass density and temperature gradient irregularities favor the apparition of traps and deserts. Such features are found at the dust sublimation lines and heat transition barriers. We study how planets may remain trapped or escape as they grow and as the disk evolves. We model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geome...

  8. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  9. The HARPS-N Rocky Planet Search

    DEFF Research Database (Denmark)

    Motalebi, F.; Udry, S.; Gillon, M.

    2015-01-01

    We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however......, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits...... on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period...

  10. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    International Nuclear Information System (INIS)

    Duffell, Paul C.; Chiang, Eugene

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions

  11. TWO SMALL PLANETS TRANSITING HD 3167

    International Nuclear Information System (INIS)

    Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.; Mayo, Andrew W.; Berlind, Perry; Duev, Dmitry A.; Jensen-Clem, Rebecca; Kulkarni, Shrinivas; Riddle, Reed; Baranec, Christoph; Law, Nicholas M.; Nieberding, Megan N.; Salama, Maïssa

    2016-01-01

    We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R ⊕ and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R ⊕ and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .

  12. TWO SMALL PLANETS TRANSITING HD 3167

    Energy Technology Data Exchange (ETDEWEB)

    Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.; Mayo, Andrew W.; Berlind, Perry [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Duev, Dmitry A.; Jensen-Clem, Rebecca; Kulkarni, Shrinivas; Riddle, Reed [California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, Christoph [University of Hawai‘i at Mānoa, Hilo, HI 96720 (United States); Law, Nicholas M. [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Nieberding, Megan N. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Salama, Maïssa, E-mail: avanderburg@cfa.harvard.edu [University of Hawai‘i at Mānoa, Honolulu, HI 96822 (United States)

    2016-09-20

    We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R {sub ⊕} and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R {sub ⊕} and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .

  13. Icy Dwarf Planets: Colored popsicles in the Solar System

    Science.gov (United States)

    Pinilla-Alonso, Noemi

    2015-08-01

    In 1992 the discovery of 1992 QB1 was the starting signal of a race to characterize the trans-Neptunian belt. The detection of icy “asteroids”, similar to Pluto, in the outer Solar System had been largely hypothesized but it had also being an elusive goal. This belt was considered by the planetary scientists as the icy promised land, the largest reservoir of primordial ices in the Solar System.From 1992 to 2005 about 1000 trans-Neptunian objects and Centaurs had been discovered and a lot of “first ever” science had been published: 1996 TO66, first ever detection of the water ice bands in a TNO's spectrum; 1998 WW31, first detection of a binary; first estimation of size and albedo from thermal and visible observations, Varuna; discovery of Sedna, at that moment “the coldest most distant place known in the Solar System”2005 was the year of the discovery of three large TNOs: (136108) Haumea, (136472) Makemake and (136199) Eris (a.k.a 2003 EL61, 2005 FY9 and 2003 UB313). These three big guys entered the schoolyard showing off as colored popsicles and making a clear statement: “We are special”, and sure they are!The discovery of these large TNOs resulted in 2006 in the adoption by the IAU of a new definition of planet and in the introduction of a new category of minor bodies: the “dwarf planets”. With only three members at this moment (although this can change anytime) the exclusive club of the icy dwarf planets is formed by the TNOs at the higher end of the size distribution. By virtue of their size and low surface temperatures, these bodies can retain most of their original inventory of ices. As a consequence, their visible and near-infrared spectra show evidences of water ice, nitrogen, methane and longer chains of hydrocarbons. Moreover, they have high geometric albedo in the visible. Also the accretional and radiogenic heating for these bodies was likely more than sufficient to have caused their internal differentiation.In this talk we will

  14. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  15. Major roles for minor bacterial lipids identified by mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A

    2017-11-01

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets

    Science.gov (United States)

    Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula

    2018-04-01

    Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.

  17. A Population of planetary systems characterized by short-period, Earth-sized planets

    Science.gov (United States)

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  18. 275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10

    DEFF Research Database (Denmark)

    Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W.

    2018-01-01

    Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet...... candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra ( R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP......). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates...

  19. A Population of planetary systems characterized by short-period, Earth-sized planets.

    Science.gov (United States)

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  20. TIDAL EVOLUTION OF CLOSE-IN PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Rasio, Frederic A.; Peale, Stanton J.

    2010-01-01

    Recent discoveries of several transiting planets with clearly non-zero eccentricities and some large obliquities started changing the simple picture of close-in planets having circular and well-aligned orbits. The two major scenarios that form such close-in planets are planet migration in a disk and planet-planet interactions combined with tidal dissipation. The former scenario can naturally produce a circular and low-obliquity orbit, while the latter implicitly assumes an initially highly eccentric and possibly high-obliquity orbit, which are then circularized and aligned via tidal dissipation. Most of these close-in planets experience orbital decay all the way to the Roche limit as previous studies showed. We investigate the tidal evolution of transiting planets on eccentric orbits, and find that there are two characteristic evolution paths for them, depending on the relative efficiency of tidal dissipation inside the star and the planet. Our study shows that each of these paths may correspond to migration and scattering scenarios. We further point out that the current observations may be consistent with the scattering scenario, where the circularization of an initially eccentric orbit occurs before the orbital decay primarily due to tidal dissipation in the planet, while the alignment of the stellar spin and orbit normal occurs on a similar timescale to the orbital decay largely due to dissipation in the star. We also find that even when the stellar spin-orbit misalignment is observed to be small at present, some systems could have had a highly misaligned orbit in the past, if their evolution is dominated by tidal dissipation in the star. Finally, we also re-examine the recent claim by Levrard et al. that all orbital and spin parameters, including eccentricity and stellar obliquity, evolve on a similar timescale to orbital decay. This counterintuitive result turns out to have been caused by a typo in their numerical code. Solving the correct set of tidal

  1. Minor burn - first aid - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100213.htm Minor burn - first aid - series—Procedure, part 1 To use ... out of 2 Overview To treat a minor burn, run cool water over the area of the ...

  2. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    International Nuclear Information System (INIS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-01-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ∼ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  3. Humans Need Not Apply: Robotization of Kepler Planet Candidate Vetting

    Science.gov (United States)

    Coughlin, Jeffrey; Mullally, Fergal; Thompson, Susan E.; Kepler Team

    2015-01-01

    Until now, the vast majority of Kepler planet candidate vetting has been performed by a dedicated team of humans. While human expertise has been invaluable in understanding the nuances of Kepler data, human vetting is very time-consuming and can be inconsistent. Over 20,000 threshold crossing events have been produced by the latest pipeline run on all 17 quarters of Kepler mission data, and many more artificial planet transits have been injected to estimate completeness. Given these large numbers, human vetting is no longer feasible on a reasonable time-scale, and would be difficult to characterize. We have created automated vetting programs known as "robovetters" that are specifically designed to mimic the decision-making process employed by the humans. They analyze both the light curve and pixel-level data in order to produce specific reasons for identifying false positives. We present benchmark tests on the Q1-Q16 Kepler planet catalog, which was vetted by humans, and present preliminary robovetter results based on a recent transit-search of the newly reprocessed Q1-Q17 data set.

  4. The Backyard Worlds: Planet 9 Citizen Science Project

    Science.gov (United States)

    Faherty, Jacqueline K.; Kuchner, Marc; Schneider, Adam; Meisner, Aaron; Gagné, Jonathan; Filippazzo, Joeseph; Trouille, Laura; Backyard Worlds: Planet 9 Collaboration; Jacqueline Faherty

    2018-01-01

    In February of 2017 our team launched a new citizen science project entitled Backyard Worlds: Planet 9 to scan the cosmos for fast moving stars, brown dwarfs, and even planets. This Zooniverse website, BackyardWorlds.org, invites anyone with a computer or smartphone to flip through WISE images taken over a several year baseline and mark any point source that appears to move. This “blinking technique” is the same that Clyde Tombaugh discovered Pluto with over 80 years ago. In the first few days of our program we recruited over 30,000 volunteers. After 3/4 of a year with the program we have completed 30% of the sky and our participants have identified several hundred candidate movers. These include (1) over 20 candidate Y-type brown dwarfs, (2) a handful of new co-moving systems containing a previously unidentified low mass object and a known nearby star, (3) over 100 previously missed M dwarfs, (4) and more than 200 candidate L and T brown dwarfs, many of which occupy outlier positions on reduced proper motion diagrams. Our first publication credited four citizen scientists as co-authors. The Backyard Worlds: Planet 9 project is both scientifically fruitful and empowering for any mind across the globe that has ever wanted to participate in a discovery-driven astronomy research project.

  5. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  6. Institutional Investors as Minority Shareholders

    OpenAIRE

    Assaf Hamdani; Yishay Yafeh

    2013-01-01

    We examine the link between minority shareholders' rights and corporate governance by studying institutional investors' voting patterns in a concentrated ownership environment. Institutions rarely vote against insider-sponsored proposals even when the law empowers the minority. Institutions vote against compensation-related proposals more often than against related party transactions even when minority shareholders cannot influence outcomes. Potentially conflicted institutions are more likely...

  7. Terrestrial Planet Formation from an Annulus -- Revisited

    Science.gov (United States)

    Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.

    2018-04-01

    Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.

  8. THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b

    Energy Technology Data Exchange (ETDEWEB)

    Orosz, Jerome A.; Welsh, William F.; Short, Donald R.; Windmiller, Gur [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Carter, Joshua A.; Torres, Guillermo; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brugamyer, Erik; Cochran, William D.; Endl, Michael; MacQueen, Phillip [McDonald Observatory, University of Texas at Austin, Austin, TX 78712-0259 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Ford, Eric B. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Barclay, Thomas; Caldwell, Douglas A.; Clarke, Bruce D. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Doyle, Laurance R. [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii-Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); and others

    2012-10-20

    We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M{sub A} = 0.949 {+-} 0.059 M {sub Sun} and R{sub A} = 1.757 {+-} 0.034 R {sub Sun }) paired with a low-mass star (M{sub B} = 0.249 {+-} 0.010 M {sub Sun} and R{sub B} = 0.2724 {+-} 0.0053 R {sub Sun }) in a mildly eccentric (e = 0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1-11), from which a planetary period of 105.595 {+-} 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 {+-} 0.11 R {sub Circled-Plus }, or equivalently 1.12 {+-} 0.03 R {sub Nep}. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 M {sub Circled-Plus} (7.11 M {sub Nep} or equivalently 0.384 M {sub Jup}) at 95% confidence. This upper limit should decrease as more Kepler data become available.

  9. THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

    International Nuclear Information System (INIS)

    Dressing, Courtney D.; Charbonneau, David

    2013-01-01

    We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R ⊕ planets with orbital periods shorter than 50 days is 0.90 +0.04 -0.03 planets per star. The occurrence rate of Earth-size (0.5-1.4 R ⊕ ) planets is constant across the temperature range of our sample at 0.51 -0.05 +0.06 Earth-size planets per star, but the occurrence of 1.4-4 R ⊕ planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15 +0.13 -0.06 planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.

  10. THE NATIONAL MINORITY CONSULTATIVE MECHANISMS - THE COUNCILS OF NATIONAL MINORITIES IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Aleksandar Čorni

    2016-09-01

    Full Text Available The article tries to explore the practical application of the soft law, in concrete terms, the documents adopted by the Organization for Security and Co-operation in Europe, referring to the models of participation of national minorities in public life in the case of Bosnia and Herzegovina. The objective of the research was to assess the legal and political grounds for functioning national minority councils as participation and consultative mechanisms, scope of responsibilities and capacities in relation to their effectiveness and impact and to identify relevant good practices on such mechanisms. The political and decision-making structures in Bosnia and Herzegovina demonstrated lack of actual commitment to the realization of the rights of minorities referring to participation in decision-making processes. Bearing in mind formal position within parliaments, visibility, and a significant promotional capacity for presence in the public sphere, the councils on national minorities may represent a significant body and channel for the minority – majority dialogue. However, at the moment, the national minority councils’ capacity to ensure participation of national minorities in Bosnian political life and their influence in decision-making process remains insufficient. In general, the consultative mechanisms, within their mandated responsibilities, have had insignificant and minimal impact on the practical, political and legislative segment.

  11. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NARCIS (Netherlands)

    Marcy, G.W.; et al., [Unknown; Hekker, S.

    2014-01-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements,

  12. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Science.gov (United States)

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  13. Limits on the abundance of galactic planets from 5 years of planet observations

    NARCIS (Netherlands)

    Albrow, MD; An, J; Beaulieu, JP; Caldwell, JAR; DePoy, DL; Dominik, M; Gaudi, BS; Gould, G; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pel, JW; Pogge, RW; Pollard, KR; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A

    2001-01-01

    We search for signatures of planets in 43 intensively monitored microlensing events that were observed between 1995 and 1999. Planets would be expected to cause a short-duration (similar to1 day) deviation on the smooth, symmetric light curve produced by a single lens. We find no such anomalies and

  14. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    Science.gov (United States)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  15. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (pc) and adolescent (pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides

  16. The Fate of Exomoons when Planets Scatter

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on

  17. Positions of minor planets and Comet Panther (1980 u) obtained at the Chorzow Observatory

    Science.gov (United States)

    Wlodarczyk, I.

    Photographic observations of 17 asteroids and Comet Panther were made between 1977 and 1982 with a 200/1000 mm photographic camera coupled to a 300/4500 mm refractor. The Turner method with the complete second-order polynomial was used to reduce the 16 x 16 cm ORWO ZU-2 plates that were obtained. The tabulated information for each asteroid and the comet include the number of the observation, the time of the observation in Universal Time, the topocentric position of the object referred to the mean epoch 1950.0, the dispersion in right ascension and declination, the duration of the exposure in minutes, and the symbol of the observer. Ten observers participated in the program.

  18. Astrometric positions of minor planets in September 1983; four discoveries; ESO, La Silla, Chile

    International Nuclear Information System (INIS)

    Debehogne, H.; Mourao, R.R.

    1985-01-01

    84 astronomical positions of asteroids, 420 stars residuals and dependences are given as obtained from photographic observations made at the GPO, Grand Prisme Objectif (D = 40 cm, f = 4 m) - ESO, La Silla, Chile, during September 1983. The reductions of the observations were obtained by means of five reference stars (SAO Catalogue) using two methods: dependences (to have...the dependences) and least squares (for stellar residuals). 2 tabs. (author)

  19. The interiors of the giant planets - 1983

    International Nuclear Information System (INIS)

    Smoluchowski, R.

    1983-01-01

    The last few years brought progress in understanding the interiors of the giant planets especially of the two larger ones which have been visited by Pioneer and Voyager spacecraft. An analysis of the formation of the giant planets also helped to clarify certain important common features. The presently available model of Jupiter is still based on certain somewhat bothersome approximations but it appears to satisfy the main observational constraints. Saturn's interior is much better understood than it was previously although the quantitative aspects of the role of the miscibility gap in the hydrogen-helium system have not yet been entirely resolved. Much attention has been directed at the interiors of Uranus and Neptune and the outstanding question appears to be the location and the amount of ices and methane present in their outer layers. Both the two- and the three-layer models are moderately successful. Serious difficulties arise from the considerable uncertainties concerning the rotational periods of both planets. Also the estimates of the internal heat fluxes and of the magnetic fields of both planets are not sufficiently certain. It is hoped that the forthcoming flyby of these two planets by a Voyager spacecraft will provide important new data for a future study of their interiors. (Auth.)

  20. Taking the Temperature of a Lava Planet

    Science.gov (United States)

    Kreidberg, Laura; Lopez, Eric; Cowan, Nick; Lupu, Roxana; Stevenson, Kevin; Louden, Tom; Malavolta, Luca

    2018-05-01

    Ultra-short period rocky planets (USPs) are an exotic class of planet found around less than 1% of stars. With orbital periods shorter than 24 hours, these worlds are blasted with stellar radiation that is expected to obliterate any traces of a primordial atmosphere and melt the dayside surface into a magma ocean. Observations of USPs have yielded several surprising results, including the measurement of an offset hotspot in the thermal phase curve of 55 Cancri e (which may indicate a thick atmosphere has survived), and a high Bond albedo for Kepler-10b, which suggests the presence of unusually reflective lava on its surface. To further explore the properties of USPs and put these results in context, we propose to observe a thermal phase curve of the newly discovered USP K2- 141b. This planet is a rocky world in a 6.7 hour orbit around a bright, nearby star. When combined with optical phase curve measured by K2, our observations will uniquely determine the planet's Bond albedo, precisely measure the offset of the thermal curve, and determine the temperature of the dayside surface. These results will cement Spitzer's role as a pioneer in the study of terrestrial planets beyond the Solar System, and provide a critical foundation for pursuing the optimal follow-up strategy for K2-141b with JWST.

  1. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  2. GEMINI PLANET IMAGER SPECTROSCOPY OF THE HR 8799 PLANETS c AND d

    International Nuclear Information System (INIS)

    Ingraham, Patrick; Macintosh, Bruce; Marley, Mark S.; Saumon, Didier; Marois, Christian; Dunn, Jennifer; Erikson, Darren; Barman, Travis; Bauman, Brian; Burrows, Adam; Chilcote, Jeffrey K.; Fitzgerald, Michael P.; De Rosa, Robert J.; Dillon, Daren; Gavel, Donald; Doyon, René; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Graham, James R.

    2014-01-01

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity

  3. BOOK REVIEW: Minority Games

    Science.gov (United States)

    Metzler, R.

    2005-02-01

    New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players—Damien Challet, Matteo Marsili and Yi-Cheng Zhang—have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the `physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the `stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the behaviour of the MG

  4. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  5. What is a good death? Minority and non-minority perspectives.

    Science.gov (United States)

    Tong, Elizabeth; McGraw, Sarah A; Dobihal, Edward; Baggish, Rosemary; Cherlin, Emily; Bradley, Elizabeth H

    2003-01-01

    While much attention has been directed at improving the quality of care at the end of life, few studies have examined what determines a good death in different individuals. We sought to identify common domains that characterize a good death in a diverse range of community-dwelling individuals, and to describe differences that might exist between minority and non-minority community-dwelling individuals' views. Using data from 13 focus groups, we identified 10 domains that characterize the quality of the death experience: 1) physical comfort, 2) burdens on family, 3) location and environment, 4) presence of others, 5) concerns regarding prolongation of life, 6) communication, 7) completion and emotional health, 8) spiritual care, 9) cultural concerns, 10) individualization. Differences in minority compared to non-minority views were apparent within the domains of spiritual concerns, cultural concerns, and individualization. The findings may help in efforts to encourage more culturally sensitive and humane end-of-life care for both minority and non-minority individuals.

  6. Vaccines for minor use and minor species (MUMS)--industry's views.

    Science.gov (United States)

    Bönisch, B

    2004-01-01

    Over the past 30 years the importance of vaccines for minor use and minor species has changed for multinational animal health companies. The major reasons for this are being reviewed, with a particular focus on technical, financial and business aspects. Key regulatory obstacles to the development of new products for minor uses and minor species are identified, and examples of vaccines falling into the various categories are provided. A number of proposals are offered with the intention of resolving the medicines availability problem between all the stakeholders involved. Finally, based on the presented scientific and regulatory considerations, ideas are shared as to where the legal and economical framework would need to change to reach a viable solution.

  7. A Ninth Planet in Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The recent discovery that the orbits of some Kuiper belt objects (KBOs) share properties has proved puzzling. A pair of scientists have now proposed a bold explanation: there may be a planet-sized object yet undetected in our solar system.Mysterious ClusteringKBOs, the population of mainly small objects beyond Neptune, have proven an especially interesting subject of study in the last decade as many small, distant bodies (such as Eris, the object that led to the demotion of Pluto to dwarf planet) have been discovered.Previous studies have recently discovered that some especially distant KBOs those that orbit with semimajor axes of a 150 AU, nearly four times that of Pluto all cross the ecliptic at a similar phase in their elliptical trajectories. This is unexpected, since gravitational tugs from the giant planets should have randomized this parameter over our solar systems multi-billion-year lifespan.Physical alignment of the orbits of Kuiper belt objects with a 250 AU (and two objects with a 150 AU that are dynamically stable). [Batygin Brown 2016]Two scientists at California Institute of Technology, Konstantin Batygin and Michael Brown (you might recognize Brown as the man who killed Pluto) have now increased the mystery. In a recently published a study, they demonstrate that for KBOs that have orbits with a 250 AU, the orbits are actually physically aligned.To explain this unexpected alignment which Batygin and Brown calculate has only a 0.007% probability of having occurred by chance the authors ask an exciting question: could this be caused by the presence of an unseen, large, perturbing body further out in the solar system?Simulating a Ninth PlanetThe authors test this hypothesis by carrying out both analytical calculations and numerical N-body simulations designed to determine if the gravitational influence of a distant, planetary-mass companion can explain the behavior we observe from the large-orbit KBOs.Simulation of the effect of a distant planet (M = 10

  8. Eating a planet and spinning up

    Science.gov (United States)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  9. Planetesimals early differentiation and consequences for planets

    CERN Document Server

    Weiss, Benjamin P

    2017-01-01

    Processes governing the evolution of planetesimals are critical to understanding how rocky planets are formed, how water is delivered to them, the origin of planetary atmospheres, how cores and magnetic dynamos develop, and ultimately, which planets have the potential to be habitable. Theoretical advances and new data from asteroid and meteorite observations, coupled with spacecraft missions such as Rosetta and Dawn, have led to major advances in this field over the last decade. This transdisciplinary volume presents an authoritative overview of the latest in our understanding of the processes of planet formation. Combining meteorite, asteroid and icy body observations with theory and modelling of accretion and orbital dynamics, this text also provides insights into the exoplanetary system and the search for habitable worlds. This is an essential reference for those interested in planetary formation, solar system dynamics, exoplanets and planetary habitability.

  10. International Conference and Advanced School Planet Earth

    CERN Document Server

    Jeltsch, Rolf; Pinto, Alberto; Viana, Marcelo

    2015-01-01

    The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary problems and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters, and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has increased to the point where it influences the global climate, impacts the ability of the planet to feed itself and threatens the stability of these systems. Issues such as climate change, sustainability, man-made disasters, control of diseases and epidemics, management of resources, risk analysis, and global integration have come to the fore. Written...

  11. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates...... of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic...... errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best...

  12. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  13. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  14. Earth-based planet finders power up

    Science.gov (United States)

    Clery, Daniel

    2018-01-01

    NASA's Kepler spacecraft has racked up thousands of exoplanet discoveries since its launch in 2009, but before Kepler, the workhorses of exoplanet identification were ground-based instruments that measure tiny stellar wobbles caused by the gravity of an orbiting planet. They are now undergoing a quiet renaissance. The new generation of these devices may be precise enough to find a true Earth twin: a planet with the same mass as ours, orbiting a sunlike star once a year. That's something Kepler—sensitive to planet size, but not mass—can't do. Over the past few months, two new third-generation instruments have opened their eyes to the sky and nearly two dozen others are either under construction or have recently begun service.

  15. Planets around pulsars - Implications for planetary formation

    Science.gov (United States)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  16. The formation of co-orbital planets and their resulting transit signatures

    Science.gov (United States)

    Granados Contreras, Agueda Paula; Boley, Aaron

    2018-04-01

    Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.

  17. Imaging Planet Formation Inside the Diffraction Limit

    Science.gov (United States)

    Sallum, Stephanie Elise

    For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.

  18. Cigarette smoking disparities among sexual minority cancer survivors

    Directory of Open Access Journals (Sweden)

    Charles Kamen

    2015-01-01

    Conclusion: The current study offers preliminary evidence that sexual minority status is one variable among many that must be taken into account when assessing health behaviors post-cancer diagnosis. Future research should identify mechanisms leading from sexual minority status to increased rates of smoking and develop tailored smoking cessation interventions.

  19. Social and Sexual Risk Factors among Sexual Minority Youth

    Science.gov (United States)

    Quinn, Katherine; Ertl, Allison

    2015-01-01

    This study explores the characteristics and risk behaviors of sexual minority high school students using the 2011 Wisconsin Youth Risk Behavior Survey. Among 3,043 students surveyed, 8% of students identified as lesbian, gay, bisexual, or unsure, and 7% reported having contact with same-sex partners. Findings indicate sexual minority students…

  20. Stellar variability and its implications for photometric planet detection with Kepler

    Science.gov (United States)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  1. Reflected Light Curves of Extrasolar Planets

    Science.gov (United States)

    Green, D.; Matthews, J.; Kuschnig, R.; Seager, S.

    The planned launches of ultra-precise photometric satellites such as MOST, COROT and MONS should provide the first opportunity to study the reflected light curves from extrasolar planets. To predict the capabilities of these missions, we have constructed a series of models of such light curves, improving upon the Monte Carlo simulations by Seager et al. (2000). These models include more realistic features such limb darkening of the star and broad band photometry. For specific models, the resulting planet light curves exhibit unique behavior with the variation of radius, inclination and presence or absence of clouds.

  2. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  3. Climate evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Kasting, J.F.; Toon, O.B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO 2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy

  4. Undergraduate Planet Hunters: Tools and Results

    Science.gov (United States)

    Buzasi, Derek L.; Carboneau, Lindsey; Ferrell, Laura; Green, Gilbert; Kaiser, Maya; Kreke, Kira; Lundy, Samantha; Merritt, William; Passino, Matlin; Paxton, Harrison; Podaril, Alexandria; Stansfield, Alexis

    2018-06-01

    One student "Honors Experience" option at Florida Gulf Coast University is a research experience, and we have developed a "Planet Hunters" course to provide an astronomical research track that satisfies that requirement. Students spend the first semester learning astronomical background and exoplanet detection techniques, while the second semester is primarily devoted to planet searches in K2 data using student-oriented software tools developed specifically for the task. In this poster, we illustrate those tools and show results obtained by class participants during this years experience.

  5. Guide to the universe inner planets

    CERN Document Server

    Grier, Jennifer

    2009-01-01

    This volume in the Greenwood Guides to the Universe series covers the inner planets-Mercury, Venus, Earth, and Mars. Thematic chapters discuss all of the many areas of astronomical research surrounding each subject, providing readers with the most up-to-date understanding of current knowledge and the ways in which it has been obtained. Like all of the books in this series, Inner Planets is scientifically sound, but written with the student in mind. It is an excellent first step for researching the exciting scientific discoveries of the Earth and its closest neighbors.

  6. Own education institutions as an option for minority groups

    Directory of Open Access Journals (Sweden)

    H.J. Steyn

    1998-03-01

    Full Text Available In this article the introductory part deals with Christian guidelines regarding the rights of minority groups. In the ensuing part the provision of education according to the unique educational needs of minority groups is discussed within the context of the presented guidelines. It is indicated that own education is internationally accepted as one of the major rights of minority groups. Within the international context, for example in the treaties of Unesco and in the educational provision of several countries, it is accepted that minority groups also prefer their own education institutions in order to effectively provide in their unique educational needs. In this article the more general requirements, regarding the characteristics of the education institution needed to meet the unique educational needs of a particular minority group are also identified. The impending problems in South Africa regarding own education schools for minorities are discussed briefly. In order to find possible solutions the situation in the Netherlands regarding "bijzondere scholen” to provide in the unique educational needs of particular interest groups and particularly religious groups is analysed. The conclusion arrived at is that the mentioned situation does not oppose Christian guidelines if minorities need each other to influence educational change, that the acknowledgement of the educational rights of minority groups promotes national unity, that the educational rights of minorities should imply freedom of establishment, denomination and institution and that the educational rights of minorities are fully realised if their education is financially supported by government on an equal basis to that of the majority.

  7. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-01-01

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the α Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of α Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the α Centauri system.

  8. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  9. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Borucki, William J.; Marcy, Geoffrey W.; Kolbl, Rea; Agol, Eric; Carter, Joshua A.; Torres, Guillermo; Ford, Eric B.; Gilliland, Ronald L.; Star, Kimberly M.; Steffen, Jason H.

    2014-01-01

    We extend the statistical analysis performed by Lissauer et al. in 2012, which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represents true transiting planets, and we develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems herein. Hundreds of additional multi-planet systems are validated in a companion paper by Rowe et al. We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

  10. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W.; Kolbl, Rea [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Carter, Joshua A.; Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ford, Eric B.; Gilliland, Ronald L.; Star, Kimberly M. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Steffen, Jason H., E-mail: Jack.Lissauer@nasa.gov [Department of Physics and Astronomy/CIERA, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-03-20

    We extend the statistical analysis performed by Lissauer et al. in 2012, which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represents true transiting planets, and we develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems herein. Hundreds of additional multi-planet systems are validated in a companion paper by Rowe et al. We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

  11. Issues in contracting with small minority businesses

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.T.; Radford, M.L.; Saari, L.M.; Wright, J.

    1986-04-01

    The focus of this investigation was to identify issues central to increasing the involvement of small minority businesses (MBs) in federal or prime contracts with the Department of Energy (DOE), as a foundation for designing a program to assist buyers of contracted goods and services. The approach to determining issues involved interviewing the owners of 15 MBs, representing a range of businesses, and buyers and purchasing officers from three large DOE prime contractors. The interviewees identified issues related to positive working relationships and rated a predetermined set of 27 potential MB-DOE problems regarding their existence and criticalness. The issues identified by MBs were of two broad types. The predominant issues and barriers were associated with their being small businesses. Secondary issues reflected the disadvantaged status of the business (woman and/or minority-owned).

  12. Minor physical anomalies and schizophrenia spectrum disorders: a prospective investigation

    DEFF Research Database (Denmark)

    Schiffman, Jason; Ekstrøm, Morten; LaBrie, Joseph

    2002-01-01

    at high risk. RESULTS: Individuals with a high number of minor physical anomalies developed schizophrenia spectrum disorders significantly more often than they developed a no mental illness outcome. Further, individuals with a high number of minor physical anomalies tended to develop schizophrenia......OBJECTIVE: The authors prospectively assessed the relationship between minor physical anomalies identified in childhood and adult psychiatric outcome. METHOD: In 1972, minor physical anomalies were measured in a group of 265 Danish children ages 11-13. The examination was part of a larger study...... spectrum disorders more often than other psychopathology. Among individuals at genetic high risk, higher numbers of minor physical anomalies may interact with pre-existing vulnerabilities for schizophrenia to increase the likelihood of a schizophrenia spectrum disorder outcome. CONCLUSIONS: Minor physical...

  13. Planetary Candidates Observed by Kepler IV: Planet Sample from Q1-Q8 (22 Months)

    OpenAIRE

    Burke, Christopher J.; Christensen, Jessie L.; Ciardi, David R.; Morton, Timothy D.; Shporer, Avi

    2014-01-01

    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 threshold crossing events, 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during tra...

  14. Two drastically different climate states on an Earth-like terra-planet

    Directory of Open Access Journals (Sweden)

    S. Kalidindi

    2018-06-01

    Full Text Available We study an Earth-like terra-planet (water-limited terrestrial planet with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW state with dominant low-latitude precipitation and a hot and dry (HD state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis. This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the

  15. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    OpenAIRE

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-01-01

    We report Gemini Planet Imager H band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 $Myr$-old early-type star recently confirmed to host a thermal infrared bright (super)jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal-infrared (IR) bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission originates an unresolved, po...

  16. Eating on an interconnected planet

    Science.gov (United States)

    MacDonald, Graham K.

    2013-06-01

    Balance Sheets: A Handbook (Rome: United Nations Food and Agriculture Organization) FAO (Food and Agriculture Organization) 2013 FAOSTAT: FAO Statistical Databases (Rome: United Nations Food and Agriculture Organization) Foley J A et al 2011 Solutions for a cultivated planet Nature 478 337-42 Headey D 2011 Rethinking the global food crisis: the role of trade shocks Food Policy 36 136-46 Hertel T W, Burke M B and Lobell D B 2010 The poverty implications of climate-induced crop yield changes by 2030 Glob. Environ. Change 20 577-85 Kastner T, Rivas M J I, Koch W and Nonhebel S 2012 Global changes in diets and the consequences for land requirements for food Proc. Natl Acad. Sci. 109 6868-72 Lambin E F and Meyfroidt P 2011 Global land use change, economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. 108 3465-72 Lobell D B, Cassman K G and Field C B 2009 Crop yield gaps: their importance, magnitudes, and causes Annu. Rev. Environ. Resour. 34 179 Naylor R L and Falcon W P 2010 Food security in an era of economic volatility Popul. Dev. Rev. 36 693-723 Ray D K, Ramankutty N, Mueller N D, West P C and Foley J A 2012 Recent patterns of crop yield growth and stagnation Nature Commun. 3 1293 Suweis S, Rinaldo A, Maritan A and D'Odorico P 2013 Water-controlled wealth of nations Proc. Natl Acad. Sci. 110 4230-3 Thornton P K, Jones P G, Alagarswamy G and Andresen J 2009 Spatial variation of crop yield response to climate change in East Africa Glob. Environ. Change 19 54-65

  17. Physical study of planets and satellites

    International Nuclear Information System (INIS)

    Mayer, C.H.; Young, A.T.; Belton, M.J.S.; Morrison, D.D.; Teifel, V.G.; Baum, W.A.; Dollfus, A.; Servajean, R.

    1976-01-01

    A critical review of progress made in the physical study of planets and satellites over the period 1973-1975 is presented. Summaries of recent research are followed by short notes on the IAU Planetary Data and Research Centers. (B.R.H.)

  18. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  19. The Planets Approach to Migration Tools

    DEFF Research Database (Denmark)

    Zierau, Eld; van Wijk, Caroline

    2008-01-01

    claim is that the market will cover the required tools for commonly used formats. The second claim is that in the long term less tools will be required due to growing use of archiving standard formats. The Planets view on the current situation, the scope of tool development and the claims stated are...

  20. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  1. IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Koskinen, Tommi T.; Cho, James Y-K.; Achilleos, Nicholas; Aylward, Alan D.

    2010-01-01

    Many extrasolar planets orbit close in and are subject to intense ionizing radiation from their host stars. Therefore, we expect them to have strong, and extended, ionospheres. Ionospheres are important because they modulate escape in the upper atmosphere and can modify circulation, as well as leave their signatures, in the lower atmosphere. In this paper, we evaluate the vertical location Z I and extent D I of the EUV ionization peak layer. We find that Z I ∼1-10 nbar-for a wide range of orbital distances (a = 0.047-1 AU) from the host star-and D I /H p ∼>15, where H p is the pressure scale height. At Z I , the plasma frequency is ∼80-450 MHz, depending on a. We also study global ion transport, and its dependence on a, using a three-dimensional thermosphere-ionosphere model. On tidally synchronized planets with weak intrinsic magnetic fields, our model shows only a small, but discernible, difference in electron density from the dayside to the nightside (∼9 x 10 13 m -3 to ∼2 x 10 12 m -3 , respectively) at Z I . On asynchronous planets, the distribution is essentially uniform. These results have consequences for hydrodynamic modeling of the atmospheres of close-in extrasolar giant planets.

  2. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  3. Groupies and Loners: The Population of Multi-planet Systems

    Science.gov (United States)

    Van Laerhoven, Christa L.; Greenberg, Richard

    2014-11-01

    Observational surveys with Kepler and other telescopes have shown that multi-planet systems are very numerous. Considering the secular dynamcis of multi-planet systems provides substantial insight into the interactions between planets in those systems. Since the underlying secular structure of a multi-planet system (the secular eigenmodes) can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in those systems even without knowing the planets' current eccentricities and inclinations. We have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. We will discuss the commonality of dynamically grouped planets ('groupies') vs dynamically uncoupled planets ('loners'), and compare to what would be expected from randomly generated systems with the same overall distribution of masses and semi-major axes. We will also discuss the occurrence of planets that strongly influence the behavior of other planets without being influenced by those others ('overlords'). Examples will be given and general trends will be discussed.

  4. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St. Suite 300, Boulder, CO 80302 (United States)

    2016-09-01

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately including effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.

  5. THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Arras, Phil; Socrates, Aristotle

    2010-01-01

    Asynchronous rotation and orbital eccentricity lead to time-dependent irradiation of the close-in gas giant exoplanets-the hot Jupiters. This time-dependent surface heating gives rise to fluid motions which propagate throughout the planet. We investigate the ability of this 'thermal tide' to produce a quadrupole moment which can couple to the stellar gravitational tidal force. While previous investigations discussed planets with solid surfaces, here we focus on entirely fluid planets in order to understand gas giants with small cores. The Coriolis force, thermal diffusion, and self-gravity of the perturbations are ignored for simplicity. First, we examine the response to thermal forcing through analytic solutions of the fluid equations which treat the forcing frequency as a small parameter. In the 'equilibrium tide' limit of zero frequency, fluid motion is present but does not induce a quadrupole moment. In the next approximation, finite frequency corrections to the equilibrium tide do lead to a nonzero quadrupole moment, the sign of which torques the planet away from synchronous spin. We then numerically solve the boundary value problem for the thermally forced, linear response of a planet with neutrally stratified interior and a stably stratified envelope. The numerical results find quadrupole moments in agreement with the analytic non-resonant result at a sufficiently long forcing period. Surprisingly, in the range of forcing periods of 1-30 days, the induced quadrupole moments can be far larger than the analytic result due to response of internal gravity waves which propagate in the radiative envelope. We discuss the relevance of our results for the spin, eccentricity, and thermal evolution of hot Jupiters.

  6. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  7. What is a Planet?-Categorizing Objects

    Science.gov (United States)

    Lebofsky, Larry A.

    2009-05-01

    Observing, communicating, comparing, organizing, relating, and inferring are fundamental to scientific thinking processes. Teaching this way, rather than just teaching "the facts,” is also important for developing the critical thinking skills of our future generations of a scientifically literate society. Since the IAU started its discussions on a definition of a planet in 2005, I have been presenting a hands-on activity called "What is a Planet?” at the annual meeting of the DPS. This activity has been designed for short (20 minute) to long (two hour) presentations depending on the venue and the audience. This has been presented to elementary-grade students, middle school students, K-12 teachers, and scientists and educators. Depending on the amount of time available, I show students how people, as well as scientists group or categorize things such as plants and animals, cats and dog, etc. The students are then broken up into groups. Science is usually done by teams of scientists working together, not as individuals working alone. I assess their prior knowledge (how many planets, their names, their properties, etc.). They also do a hands-on group activity where they group/categorize ten spheres by their properties (size, color, etc.). Finally we discuss the process by which the IAU came up with a definition of a planet. I then discuss with them why some scientists, including myself, do not agree with this definition: as with the spheres, there may be more than one "right” answer. There are many ways to look at the properties of objects in the Solar System and group them into planets and other designations. This is the way that science should be done, to look at all of the properties of an object and categorize them in a meaningful way. There may be more than one right answer.

  8. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Ida, Shigeru

    2013-01-01

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems

  9. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  10. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  11. About the Linguistic Impossibility of Claiming that Small Planets are not Planets

    Science.gov (United States)

    Nedeljkovic, A. B.

    2012-12-01

    Philology, which is, the science of language and literature, must now offer assistance to the science of astronomy, about one question of terminology and logic. Namely, if something belongs to one category, then it is, regardless of its size (large, or medium, or small) a member of that category. Therefore, it was linguistically wrong to claim that Pluto is one of the dwarf planets and therefore not a planet. This mistake, much noticed by the world's public opinion, ought to be corrected immediately.

  12. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  13. Stars rich in heavy metals tend to harbor planets

    CERN Multimedia

    2003-01-01

    "A comparison of 754 nearby stars like our Sun - some with planets and some without - shows definitively that the more iron and other metals there are in a star, the greater the chance it has a companion planet" (1 page).

  14. Astronomy: A small star with an Earth-like planet

    Science.gov (United States)

    Deming, Drake

    2015-11-01

    A rocky planet close in size to Earth has been discovered in the cosmic vicinity of our Sun. The small size and proximity of the associated star bode well for studies of the planet's atmosphere. See Letter p.204

  15. Terrestrial Planet Finder Coronagraph High Accuracy Optical Propagation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terrestrial Planet Finder (TPF) project is considering several approaches to discovering planets orbiting stars far from earth and assessing their suitability to...

  16. Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Lunine, Jonathan I.; Nicholson, Philip; Raymond, Sean N.

    2018-04-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (~80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past are systematically removed. Closer-in moons on Galilean-moon-like orbits (system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as "planets." The survival rate of moons increases with the host planet mass but is independent of the planet's final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  17. Double-blind test program for astrometric planet detection with Gaia

    Science.gov (United States)

    Casertano, S.; Lattanzi, M. G.; Sozzetti, A.; Spagna, A.; Jancart, S.; Morbidelli, R.; Pannunzio, R.; Pourbaix, D.; Queloz, D.

    2008-05-01

    Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for detecting and measuring planetary systems. The identified capabilities are then put in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets in the next decade. Methods: We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. Results: 1) Planets with astrometric signatures α≃ 3 times the assumed single-measurement error σ_ψ and period P≤ 5 yr can be detected reliably and consistently, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 15-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≤ P≤ 9 yr, astrometric signal-to-noise ratio 2≤α/σ_ψ≤ 50, and eccentricity e≤ 0.6 are correctly identified. 4) Favorable orbital configurations (both planets with P≤ 4 yr and α/σ_ψ≥ 10, redundancy over a factor of 2 in the number of observations) have orbital elements measured to better than 10% accuracy > 90% of the time, and the value of the mutual inclination angle i_rel determined with uncertainties ≤ 10°. 5) Finally, nominal uncertainties obtained from the fitting procedures are a good estimate of the actual errors in the orbit reconstruction. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σ_ψ = 8 μas, in its unbiased and complete magnitude-limited census of

  18. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    Science.gov (United States)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  19. Deep Thermal Infrared Imaging of HR 8799 bcde: New Atmospheric Constraints and Limits on a Fifth Planet

    OpenAIRE

    Currie, Thayne; Burrows, Adam; Girard, Julien H.; Cloutier, Ryan; Fukagawa, Misato; Sorahana, Satoko; Kuchner, Marc; Kenyon, Scott J.; Madhusudhan, Nikku; Itoh, Yoichi; Jayawardhana, Ray; Matsumura, Soko; Pyo, Tae-Soo

    2014-01-01

    We present new $L^\\prime$ (3.8 $\\mu m$) and Br-$\\alpha$ (4.05 $\\mu m$) data and reprocessed archival $L^\\prime$ data for the young, planet-hosting star HR 8799 obtained with Keck/NIRC2, VLT/NaCo and Subaru/IRCS. We detect all four HR 8799 planets in each dataset at a moderate to high signal-to-noise (SNR $\\gtrsim$ 6-15). We fail to identify a fifth planet, "HR 8799 f", at $r$ $

  20. Ethnic Minority Dropout in Economics

    Science.gov (United States)

    Arnold, Ivo J. M.

    2013-01-01

    This paper investigates the first-year study success of minority students in the bachelor program in economics at Erasmus University Rotterdam. We find that the gap in study success between minority and majority students can be attributed to differences in high school education. Students from similar high school tracks show no significant…

  1. Ethnic minority dropout in economics

    NARCIS (Netherlands)

    Arnold, I.J.M.

    2013-01-01

    This paper investigates the first-year study success of minority students in the bachelor program in economics at Erasmus University Rotterdam. We find that the gap in study success between minority and majority students can be attributed to differences in high school education. Students from

  2. The Sun and its Planets as detectors for invisible matter

    Science.gov (United States)

    Bertolucci, Sergio; Zioutas, Konstantin; Hofmann, Sebastian; Maroudas, Marios

    2017-09-01

    Gravitational lensing of invisible streaming matter towards the Sun with speeds around 10-4 to 10-3 c could be the explanation of the puzzling solar flares and the unexplained solar emission in the EUV. Assuming that this invisible massive matter has some form of interaction with normal matter and that preferred directions exist in its flow, then one would expect a more pronounced solar activity at certain planetary heliocentric longitudes. This is best demonstrated in the case of the Earth and the two inner planets, considering their relatively short revolution time (365, 225 and 88 days) in comparison to a solar cycle of about 11 years. We have analyzed the solar flares as well as the EUV emission in the periods 1976-2015 and 1999-2015, respectively. The results derived from each data set mutually exclude systematics as the cause of the observed planetary correlations. We observe statistically significant signals when one or more planets have heliocentric longitudes mainly between 230° and 300°. We also analyzed daily data of the global ionization degree of the dynamic Earth atmosphere taken in the period 1995-2012. Again here, we observe a correlation between the total atmospheric electron content (TEC) and the orbital position of the inner three planets. Remarkably, the strongest correlation appears with the phase of the Moon. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify its source(s) in space. More refined analyses might in the future increase the precision in the determination of the stream(s) direction and possibly allow to infer some properties of its constituents. Presently, no firmly established model of massive streaming particles exists, although in the literature there are abundant examples of hypotheses. Among them, the anti-quark nuggets model for dark matter seems the better suited to explain our observations and deserves further study.

  3. The Gemini Deep Planet Survey - GDPS

    Energy Technology Data Exchange (ETDEWEB)

    Lafreniere, D; Doyon, R; Marois, C; Nadeau, D; Oppenheimer, B R; Roche, P F; Rigaut, F; Graham, J R; Jayawardhana, R; Johnstone, D; Kalas, P G; Macintosh, B; Racine, R

    2007-06-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5-inch with 5{sigma} contrast sensitivities in magnitude difference at 1.6 {micro}m of 9.6 at 0.5-inch, 12.9 at 1-inch, 15 at 2-inch, and 16.6 at 5-inch. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 M{sub Jup} with a projected separation in the range 40-200 AU. Depending on the age, spectral type, and distance of the target stars, the minimum mass that could be detected with our observations can be {approx}1 M{sub Jup}. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results, which provide upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented. Assuming a planet mass distribution dn/dm {proportional_to} m{sup -1.2} and a semi-major axis distribution dn/da {proportional_to} a{sup -1}, the upper limits on the fraction of stars with at least one planet of mass 0.5-13 M{sub Jup} are 0.29 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.09 for 50-250 AU, with a 95% confidence level; this result is weakly dependent on the semi-major axis distribution power-law index. Without making any assumption on the mass and semi-major axis distributions, the fraction of stars with at least one brown dwarf companion having a semi-major axis in the

  4. Pioneering the red planet; adventures on Martian soil

    NARCIS (Netherlands)

    Van der Peijl, I.; Veraart, M.

    2013-01-01

    Mars has always obsessed humankind - the Red planet, the ‘New Earth’. And with the recent successful landing of NASA’s Curiosity rover, Mars is closer than ever. Ever since 1960, we have actively been sending probes and rovers to observe the planet, but not without defeat. The road to the red planet

  5. The science case of the CHEOPS planet finder for VLT

    NARCIS (Netherlands)

    Gratton, R.; Feldt, M.; Schmid, H.M.; Brandner, W.; Hippler, S.; Neuhauser, R.; Quirrenbach, A.; Desidera, S.; Turatto, M.; Stam, D.M.; Hasinger, G.; Turner, M.J.L.

    2004-01-01

    The CHEOPS Planet Finder is one of the proposed second generation instruments for the VLT. Its purpose is to image and characterize giant extrasolar planets in different phases of their evolution: young, warm planets as well as old, cold ones. Imaging the last ones is the most challenging task

  6. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  7. Gemini Planet Imager: Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetary atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is

  8. Characterizing the Atmosphere of a Young Planet

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Since the discovery of the young, directly imaged planet 51 Eri b, its emergent spectrum has proved challenging to interpret. The initial discovery paper (Macintosh et al. 2015) interpreted the spectrum as indicative of a low mass (few Jupiter masses), effective temperature near 700 degrees Kelvin, and partial cloudiness. Subsequent observations in the K band, however, seem to invalidate the early models. In addition, newly improved photochemical data point to the likely presence of exotic haze species in the atmosphere. In my presentation I will explore the photochemistry of the atmosphere and discuss whether disequilibrium chemistry, hazes, clouds, or non-solar abundances of heavy elements may be responsible for the unusual spectrum of this planet. The implications for the interpretation of other young Jupiters in this mass and effective temperature range will also be considered.

  9. Radioactivity of the moon, planets, and meteorites

    Science.gov (United States)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  10. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  11. International Conference and Advanced School Planet Earth

    CERN Document Server

    Jeltsch, Rolf; Pinto, Alberto; Viana, Marcelo

    2015-01-01

    The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters, and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and ...

  12. Planet traps and planetary cores: origins of the planet-metallicity correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10641, Taiwan (China); Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-10-10

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.

  13. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  14. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  15. Fluxgate magnetometers for outer planets exploration

    Science.gov (United States)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  16. Sputtering of sodium on the planet Mercury

    Science.gov (United States)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  17. Early Life Crises of Habitable Planets

    International Nuclear Information System (INIS)

    Pierrehumbert, Raymond

    2006-01-01

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  18. Electromagnetic behaviour of the earth and planets

    International Nuclear Information System (INIS)

    McCarthy, A.J.

    2002-01-01

    Forecast problems of global warming, rising sea-levels, UV enhancement, and solar disruptions of power grids and satellite communications, have been widely discussed. Added to these calamities is the steady decay of the Earth's magnetic radiation shield against high energy particles. A system of solar-induced aperiodic electromagnetic resonances, referred to here as the Debye resonances, is resurrected as the preferred basis for describing the electromagnetic behaviour of the Earth and planets. Debye's two basic solutions to the spherical vector wave equation provide foundations for electromagnetic modes of the terrestrial and gaseous planets respectively in contrast with the separate electric and magnetic approaches usually taken. For those engaged in radiation protection issues, this paper provides the first published account of how the Sun apparently triggers an Earth magnetic shield against its own harmful radiation. Disturbances from the Sun - which are random in terms of polarity, polarisation, amplitude, and occurrence - are considered here to trigger the Debye modes and generate observed planetary electric and magnetic fields. Snapping or reconnection of solar or interplanetary field lines, acting together with the newly conceived magnetospheric transmission lines of recent literature, is suspected as the excitation mechanism. Virtual replacement of free space by plasma, places the electromagnetic behaviour of the Earth and planets under greatly enhanced control from the Sun. From a radiation protection viewpoint, modal theory based on solar-terrestrial coupling provides a new insight into the origin of the Earth's magnetic radiation shield, greater understanding of which is essential to development of global cosmic radiation protection strategies. Should man-made influences unduly increase conductivities of the Earth's magnetosphere, planet Earth could be left with no magnetic radiation shield whatsoever. Copyright (2002) Australasian Radiation Protection

  19. Chemical signatures of planets: beyond solar-twins

    Science.gov (United States)

    Ramírez, I.; Meléndez, J.; Asplund, M.

    2014-01-01

    Context. Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. Aims: To test whether these chemical signatures of planets are real, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). Methods: We measure relative atmospheric parameters and elemental abundances of two groups of stars: a "warm" late-F type dwarf sample (52 stars), and a sample of "metal-rich" solar analogs (59 stars). The strict differential approach that we adopt allows us to determine with high precision (errors ~0.01 dex) the degree of refractory element depletion in our stars independently of Galactic chemical evolution. By examining relative abundance ratio versus condensation temperature plots we are able to identify stars with "pristine" composition in each sample and to determine the degree of refractory-element depletion for the rest of our stars. We calculate what mixture of Earth-like and meteorite-like material corresponds to these depletions. Results: We detect refractory-element depletions with amplitudes up to about 0.15 dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650 K to 5950 K, while it appears to be constant for warmer stars (up to 6300 K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Conclusions: Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a

  20. Entrepreneurs: Women and Minorities.

    Science.gov (United States)

    Akers, Lilialyce

    A program was designed to meet the needs of Kentucky women who wished to supplement their incomes by producing articles in their homes for sale. Its three-phase objective was to identify women who already had knitting skills and train them to produce a finished product; to provide basic knowledge about how to run a small business; and to provide…

  1. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  2. The Calan-Hertfordshire extrasolar planet search

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2011-07-01

    Full Text Available The detailed study of the exoplanetary systems HD189733 and HD209458 has given rise to a wealth of exciting information on the physics of exoplanetary atmospheres. To further our understanding of the make-up and processes within these atmospheres we require a larger sample of bright transiting planets. We have began a project to detect more bright transiting planets in the southern hemisphere by utilising precision radial-velocity measurements. We have observed a constrained sample of bright, inactive and metal-rich stars using the HARPS instrument and here we present the current status of this project, along with our first discoveries which include a brown dwarf/extreme-Jovian exoplanet found in the brown dwarf desert region around the star HD191760 and improved orbits for three other exoplanetary systems HD48265, HD143361 and HD154672. Finally, we briefly discuss the future of this project and the current prospects we have for discovering more bright transiting planets.

  3. Kepler AutoRegressive Planet Search (KARPS)

    Science.gov (United States)

    Caceres, Gabriel

    2018-01-01

    One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.

  4. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Pierrehumbert, Raymond; Gaidos, Eric

    2011-01-01

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H 2 -He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO 2 greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H 2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H 2 , the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H 2 -He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H 2 -He atmosphere and be habitable at ∼2.6 AU from its host M star.

  5. From Extrasolar Planets to Exo-Earths

    Science.gov (United States)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  6. Do planets remember how they formed?

    Science.gov (United States)

    Kipping, David

    2018-01-01

    One of the most directly observable features of a transiting multiplanet system is their size-ordering when ranked in orbital separation. Kepler has revealed a rich diversity of outcomes, from perfectly ordered systems, like Kepler-80, to ostensibly disordered systems, like Kepler-20. Under the hypothesis that systems are born via preferred formation pathways, one might reasonably expect non-random size-orderings reflecting these processes. However, subsequent dynamical evolution, often chaotic and turbulent in nature, may erode this information and so here we ask - do systems remember how they formed? To address this, we devise a model to define the entropy of a planetary system's size-ordering, by first comparing differences between neighbouring planets and then extending to accommodate differences across the chain. We derive closed-form solutions for many of the microstate occupancies and provide public code with look-up tables to compute entropy for up to 10-planet systems. All three proposed entropy definitions exhibit the expected property that their credible interval increases with respect to a proxy for time. We find that the observed Kepler multis display a highly significant deficit in entropy compared to a randomly generated population. Incorporating a filter for systems deemed likely to be dynamically packed, we show that this result is robust against the possibility of missing planets too. Put together, our work establishes that Kepler systems do indeed remember something of their younger years and highlights the value of information theory for exoplanetary science.

  7. "Osiris"(HD209458b), an evaporating planet

    OpenAIRE

    Vidal-Madjar, Alfred; Etangs, Alain Lecavelier des

    2003-01-01

    Three transits of the planet orbiting the solar type star HD209458 were observed in the far UV at the wavelength of the HI Ly-alpha line. The planet size at this wavelength is equal to 4.3 R_Jup, i.e. larger than the planet Roche radius (3.6 R_Jup). Absorbing hydrogen atoms were found to be blueshifted by up to -130 km/s, exceeding the planet escape velocity. This implies that hydrogen atoms are escaping this ``hot Jupiter'' planet. An escape flux of >~ 10^10g/s is needed to explain the obser...

  8. Constraining the volatile fraction of planets from transit observations

    Science.gov (United States)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  9. Variation in Subjective Aging by Sexual Minority Status.

    Science.gov (United States)

    Barrett, Anne; Barbee, Harry

    2017-06-01

    The past few decades have seen increased scholarly attention to gay and lesbian individuals' aging experiences; however, few studies examine differences in subjective aging by sexual minority status. We identify four perspectives on the association between sexual minority status and subjective aging-double jeopardy, crisis competence, gender interactive, and limited salience perspectives. We examine each perspective's predictions using data from the first wave of Midlife in the United States (1995-1996; MIDUS). Ordinary least square regression models reveal strongest support for the limited salience perspective, suggesting that sexual minority status has weaker effects on subjective aging than do other social factors, such as age, health, and gender. However, some results provide support for the gender interactive perspective, positing that the effect of sexual minority status on subjective aging varies by gender. Our study provides an organizational framework of theoretical perspectives that can guide further examinations of variation in aging experiences by sexual minority status.

  10. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  11. Validation of small Kepler transiting planet candidates in or near the habitable zone

    DEFF Research Database (Denmark)

    Torres, Guillermo; Kane, Stephen R.; Rowe, Jason F.

    2017-01-01

    A main goal of NASA's Kepler Mission is to establish the frequency of potentially habitable Earth-size planets (). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them...... statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from...... the analysis of the flux centroids of the Kepler observations themselves. Although many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a star different from the target along the same line of sight...

  12. Sextortion of Minors: Characteristics and Dynamics.

    Science.gov (United States)

    Wolak, Janis; Finkelhor, David; Walsh, Wendy; Treitman, Leah

    2018-01-01

    Sextortion (threats to expose sexual images to coerce victims to provide additional pictures, sex, or other favors) has been identified as an emerging online threat to youth, but research is scarce. We describe sextortion incidents from a large sample of victims (n = 1,385) and examine whether incidents occurring to minors (n = 572) are more or less serious than those experienced by young adults (n = 813). We ran advertising campaigns on Facebook to recruit victims of sextortion, ages 18-25, for an online survey. We use cross tabulations and logistic regression to analyze incidents that began when 18- and 19-year-old respondents were minors (ages 17 and younger) and compare them with incidents that began at ages 18-25 years. Most minor victims were female (91%) and aged 16 or 17 when incidents started (75%). Almost 60% of respondents who were minors when sextortion occurred knew perpetrators in person, often as romantic partners. Most knowingly provided images to perpetrators (75%), but also felt pressured to do so (67%). About one-third were threatened with physical assaults and menaced for >6 months. Half did not disclose incidents, and few reported to police or websites. Perpetrators against minors (vs. adults) were more likely to pressure victims into producing initial sexual images, demand additional images, threaten victims for >6 months, and urge victims to harm themselves. Sextortion incidents were serious victimizations, and often co-occurred with teen dating violence. We describe resources so that practitioners can help victims find support and legal advice and remove posted images. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU

    International Nuclear Information System (INIS)

    Veras, Dimitri; Crepp, Justin R.; Ford, Eric B.

    2009-01-01

    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (∼ 10 2 -10 5 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates detectable giant planets on wide orbits that decreases in number on timescales of ∼ 10 Myr. We demonstrate that several members of such populations should be detectable with current technology, quantify the prospects for future instruments, and suggest how they could place interesting constraints on planet formation models.

  14. Dynamical Constraints on Non-Transiting Planets at Trappist-1

    Science.gov (United States)

    Jontof-Hutter, Daniel; Truong, Vinh; Ford, Eric; Robertson, Paul; Terrien, Ryan

    2018-04-01

    The outermost of the seven known planets of Trappist-1 orbits six times closer to its host star than Mercury orbits the sun. The architecture of this system beyond 0.07 AU remains unknown. While the presence of additional planets will ultimately be determined by observations, in the meantime, some constraints can be derived from dynamical models.We will firstly look at the expected signature of additional planets at Trappist-1 on the transit times of the known planets to determine at what distances putatuve planets can be ruled out.Secondly, the remarkably compact configuration of Trappist-1 ensures that the known planets are secularly coupled, keeping their mutual inclinations very small and making their cotransiting geometry likely if Trappist-1h transits. We determine the range of masses and orbital inclinations of a putatuve outer planet that would make the observed configuration unlikely, and compare these to these constraints to those expected from radial velocity observations.

  15. Migration of planetesimals during last stages of giant planet accumulation

    International Nuclear Information System (INIS)

    Ipatov, S.I.

    1989-01-01

    The migration and accumulation of bodies from the giant planet's feeding zones are investigated after the main part of mass of these planets had been formed. These investigations are based on the computer simulation results for the evolving spatial disks which initially consisted of a few almost formed planets and hundreds of identical bodies in Uranus and Neptune zone. It is shown that the total mass of bodies penetrated in the asteroid zone from the giant planet zones could be ten times as large as the Earth mass. The beyond-Neptune belt could form during accumulation of the giant planets. Evolution of the planet orbits under encounters of planets with planetesimals is investigated

  16. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  17. In Search of Cultural Diversity: Recent Literature in Cross-Cultural and Ethnic Minority Psychology.

    Science.gov (United States)

    Hall, Gordon C. Nagayama; Maramba, Gloria Gia

    2001-01-01

    Identifies where most work on cross-cultural and ethnic minority psychology is being published and the authors. Very little overlap was found between literature in cross-cultural and ethnic minority psychology. Top scholars in cross-cultural psychology are men of European ancestry, while in ethnic minority psychology, scholars are ethnic…

  18. Development of Education Programs in Mountainous Regions to Enhance the Culture and Knowledge of Minority Nationalities.

    Science.gov (United States)

    Wei, Shiyuan; Zhou, Guangda

    1989-01-01

    Describes the historical development of educational programs which could enhance the culture and knowledge of minorities in the mountainous regions of China. Identifies current major problems in minority education and lists statistical information for the school population. Provides guidelines for developing a minority education program. (KO)

  19. Solar-wind minor ions: recent observations

    International Nuclear Information System (INIS)

    Bame, S.J.

    1982-01-01

    During the years following the Solar Wind Four Conference at Burghausen our knowledge of the solar wind ion composition and dynamics has grown. There have been some surprises, and our understanding of the evolution of the solar wind has been improved. Systematic studies have shown that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It has been determined that the 3 He ++ content varies greatly; 3 He ++ / 4 He ++ ranges from as high as 10 2 values to below 2 x 10 - 4 . In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe 16 + as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of 4 He + have been detected, sometimes with ions identifiable as O 2 + and O 3 + . Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions have increased our understanding of the coronal expansion. For example, such studies have contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams

  20. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    content of its host star. All very massive planetary systems are found around massive and metal-rich stars, while the four lowest-mass systems are found around lower-mass and metal-poor stars [5]. Such properties confirm current theoretical models. The discovery is announced today at the international colloquium "Detection and dynamics of transiting exoplanets", at the Observatoire de Haute-Provence, France. Notes [1] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [2] (added 30 August 2010) HD 10180b would be the lowest mass exoplanet discovered orbiting a "normal" star like our Sun. However, lower mass exoplanets have been previously discovered orbiting the pulsar PSR B1257+12 (a highly magnetised rotating neutron star). [3] On average the planets in the inner region of the HD 10180 system have 20 times the mass of the Earth, whereas the inner planets in our own Solar System (Mercury, Venus, Earth and Mars) have an average mass of half that of the Earth. [4] The Titius-Bode law states that the distances of the planets from the Sun follow a simple pattern. For the outer planets, each planet is predicted to be roughly twice as far away from the Sun as the previous object. The hypothesis correctly predicted the orbits of Ceres and Uranus, but failed as a predictor of Neptune's orbit. [5] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. Rocky planets are made of "metals". More information This research was presented in a paper submitted to Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets. XXVII. Up to

  1. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei; Barclay, Thomas

    2014-01-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K P < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamical stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.

  2. Demarketing, minorities, and national attachment

    NARCIS (Netherlands)

    Grinstein, A.; Nisan, Udi

    This study addresses two important global trends: protection of public goods, specifically the environment, and the emergence of multiethnic societies with influential minority groups. The study tests the effect of a government proenvironmental demarketing campaign on the deconsumption behavior of

  3. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  4. The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581?

    Science.gov (United States)

    Baluev, Roman V.

    2013-03-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ 581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component (`red noise') with the correlation time-scale of the order of 10 d. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with an exponentially decaying correlation function. Using this method we prove that (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by both the data sets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently announced putative planets f and g are likely just illusions of the red noise; (iv) the reality of the planet candidate GJ 581 d is questionable, because it cannot be detected from the Keck data, and its statistical significance in the HARPS data (as well as in the combined data set) drops to a marginal level of ˜2σ, when the red noise is taken into account. Therefore, the current data for GJ 581 really support the existence of no more than four (or maybe even only three) orbiting exoplanets. The planet candidate GJ 581 d requests serious observational verification.

  5. ON THE RELATIVE SIZES OF PLANETS WITHIN KEPLER MULTIPLE-CANDIDATE SYSTEMS

    International Nuclear Information System (INIS)

    Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.; Ragozzine, Darin; Gautier, T. N. III; Howell, Steve B.; Lissauer, Jack J.; Rowe, Jason F.

    2013-01-01

    We present a study of the relative sizes of planets within the multiple-candidate systems discovered with the Kepler mission. We have compared the size of each planet to the size of every other planet within a given planetary system after correcting the sample for detection and geometric biases. We find that for planet pairs for which one or both objects are approximately Neptune-sized or larger, the larger planet is most often the planet with the longer period. No such size-location correlation is seen for pairs of planets when both planets are smaller than Neptune. Specifically, if at least one planet in a planet pair has a radius of ∼> 3 R ⊕ , 68% ± 6% of the planet pairs have the inner planet smaller than the outer planet, while no preferred sequential ordering of the planets is observed if both planets in a pair are smaller than ∼ ⊕ .

  6. Wandering stars about planets and exo-planets : an introductory notebook

    CERN Document Server

    Cole, George H A

    2006-01-01

    The space vehicle spectaculars of recent years have been revealing the full scope and beauty of our own solar system but have also shown that a growing number of other stars too have planetary bodies orbiting around them. The study of these systems is just beginning. It seems that our galaxy contains untold numbers of planets, and presumably other galaxies will be similar to our own. Our solar system contains life, on Earth: do others as well? Such questions excite modern planetary scientists and astro-biologists. This situation is a far cry from ancient times when the five planets that can be

  7. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M ⊕ to 1 M J ) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  8. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  9. Resonance capture and dynamics of three-planet systems

    Science.gov (United States)

    Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.

    2018-06-01

    We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.

  10. Blue Marble: Remote Characterization of Habitable Planets

    Science.gov (United States)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  11. HAZE AT OCCATOR CRATER ON DWARF PLANET CERES

    Energy Technology Data Exchange (ETDEWEB)

    Thangjam, G.; Hoffmann, M.; Nathues, A.; Platz, T. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077, Goettingen (Germany); Li, J.-Y., E-mail: thangjam@mps.mpg.de, E-mail: hoffmann@mps.mpg.de, E-mail: nathues@mps.mpg.de, E-mail: platz@mps.mpg.de, E-mail: jyli@psi.edu [Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719-2395 (United States)

    2016-12-20

    A diurnal varying haze layer at the bright spots of Occator on dwarf planet Ceres has been reported from images of the Dawn Framing Camera. This finding is supported by ground-based observations revealing diurnal albedo changes at Occator’s longitude. In the present work, we further investigate the previously reported haze phenomenon in more detail using additional Framing Camera images. We demonstrate that the light scattering behavior at the central floor of Occator is different compared to a typical cerean surface and is likely inconsistent with a pure solid surface scatterer. The identified deviation is best explained by an additional component to the scattered light of the surface, i.e., a haze layer. Our results support the water vapor detection by Herschel observations though the existence of a tenuous cerean exosphere is not yet confirmed.

  12. Outer planet probe cost estimates: First impressions

    Science.gov (United States)

    Niehoff, J.

    1974-01-01

    An examination was made of early estimates of outer planetary atmospheric probe cost by comparing the estimates with past planetary projects. Of particular interest is identification of project elements which are likely cost drivers for future probe missions. Data are divided into two parts: first, the description of a cost model developed by SAI for the Planetary Programs Office of NASA, and second, use of this model and its data base to evaluate estimates of probe costs. Several observations are offered in conclusion regarding the credibility of current estimates and specific areas of the outer planet probe concept most vulnerable to cost escalation.

  13. Physical properties of the planet Mercury

    Science.gov (United States)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  14. Probing Protoplanetary Disks: From Birth to Planets

    Science.gov (United States)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of

  15. Mars: a water-rich planet

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Good geomorphic evidence is presented for a planet that was once water rich, and that a lower limit on the amount of water available for a given Martian watershed may be estimated by assuming that the volume of material eroded was equal to the volume of water available. This estimate, coupled with high latitude water estimates of 50 to 100 m gives a global inventory of about 500 m total water in the subsurface. It was emphasized that this is a lower limit as considerable water may be bound in weathered debris and in primary minerals

  16. Minority workers or minority human beings? A European dilemma

    Science.gov (United States)

    Skutnabb-Kangas, Tove; Phillipson, Robert

    1996-07-01

    "European" identities may be politonymic, toponymic, ethnomyic or linguonymic (Bromley 1984). Each dimension may affect whether migrant minorities are treated as "European", and influence their schooling, integration and rights. Treatment and terminology vary in different states and periods of migration. However, the position for immigrated minorities is that they are still largely seen as workers rather than human beings with equal rights. Lack of success in schools is blamed on the migrants themselves rather than the educational system. This construction of migrants as being deficient is parallel to educational practice which falls within a UN definition of linguistic genocide, and contributes to mis-education. If current efforts in international bodies to codify educational linguistic human rights were to lead to greater support for minorities, this could assist in a redefinition of national identities and a reduction of racism and conflict.

  17. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  18. Minors and Sexting: Legal Implications.

    Science.gov (United States)

    Lorang, Melissa R; McNiel, Dale E; Binder, Renée L

    2016-03-01

    Sexting is the sending or forwarding of sexually explicit photographs or videos of the sender or someone known to the sender via cell phone. It has become common practice among young people, as cell phones are being given to adolescents at ever younger ages. Youths often send messages without giving appropriate thought to the content of the images. In studies on the subject, rates of minors who have sent sexual images range from 4 to 25 percent, depending on the age of the youths surveyed, the content of the messages and other factors. Because transferring and viewing sexually explicit material when the subject is a minor can be considered child pornography, there can be serious legal consequences. Several states have enacted legislation to help differentiate between child pornography and sexting by minors. The trend reflected in statutes has been that minors involved in sexting without other exacerbating circumstances should be charged with a less serious offense. There is no clear national consensus on how sexting by minors is adjudicated, and therefore we compared several statutes. Case examples are used to illustrate the range of legal outcomes, from felony charges to no charges. Two sexting episodes that were followed by suicide are described. We also address the role of the forensic mental health professional. © 2016 American Academy of Psychiatry and the Law.

  19. Legislative vulnerability of minority groups.

    Science.gov (United States)

    Paula, Carlos Eduardo Artiaga; Silva, Ana Paula da; Bittar, Cléria Maria Lôbo

    2017-12-01

    Minorities are in an inferior position in society and therefore vulnerable in many aspects. This study analyzes legislative vulnerability and aims to categorize as "weak" or "strong" the protection conferred by law to the following minorities: elderly, disabled, LGBT, Indians, women, children/ adolescents and black people. In order to do so, it was developed a documental research in 30 federal laws in which legal provisions were searched to protect minorities. Next, the articles were organized in the following categories: civil, criminal, administrative, labor and procedural, to be analyzed afterwards. Legal protection was considered "strong" when there were legal provisions that observed the five categories and "weak" when it did not meet this criterion. It was noted that six groups have "strong" legislative protection, which elides the assertion that minorities are outside the law. The exception is the LGBT group, whose legislative protection is weak. In addition, consecrating rights through laws strengthens the institutional channels for minorities to demand their rights. Finally, it was observed that the legislative protection granted tominorities is not homogeneous but rather discriminatory, and there is an interference by the majority group in the rights regulation of vulnerable groups.

  20. Giant planet population synthesis: comparing theory with observations

    International Nuclear Information System (INIS)

    Benz, W; Mordasini, C; Alibert, Y; Naef, D

    2008-01-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease

  1. Giant planet population synthesis: comparing theory with observations

    Science.gov (United States)

    Benz, W.; Mordasini, C.; Alibert, Y.; Naef, D.

    2008-08-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease.

  2. EXAMINING TATOOINE: ATMOSPHERIC MODELS OF NEPTUNE-LIKE CIRCUMBINARY PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    May, E. M.; Rauscher, E. [University of Michigan (United States)

    2016-08-01

    Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.

  3. Extrasolar Planets Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Cassen, Patrick; Quirrenbach, Andreas

    2006-01-01

    Research on extrasolar planets is one of the most exciting fields of activity in astrophysics. In a decade only, a huge step forward has been made from the early speculations on the existence of planets orbiting "other stars" to the first discoveries and to the characterization of extrasolar planets. This breakthrough is the result of a growing interest of a large community of researchers as well as the development of a wide range of new observational techniques and facilities. Based on their lectures given at the 31st Saas-Fee Advanced Course, Andreas Quirrenbach, Tristan Guillot and Pat Cassen have written up up-to-date comprehensive lecture notes on the "Detection and Characterization of Extrasolar Planets", "Physics of Substellar Objects Interiors, Atmospheres, Evolution" and "Protostellar Disks and Planet Formation". This book will serve graduate students, lecturers and scientists entering the field of extrasolar planets as detailed and comprehensive introduction.

  4. DYNAMICAL TIDES IN ROTATING PLANETS AND STARS

    International Nuclear Information System (INIS)

    Goodman, J.; Lackner, C.

    2009-01-01

    Tidal dissipation may be important for the internal evolution as well as the orbits of short-period massive planets-hot Jupiters. We revisit a mechanism proposed by Ogilvie and Lin for tidal forcing of inertial waves, which are short-wavelength, low-frequency disturbances restored primarily by Coriolis rather than buoyancy forces. This mechanism is of particular interest for hot Jupiters, because it relies upon a rocky core, and because these bodies are otherwise largely convective. Compared to waves excited at the base of the stratified, externally heated atmosphere, waves excited at the core are more likely to deposit heat in the convective region and thereby affect the planetary radius. However, Ogilvie and Lin's results were numerical, and the manner of the wave excitation was not clear. Using WKB methods, we demonstrate the production of short waves by scattering of the equilibrium tide off the core at critical latitudes. The tidal dissipation rate associated with these waves scales as the fifth power of the core radius, and the implied tidal Q is of order ten million for nominal values of the planet's mass, radius, orbital period, and core size. We comment upon an alternative proposal by Wu for exciting inertial waves in an unstratified fluid body by means of compressibility rather than a core. We also find that even a core of rock is unlikely to be rigid. But Ogilvie and Lin's mechanism should still operate if the core is substantially denser than its immediate surroundings.

  5. Intrinsic luminosities of the Jovian planets

    International Nuclear Information System (INIS)

    Hubbard, W.B.

    1980-01-01

    We review available data and theories on the size and nature of interior power sources in the Jovian planets. Broad band infrared measurements indicate that Jupiter and Saturn have interior heat fluxes about 150 and 50 times larger, respectively, than the terrestrial value. While Neptune has a modest heat flux (approx.5 times terrestrial), it is clearly detected by earth-based measurements. Only Uranus seems to lack a detectable interior heat flow. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. Current evidence seems to favor a cooling model in which the escape of heat is regulated by the atmosphere. This model seems capable of explaining phenomena such as the uniformity of effective temperature over Jupiter's surface and the different emission rates of Uranus and Neptune. In such a model the heat radiated from the atmosphere may derived from depletion of a thermal reservoir in the interior, or it may derive from separation of chemical elements during formation of a core. Calculations indicate that in the earlier stages of cooling, Jupiter and Saturn may have more homogeneous abundances of hydrogen and helium and radiate energy derived from simple cooling. At a subsequent phase (which may be later than the present time), hydrogen and helium will separate and supply grativational energy. Either model is consistent with a hot, high-luminosity origin for the Jovian Planets

  6. Photometric Defocus Observations of Transiting Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Tobias C. Hinse

    2015-03-01

    Full Text Available We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6 m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique, allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of sub-millimagnitude order over several hours for a V ~10 host star, typical for transiting planets detected from ground-based survey facilities. We compared our results with transit observations from a telescope operated in in-focus mode. High photometric precision was obtained due to the collection of a larger amount of photons, resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by exposing the same pixels on the CCD. Furthermore, a longer exposure time helps reduce the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves in which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes was achieved.

  7. Violent Adolescent Planet Caught Infrared Handed

    Science.gov (United States)

    Trang, D.; Gaidos, E.

    2010-01-01

    The prevailing view of planet formation depicts accumulation of progressively larger objects, culminating in accretionary impacts between Moon- to Mars-sized protoplanets. Cosmochemists have found evidence in chondritic meteorites for such violent events, and the Moon is thought to have involved a huge impact between a Mars-sized object and the still-growing proto-Earth. Now we may have evidence for a large impact during planet formation around another star. Carey Lisse (Applied Physics Lab of the Johns Hopkins University, Baltimore) and colleagues from the Space Telescope Science Institute (Baltimore), the University of Cambridge (UK), the Open University (Milton Keyes, UK), the University of Georgia (Athens, GA), Jet Propulsion Lab (Pasadena, CA), and the University of Rochester (New York) analyzed infrared spectra obtained by the Spitzer Space Telescope. They found a prominent peak in the spectrum at 9.3 micrometers, and two smaller ones at slightly lower and higher wavelengths. These peaks are consistent with the presence of SiO gas, a product expected to be produced by a highly energetic impact. The spectral measurements also allowed Lisse and his colleagues to estimate the size of the dust and they found that there is an abundance of micrometer-sized dust grains. This argues for a fresh source of fine material during the past 0.1 million years. That source may have been an impact between two protoplanets surrounding this young star.

  8. Photometric Detection of Extra-Solar Planets

    Science.gov (United States)

    Hatzes, Artie P.; Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.

  9. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  10. SEARCHING FOR THE SIGNATURES OF TERRESTRIAL PLANETS IN SOLAR ANALOGS

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, J. I.; Israelian, G.; Delgado-Mena, E.; Santos, N. C.; Sousa, S.; Neves, V.; Udry, S.

    2010-01-01

    We present a fully differential chemical abundance analysis using very high resolution (λ/δλ ∼> 85, 000) and very high signal-to-noise (S/N ∼800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, of which 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provides very accurate Galactic chemical evolution trends in the metallicity range -0.3 < [Fe/H] < 0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analyzed a sub-sample of 28 solar analogs, 14 planet hosts, and 14 stars without known planets, with spectra at S/N ∼850 on average, in the metallicity range 0.14 < [Fe/H] < 0.36, and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with the opposite sign to that expected from a possible signature of terrestrial planets. In particular, two of the planetary systems in this sample, each of them containing a super-Earth-like planet, show slope values very close to these peaks, which may suggest that these abundance patterns are not related to the presence of terrestrial planets.

  11. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  12. MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Beaugé, C.; Nesvorný, D.

    2012-01-01

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in short timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a 1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.

  13. ESPRI: Astrometric planet search with PRIMA at the VLTI

    Directory of Open Access Journals (Sweden)

    Ségransan D.

    2011-07-01

    Full Text Available The ESPRI consortium will conduct an astrometric survey for extrasolar planets, using the PRIMA facility at the Very Large Telescope Interferometer. Our scientific goals include determining orbital inclinations and masses for planets already known from radial-velocity surveys, searches for planets around nearby stars of all masses, and around young stars. The consortium has built the PRIMA differential delay lines, developed an astrometric operation and calibration plan, and will deliver astrometric data reduction software.

  14. Gap opening by gas accretion and influence on planet populations

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  15. Faktor Yang Mendorong Konsumen Membeli Produk Planet Surf

    OpenAIRE

    Nugraheni, Aninda

    2014-01-01

    Era Global kini memberikan persaingan ketat bagi beberapa merek produk dalam memasarkan produk. Hal mendasar dalam pemasaran produk dengan promosi yang dilakukan. Beberapa produk lokal dapat terkalahkan oleh merek produk luar. Penelitian ini mengenai produk Planet Surf yang merupakan merek luar mempunyai posisioning produk surfing atau beach wear. Planet Surf menjadi pilihan anak muda karena fashionable dan up-to-date. Planet Surf merupakan toko yang menjual pakaian, sepatu, tas, dompet, d...

  16. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  17. DNA minor groove alkylating agents.

    Science.gov (United States)

    Denny, W A

    2001-04-01

    Recent work on a number of different classes of anticancer agents that alkylate DNA in the minor groove is reviewed. There has been much work with nitrogen mustards, where attachment of the mustard unit to carrier molecules can change the normal patterns of both regio- and sequence-selectivity, from reaction primarily at most guanine N7 sites in the major groove to a few adenine N3 sites at the 3'-end of poly(A/T) sequences in the minor groove. Carrier molecules discussed for mustards are intercalators, polypyrroles, polyimidazoles, bis(benzimidazoles), polybenzamides and anilinoquinolinium salts. In contrast, similar targeting of pyrrolizidine alkylators by a variety of carriers has little effect of their patterns of alkylation (at the 2-amino group of guanine). Recent work on the pyrrolobenzodiazepine and cyclopropaindolone classes of natural product minor groove binders is also reviewed.

  18. Bussing of Ethnic Minority Children

    DEFF Research Database (Denmark)

    Jacobsen, Gro Hellesdatter

    2015-01-01

    This article concerns the rights and duties of ethnic minority children in education in Denmark. More specifically, it discusses the policy of compulsory bussing of ethnic minority children based on language screenings that was legalized by the Danish Parliament in 2005. The policy concerns...... the meeting between citizens with an ethnic minority background and the Danish state, represented by welfare institutions, in this case public elementary schools, and changes the character of this meeting for the individuals involved. In the article, I concentrate on two rights at stake in this meeting......, namely the right to free choice of school and the right – or duty? – to obtain more-equal opportunities in education. The policy creates a dilemma between these two rights and furthermore between a right and a duty to obtain better education results. The article discusses whether the bussing policy may...

  19. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne [National Astronomical Observatory of Japan, Subaru Telescope (Japan); Cloutier, Ryan [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Grady, Carol; Kuchner, Marc J. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Burrows, Adam [Department of Astrophysics Sciences, Princeton University, Princeton, NJ (United States); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, Tokyo (Japan); Kenyon, Scott J. [Smithsonian Astrophysical Observatory, Cambridge, MA (United States)

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  20. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    International Nuclear Information System (INIS)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Kuchner, Marc J.; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.

    2015-01-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r proj ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M J candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk

  1. The Willink Minority Commission and minority rights in Nigeria ...

    African Journals Online (AJOL)

    Consequently, copious provisions to protect some basic human rights and fundamental freedoms of all Nigerians were enshrined in the independence constitution. This article examines the debates about minority rights in the work of the Willink Commission and the circumstances leading to the enactment of human rights ...

  2. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    International Nuclear Information System (INIS)

    Gaidos, Eric

    2013-01-01

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p HZ that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p HZ . Sixty-two planets have p HZ > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone (η ⊕ ) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  3. Phase density of neutrons emitted by an atmosphereless planet

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Isakov, A.I.; Lin'kova, N.V.

    1986-01-01

    An approach to calculation of small planet neutron emission characteristics is developed. Using artificial satellites and space probes information on the planet surface may be obtained by analyzing neutron emission being the result of cosmic rays effect. Available calculation methods permit to calculate angular distribution and neutron flux F 0 from planet surface as a function of its surface layer chemical composition. Neutron flux measured by a sattelite and F 0 flux may be connected by a function describing neuton phase density near the planet

  4. Transiting exoplanets: From planet statistics to their physical nature

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  5. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  6. First Light from Extrasolar Planets and Implications for Astrobiology

    Science.gov (United States)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  7. On the Detectability of Planet X with LSST

    Science.gov (United States)

    Trilling, David E.; Bellm, Eric C.; Malhotra, Renu

    2018-06-01

    Two planetary mass objects in the far outer solar system—collectively referred to here as Planet X— have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptionally faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18000 deg2), deep (limiting magnitude of individual frames of 24.5) survey (the “wide-fast-deep (WFD)” survey) of the southern sky beginning in 2022, and it will therefore be an important tool in searching for these hypothesized planets. Here, we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the WFD survey plus additional coverage), we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to ∼75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a nondetection of Planet X in LSST data.

  8. Sexual Minority Stress, Coping, and Physical Health Indicators.

    Science.gov (United States)

    Flenar, Delphia J; Tucker, Carolyn M; Williams, Jaime L

    2017-12-01

    Sexual minorities experience higher rates of several physical health problems compared to their heterosexual counterparts. The present study uses Meyer's Minority Stress Model (Psychological Bulletin, 129(5): 674-697, 2003) to examine physical health indicators among 250 adults who identified as sexual minorities. Study hypotheses include that sexual minority stress is predictive of two physical health indicators (i.e., engagement in a health-promoting lifestyle and number of physical health problems) and that planning (i.e., problem-focused) and social support coping will partially mediate the relationship between sexual minority stress and each physical health indicator. Results showed that as level of sexual minority stress increased, engagement in a health-promoting lifestyle decreased and the number of physical health problems increased. Planning and social support coping did not mediate these relationships; however, as levels of coping increased, engagement in a health-promoting lifestyle increased. These findings have implications for researchers and healthcare professionals in their efforts to promote the physical health of sexual minorities.

  9. Discovering transits of HD 209458-b type planets with Hipparcos and FAME photometry

    Science.gov (United States)

    Castellano, Timothy Paul

    The motivation and prospects for success of a search for transits of short-period extrasolar planets of late-type main sequence stars in the Hipparcos satellite photometry archive is outlined. Recent extrasolar planet discoveries by the radial velocity (RV) method reveal that 1 in 20 spectral type F, G and K dwarfs possess short-period planets. Careful consideration of the transit detection probability as a function of stellar spectral type and planet orbit size results in the expectation that 6 to 24 transiting planets may be found among the 118,204 Hipparcos catalog stars. A search algorithm based on the known properties of the single known transiting extrasolar planet HD 209458-b was applied to carefully- selected samples of stars. The results of these searches and simulations of the detection efficiency for idealized transits are presented. Statistical and catalog-based methods for discriminating transits from intrinsic stellar variability and eclipses due to stellar companions are developed and described. Candidate lists that are the results of these searches are presented. Each candidate is placed in a color magnitude diagram based on Hipparcos derived distances and absolute magnitudes in order to clearly identify evolved stars. The effect of Lutz-Kelker bias on this main sequence membership determination is discussed in an Appendix. A Hipparcos-photometry-based intrinsic stellar variability determination is performed and compared to ground-based measurements. It is shown that intrinsic stellar variability of late-type main sequence stars is not a major concern for extrasolar jovian planet transit searches. The prospects for transit detection by the higher precision measurements of several hundred thousand main sequence stars to be made by the upcoming Full Sky Astrometric Explorer (FAME) satellite are similarly explored. A novel method for directly determining the mass of a transiting planet's parent star from timing measurements is introduced briefly in an

  10. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  11. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  12. A Planet Soon to Meet Its Demise

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    A tiny telescope has discovered a scalding hot world orbiting its star 1,300 light-years from us. KELT-16b may only be around for a few more hundreds of thousands of years, however.Dont Underestimate Tiny TelescopesThe KELT-North telescope in Arizona. This tiny telescope was responsible for the discovery of KELT-16b. [Vanderbilt University]In an era of ever larger observatories, you might think that theres no longer a place for small-aperture ground-based telescopes. But small ground-based telescopes have been responsible for the discovery and characterization of around 250 exoplanets so far and these are the targets that are especially useful for exoplanet science, as they aremore easily followed up than the faint discoveries made by telescopes like Kepler.The Kilogree Extremely Little Telescope (KELT) consists of two telescopes one in Arizona and one in South Africa that each have a 4.2-centimeter aperture. In total, KELT observes roughly 70% of the entire sky searching for planets transiting bright hosts. And its recently found quite an interesting one: KELT-16b. In a publication led by Thomas Oberst (Westminster College in Pennsylvania), a team of scientists presents their find.Combined follow-up light curves obtained for KELT-16b from 19 transits. The best-fit period is just under a day. [Oberst et al. 2017]A Hot WorldKELT-16b is whats known as a hot Jupiter. Using the KELT data and follow-up observations of 19 transits, Oberst and collaborators estimate KELT-16bs radius at roughly 1.4 times that of Jupiter and its mass at 2.75 times Jupiters. Its equilibrium temperature is a scalding 2453 K caused by the fact that it orbits so close to its host star that it completes each orbit in a mere 0.97 days!This short period is extremely unusual: there are only five other known transiting exoplanets with periods shorter than a day. KELT-16b is orbiting very close to its host, making it subject to extreme irradiation and strong tidal forces.Based on KELT-16bs orbit

  13. Minor bodies of the Solar system: meteorite orbits, relationship, mirror symmetry in C-distribution

    International Nuclear Information System (INIS)

    Terent'eva, A.K.

    1989-01-01

    Population of large meteor bodies having masses from several kilograms up to several tens of tons has been revealed by means of photographic observations of bright fireballs. 39 of 69 objects of this population is meteorites producing. A unique class of meteorite orbits of an extremely short period (the Earth's group) has been found. The analysis of the distributions of minor bodies by Tisserand constant C (the perturbing planet is Jupiter) allowed to make conclusions about possible genetic connections and families inside the complex of minor bodies - comets, asteroids, large meteor bodies including meteorites and meteor streams. About 8 per cent of meteorites and 15 per cent of asteroids of the Amour group may have a cometary origin. Mirror symmetry has been found in C-distribution of minor bodies relative to the gap in the center of which collinear points of libration are located

  14. Free-floating planets from microlensing

    Science.gov (United States)

    Sumi, Takahiro

    2014-06-01

    Gravitational microlensing has an unique sensitivity to exoplanets at outside of the snow-line and even exoplanets unbound to any host stars because the technique does not rely on any light from the host but the gravity of the lens. MOA and OGLE collaborations reported the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8_{-0.8}^{+1.7}) as common as main-sequence stars, based on two years of gravitational microlensing survey observations toward the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. The such short-timescale unbound planetary candidates have been detected with the similar rate in on-going observations and these groups are working to update the analysis with larger statistics. Recently, there are also discoveries of free-floating planetary mass objects by the direct imaging in young star-forming regions and in the moving groups, but these objects are limited to massive objects of 3 to 15 Jupiter masses.They are more massive than the population found by microlensing. So they may be a different population with the different formation process, either similar with that of stars and brown dwarfs, or formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits. It is important to fill the gap of these mass ranges to fully understand these populations. The Wide Field Infrared Survey Telescope (WFIRST) is the highest ranked recommendation for a large space mission in the recent New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey. Exoplanet microlensing program is one of the primary science of WFIRST. WFIRST will find about 3000 bound planets and 2000 unbound planets by the high precision continuous survey 15 min

  15. Kepler AutoRegressive Planet Search

    Science.gov (United States)

    Caceres, Gabriel Antonio; Feigelson, Eric

    2016-01-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real

  16. KEPLER'S FIRST ROCKY PLANET: KEPLER-10b

    International Nuclear Information System (INIS)

    Batalha, Natalie M.; Borucki, William J.; Bryson, Stephen T.; Haas, Michael R.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Buchhave, Lars A.; Fressin, Francois; Latham, David W.; Caldwell, Douglas A.; Jenkins, Jon M.; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans; Ciardi, David; Dunham, Edward W.; Gautier, Thomas N. III; Gilliland, Ronald L.; Howell, Steve B.; Marcy, Geoffrey W.

    2011-01-01

    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] =2454964.57375 +0.00060 -0.00082 + N*0.837495 +0.000004 -0.000005 days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] =2454971.6761 +0.0020 -0.0023 + N*45.29485 +0.00065 -0.00076 days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T eff = 5627 ± 44 K, M * = 0.895 ± 0.060 M sun , and R * = 1.056 ± 0.021 R sun . Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M P = 4.56 +1.17 -1.29 M + , R P = 1.416 +0.033 -0.036 R + , and ρ P = 8.8 +2.1 -2.9 g cm -3 . Kepler-10b is the smallest transiting exoplanet discovered to date.

  17. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  18. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  19. Retention of minority participants in clinical research studies.

    Science.gov (United States)

    Keller, Colleen S; Gonzales, Adelita; Fleuriet, K Jill

    2005-04-01

    Recruitment of minority participants for clinical research studies has been the topic of several analytical works. Yet retention of participants, most notably minority and underserved populations, is less reported and understood, even though these populations have elevated health risks. This article describes two related, intervention-based formative research projects in which researchers used treatment theory to address issues of recruitment and retention of minority women participants in an exercise program to reduce obesity. Treatment theory incorporates a model of health promotion that allows investigators to identify and control sources of extraneous variables. The authors' research demonstrates that treatment theory can improve retention of minority women participants by considering critical inputs, mediating processes, and substantive participant characteristics in intervention design.

  20. Minor physical anomalies and schizophrenia spectrum disorders: a prospective investigation

    DEFF Research Database (Denmark)

    Schiffman, Jason; Ekstrøm, Morten; LaBrie, Joseph

    2002-01-01

    at high risk. RESULTS: Individuals with a high number of minor physical anomalies developed schizophrenia spectrum disorders significantly more often than they developed a no mental illness outcome. Further, individuals with a high number of minor physical anomalies tended to develop schizophrenia......OBJECTIVE: The authors prospectively assessed the relationship between minor physical anomalies identified in childhood and adult psychiatric outcome. METHOD: In 1972, minor physical anomalies were measured in a group of 265 Danish children ages 11-13. The examination was part of a larger study...... investigating early signs of schizophrenia spectrum disorders. Many of the subjects had a parent with schizophrenia, leaving them at high risk for developing a schizophrenia spectrum disorder. In 1991, adult psychiatric outcome data were obtained for 91.3% (N=242) of the original subjects, including 81 who were...

  1. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  2. Minority Enrollments in Higher Education

    Science.gov (United States)

    Astin, Alexander

    1975-01-01

    This testimony, by the Director, Cooperative Institutional Research Program, University of California, Los Angeles, before a public hearing of the New York City Commission on Human Rights in May 1974, is stated to place special emphasis on possible explanations for recent changes in earlier trends in minority enrollments. (Author/JM)

  3. Opening the Suburbs to Minorities

    Science.gov (United States)

    Davidoff, Paul

    1975-01-01

    This testimony, before a public hearing of the New York City Commission on Human Rights in May 1974, notes that the Suburban Action Institute is involved actively in assisting the cities by working to open opportunities in the suburbs for minority families, and advocates that New York City become alert and active in combating discriminatory…

  4. Young ethnic minorities in education

    DEFF Research Database (Denmark)

    Mørck, Line Lerche

    2007-01-01

    In Danish as well as in international comparative educational research, there is a tendency to foreground lack of skills or lack of achievement in discussions about learning among ethnic minorities[1]. Empirically, this kind of research (see for example Ragnvid, 2005, about the PISA-Copenhagen re......In Danish as well as in international comparative educational research, there is a tendency to foreground lack of skills or lack of achievement in discussions about learning among ethnic minorities[1]. Empirically, this kind of research (see for example Ragnvid, 2005, about the PISA......-Copenhagen results) is based on statistics and test scores - and it often lacks a basis in a theoretical understanding of how learning comes about. Theoretical and qualitative examples of recent educational research about ethnic minorities are often poststructuralist analyses of discourses and social categories...... and transcend negative social categories about a ‘Muslim school girl' as ‘isolated and oppressed' and ‘too studios'. [1] I use the term ethnic minority, not as a distinction with numerical proportions, but rather related to societal power relations (Phoenix, 2001). In that way the Danish Palestinian pupils...

  5. Tobacco Use among Sexual Minorities

    Science.gov (United States)

    Bryant, Lawrence O.; Bowman, Lorenzo

    2014-01-01

    This chapter addresses tobacco use among sexual minorities. It examines research on the prevalence of tobacco use in the lesbian, gay, bisexual, and transgender (LGBT) community and discusses why tobacco use within this group continues to significantly exceed that of the general population.

  6. Minority game with SK interactions

    International Nuclear Information System (INIS)

    Menezes, Pedro Castro; Sherrington, David

    2013-01-01

    A batch minority game with fake random history and additional SK-like quenched interaction is introduced and analysed. A mixing parameter λ quantifies the admixture and dictates the relative dominance of the two contributions: if λ → 0, agent decisions are based on their strategies and point-scores alone, as in the pure minority game, whereas for λ > 0 the agents also communicate with each other directly and update their points accordingly. Keeping the minority game dynamics in which the agents’ points are updated in parallel at each time step, the aim is to understand what happens if instead of simply using the normal strategy-based decisions, the agents also take account of an ‘effective field’ generated by the other agents. It is shown that the SK interaction introduces a ‘noise’ term which is broader than that in the normal minority game and which furthermore kills the normal phase transition. It is also shown that the same effect would occur if, instead of an SK interaction, Gaussian-distributed quenched random fields are added. By calculating order parameters in the time-translational invariant phase we show that the system is persistent in a ergodic phase. Both simulational and analytical results are presented. (paper)

  7. Minority Student Progress Report, 1991.

    Science.gov (United States)

    Diaz, Porfirio R.; Luan, Jing

    This report offers a consolidated systemwide analysis of key issues and recommendations for improvement of minority recruitment and retention at Arizona State Universities and an evaluation of progress toward achieving Arizona Board of Regents (ABOR) approved recruitment and graduation goals. A description of ABOR system goals notes three goals:…

  8. CoRoT’s first seven planets: An overview*

    Directory of Open Access Journals (Sweden)

    Barge P.

    2011-07-01

    Full Text Available The up to 150 day uninterrupted high-precision photometry of about 100000 stars – provided so far by the exoplanet channel of the CoRoT space telescope – gave a new perspective on the planet population of our galactic neighbourhood. The seven planets with very accurate parameters widen the range of known planet properties in almost any respect. Giant planets have been detected at low metallicity, rapidly rotating and active, spotted stars. CoRoT-3 populated the brown dwarf desert and closed the gap of measured physical properties between standard giant planets and very low mass stars. CoRoT extended the known range of planet masses down-to 5 Earth masses and up to 21 Jupiter masses, the radii to less than 2 Earth radii and up to the most inflated hot Jupiter found so far, and the periods of planets discovered by transits to 9 days. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planet-host-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that terrestrial planets with a density close to Earth exist outside the Solar System. The detection of the secondary transit of CoRoT-1 at the 10−5-level and the very clear detection of the 1.7 Earth radii of CoRoT-7b at 3.5 10−4 relative flux are promising evidence of CoRoT being able to detect even smaller, Earth sized planets.

  9. DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela; Spera, Mario

    2016-01-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  10. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    Science.gov (United States)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  11. Host Star Evolution for Planet Habitability.

    Science.gov (United States)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  12. Extrasolar planets and their host stars

    CERN Document Server

    von Braun, Kaspar

    2017-01-01

    This book explores the relations between physical parameters of extrasolar planets and their respective parent stars. Planetary parameters are often directly dependent upon their stellar counterparts. In addition, the star is almost always the only visible component of the system and contains most of the system mass. Consequently, the parent star heavily influences every aspect of planetary physics and astrophysics. Drs. Kaspar von Braun and Tabetha Boyajian use direct methods to characterize exoplanet host starts that minimize the number of assumptions needed to be made in the process. The book provides a background on interferometric techniques for stellar diameter measurements, illustrates the authors' approach on using additional data to fully characterize the stars, provides a comprehensive update on the current state of the field, and examines in detail a number of historically significant and well-studied exoplanetary systems.

  13. Experientally guided robots. [for planet exploration

    Science.gov (United States)

    Merriam, E. W.; Becker, J. D.

    1974-01-01

    This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.

  14. Tectonic patterns on a reoriented planet - Mars

    International Nuclear Information System (INIS)

    Melosh, H.J.

    1980-01-01

    Both geological and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25 deg. Since Mars is oblate, rotation of the lithosphere over the equatorial bulge by 25 deg produces membrane stresses of several kilobars, large enough to initiate faulting. Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south-trending normal faults. This normal fault province is centered at 30 deg N latitude and extends about 45 deg east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia

  15. Setting the Stage for Habitable Planets

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez

    2014-02-01

    Full Text Available Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe.

  16. Setting the Stage for Habitable Planets

    Science.gov (United States)

    Gonzalez, Guillermo

    2014-01-01

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe. PMID:25370028

  17. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  18. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    Science.gov (United States)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-04-01

    The observation that the orbits of long-period Kuiper Belt objects are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis - the proposed existence of a distant and eccentric planetary member of our Solar System. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant Kuiper Belt objects through a complex interplay of resonant and secular effects, such that the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine's orbit. We present results on the role of Kuiper Belt initial conditions on the evolution of the outer Solar System using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond 36 AU. The bimodality in the final perihelion distance distribution is due to the permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation, and offer further insight into the observational search for Planet Nine.

  19. A cloaking device for transiting planets

    Science.gov (United States)

    Kipping, David M.; Teachey, Alex

    2016-06-01

    The transit method is presently the most successful planet discovery and characterization tool at our disposal. Other advanced civilizations would surely be aware of this technique and appreciate that their home planet's existence and habitability is essentially broadcast to all stars lying along their ecliptic plane. We suggest that advanced civilizations could cloak their presence, or deliberately broadcast it, through controlled laser emission. Such emission could distort the apparent shape of their transit light curves with relatively little energy, due to the collimated beam and relatively infrequent nature of transits. We estimate that humanity could cloak the Earth from Kepler-like broad-band surveys using an optical monochromatic laser array emitting a peak power of ˜30 MW for ˜10 hours per year. A chromatic cloak, effective at all wavelengths, is more challenging requiring a large array of tunable lasers with a total power of ˜250 MW. Alternatively, a civilization could cloak only the atmospheric signatures associated with biological activity on their world, such as oxygen, which is achievable with a peak laser power of just ˜160 kW per transit. Finally, we suggest that the time of transit for optical Search for Extraterrestrial Intelligence (SETI) is analogous to the water-hole in radio SETI, providing a clear window in which observers may expect to communicate. Accordingly, we propose that a civilization may deliberately broadcast their technological capabilities by distorting their transit to an artificial shape, which serves as both a SETI beacon and a medium for data transmission. Such signatures could be readily searched in the archival data of transit surveys.

  20. How Do Earth-Sized, Short-Period Planets Form?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a