WorldWideScience

Sample records for identifying differentially expressed

  1. A predictive approach to identify genes differentially expressed

    Science.gov (United States)

    Saraiva, Erlandson F.; Louzada, Francisco; Milan, Luís A.; Meira, Silvana; Cobre, Juliana

    2012-10-01

    The main objective of gene expression data analysis is to identify genes that present significant changes in expression levels between a treatment and a control biological condition. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating credibility intervals from predictive densities which are constructed using sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained indicate that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a publicly available data set on Escherichia coli bacteria.

  2. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    Science.gov (United States)

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  3. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    Science.gov (United States)

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  4. Consistent Differential Expression Pattern (CDEP on microarray to identify genes related to metastatic behavior

    Directory of Open Access Journals (Sweden)

    Tsoi Lam C

    2011-11-01

    Full Text Available Abstract Background To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP, to identify genes with common differential expression patterns across different datasets. Results We combined False Discovery Rate (FDR estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. Conclusions CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and

  5. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax

    OpenAIRE

    2009-01-01

    Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregula...

  6. Three encochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Lübeck, Mette

    2008-01-01

    showed that the three genes were differentially expressed. The expression of the cr-ech42 and cr-ech37 genes was triggered by F. culmorum cell walls and chitin whereas glucose repressed their expression. In contrast, the expression of cr-ech58 was not triggered by F. culmorum cell walls and chitin......Three endochitinase-encoding genes, cr-ech58, cr-ech42 and cr-ech37 were identified and characterised from the mycoparasitic C. rosea strain IK726. The endochitinase activity was specifically induced in media containing chitin or Fusarium culmorum cell walls as sole carbon sources. RT-PCR analysis...

  7. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    Directory of Open Access Journals (Sweden)

    Jun-Chao Guo

    Full Text Available The extremely dismal prognosis of pancreatic cancer (PC is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  8. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    Science.gov (United States)

    Guo, Jun-Chao; Li, Jian; Yang, Ying-Chi; Zhou, Li; Zhang, Tai-Ping; Zhao, Yu-Pei

    2013-01-01

    The extremely dismal prognosis of pancreatic cancer (PC) is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA)-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes) were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  9. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues

    Directory of Open Access Journals (Sweden)

    Zhou Shengli

    2008-08-01

    Full Text Available Abstract Background The co-morbidities of obesity are tied to location of excess fat in the intra-abdominal as compared to subcutaneous white adipose tissue (WAT depot. Genes distinctly expressed in WAT depots may impart depot-dependent physiological functions. To identify such genes, we prepared subtractive cDNA libraries from murine subcutaneous (SC or intra-abdominal epididymal (EP white adipocytes. Results Differential screening and qPCR validation identified 7 transcripts with 2.5-fold or greater enrichment in EP vs. SC adipocytes. Boc, a component of the hedgehog signaling pathway demonstrated highest enrichment (~12-fold in EP adipocytes. We also identified a dramatic enrichment in SC adipocytes vs. EP adipocytes and in SC WAT vs. EP WAT for transcript(s for the major urinary proteins (Mups, small secreted proteins with pheromone functions that are members of the lipocalin family. Expression of Boc and Mup transcript was further assessed in murine tissues, adipogenesis models, and obesity. qPCR analysis reveals that EP WAT is a major site of expression of Boc transcript. Furthermore, Boc transcript expression decreased in obese EP WAT with a concomitant upregulation of Boc transcript in the obese SC WAT depot. Assessment of the Boc binding partner Cdon in adipose tissue and cell fractions thereof, revealed transcript expression similar to Boc; suggestive of a role for the Boc-Cdon axis in WAT depot function. Mup transcripts were predominantly expressed in liver and in the SC and RP WAT depots and increased several thousand-fold during differentiation of primary murine preadipocytes to adipocytes. Mup transcripts were also markedly reduced in SC WAT and liver of ob/ob genetically obese mice compared to wild type. Conclusion Further assessment of WAT depot-enriched transcripts may uncover distinctions in WAT depot gene expression that illuminate the physiological impact of regional adiposity.

  10. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  11. Comparative expression profiling identifies differential roles for Myogenin and p38α MAPK signaling in myogenesis

    Institute of Scientific and Technical Information of China (English)

    Qi-Cai Liu; Marjorie Brand; Carol Perez-Iratxeta; F. Jeffrey Dilworth; Xiao-Hui Zha; Hervé Faralli; Hang Yin; Caroline Louis-Jeune; Eusebio Perdiguero; Erinija Pranckeviciene; Pura Mu(n)oz-Cànoves; Michael A. Rudnicki

    2012-01-01

    Skeletal muscle differentiation is mediated by a complex gene expression program requiring both the muscle-specific transcription factor Myogenin (Myog) and p38α MAPK (p38α) signaling.However,the relative contribution of Myog and p38α to the formation of mature myotubes remains unknown.Here,we have uncoupled the activity of Myog from that of p38α to gain insight into the individual roles of these proteins in myoganesis.Comparative expression profiling confirmed that Myog activates the expression of genes involved in muscle function.Furthermore,we found that in the absence of p38α signaling,Myog expression leads to the down-regulation of genes involved in cell cycle progression.Consistent with this,the expression of Myog is sufficient to induce cell cycle exit.Interestingly,p38α-defective,Myog-expressing myoblasts fail to form multinucleated myotubes,suggesting an important role for p38α in cell fusion.Through the analysis of p38α up-regulated genes,the tetraspanin CD53 was identified as a candidate fusion protein,a role confirmed both ex vivo in primary myoblasts,and in vivo during myofiber regeneration in mice.Thus,our study has revealed an unexpected role for Myog in mediating cell cycle exit and has identified an essential role for p38α in cell fusion through the up-regulation of CD53.

  12. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  13. The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    Directory of Open Access Journals (Sweden)

    Heath Lenwood S

    2006-04-01

    Full Text Available Abstract Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV. Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best

  14. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax.

    Science.gov (United States)

    Strickler, Allen G; Jeffery, William R

    2009-03-01

    Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregulated and 61 downregulated in cavefish relative to surface fish. Many of these genes function either in eye development and/or maintenance, or in programmed cell death. The upregulated probe set showing the highest mean fold change was similar to the human ubiquitin specific protease 53 gene. The downregulated probe sets showing some of the highest fold changes corresponded to genes with roles in eye development, including those encoding gamma crystallins, the guanine nucleotide binding proteins Gnat1 and Gant2, a BarH-like homeodomain transcription factor, and rhodopsin. Downregulation of gamma-crystallin and rhodopsin was confirmed by in situ hybridization and immunostaining with specific antibodies. Additional downregulated genes encode molecules that inhibit or activate programmed cell death. The results suggest that cross-species microarray can be used for identifying differentially expressed genes in cavefish, that many of these genes might be involved in eye degeneration via apoptotic processes, and that more genes are downregulated than upregulated in cavefish, consistent with the predominance of morphological losses over gains during regressive evolution.

  15. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...

  17. Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australis clones

    Directory of Open Access Journals (Sweden)

    Gareth Donald Holmes

    2016-04-01

    Full Text Available Common Reed (Phragmites australis is a frequent component of inland, and coastal, wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically-diverse range of salt-tolerant P. australis lineages. This has prompted an interest in examining the variation in salinity tolerance among lineages and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L-1 TDS and three from low salinity sites (<6 g L-1 were grown in containers irrigated with either fresh (<0.1 g L-1 or saline water (16 g L-1. An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the relative higher expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of

  18. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones.

    Science.gov (United States)

    Holmes, Gareth D; Hall, Nathan E; Gendall, Anthony R; Boon, Paul I; James, Elizabeth A

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L(-1) TDS) and three from low salinity sites (<6 g L(-1)) were grown in containers irrigated with either fresh (<0.1 g L(-1)) or saline water (16 g L(-1)). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to

  19. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers.

    Science.gov (United States)

    Harada, Taro; Torii, Yuka; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2010-05-01

    Flower opening is an event accompanied by morphological changes in petals which include elongation, expansion, and outward-curving. Petal cell growth is a fundamental process that underlies such phenomena, but its molecular mechanism remains largely unknown. Suppression subtractive hybridization was performed between petals during the early elongation period (stage 1) and during the opening period (stage 5) in carnation flowers and a pair of subtraction libraries abundant in differentially expressed genes was constructed at each stage. 393 cDNA clones picked up by differential screening out of 1728 clones were sequenced and 235 different cDNA fragments were identified, among which 211 did not match any known nucleotide sequence of carnation genes in the databases. BLASTX search of nucleotide sequences revealed that putative functions of the translational products can be classified into several categories including transcription, signalling, cell wall modification, lipid metabolism, and transport. Open reading frames of 15 selected genes were successfully determined by rapid amplification of cDNA ends (RACE). Time-course analysis of these genes by real-time RT-PCR showed that transcript levels of several genes correlatively fluctuate in petals of opening carnation flowers, suggesting an association with the morphological changes by elongation or curving. Based on the results, it is suggested that the growth of carnation petals is controlled by co-ordinated gene expression during the progress of flower opening. In addition, the possible roles of some key genes in the initiation of cell growth, the construction of the cell wall and cuticle, and transport across membranes were discussed.

  20. RNA-Sequencing Analysis of 5' Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Bret S. E. Heale

    2012-04-01

    Full Text Available We describe the first report of RNA sequencing of 5' capped (Pol II RNAs isolated from acutely hepatitis C virus (HCV infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05. Most of the differentially expressed genes (>80% and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens.

  1. Differential expression of two glutathione S-transferases identified from the American dog tick, Dermacentor variabilis.

    Science.gov (United States)

    Dreher-Lesnick, S M; Mulenga, A; Simser, J A; Azad, A F

    2006-08-01

    Reciprocal signalling and gene expression play a cardinal role during pathogen-host molecular interactions and are prerequisite to the maintenance of balanced homeostasis. Gene expression repertoire changes during rickettsial infection and glutathione-S-transferases (GSTs) were among the genes found up-regulated in Rickettsia-infected Dermacentor variabilis. GSTs are well known to play an important part in cellular stress responses in the host. We have cloned two full-length GSTs from D. variabilis (DvGST1 and DvGST2). Comparison of these two DvGST molecules with those of other species indicate that DvGST1 is related to the mammalian class theta and insect class delta GSTs, while DvGST2 does not seem to fall in the same family. Northern blotting analyses revealed differential expression patterns, where DvGST1 and DvGST2 transcripts are found in the tick gut, with DvGST2 transcripts also present in the ovaries. Both DvGST transcripts are up-regulated upon tick feeding. Challenge of fed adult ticks with Escherichia coli injection showed decreased transcript amounts compared with ticks injected with phosphate-buffered saline (sham) and naïve ticks.

  2. Differentially expressed genes of virulent and nonvirulent Entamoeba histolytica strains identified by suppression subtractive hybridization.

    Science.gov (United States)

    Freitas, Michelle A R; Alvarenga, Ângela C; Fernandes, Helen C; Gil, Frederico F; Melo, Maria N; Pesquero, Jorge L; Gomes, Maria A

    2014-01-01

    Entamoeba histolytica is a parasite which presents capacity to degrade tissues and therefore has a pathogenic behavior. As this behavior is not shown by all strains, there have been several studies investigating molecular basis of the cytotoxicity process. Using the suppression subtractive hybridization (SSH) technique, differential gene expressions of two E. histolytica strains, one virulent (EGG) and one nonvirulent (452), have been analyzed with the purpose of isolating genes which may be involved with amoebic virulence. Nine cDNA fragments presenting high homology with E. histolytica previously sequenced genes were subtracted. Of these, four genes were confirmed by RT-PCR. Two coding for hypothetical proteins, one for a cysteine-rich protein, expressed only in the virulent strain, EGG and another one, coding for grainin 2 protein, exclusive from 452 strain. This study provided new insight into the proteins differences in the virulent and nonvirulent E. histolytica strains. We believe that further studies with these proteins may prove association of them with tissue damage, providing new perceptions to improve treatment or diagnosis of the invasive disease.

  3. Differentially Expressed Genes of Virulent and Nonvirulent Entamoeba histolytica Strains Identified by Suppression Subtractive Hybridization

    Directory of Open Access Journals (Sweden)

    Michelle A. R. Freitas

    2014-01-01

    Full Text Available Entamoeba histolytica is a parasite which presents capacity to degrade tissues and therefore has a pathogenic behavior. As this behavior is not shown by all strains, there have been several studies investigating molecular basis of the cytotoxicity process. Using the suppression subtractive hybridization (SSH technique, differential gene expressions of two E. histolytica strains, one virulent (EGG and one nonvirulent (452, have been analyzed with the purpose of isolating genes which may be involved with amoebic virulence. Nine cDNA fragments presenting high homology with E. histolytica previously sequenced genes were subtracted. Of these, four genes were confirmed by RT-PCR. Two coding for hypothetical proteins, one for a cysteine-rich protein, expressed only in the virulent strain, EGG and another one, coding for grainin 2 protein, exclusive from 452 strain. This study provided new insight into the proteins differences in the virulent and nonvirulent E. histolytica strains. We believe that further studies with these proteins may prove association of them with tissue damage, providing new perceptions to improve treatment or diagnosis of the invasive disease.

  4. Differentially expressed genes implicated in embryo abortion of mango identified by suppression subtractive hybridization.

    Science.gov (United States)

    He, J H; Ma, F W; Chen, Y Y; Shu, H R

    2012-11-14

    Embryo abortion in mango severely damages mango production worldwide. The mechanisms by which the mango embryos abort have long been an intriguing question. We used subtractive suppression hybridization to investigate the differentially expressed genes involved in this process. We generated 2 cDNA libraries from normal seed and aborted seed embryos of mango cultivar 'Jinhuang'. One thousand five hundred and seventy-two high-quality expressed sequence tags (ESTs) were obtained, with 1092 from the normal seed tester library and 480 from the aborted seed tester library. These ESTs were assembled into 783 unigenes, including 147 contigs and 636 singletons in contigs; 297 singletons in gene ontology (GO) indicated coverage of a broad range of GO categories. Seven candidate genes from different categories were selected for semi-quantitative PCR analysis, and their possible functions in embryo abortion are discussed. These data provide new insight into the genetic regulation of embryo abortion in mango and may aid in further identification of novel genes and their functions.

  5. Identifying differentially expressed proteins in two-dimensional electrophoresis experiments: inputs from transcriptomics statistical tools.

    Science.gov (United States)

    Artigaud, Sébastien; Gauthier, Olivier; Pichereau, Vianney

    2013-11-01

    Two-dimensional electrophoresis is a crucial method in proteomics that allows the characterization of proteins' function and expression. This usually implies the identification of proteins that are differentially expressed between two contrasting conditions, for example, healthy versus diseased in human proteomics biomarker discovery and stressful conditions versus control in animal experimentation. The statistical procedures that lead to such identifications are critical steps in the 2-DE analysis workflow. They include a normalization step and a test and probability correction for multiple testing. Statistical issues caused by the high dimensionality of the data and large-scale multiple testing have been a more active topic in transcriptomics than proteomics, especially in microarray analysis. We thus propose to adapt innovative statistical tools developed for microarray analysis and incorporate them in the 2-DE analysis pipeline. In this article, we evaluate the performance of different normalization procedures, different statistical tests and false discovery rate calculation methods with both real and simulated datasets. We demonstrate that the use of statistical procedures adapted from microarrays lead to notable increase in power as well as a minimization of false-positive discovery rate. More specifically, we obtained the best results in terms of reliability and sensibility when using the 'moderate t-test' from Smyth in association with classic false discovery rate from Benjamini and Hochberg. The methods discussed are freely available in the 'prot2D' open source R-package from Bioconductor (http://www.bioconductor.org//) under the terms of the GNU General Public License (version 2 or later). sebastien.artigaud@univ-brest.fr or sebastien.artigaud@gmx.com.

  6. Difference gel electrophoresis (DiGE) identifies differentially expressed proteins in endoscopically-collected pancreatic fluid

    Science.gov (United States)

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis may offer insights into the development and progression of the disease. The endoscopic pancreas function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DiGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe chronic pancreatitis and three chronic abdominal pain controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DiGE and LC-MS/MS, were compared. This DiGE-LC-MS/MS analysis reveals proteins that are differentially expressed in chronic pancreatitis compared to chronic abdominal pain controls. Proteins with higher abundance in pancreatic fluid from chronic pancreatitis individuals include: actin, desmoplankin, alpha-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, alpha-1-antichymotrypsin, alpha-2-macroglobulin, Arp2/3 subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DiGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis, however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  7. Proteomic Analysis of Pichindé virus Infection Identifies Differential Expression of Prothymosin-α

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available The arenaviruses include a number of important pathogens including Lassa virus and Junin virus. Presently, the only treatment is supportive care and the antiviral Ribavirin. In the event of an epidemic, patient triage may be required to more effectively manage resources; the development of prognostic biomarker signatures, correlating with disease severity, would allow rational triage. Using a pair of arenaviruses, which cause mild or severe disease, we analyzed extracts from infected cells using SELDI mass spectrometry to characterize potential biomarker profiles. EDGE analysis was used to analyze longitudinal expression differences. Extracts from infected guinea pigs revealed protein peaks which could discriminate between mild or severe infection and between times post-infection. Tandem mass-spectrometry identified several peaks, including the transcriptional regulator prothymosin-α. Further investigation revealed differences in secretion of this peptide. These data show proof of concept that proteomic profiling of host markers could be used as prognostic markers of infectious disease.

  8. Transcriptome analyses identify five transcription factors differentially expressed in the hypothalamus of post- versus prepubertal Brahman heifers.

    Science.gov (United States)

    Fortes, M R S; Nguyen, L T; Weller, M M D C A; Cánovas, A; Islas-Trejo, A; Porto-Neto, L R; Reverter, A; Lehnert, S A; Boe-Hansen, G B; Thomas, M G; Medrano, J F; Moore, S S

    2016-09-01

    Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in (Brahman) in age- and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: , , , , and . These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric ( Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy.

  9. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding

    Science.gov (United States)

    Smitha Ninan, Annu; Shah, Anish; Song, Jiancheng; Jameson, Paula E.

    2017-01-01

    For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing. PMID:28212324

  10. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding

    Directory of Open Access Journals (Sweden)

    Annu Smitha Ninan

    2017-02-01

    Full Text Available For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs and the gene family key to the destruction of cytokinins (the CKXs, as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1 and the transporter gene families, sucrose transporters (SUTs and amino acid permeases (AAPs. We used reverse transcription quantitative PCR (RT-qPCR to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing.

  11. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding.

    Science.gov (United States)

    Smitha Ninan, Annu; Shah, Anish; Song, Jiancheng; Jameson, Paula E

    2017-02-16

    For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing.

  12. Applications of Suppression Subtractive Hybridization (SSH) in Identifying differentially expressed transcripts in Ascochyta rabiei

    Science.gov (United States)

    Introduction – Ascochyta rabiei, casual agents of chickpea ascochyta blight, is divided into two pathotypes based on virulence levels. Genetic mechanisms of this phenotypic differentiation are poorly understood. This research is directed toward understanding molecular differences between the two pa...

  13. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    Directory of Open Access Journals (Sweden)

    Wu Mingsong

    2013-02-01

    Full Text Available Abstract Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL and the reverse-subtracted library (RSL contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1 from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3 from the RSL were significantly down-regulated (P  Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer

  14. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer.

    Science.gov (United States)

    Yang, J; Zhang, Y; Cui, X; Yao, W; Yu, X; Cen, P; Hodges, S E; Fisher, W E; Brunicardi, F C; Chen, C; Yao, Q; Li, M

    2013-03-01

    Deregulated expression of zinc transporters was linked to several cancers. However, the detailed expression profile of all human zinc transporters in normal human organs and in human cancer, especially in pancreatic cancer is not available. The objectives of this study are to investigate the complete expression patterns of 14 ZIP and 10 ZnT transporters in a large number of normal human organs and in human pancreatic cancer tissues and cell lines. We examined the expression patterns of ZIP and ZnT transporters in 22 different human organs and tissues, 11 pairs of clinical human pancreatic cancer specimens and surrounding normal/benign tissues, as well as 10 established human pancreatic cancer cell lines plus normal human pancreatic ductal epithelium (HPDE) cells, using real time RT-PCR and immunohistochemistry. The results indicate that human zinc transporters have tissue specific expression patterns, and may play different roles in different organs or tissues. Almost all the ZIPs except for ZIP4, and most ZnTs were down-regulated in human pancreatic cancer tissues compared to the surrounding benign tissues. The expression patterns of individual ZIPs and ZnTs are similar among different pancreatic cancer lines. Those results and our previous studies suggest that ZIP4 is the only zinc transporter that is significantly up-regulated in human pancreatic cancer and might be the major zinc transporter that plays an important role in pancreatic cancer growth. ZIP4 might serve as a novel molecular target for pancreatic cancer diagnosis and therapy.

  15. GeneChaser: Identifying all biological and clinical conditions in which genes of interest are differentially expressed

    Directory of Open Access Journals (Sweden)

    Venkatasubrahmanyam Shivkumar

    2008-12-01

    Full Text Available Abstract Background The amount of gene expression data in the public repositories, such as NCBI Gene Expression Omnibus (GEO has grown exponentially, and provides a gold mine for bioinformaticians, but has not been easily accessible by biologists and clinicians. Results We developed an automated approach to annotate and analyze all GEO data sets, including 1,515 GEO data sets from 231 microarray types across 42 species, and performed 12,658 group versus group comparisons of 24 GEO-specified types. We then built GeneChaser, a web server that enables biologists and clinicians without bioinformatics skills to easily identify biological and clinical conditions in which a gene or set of genes was differentially expressed. GeneChaser displays these conditions in graphs, gives statistical comparisons, allows sort/filter functions and provides access to the original studies. We performed a single gene search for Nanog and a multiple gene search for Nanog, Oct4, Sox2 and LIN28, confirmed their roles in embryonic stem cell development, identified several drugs that regulate their expression, and suggested their potential roles in sex determination, abnormal sperm morphology, malaria infection, and cancer. Conclusion We demonstrated that GeneChaser is a powerful tool to elucidate information on function, transcriptional regulation, drug-response and clinical implications for genes of interest.

  16. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China

    Institute of Scientific and Technical Information of China (English)

    Fanwei MENG; Yahui ZHAO; John H.POSTLETHWAIT; Chunguang ZHANG

    2013-01-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms.Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes.We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus,which is endemic to China and includes both surface-and cave-dwelling species.Sinocyclocheilus tileihornes,a cave species,had smaller eyes than Sinocyclocheilus angustiporus,a surface species.Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species.Using quantitative PCR and in situ hybridization,we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish.Furthermore,one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish.Changes in the expression ofopsin genes may have played a role in the degeneration of cavefish eyes.

  17. Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization

    Directory of Open Access Journals (Sweden)

    Mariângela Cristofani-Yaly

    2007-01-01

    Full Text Available Citrus is the most important fruit crop in Brazil and Citrus tristeza virus (CTV is considered one of the most important pathogens of citrus. Most citrus species and varieties are susceptible to CTV infection. However, Poncirus trifoliata, a close relative of citrus, is resistant to the virus. In order to better understand the responses of citrus plants to the infection of CTV, we constructed expressed sequence tag (EST libraries with tissues collected from Poncirus trifoliata plants, inoculated or not with Citrus tristeza virus at 90 days after inoculation, grafted on Rangpur lime rootstocks. We generated 17,867 sequence tags from Poncirus trifoliata inoculated (8,926 reads and not (8,941 reads with a severe CTV isolate. A total of 2,782 TCs (Tentative Consensi sequences were obtained using both cDNA libraries in a single clusterization procedure. By the in silico hybridization approach, 289 TCs were identified as differentially expressed in the two libraries. A total of 121 TCs were found to be overexpressed in plants infected with CTV and were grouped in 12 primary functional categories. The majority of them were associated with metabolism and defense response. Some others were related to lignin, ethylene biosynthesis and PR proteins. In general, the differentially expressed transcripts seem to be somehow involved in secondary plant response to CTV infection.

  18. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Science.gov (United States)

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  19. Differentially-expressed genes identified by suppression subtractive hybridization in the bone marrow hematopoietic stem cells of patients with psoriasis.

    Science.gov (United States)

    Zhang, Zhenying; Yu, Zhen; Tian, Pan; Hou, Suchun; Han, Shixin; Tan, Xuejing; Piao, Yongjun; Liu, Xiaoming

    2014-07-01

    Psoriasis is a T cell-mediated, chronic, relapsing and inflammatory cutaneous disorder. The dysfunctional activity of T cells in patients with psoriasis is attributed to bone marrow hematopoietic stem cells (BMHSCs). To understand the pathogenic roles of BMHSCs in psoriasis, a differential gene expression analysis was performed using suppression subtractive hybridization of the BMHSCs from a patient with psoriasis and a healthy control. Using a cDNA array dot blot screening to screen 600 genes from forward- and reverse-subtracted cDNA libraries, 17 differentially-expressed sequence tags (ESTs) were identified. The genes within the ESTs were observed to be the homologs of genes that are involved in various cellular processes, including hormone signaling, RNA catabolism, protein ADP DNA base melting, transcriptional regulation, cell cycle regulation and metabolism. CD45, which was overexpressed in the psoriatic BMHSCs, was further analyzed using relative quantitative polymerase chain reaction. In addition, the levels of CD45 in the peripheral blood cells (PBCs) of the patients with psoriasis were markedly increased and closely associated with disease severity. An abnormality of hematopoietic progenitor cells, e.g., CD45 overexpression, may be transferred to PBCs via hematopoiesis, and may account for the psoriasis-inducing properties of activated T cells.

  20. Bioinformatic analysis of computational identified differentially expressed genes in tumor stoma of pregnancy‑associated breast cancer.

    Science.gov (United States)

    Zhou, Qian; Sun, Erhu; Ling, Lijun; Liu, Xiaofeng; Zhang, Min; Yin, Hong; Lu, Cheng

    2017-09-01

    The present study aimed to screen the differentially expressed genes (DEGs) in tumor‑associated stroma of pregnancy‑associated breast cancer (PABC). By analyzing Affymetrix microarray data (GSE31192) from the Gene Expression Omnibus database, DEGs between tumor asso-ciated stromal cells and normal stromal cells in PABC were identified. Gene Ontology (GO) function and pathway enrichment analyses for the DEGs were then performed, followed by construction of a protein‑protein interaction (PPI) network. A total of 94 upregulated and 386 downregulated DEGs were identified between tumor associated stromal cells and normal stromal cells in patients with PABC. The upregulated DEGs were primarily enriched in the cytokine‑cytokine receptor interaction pathway and GO terms associated with the immune response, which included the DEGs of interleukin 18 (IL18) and cluster of differentiation 274 (CD274). The downregulated DEGs were primarily involved in GO terms associated with cell surface receptor linked signal transduction and pathways of focal adhesion and pathways in cancer. In the PPI network, nodes of jun proto‑oncogene (JUN), FBJ murine osteosarcoma viral oncogene homolog (FOS), V‑myc avian myelocytomatosis viral oncogene homolog (MYC), and alpha‑smooth muscle actin (ACTA2) had higher degrees. The hub genes of JUN, FOS, MYC and ACTA2, as well as the DEGs IL18 and CD274 that were associated with the immune response in GO terms may exert important functions in the molecular mechanisms of PABC. These genes may be used as new molecular targets in the treatment of this disease.

  1. Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns.

    Science.gov (United States)

    Gómez, Aranzazu; López, Juan Antonio; Pintos, Beatriz; Camafeita, Emilio; Bueno, Ma Angeles

    2009-09-01

    Quercus suber L. is a Mediterranean forest species with ecological, social and economic value. Clonal propagation of Q. suber elite trees has been successfully obtained from in vitro-derived somatic and gametic embryos. These clonal lines play a main role in breeding and genetic studies of Q. suber. To aid in unravelling diverse genetic and biological unknowns, a proteomic approach is proposed. The proteomic analysis of Q. suber somatic and gametic in vitro culture-derived embryos, based on DIGE and MALDI-MS, has produced for the first time proteomic data on this species. Seventeen differentially expressed proteins have been identified which display significantly altered levels between gametic and somatic embryos. These proteins are involved in a variety of cellular processes, most of which had been neither previously associated with embryo development nor identified in the genus Quercus. Some of these proteins are involved in stress and pollen development and others play a role in the metabolism of tannins and phenylpropanoids, which represent two of the major pathways for the synthesis of cork chemical components. Furthermore, the augmented expression levels found for specific proteins are probably related to the homozygous state of a doubled-haploid sample. Proteins involved in synthesis of cork components can be detected at such early stages of development, showing the potential of the method to be useful in searching for biomarkers related to cork quality.

  2. Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis.

    Science.gov (United States)

    Wei, Jinfen; Liu, Baosuo; Fan, Sigang; Li, Haimei; Chen, Mingqiang; Zhang, Bo; Su, Jiaqi; Meng, Zihao; Yu, Dahui

    2017-03-01

    The pearl oyster Pinctada fucata is commonly cultured for marine pearls in China. To culture pearls, a mantle piece from a donor pearl oyster is grafted with a nucleus into a receptor. This transplanted mantle piece may be rejected by the immune system of the recipient oyster, thus reducing the success of transplantation. However, there have been limited studies about the oyster's immune defense against allograft. In this study, hemocyte transcriptome analysis was performed to detect the immune responses to allograft in P. fucata at 0 h and 48 h after a transplant. The sequencing reaction produced 92.5 million reads that were mapped against the reference genome sequences of P. fucata. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify all immune-related differentially expressed genes (DEGs). Compared with patterns at 0 h, a total of 798 DEGs were identified, including 410 up-regulated and 388 down-regulated genes at 48 h. The expression levels of interleukin receptor and toll-like receptor in hemocytes were increased significantly 48 h post-transplant, indicating that the oyster immune response was induced. Finally, altered levels of 18 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide the basis for further analysis of the immune rejection of allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    Science.gov (United States)

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  4. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    Science.gov (United States)

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.

  5. Identifying breast cancer risk loci by global differential allele-specific expression (DASE analysis in mammary epithelial transcriptome

    Directory of Open Access Journals (Sweden)

    Gao Chuan

    2012-10-01

    Full Text Available Abstract Background The significant mortality associated with breast cancer (BCa suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility. Results To test our hypothesis, we employed the Illumina® Omni1-Quad BeadChip in paired genomic DNA (gDNA and double-stranded cDNA (ds-cDNA samples prepared from eight BCa patient-derived normal mammary epithelial lines (HMEC. We filtered original array data according to heterozygous genotype calls and calculated DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60 candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05 by both methods. Ingenuity Pathway Analysis of DASE loci revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes, ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040 and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013, and a breast cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014. Sequence analysis of a 5′ RACE product of DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants leading to DASE

  6. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes.

    Directory of Open Access Journals (Sweden)

    Lifan Luo

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood. METHODOLOGY: We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day and mature (180-day pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1. Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15,919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR. CONCLUSIONS: Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.

  7. Transcriptome profiling identifies differentially expressed genes in Huoyan goose ovaries between the laying period and ceased period.

    Directory of Open Access Journals (Sweden)

    Xinhong Luan

    Full Text Available The Huoyan goose is famous for its high egg-laying performance and is listed as a nationally protected domestic animal by the Chinese government. To elucidate the key regulatory genes involved in Huoyan goose egg laying, RNA from ovarian tissue during the ceased and laying periods was sequenced using the Illumina HiSeq 2000 sequencing platform. More than 12 million reads were produced in ceased and laying libraries that included 11,896,423 and 12,534,799 clean reads, respectively. More than 20% of the reads were matched to the reference genome, and 23% of the reads were matched to reference genes. Genes with a false discovery rate (FDR ≤0.001 and log2ratio ≧1 or ≤-1 were characterized as differentially expressed, and 344 up-regulated and 344 down-regulated genes were classified into functional categories. Twelve genes that are mainly involved in pathways for reproduction regulation, such as steroid hormone biosynthesis, GnRH signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, steroid biosynthesis, calcium signaling pathways, and G-protein coupled receptor signaling pathway were selected for validation by a quantitative real-time polymerase chain reaction (qRT-PCR analysis, the qRT-PCR results are consistent with the general expression patterns of those genes from the Illumina sequencing. These data provide comprehensive gene expression information at the transcriptional level that might increase our understanding of the Huoyan goose's reproductive biology.

  8. Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary

    Directory of Open Access Journals (Sweden)

    Yavelsky Victoria

    2008-08-01

    Full Text Available Abstract Background We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue. Methods The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples. Results By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line. To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors. Conclusion The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein

  9. TRPM2 SNP genotype previously associated with susceptibility to Rhodococcus equi pneumonia in Quarter Horse foals displays differential gene expression identified using RNA-Seq.

    Science.gov (United States)

    McQueen, Cole M; Whitfield-Cargile, Canaan M; Konganti, Kranti; Blodgett, Glenn P; Dindot, Scott V; Cohen, Noah D

    2016-12-05

    Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to R. equi are not fully understood. Previously, using a SNP-based genome-wide association study, we identified a region on equine chromosome 26 associated with culture-confirmed clinical pneumonia. To better characterize this region and understand the function of the SNP located within TRPM2 that was associated with R. equi pneumonia, we performed RNA-Seq on 12 horses representing the 3 genotypic forms of this SNP. We identified differentially expressed genes in the innate immune response pathway when comparing homozygous A allele horses with the AB and BB horses. Isoform analyses of the RNA-Seq data predicted the existence of multiple transcripts and provided evidence of differential expression at the TRPM2 locus. This finding is consistent with previously demonstrated work in human cell lines in which isoform-specific expression of TRPM2 was critical for cell viability. This work demonstrates that SNPs in TRPM2 are associated with differences in gene expression, suggesting that modulation of expression of this innate immune gene contributes to susceptibility to R. equi pneumonia.

  10. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    Science.gov (United States)

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  11. Identifying differentially expressed genes and pathways in two types of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Liu, J; Yang, X Y; Shi, W J

    2014-01-08

    Non-small cell lung carcinoma, NSCLC, accounts for 80-85% of lung cancers. NSCLC can be mainly divided into two types: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). The purpose of our study was to identify and differentiate the pathogenesis of ADC and SCC at the molecular level. The gene expression profiles of ADC and SCC were downloaded from Gene Expression Omnibus under accession No. GSE10245. Accordingly, differentially expressed genes (DEGs) were identified by the limma package in R language. In addition, DEGs were functionally analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. A total of 4124 DEGs were identified, including CDK1, CDK2, CDK4, and SKP2. The DEGs were mainly involved in 16 pathways related to cell proliferation, cell signal transduction and metabolism. We conclude that the molecular mechanisms of ADC and SCC are considerably different, and that they are involved in immune response, cell signal transduction, metabolism, cell division, and cell proliferation. Therefore, the two diseases should be treated differently. This study offers new insight into the diagnosis and therapy of these two types of lung cancer.

  12. Identifying differentially expressed genes in trophozoites and cysts of Acanthamoeba T4 genotype: Implications for developing new treatments for Acanthamoeba keratitis.

    Science.gov (United States)

    Abedkhojasteh, Hoda; Niyyati, Maryam; Rezaei, Sasan; Mohebali, Mehdi; Farnia, Shohreh; Kazemi-Rad, Elham; Roozafzoon, Reza; Sianati, Hamed; Rezaeian, Mostafa; Heidari, Mansour

    2015-02-01

    Acanthamoeba T4 genotype is the most prevalent genotype associated with amoebic keratitis. Acanthamoeba keratitis therapy is difficult due to transformation of trophozoite to cyst stage, which hinders the treatment of the disease. Although encystation assists the organism to survive against the chemotherapeutic compounds, the precise mechanism of encystation remains poorly understood. The purpose of this work was to identify differentially expressed genes in Acanthamoeba T4 genotype which might be useful for understanding of the encystment process and may thus help develop more efficient treatment. The mRNA profile of trophozoite and cyst of Acanthamoeba T4 genotype isolated from a soft contact lens wearer were analyzed using a cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. Subsequently, a real time reverse transcriptase-PCR was performed to validate the cDNA-AFLP results. Three genes, heat shock protein70 (hsp70), actin-I and elongation factor-1alpha (EF-1α) were differentially expressed during Acanthamoeba differentiation. An in silico result predicted that transformation of trophozoite to cyst could be mediated through their cooperation with the protein partners interaction. Taken together, our experimental and bioinformatics findings suggested potential functions of hsp70, EF-1α and actin-I in differentiation of Acanthamoeba T4 genotype which may be useful in the design of an efficient therapeutic strategy in AK.

  13. Identifying Differentially Expressed Genes in Pollen from Self-Incompatible “Wuzishatangju” and Self-Compatible “Shatangju” Mandarins

    Directory of Open Access Journals (Sweden)

    Guibing Hu

    2013-04-01

    Full Text Available Self-incompatibility (SI is one of the important factors that can result in seedless fruit in Citrus. However, the molecular mechanism of SI in Citrus is not yet clear. In this study, two suppression subtractive hybridization (SSH libraries (forward, F and reverse, R were constructed to isolate differentially expressed genes in pollen from “Wuzishatangju” (SI and “Shatangju” (self-compatibility, SC mandarins. Four hundred and sixty-eight differentially expressed cDNA clones from 2077 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of “Wuzishatangju” by regulating pollen development, kinase activity, ubiquitin pathway, pollen-pistil interaction, and calcium ion binding. Twenty five SI candidate genes were obtained, six of which displayed specific expression patterns in various organs and stages after self- and cross-pollination. The expression level of the F-box gene (H304 and S1 (F78 in the pollen of “Wuzishatangju” was 5-fold higher than that in “Shatangju” pollen. The F-box gene, S1, UBE2, UBE3, RNaseHII, and PCP were obviously up-regulated in pistils at 3 d after self-pollination of “Wuzishatangju”, approximately 3-, 2-, 10-, 5-, 5-, and 2-fold higher, respectively than that at the same stage after cross-pollination of “Wuzishatangju” × “Shatangju” pistils. The potential involvement of these genes in the pollen SI reaction of “Wuzishatangju” is discussed.

  14. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    Science.gov (United States)

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  15. In multiple myeloma, only a single stage of neoplastic plasma cell differentiation can be identified by VLA-5 and CD45 expression.

    Science.gov (United States)

    Rawstron, A C; Barrans, S L; Blythe, D; English, A; Richards, S J; Fenton, J A; Davies, F E; Child, J A; Jack, A S; Morgan, G J

    2001-06-01

    The nature of the proliferating fraction in myeloma is still not known and understanding the characteristics of this fraction is central to the development of effective novel therapies. However, myeloma plasma cells typically show a very low rate of proliferation and this complicates accurate analysis. Although the level of CD45 and/or VLA-5 has been reported to identify proliferating 'precursor' plasma cells, there are discrepancies between these studies. We have therefore used a rigorous sequential gating strategy to simultaneously analyse cycle status and immunophenotype with respect to CD45, VLA-5 and a range of other integrin molecules. In 11 presentation myeloma patients, the proliferative fraction was distributed evenly between CD45+ and CD45- cells, however, cycling plasma cells were consistently VLA-5-. There was close correlation between the expression of VLA-5 and a range of other integrin molecules (CD11a, CD11c, CD103), as well as the immunoglobulin-associated molecules CD79a/b (Spearman, n = 10, P < 0.0001). In short-term culture, cells that were initially VLA-5-showed increasing VLA-5 expression with time. However, simultaneous analysis of the DNA-binding dye 7-amino-actinomycin D demonstrated that this was not as a result of differentiation, as VLA-5+ plasma cells were all non-viable. This was confirmed in freshly explanted plasma cells from nine patients. Discrete stages of plasma cell differentiation could not be distinguished by the level of CD45 or VLA-5 expression. The results indicate that there is a single stage of plasma cell differentiation, with the phenotype CD38+CD138+VLA-5-. These findings support the hypothesis that neoplastic bone marrow plasma cells represent an independent, self-replenishing population.

  16. Identifying differentially regulated subnetworks from phosphoproteomic data

    Directory of Open Access Journals (Sweden)

    Tebbe Andreas

    2010-06-01

    Full Text Available Abstract Background Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation. Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Results Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. Conclusions SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.

  17. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  18. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  19. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation

    Science.gov (United States)

    Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-01-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  20. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    -induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  1. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    -induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  2. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge.

    Science.gov (United States)

    Yang, Ziyan; Wu, Hongjuan; Li, Yuan

    2012-07-01

    Microcystins are a family of potent hepatotoxins produced by freshwater cyanobacteria and can cause animal intoxications and human diseases. In this study, the effect of microcystin-LR (MC-LR) on the tissues of freshwater pearl mussel (Hyriopsis cumingii) was evaluated and differentially expressed genes in the hepatopancreas of the mussel exposed to MC-LR were identified. HPLC analysis of cell extracts from various tissues of the mussel indicated that the hepatopancreas had the highest MC-LR levels (55.78 ± 6.73 μg g⁻¹ DW) after 15-day exposure. The MC-LR concentration in gill or muscle was an order of magnitude less than in hepatopancreas or gonad. Subtractive cDNA library was constructed by suppression subtractive hybridization (SSH), and ∼400 positive clones were sequenced, from which 98 high quality sequences were obtained by BLAST analysis. The screening identified numerous genes involved in apoptosis, signal transduction, cytoskeletal remodel, innate immunity, material and energy metabolism, translation and transcription which were extensively discussed. The results of this study add large amount of information to the mussel genome data, and for the first time present the basic data on toxicity effect of MC-LR on mussel.

  3. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome

    DEFF Research Database (Denmark)

    Lottrup, G; Nielsen, J E; Maroun, L L

    2014-01-01

    STUDY QUESTION: What is the differentiation stage of human testicular interstitial cells, in particular Leydig cells (LC), within micronodules found in patients with infertility, testicular cancer and Klinefelter syndrome? SUMMARY ANSWER: The Leydig- and peritubular-cell populations in testes....... MAIN RESULTS AND THE ROLE OF CHANCE: DLK1, INSL3 and COUP-TFII expression changed during normal development and was linked to different stages of LC differentiation: DLK1 was expressed in all fetal LCs, but only in spindle-shaped progenitor cells and in a small subset of polygonal LCs in the normal....... WIDER IMPLICATIONS OF THE FINDINGS: The population of LCs, especially those clustered in large nodules, are heterogeneous and comprise cells at different stages of differentiation. The study demonstrated that the differentiation and function of LCs, and possibly also peritubular cells, are impaired...

  4. Performing statistical analyses on quantitative data in Taverna workflows: an example using R and maxdBrowse to identify differentially-expressed genes from microarray data.

    Science.gov (United States)

    Li, Peter; Castrillo, Juan I; Velarde, Giles; Wassink, Ingo; Soiland-Reyes, Stian; Owen, Stuart; Withers, David; Oinn, Tom; Pocock, Matthew R; Goble, Carole A; Oliver, Stephen G; Kell, Douglas B

    2008-08-07

    There has been a dramatic increase in the amount of quantitative data derived from the measurement of changes at different levels of biological complexity during the post-genomic era. However, there are a number of issues associated with the use of computational tools employed for the analysis of such data. For example, computational tools such as R and MATLAB require prior knowledge of their programming languages in order to implement statistical analyses on data. Combining two or more tools in an analysis may also be problematic since data may have to be manually copied and pasted between separate user interfaces for each tool. Furthermore, this transfer of data may require a reconciliation step in order for there to be interoperability between computational tools. Developments in the Taverna workflow system have enabled pipelines to be constructed and enacted for generic and ad hoc analyses of quantitative data. Here, we present an example of such a workflow involving the statistical identification of differentially-expressed genes from microarray data followed by the annotation of their relationships to cellular processes. This workflow makes use of customised maxdBrowse web services, a system that allows Taverna to query and retrieve gene expression data from the maxdLoad2 microarray database. These data are then analysed by R to identify differentially-expressed genes using the Taverna RShell processor which has been developed for invoking this tool when it has been deployed as a service using the RServe library. In addition, the workflow uses Beanshell scripts to reconcile mismatches of data between services as well as to implement a form of user interaction for selecting subsets of microarray data for analysis as part of the workflow execution. A new plugin system in the Taverna software architecture is demonstrated by the use of renderers for displaying PDF files and CSV formatted data within the Taverna workbench. Taverna can be used by data analysis

  5. Performing statistical analyses on quantitative data in Taverna workflows: An example using R and maxdBrowse to identify differentially-expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Pocock Matthew R

    2008-08-01

    Full Text Available Abstract Background There has been a dramatic increase in the amount of quantitative data derived from the measurement of changes at different levels of biological complexity during the post-genomic era. However, there are a number of issues associated with the use of computational tools employed for the analysis of such data. For example, computational tools such as R and MATLAB require prior knowledge of their programming languages in order to implement statistical analyses on data. Combining two or more tools in an analysis may also be problematic since data may have to be manually copied and pasted between separate user interfaces for each tool. Furthermore, this transfer of data may require a reconciliation step in order for there to be interoperability between computational tools. Results Developments in the Taverna workflow system have enabled pipelines to be constructed and enacted for generic and ad hoc analyses of quantitative data. Here, we present an example of such a workflow involving the statistical identification of differentially-expressed genes from microarray data followed by the annotation of their relationships to cellular processes. This workflow makes use of customised maxdBrowse web services, a system that allows Taverna to query and retrieve gene expression data from the maxdLoad2 microarray database. These data are then analysed by R to identify differentially-expressed genes using the Taverna RShell processor which has been developed for invoking this tool when it has been deployed as a service using the RServe library. In addition, the workflow uses Beanshell scripts to reconcile mismatches of data between services as well as to implement a form of user interaction for selecting subsets of microarray data for analysis as part of the workflow execution. A new plugin system in the Taverna software architecture is demonstrated by the use of renderers for displaying PDF files and CSV formatted data within the Taverna

  6. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  7. Adipocyte differentiation and leptin expression

    DEFF Research Database (Denmark)

    Hwang, C S; Loftus, T M; Mandrup, S

    1997-01-01

    , most notably those of the C/EBP and PPAR families, which combine to regulate each other and to control the expression of adipocyte-specific genes. One such gene, i.e. the obese gene, was recently identified and found to encode a hormone, referred to as leptin, that plays a major role in the regulation...... of energy intake and expenditure. The hormonal and transcriptional control of adipocyte differentiation is discussed, as is the role of leptin and other factors secreted by the adipocyte that participate in the regulation of adipose homeostasis....

  8. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Indian Academy of Sciences (India)

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  9. DNA microarray analysis of genes differentially expressed in adipocyte differentiation.

    Science.gov (United States)

    Yin, Chunyan; Xiao, Yanfeng; Zhang, Wei; Xu, Erdi; Liu, Weihua; Yi, Xiaoqing; Chang, Ming

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a greater than or equal to 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RTPCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR?2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  10. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation.

    Science.gov (United States)

    Fanger, G R; Vaillancourt, R R; Heasley, L E; Montmayeur, J P; Johnson, G L; Maue, R A

    1997-01-01

    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation.

  11. CD62Lneg CD38+ expression on circulating CD4 + T cells identifies mucosally differentiated cells in protein fed mice and in human celiac disease patients and controls

    NARCIS (Netherlands)

    M.F. du Pré (Fleur); L.A. van Berkel (Lisette); M. Ráki (Melinda); M.A. Van Leeuwen (Marieke); L.F. de Ruiter (Lilian); F. Broere; M.N.D. Ter Borg (Mariëtte N. D.); F.E. Lund (Frances E.); J.C. Escher (Johanna); K.E.A. Lundin (Knut E. A.); L.M. Sollid (Ludvig M.); G. Kraal (Georg); E.E.S. Nieuwenhuis (Edward); J.N. Samsom (Janneke)

    2011-01-01

    textabstractObjectives: The aim of this study was to identify new markers of mucosal T cells to monitor ongoing intestinal immune responses in peripheral blood. Methods: Expression of cell-surface markers was studied in mice on ovalbumin (OVA)-specific T cells in the gut-draining mesenteric lymph no

  12. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    Full Text Available BACKGROUND: A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. METHODOLOGY/PRINCIPAL FINDINGS: We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs, 24 for chemosensory proteins (CSPs, 2 for sensory neuron membrane proteins (SNMPs, 39 for odorant receptors (ORs and 3 for ionotropic receptors (IRs. The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. CONCLUSION: Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as

  13. Identified Circadian Rhythm Genes of Ciliary Epithelium with Differential Display

    Institute of Scientific and Technical Information of China (English)

    Yanxia Li; Dongcheng Lu; Jian Ge; Yanna Li; Yehong Zhuo; Sears ML

    2001-01-01

    Purpose:To identify differential genes expressed in the rabbit ciliary epithelium duringthe circadian cycle of aqueous flow.Methods: Total RNA from ciliary epithelium of rabbits at 8AM (light on 1 hour) and8PM(light off 1 hour) were compared by differential display reverse transcription-polymerase chain reaetion(DD RT-PCR), using 6 % denaturing polyacrylamide electro-phoresis, choose differential display bands, cut and reamplify with the same primer, cloneand sequence. Search the database of Genbank, prolong them with 5' RACE and 3'RACE technique then clone, sequence and search database of Genbank.Results: 93 Significant differences gene expression were detected between light on andlight off in the rabbit ciliary epithelium.Conclusion: Differential display is a powerful tool to screen differentially expressedgenes in circadian rhythm of ciliary epithelium.

  14. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

    Science.gov (United States)

    Balaram, Pooja; Hackett, Troy A; Kaas, Jon H

    2013-05-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).

  15. Identifying sexual differentiation genes that affect Drosophila life span

    Directory of Open Access Journals (Sweden)

    Tower John

    2009-12-01

    Full Text Available Abstract Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF during development was lethal to males, and produced a limited

  16. Identifying gene regulatory network rewiring using latent differential graphical models.

    Science.gov (United States)

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  17. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  18. Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP.

    Science.gov (United States)

    Hare, Nathan J; Ma, Cindy S; Alvaro, Frank; Nichols, Kim E; Tangye, Stuart G

    2006-07-01

    X-linked lymphoproliferative disease (XLP) is an immunodeficiency resulting from mutations in SH2D1A, which encodes signalling lymphocytic activation molecule (SLAM)-associated protein (SAP). In addition to SLAM, SAP associates with several other cell-surface receptors including 2B4 (CD244), Ly9 (CD229), CD84 and NTB-A. SAP contains a single src-homology-2 domain and acts as an intracellular adaptor protein by recruiting the protein tyrosine kinase FynT to the cytoplasmic domains of some of these receptors, which results in the initiation of specific downstream signal transduction pathways. XLP is likely to result from perturbed signalling through one or more of these SAP-associating receptors. In this study, we identified missense (Y54C, I84T and F87S) and insertion (fs82 --> X103) mutations in four different kindreds affected by XLP. Each mutation dramatically reduced the half-life of SAP, thus diminishing its expression in primary lymphocytes as well as in transfected cell lines. Interestingly, although the Y54C and F87S mutations compromised the ability of SAP to associate with different receptors, the I84T mutation had no effect on the ability of SAP to bind SLAM, CD84 or 2B4. However, signalling downstream of SLAM was reduced in the presence of SAP bearing the I84T mutation. These findings indicate that, irrespective of the type of mutation, signalling through SAP-associating receptors in XLP can be impaired by reducing the expression of SAP, the ability of SAP to bind surface receptors and/or its ability to activate signal transduction downstream of the SLAM-SAP complex.

  19. Transcriptome study of differential expression in schizophrenia

    Science.gov (United States)

    Sanders, Alan R.; Göring, Harald H. H.; Duan, Jubao; Drigalenko, Eugene I.; Moy, Winton; Freda, Jessica; He, Deli; Shi, Jianxin; Gejman, Pablo V.

    2013-01-01

    Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves’ disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia. PMID:23904455

  20. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  1. Suppression subtractive hybridization for identifying differentially expressed genes in renal cell carcinoma%肾癌差异表达基因的克隆及意义

    Institute of Scientific and Technical Information of China (English)

    张强; 辛殿旗; 那彦群; 郭应禄; 张志文

    2001-01-01

    目的克隆并鉴定肾癌与正常肾之间差异表达的基因,为研究肾癌发生发展的分子生物学机制奠定基础。 方法应用抑制性消减杂交技术(suppression subtractive hybridization, SSH),构建人肾癌组织与正常肾组织差异表达的cDNA消减文库,并从中克隆鉴定出肾癌差异表达的基因。 结果构建成功高消减效率的人肾癌组织cDNA消减文库,对其中10个克隆插入的cDNA片段进行测序后经GenBank检索表明10个片段均为未知新序列,其中RCC18为5个拷贝,这提示以上10个cDNA片段可能来自6个新基因。Northern blotting分析显示RCC18在肾癌组织中有明显表达,而在正常肾组织中无表达,这证明RCC18是肾癌特异表达的新基因。应用SMART RACE技术获得RCC18基因的全长。 结论人肾癌cDNA消减文库的建立为进一步大批量筛选、克隆肾癌特异性表达的未知新基因奠定了基础。初步筛选出的新基因为研究肾癌发生发展中的分子生物学机制提供了重要线索。%Objective To construct a renal cell carcinoma (RCC) cDNA subtractive library using suppression subtractive hybridization. Methods Polyadenylated RNA [Poly (A)+ RNA] was isolated from tissues of RCC and normal kidney, and single-strand cDNAs and double-strand cDNAs were synthesized in turn. RCC cDNAs were divided into two groups and ligated to the specific adaptors l and 2, and then hybridized with normal kidney cDNA twice with two rounds of suppression PCR. Second round PCR products were cloned to T/A plasmid vectors to set up the subtractive library. One hundred clones were randomly picked to perform enzyme digest analysis, and some underwent sequence analysis and Northern blot to identify RCC specifically expressed genes. SMART RACE procedure was operated to clone full length novel RCC specifically expressed genes. Results A human RCC subtractive library with high subtractive efficiency was successfully set

  2. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant.

    Directory of Open Access Journals (Sweden)

    Kerry L Hilligan

    Full Text Available Macrophage and dendritic cell (DC populations residing in the intestinal lamina propria (LP are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity.

  3. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model.

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    Full Text Available The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.

  4. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  5. Suppression Subtractive Hybridization Identified Genes Differentially Expressed in a Multidrug Resistance Cell Line of Human Lung Adenocarcinoma%肺腺癌多药耐药细胞特异表达基因的克隆与鉴定

    Institute of Scientific and Technical Information of China (English)

    陈杰; 钱桂生; 黄桂君; 熊玮; 李靖

    2001-01-01

    Objective: The aim of this study was to clone and screen multidrug resistance related gene of human adenocarcinoma cell. Methods: The suppression subtractive hybridization (SSH) was performed on human adenocarcinoma multidrug resistance cell line (SPC-A-1/CDDP, as tester) and human adenocarcinoma cell line (SPC-A-1, as driver). After the subtracted cDNA library being constructed, the dot blots was used to screen the subtracted cDNA library with forward and reverse-subtracted cDNA probes. The differentially expressed cDNA fragments in SPC-A-1/CDDP was sequenced and analyzed through Genbank with Blast search. The novel cDNA sequences were analyzed by Northern blots. Results: A high quality subtracted cDNA library was constructed. Twenty-three differentially expressed cDNA fragments in SPC-A-1/CDDP were identified. Two of them were novel cDNA sequences and the others had 93%-100% homology with the known genes respectively. Northern blots indicated the novel cDNA sequences only expressed in SPC-A-1/CDDP cell. Conclusion: The novel cDNA sequences might be multidrug resistance related genes in human lung adenocarcinoma. SSH is a powerful technique to identify differentially expressed genes.%目的:克隆和筛选肺腺癌多药耐药细胞特异表达基因。方法:将肺腺癌多药耐药细胞(SPC-A-1/CDDP)作为实验方,肺腺癌细胞(SPC-A-1)作为对照方,应用抑制消减杂交技术,构建实验方特异表达cDNA消减文库;用斑点杂交法初步筛选cDNA消减文库后,将获得的阳性克隆进行测序和同源性分析(Genbank),对新的cDNA序列进行Northern blot杂交验证。结果:建立了一个肺腺癌多药耐药细胞(SPC-A-1/CDDP)特异表达cDNA消减文库,斑点杂交法初步筛选显示23个克隆中有SPC-A-1/CDDP特异表达cDNA片断,测序和同源性分析表明2个cDNA片断为新序列,其余cDNA片断与已知基因有93%~100%的同源性,Northern blot杂交结果表明2

  6. Screen and identify of differential proteins expressed in the placenta of Down's syndrome%唐氏综合征胎盘组织中差异表达蛋白的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    闫丽宇; 孙成娟; 王欣; 陈奕; 张为远

    2011-01-01

    . Methods We collected placenta of 18 patients(from March 2009 to December 2009 at Beijing Obstetrics and Gynecology Hospital), and divided them into two groups, one was 10 patients with fetal Down's syndrome, the other was normal pregnancies (normal chromosome) with other diseases. We separated proteins expressed in placentas of two groups by two-dimensional difference gel electrophoresis (2D-DIGE), and then analyzed the differential protein spots by software Decyder 6. 5, then,spots differentially expressed by 1.5 fold or more were analyzed by matrix assisted laser desorption ionizationtime of flight-mass spectrometry (MALDI-TOF-MS). In the end, the differential expressional levels of partially identified proteins were validated by western blot analysis. Results (1) Differential proteins of two groups protein spots of placentas separated by 2D-DIGE were analyzed by software Decyder 6. 5 (these colored lights scattered in the image were protein spots), a total of 56 spots out of 352 were differentially expressed (P<0. 05) in two groups. We analyzed 17 protein spots(12 protein spots were over-expressed and 5 protein spots were down-expressed) differentially expressed by 1.5 fold or more by MALDI-TOF-MS.(2) Protein matching after searching protein database, 17 protein spots turn out to be 10 proteins. Four kinds [superoxide dismutase 1 (SOD1), peroxiredoxin 6 (PRDX6), heat shock protein 27 (HSP27),endoplasmic reticulum protein 29 (ERP29)] of them were validated by western blot analysis, the group of fetal Down's syndrome were 0.74 ±0. 12,0.29 ±0. 10,0.53 ±0. 16,0.20 ±0. 09,the group of normal pregnancies were 0. 51 ±0. 08,0. 34 ± 0. 16,0. 18 ± 0. 07,0. 35 ± 0. 09, the results confirmed the observed changes in proteomics. Conclusions Compared with normal pregnancies, there were differential proteins expressed in placenta of Down's syndrome. This approach might provide new screening markers in use for prediction of Down's syndrome, however, further study should be done

  7. Studies of Differentially-Expressed Genes in Human Endometrial Cancer of Various Differentiated Grades

    Institute of Scientific and Technical Information of China (English)

    Bin Cai; David Hogg; Guangzhong Lu; Ling Liu; Xiaowei Xi; Wei Xu; Huifang Lu; Yongbin Yang; Xiaoping Wan

    2007-01-01

    OBJECTIVE To study the gene expression profiles of human endometrial cancers at various differentiaOted grade levels and to identify the genes related to differentiation of the endometrial cancers. METHODS cDNA microarray technology was used to analyze the differentially-expressed genes among different differentiated grades of 32 cases of endometrial cancer. Hierarchical cluster analysis (HCA) for the gene expression profiles of the cases was employed. RESULTS The tissue samples were grouped based on the various dif ferentiated tumor grades with 33 differentiation-related genes identified out (P<0.001). Based on the results from the HCA, the conformity rate was 91% among the 33 differentially-expressed genes and the analysis of pathological classification.CONCLUSION Genes related to the differentiation of endometrial cancer can be identified by using gene chips to analyze the expression profiles of endometrial cancers at various differentiated grades; HCA of the gene expression profiles can be helpful for distinguishing high-risk endometrial cancers before surgery.

  8. A Non-transformation Method for Identifying Differentially Expressed Genes from cDNA Microarrays%cDNA芯片差异表达基因检测的非转换方法

    Institute of Scientific and Technical Information of China (English)

    张纪刚; 殷宗俊; 张勤

    2006-01-01

    cDNA微阵列数据中包含许多变异因素,用于检测差异表达基因和其它统计分析前,必须将这些"噪音"剔除.对数比法(背景校正、对数比转换和数据标准化)已经被广泛应用于cDNA微阵列数据分析中,然而这种方法却存在着一些亟待解决的缺陷.对此,该文提出一种非转换方法,它可免去对数比的转化过程,直接在背景校正后进行数据标准化,可以有效剔除实验"噪音".研究结果表明:在检测差异表达基因的效率方面,非转换方法比常规的对数比法具有更好的稳健性和更高的检测功效,基因检出率和准确性大大提高.%cDNA microarray data are subject to many sources of variation that have to be removed before statistical tests can be applied for identifying genes that are expressed differentially. Background correction, log-ratio transformation, and normalization,referred as the log-ratio approach, have been widely used for this purpose. However, there are some problems associated with this procedure. In this study, we proposed an alternative approach that obviates the log-ratio transformation step and goes directly to normalization after background correction. The method can estimate the "noise" effect by utilizing the information more effectively.Simulation studies were carried out to compare the feasibility and efficiency of this approach for detecting the specifically and differentially expressed genes under various conditions with the log-ratio approach. The results showed that our approach worked well and was more robust and powerful than the log-ratio approach.

  9. Microarray expression analysis of epithelial ovarian cancer with distinct differentiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To identify gene expression profiling in epithelial ovarian cancer and to explore its correlation with histopathology characterization and prognosis. Gene expression profiles were generated from 10 human ovarian frozen tissue specimens using Agilent Human 1A microarrays. Strikingly, clear differences of gene expression patterns were observed in ovarian cancer as compared to normal tissues. Unique gene profiles were observed in moderately and poorly differentiated epithelial ovarian cancer. It is concluded that different histopathology characterization likely exists extensive molecular heterogeneity.

  10. Chemometrics of differentially expressed proteins from colorectal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Lay-Chin Yeoh; Saravanan Dharmaraj; Boon-Hui Gooi; Manjit Singh; Lay-Harn Gam

    2011-01-01

    AIM: To evaluate the usefulness of differentially expressed proteins from colorectal cancer (CRC) tissues for differentiating cancer and normal tissues. METHODS: A Proteomic approach was used to identify the differentially expressed proteins between CRC and normal tissues. The proteins were extracted using Tris buffer and thiourea lysis buffer (TLB) for extraction of aqueous soluble and membrane-associated proteins, respectively. Chemometrics, namely principal component analysis (PCA) and linear discriminant analysis (LDA), were used to assess the usefulness of these proteins for identifying the cancerous state of tissues. RESULTS: Differentially expressed proteins identified were 37 aqueous soluble proteins in Tris extracts and 24 membrane-associated proteins in TLB extracts. Based on the protein spots intensity on 2D-gel images, PCA by applying an eigenvalue > 1 was successfully used to reduce the number of principal components (PCs) into 12 and seven PCs for Tris and TLB extracts, respectively, and subsequently six PCs, respectively from both the extracts were used for LDA. The LDA classification for Tris extract showed 82.7% of original samples were correctly classified, whereas 82.7% were correctly classified for the cross-validated samples. The LDA for TLB extract showed that 78.8% of original samples and 71.2% of the cross-validated samples were correctly classified. CONCLUSION: The classification of CRC tissues by PCA and LDA provided a promising distinction between normal and cancer types. These methods can possibly be used for identification of potential biomarkers among the differentially expressed proteins identified.

  11. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  12. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    of spurious information along the network are avoided. The proposed inference procedure is based on the minimization of the Bayesian Information Criterion (BIC) in the class of decomposable graphical models. This class of models can be used to represent complex relationships and has suitable properties...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  13. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  14. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  15. Mining expressed sequence tags identifies cancer markers of clinical interest

    Directory of Open Access Journals (Sweden)

    Skrabanek Lucy

    2006-11-01

    Full Text Available Abstract Background Gene expression data are a rich source of information about the transcriptional dis-regulation of genes in cancer. Genes that display differential regulation in cancer are a subtype of cancer biomarkers. Results We present an approach to mine expressed sequence tags to discover cancer biomarkers. A false discovery rate analysis suggests that the approach generates less than 22% false discoveries when applied to combined human and mouse whole genome screens. With this approach, we identify the 200 genes most consistently differentially expressed in cancer (called HM200 and proceed to characterize these genes. When used for prediction in a variety of cancer classification tasks (in 24 independent cancer microarray datasets, 59 classifications total, we show that HM200 and the shorter gene list HM100 are very competitive cancer biomarker sets. Indeed, when compared to 13 published cancer marker gene lists, HM200 achieves the best or second best classification performance in 79% of the classifications considered. Conclusion These results indicate the existence of at least one general cancer marker set whose predictive value spans several tumor types and classification types. Our comparison with other marker gene lists shows that HM200 markers are mostly novel cancer markers. We also identify the previously published Pomeroy-400 list as another general cancer marker set. Strikingly, Pomeroy-400 has 27 genes in common with HM200. Our data suggest that a core set of genes are responsive to the deregulation of pathways involved in tumorigenesis in a variety of tumor types and that these genes could serve as transcriptional cancer markers in applications of clinical interest. Finally, our study suggests new strategies to select and evaluate cancer biomarkers in microarray studies.

  16. Identifying differential transcription factor binding in ChIP-seq

    Directory of Open Access Journals (Sweden)

    Dai-Ying eWu

    2015-04-01

    Full Text Available ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal.These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement.

  17. Identifying differential transcription factor binding in ChIP-seq.

    Science.gov (United States)

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R; Siegmund, Kimberly D

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement.

  18. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  19. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure.

    Directory of Open Access Journals (Sweden)

    Mehregan Movassagh

    Full Text Available Epigenetic mechanisms such as microRNA and histone modification are crucially responsible for dysregulated gene expression in heart failure. In contrast, the role of DNA methylation, another well-characterized epigenetic mark, is unknown. In order to examine whether human cardiomyopathy of different etiologies are connected by a unifying pattern of DNA methylation pattern, we undertook profiling with ischaemic and idiopathic end-stage cardiomyopathic left ventricular (LV explants from patients who had undergone cardiac transplantation compared to normal control. We performed a preliminary analysis using methylated-DNA immunoprecipitation-chip (MeDIP-chip, validated differential methylation loci by bisulfite-(BS PCR and high throughput sequencing, and identified 3 angiogenesis-related genetic loci that were differentially methylated. Using quantitative RT-PCR, we found that the expression of these genes differed significantly between CM hearts and normal control (p<0.01. Moreover, for each individual LV tissue, differential methylation showed a predicted correlation to differential expression of the corresponding gene. Thus, differential DNA methylation exists in human cardiomyopathy. In this series of heterogeneous cardiomyopathic LV explants, differential DNA methylation was found in at least 3 angiogenesis-related genes. While in other systems, changes in DNA methylation at specific genomic loci usually precede changes in the expression of corresponding genes, our current findings in cardiomyopathy merit further investigation to determine whether DNA methylation changes play a causative role in the progression of heart failure.

  20. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    Science.gov (United States)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  1. Content-based microarray search using differential expression profiles

    Directory of Open Access Journals (Sweden)

    Thathoo Rahul

    2010-12-01

    Full Text Available Abstract Background With the expansion of public repositories such as the Gene Expression Omnibus (GEO, we are rapidly cataloging cellular transcriptional responses to diverse experimental conditions. Methods that query these repositories based on gene expression content, rather than textual annotations, may enable more effective experiment retrieval as well as the discovery of novel associations between drugs, diseases, and other perturbations. Results We develop methods to retrieve gene expression experiments that differentially express the same transcriptional programs as a query experiment. Avoiding thresholds, we generate differential expression profiles that include a score for each gene measured in an experiment. We use existing and novel dimension reduction and correlation measures to rank relevant experiments in an entirely data-driven manner, allowing emergent features of the data to drive the results. A combination of matrix decomposition and p-weighted Pearson correlation proves the most suitable for comparing differential expression profiles. We apply this method to index all GEO DataSets, and demonstrate the utility of our approach by identifying pathways and conditions relevant to transcription factors Nanog and FoxO3. Conclusions Content-based gene expression search generates relevant hypotheses for biological inquiry. Experiments across platforms, tissue types, and protocols inform the analysis of new datasets.

  2. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  3. Bayesian modeling of differential gene expression.

    Science.gov (United States)

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  4. Identification of genes differentially expressed during ripening of banana.

    Science.gov (United States)

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  5. Differentially expressed genes in giant cell tumor of bone.

    Science.gov (United States)

    Babeto, Erica; Conceição, André Luis Giacometti; Valsechi, Marina Curado; Peitl Junior, Paulo; de Campos Zuccari, Débora Aparecida Pires; de Lima, Luiz Guilherme Cernaglia Aureliano; Bonilha, Jane Lopes; de Freitas Calmon, Marília; Cordeiro, José Antônio; Rahal, Paula

    2011-04-01

    Giant cells tumors of bone (GCTB) are benign in nature but cause osteolytic destruction with a number of particular characteristics. These tumors can have uncertain biological behavior often contain a significant proportion of highly multinucleated cells, and may show aggressive behavior. We have studied differential gene expression in GCTB that may give a better understanding of their physiopathology, and might be helpful in prognosis and treatment. Rapid subtractive hybridization (RaSH) was used to identify and measure novel genes that appear to be differentially expressed, including KTN1, NEB, ROCK1, and ZAK using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry in the samples of GCTBs compared to normal bone tissue. Normal bone was used in the methodology RaSH for comparison with the GCTB in identification of differentially expressed genes. Functional annotation indicated that these genes are involved in cellular processes related to their tumor phenotype. The differential expression of KTN1, ROCK1, and ZAK was independently confirmed by qRT-PCR and immunohistochemistry. The expression of the KTN1 and ROCK1 genes were increased in samples by qRT-PCR and immunohistochemistry, and ZAK had reduced expression. Since ZAK have CpG islands in their promoter region and low expression in tumor tissue, their methylation pattern was analyzed by MSP-PCR. The genes identified KTN1, ROCK1, and ZAK may be responsible for loss of cellular homeostasis in GCTB since they are responsible for various functions related to tumorigenesis such as cell migration, cytoskeletal organization, apoptosis, and cell cycle control and thus may contribute at some stage in the process of formation and development of GCTB.

  6. Differential expression of cysteine desulfurases in soybean

    Directory of Open Access Journals (Sweden)

    Heis Marta D

    2011-11-01

    Full Text Available Abstract Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11

  7. Differentially-Expressed Pseudogenes in HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2015-09-01

    Full Text Available Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  8. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes.

    Science.gov (United States)

    Wang, Kai; Phillips, Charles A; Rogers, Gary L; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations.

  9. Screening for Differentially Expressed Proteins Relevant to the Differential Diagnosis of Sarcoidosis and Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Du

    Full Text Available In this study, we sought to identify differentially expressed proteins in the serum of patients with sarcoidosis or tuberculosis and to evaluate these proteins as markers for the differential diagnosis of sarcoidosis and sputum-negative tuberculosis.Using protein microarrays, we identified 3 proteins exhibiting differential expression between patients with sarcoidosis and tuberculosis. Elevated expression of these proteins was verified using the enzyme-linked immunosorbent assay (ELISA and was further confirmed by immunohistochemistry. Receiver operating characteristic (ROC curve, logistic regression analysis, parallel, and serial tests were used to evaluate the diagnostic efficacy of the proteins.Intercellular Adhesion Molecule 1(ICAM-1 and leptin were screened for differentially expressed proteins relevant to sarcoidosis and tuberculosis. Using ROC curves, we found that ICAM-1 (cutoff value: 57740 pg/mL had an area under the curve (AUC, sensitivity, and specificity of 0.718, 62.3%, and 79.5% respectively, while leptin (cutoff value: 1193.186 pg/mL had an AUC, sensitivity, and specificity of 0.763, 88.3%, and 65.8%, respectively. Logistic regression analysis revealed that the AUC, sensitivity, and specificity of combined leptin and ICAM-1 were 0.787, 89.6%, and 65.8%, respectively, while those of combined leptin, ICAM-1, and body mass index (BMI were 0.837, 90.9%, and 64.4%, respectively, which had the greatest diagnostic value. Parallel and serial tests indicated that the BMI-leptin parallel with the ICAM-1 serial was the best diagnostic method, achieving a sensitivity and specificity of 86.5% and 73.1%, respectively. Thus, our results identified elevated expression of ICAM-1 and leptin in serum and granulomas of sarcoidosis patients.ICAM-1 and leptin were found to be potential markers for the diagnosis of sarcoidosis and differential diagnosis of sarcoidosis and sputum-negative tuberculosis.

  10. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  11. Reg Ⅳ, a differentially expressed gene in colorectal adenoma

    Institute of Scientific and Technical Information of China (English)

    张宇伟; 来茂德; 谷雪梅; 罗敏捷; 邵丽娜

    2003-01-01

    ObjectiveTo discover and identify differentially expressed genes associated with colorectal adenoma formation and the role of RegⅣ in colorectal adenoma differentiation.MethodsA subtracted cDNA library was constructed with cDNAs that were isolated from either the normal mucosa or adenoma tissue of a single patient. Suppressive subtractive hybridization (SSH) combined with virtual northern blotting was used to characterize differentially expressed genes and contigs were assembled by electronic cloning (in silico cloning) with the EST database. Semi-quantitative RT-PCR was performed in 9 colorectal adenomas.ResultsThe amino acid sequence was determined with open reading frame (ORF) prediction software and was found to be 100% homologous to the protein product of RegⅣ (a novel gene isolated from a large inflammatory bowel disease library). RegⅣ was found to be highly expressed in all of the adenoma samples (9/9) compared with the normal mucosa samples, while 5/6 cases showed RegⅣ to be more strongly expressed in adenocarcinoma.Conclusion RegⅣ may play an important role in the initiation of colorectal adenoma differentiation, and its detection may be useful in the early diagnosis of colorectal adenoma formation.

  12. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits.

    Science.gov (United States)

    Gobert, Rosanna Pescini; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; Hooft van Huijsduijnen, Rob

    2009-03-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.

  13. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation

    Science.gov (United States)

    Zhi, J.; Sommerfeldt, D. W.; Rubin, C. T.; Hadjiargyrou, M.

    2001-01-01

    Osteoblast differentiation is a multistep process that involves critical spatial and temporal regulation of cellular processes marked by the presence of a large number of differentially expressed molecules. To identify key functional molecules, we used differential messenger RNA (mRNA) display and compared RNA populations isolated from the defined transition phases (proliferation, matrix formation, and mineralization) of the MC3T3-E1 osteoblast-like cell line. Using this approach, a complementary DNA (cDNA) fragment was isolated and identified as neuroleukin (NLK), a multifunctional cytokine also known as autocrine motility factor (AMF), phosphoglucose isomerase (PGI; phosphohexose isomerase [PHI]), and maturation factor (MF). Northern analysis showed NLK temporal expression during MC3T3-E1 cell differentiation with a 3.5-fold increase during matrix formation and mineralization. Immunocytochemical studies revealed the presence of NLK in MC3T3-E1 cells as well as in the surrounding matrix, consistent with a secreted molecule. In contrast, the NLK receptor protein was detected primarily on the cell membrane. In subsequent studies, a high level of NLK expression was identified in osteoblasts and superficial articular chondrocytes in bone of 1-, 4-, and 8-month-old normal mice, as well as in fibroblasts, proliferating chondrocytes, and osteoblasts within a fracture callus. However, NLK was not evident in hypertrophic chondrocytes or osteocytes. In addition, treatment of MC3T3 cells with 6-phosphogluconic acid (6PGA; a NLK inhibitor) resulted in diminishing alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, especially during the matrix formation stage of differentiating cells. Taken together, these data show specific expression of NLK in discrete populations of bone and cartilage cells and suggest a possible role for this secreted protein in bone development and regeneration.

  14. Differential Expression of Long Noncoding RNAs between Sperm Samples from Diabetic and Non-Diabetic Mice

    OpenAIRE

    Guang-Jian Jiang; Teng Zhang; Tian An; Dan-Dan Zhao; Xiu-Yan Yang; Dong-Wei Zhang; Yi Zhang; Qian-Qian Mu; Na Yu; Xue-Shan Ma; Si-Hua Gao

    2016-01-01

    To investigate the potential core reproduction-related genes associated with the development of diabetes, the expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in the sperm of diabetic mice were studied. We used microarray analysis to detect the expression of lncRNAs and coding transcripts in six diabetic and six normal sperm samples, and differentially expressed lncRNAs and mRNAs were identified through Volcano Plot filtering. The function of differentially expresse...

  15. Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua

    Science.gov (United States)

    Nakamura, Aline Minali; Chahad-Ehlers, Samira; Lima, André Luís A.; Taniguti, Cristiane Hayumi; Sobrinho Jr., Iderval; Torres, Felipe Rafael; de Brito, Reinaldo Alves

    2016-01-01

    The West Indian fruit fly, Anastrepha obliqua, is an important agricultural pest in the New World. The use of pesticide-free methods to control invasive species such as this reinforces the search for genes potentially useful in their genetic control. Therefore, the study of chemosensory proteins involved with a range of responses to the chemical environment will help not only on the understanding of the species biology but may also help the development of environmentally friendly pest control strategies. Here we analyzed the expression patterns of three OBP genes, Obp19d_2, Obp56a and Obp99c, across different phases of A. obliqua development by qPCR. In order to do so, we tested eight and identified three reference genes for data normalization, rpl17, rpl18 and ef1a, which displayed stability for the conditions here tested. All OBPs showed differential expression on adults and some differential expression among adult stages. Obp99c had an almost exclusive expression in males and Obp56a showed high expression in virgin females. Thereby, our results provide relevant data not only for other gene expression studies in this species, as well as for the search of candidate genes that may help in the development of new pest control strategies. PMID:26818909

  16. Differential expression of the peripheral benzodiazepine receptor and gremlin during adipogenesis.

    Science.gov (United States)

    Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-05-01

    This study used the mRNA differential display technique to identify differentially expressed genes during the process of adipogenesis in the preadipocyte cell line, 3T3-L1. 3T3-L1 cells were treated with dexamethasone, isobutyl-1-methylxanthine, and insulin to induce differentiation into mature adipocytes. Cells were collected at three time-points during differentiation: Day 0 (d0), or nondifferentiated; Day 3 (d3), during differentiation; and Day 10 (d10), >90% of the cells had differentiated into mature adipocytes. Initial studies yielded 18 potentially differentially regulated cDNA candidates (8 down-regulated and 10 up-regulated). Reverse Northern and Northern blots confirmed differential expression of six of the candidates. Four of the candidates up-regulated on d3 and d10 were identified by sequence analysis to be lipoprotein lipase, a well-known marker of adipocyte differentiation. A fifth candidate that was expressed in d0, but not d3 or d10, was identified as DRM/gremlin, a bone morphogenetic protein antagonist. Finally, a sixth candidate that was increased at d3 and d10 was identified as the peripheral benzodiazepine receptor, which has been implicated in proliferation, differentiation, and cholesterol transport in cells. This study is the first to show that peripheral benzodiazepine receptor and DRM/gremlin are expressed in preadipocyte cell lines and that they are differentially regulated during adipogenesis.

  17. Identifying module biomarkers from gastric cancer by differential correlation network

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-09-01

    Full Text Available Xiaoping Liu,1–3,* Xiao Chang1,3,* 1College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, People’s Republic of China; 2Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China; 3Collaborative Research Center for Innovative Mathematical Modeling, Institute of Industrial Science, University of Tokyo, Tokyo, Japan *These authors contributed equally to this work Abstract: Gastric cancer (stomach cancer is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. Keywords: biomarkers, gastric cancer, stomach cancer, differential network

  18. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    Science.gov (United States)

    2015-10-01

    3. Targeting the differentiation pathway in neuroblastoma differentiation therapy. Department of Chemistry and Biochemistry. Texas State University...Nielsen O, Skjodt K, Palaniyar N, Stein- hilber W, et al. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in

  19. Expression profiling identifies genes expressed early during lint fibre initiation in cotton.

    Science.gov (United States)

    Wu, Yingru; Machado, Adriane C; White, Rosemary G; Llewellyn, Danny J; Dennis, Elizabeth S

    2006-01-01

    Cotton fibres are a subset of single epidermal cells that elongate from the seed coat to produce the long cellulose strands or lint used for spinning into yarn. To identify genes that might regulate lint fibre initiation, expression profiles of 0 days post-anthesis (dpa) whole ovules from six reduced fibre or fibreless mutants were compared with wild-type linted cotton using cDNA microarrays. Numerous clones were differentially expressed, but when only those genes that are normally expressed in the ovule outer integument (where fibres develop) were considered, just 13 different cDNA clones were down-regulated in some or all of the mutants. These included: a Myb transcription factor (GhMyb25) similar to the Antirrhinum Myb AmMIXTA, a putative homeodomain protein (related to Arabidopsis ATML1), a cyclin D gene, some previously identified fibre-expressed structural and metabolic genes, such as lipid transfer protein, alpha-expansin and sucrose synthase, as well as some unknown genes. Laser capture microdissection and reverse transcription-PCR were used to show that both the GhMyb25 and the homeodomain gene were predominantly ovule specific and were up-regulated on the day of anthesis in fibre initials relative to adjacent non-fibre ovule epidermal cells. Their spatial and temporal expression pattern therefore coincided with the time and location of fibre initiation. Constitutive overexpression of GhMyb25 in transgenic tobacco resulted in an increase in branched long-stalked leaf trichomes. The involvement of cell cycle genes prompted DNA content measurements that indicated that fibre initials, like leaf trichomes, undergo DNA endoreduplication. Cotton fibre initiation therefore has some parallels with leaf trichome development, although the detailed molecular mechanisms are clearly different.

  20. Expression profiling identifies microRNA signature in pancreatic cancer

    OpenAIRE

    Lee, Eun Joo; Gusev, Yuriy; Jiang, Jinmai; Gerard J Nuovo; Lerner, Megan R; Frankel, Wendy L.; Morgan, Daniel L.; Postier, Russell G.; Brackett, Daniel J; Schmittgen, Thomas D.

    2007-01-01

    microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pan...

  1. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  2. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    Science.gov (United States)

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  3. Assessment of differential gene expression in human peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Sangameswaran Lakshmi

    2002-09-01

    Full Text Available Abstract Background Microarray technology is a powerful methodology for identifying differentially expressed genes. However, when thousands of genes in a microarray data set are evaluated simultaneously by fold changes and significance tests, the probability of detecting false positives rises sharply. In this first microarray study of brachial plexus injury, we applied and compared the performance of two recently proposed algorithms for tackling this multiple testing problem, Significance Analysis of Microarrays (SAM and Westfall and Young step down adjusted p values, as well as t-statistics and Welch statistics, in specifying differential gene expression under different biological states. Results Using SAM based on t statistics, we identified 73 significant genes, which fall into different functional categories, such as cytokines / neurotrophin, myelin function and signal transduction. Interestingly, all but one gene were down-regulated in the patients. Using Welch statistics in conjunction with SAM, we identified an additional set of up-regulated genes, several of which are engaged in transcription and translation regulation. In contrast, the Westfall and Young algorithm identified only one gene using a conventional significance level of 0.05. Conclusion In coping with multiple testing problems, Family-wise type I error rate (FWER and false discovery rate (FDR are different expressions of Type I error rates. The Westfall and Young algorithm controls FWER. In the context of this microarray study, it is, seemingly, too conservative. In contrast, SAM, by controlling FDR, provides a promising alternative. In this instance, genes selected by SAM were shown to be biologically meaningful.

  4. Identification of Differentially Expressed Serum Proteins in Infectious Purpura Fulminans

    Directory of Open Access Journals (Sweden)

    Ting He

    2014-01-01

    Full Text Available Purpura fulminans (PF is a life-threatening hemorrhagic condition. Because of the rarity and randomness of the disease, no improvement in treatment has been made for a long time. In this study, we assessed the serum proteome response to PF by comparing serum proteins between healthy controls and PF patient. Liquid chromatography with tandem mass spectrometry (LC-MS/MS approach was used after depleting 6 abundant proteins of serum. In total, 262 proteins were confidently identified with 2 unique peptides, and 38 proteins were identified significantly up- (≥2 or downregulated (≤0.5 based on spectral counting ratios (SpCPF/N. In the 38 proteins with significant abundance changes, 11 proteins were previously known to be associated with burn or sepsis response, but 27 potentially novel proteins may be specifically associated with PF process. Two differentially expressed proteins, alpha-1-antitrypsin (SERPINA1 and alpha-2 antiplasmin (SERPINF2, were validated by Western blot. This is the first study where PF patient and healthy controls are compared in a proteomic study to elucidate proteins involved in the response to PF. This study provides an initial basis for future studies of PF, and the differentially expressed proteins might provide new therapeutic targets to decrease the mortality of PF.

  5. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  6. Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Harsha, H C; Grønborg, Mads

    2008-01-01

    Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based...... on enrichment of cellular subproteomes prior to mass spectrometric analysis can provide increased coverage of certain classes of molecules. We used a membrane protein enrichment strategy coupled with 18O labeling based quantitative proteomics to identify proteins that are highly expressed in cholangiocarcinomas....... In addition to identifying several proteins previously known to be overexpressed in cholangiocarcinoma, we discovered a number of molecules that were previously not associated with cholangiocarcinoma. Using immunoblotting and immunohistochemical labeling of tissue microarrays, we validated Golgi membrane...

  7. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hidekazu Ishida

    2016-07-01

    Full Text Available A surface marker that distinctly identifies cardiac progenitors (CPs is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2, specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.

  8. Differential expression analysis of RNA-seq data at single-base resolution.

    Science.gov (United States)

    Frazee, Alyssa C; Sabunciyan, Sarven; Hansen, Kasper D; Irizarry, Rafael A; Leek, Jeffrey T

    2014-07-01

    RNA-sequencing (RNA-seq) is a flexible technology for measuring genome-wide expression that is rapidly replacing microarrays as costs become comparable. Current differential expression analysis methods for RNA-seq data fall into two broad classes: (1) methods that quantify expression within the boundaries of genes previously published in databases and (2) methods that attempt to reconstruct full length RNA transcripts. The first class cannot discover differential expression outside of previously known genes. While the second approach does possess discovery capabilities, statistical analysis of differential expression is complicated by the ambiguity and variability incurred while assembling transcripts and estimating their abundances. Here, we propose a novel method that first identifies differentially expressed regions (DERs) of interest by assessing differential expression at each base of the genome. The method then segments the genome into regions comprised of bases showing similar differential expression signal, and then assigns a measure of statistical significance to each region. Optionally, DERs can be annotated using a reference database of genomic features. We compare our approach with leading competitors from both current classes of differential expression methods and highlight the strengths and weaknesses of each. A software implementation of our method is available on github (https://github.com/alyssafrazee/derfinder).

  9. Multiplex PCR Assay for Identifi cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates.

    Science.gov (United States)

    Pavlova, Maria R; Dobreva, Elina G; Ivanova, Katucha I; Asseva, Galina D; Ivanov, Ivan N; Petrov, Peter K; Velev, Valeri R; Tomova, Ivelina I; Tiholova, Maida M; Kantardjiev, Todor V

    2016-01-01

    Campylobacter spp. are important causative agents of gastrointestinal infections in humans. The most frequently isolated strains of this bacterial genus are Campylobacter jejuni and Campylobacter coli. To date, genetic methods for bacterial identification have not been used in Bulgaria. We optimized the multiplex PSR assay to identify Campylobacter spp. and differentiate C. jejuni from C. coli in clinical isolates. We also compared this method with the routinely used biochemical methods. To identify Campylobacter spp. and discriminate C. coli from C. jejuni in clinical isolates using multiplex PCR assay. Between February 2014 and January 2015 we studied 93 stool samples taken from patients with diarrheal syndrome and identified 40 species of Campylobacter spp. in them. The clinical material was cultured in microaerophilic atmosphere, the isolated strains being biochemically diff erentiated (hydrolysis of sodium hippurate for C. jejuni, and hydrolysis of indoxyl acetate for C. coli). DNA was isolated from the strains using QiaAmp MiniKit (QIAGEN, Germany). Twenty strains were tested with multiplex PCR for the presence of these genes: cadF, characteristic for Campylobacter spp., hipO for C. jejuni and asp for C. coli. The biochemical tests identified 16 strains of C. jejuni, 3 strains of C. coli, and 1 strain of C. upsaliensis. After the multiplex PCR assay the capillary gel electrophoresis confirmed 16 strains of C. jejuni, 2 strains of C. coli and 2 strains of Campylobacter spp. - because of the presence of the gene cadF. C. jejuni has the gene hipO, and it is possible that this gene may not be expressed in the biochemical differentiation yielding a negative reaction as a result. In comparison, we can conclude that the genetic differentiation is a more accurate method than the biochemical tests. The multiplex PCR assay is a fast, accurate method for identifi cation of Campylobacter spp. which makes it quite necessary in the clinical diagnostic practice.

  10. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    Science.gov (United States)

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  11. Robust modeling of differential gene expression data using normal/independent distributions: a Bayesian approach.

    Directory of Open Access Journals (Sweden)

    Mojtaba Ganjali

    Full Text Available In this paper, the problem of identifying differentially expressed genes under different conditions using gene expression microarray data, in the presence of outliers, is discussed. For this purpose, the robust modeling of gene expression data using some powerful distributions known as normal/independent distributions is considered. These distributions include the Student's t and normal distributions which have been used previously, but also include extensions such as the slash, the contaminated normal and the Laplace distributions. The purpose of this paper is to identify differentially expressed genes by considering these distributional assumptions instead of the normal distribution. A Bayesian approach using the Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly available gene expression data sets are analyzed using the proposed approach. The use of the robust models for detecting differentially expressed genes is investigated. This investigation shows that the choice of model for differentiating gene expression data is very important. This is due to the small number of replicates for each gene and the existence of outlying data. Comparison of the performance of these models is made using different statistical criteria and the ROC curve. The method is illustrated using some simulation studies. We demonstrate the flexibility of these robust models in identifying differentially expressed genes.

  12. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis.

  13. Infants' perception of expressive behaviors: differentiation of multimodal information.

    Science.gov (United States)

    Walker-Andrews, A S

    1997-05-01

    The literature on infants' perception of facial and vocal expressions, combined with data from studies on infant-directed speech, mother-infant interaction, and social referencing, supports the view that infants come to recognize the affective expressions of others through a perceptual differentiation process. Recognition of affective expressions changes from a reliance on multimodally presented information to the recognition of vocal expressions and then of facial expressions alone. Face or voice properties become differentiated and discriminated from the whole, standing for the entire emotional expression. Initially, infants detect information that potentially carries the meaning of emotional expressions; only later do infants discriminate and then recognize those expressions. The author reviews data supporting this view and draws parallels between the perceptions of affective expressions and of speech.

  14. Personalized Identification of Differentially Expressed Modules in Osteosarcoma

    Science.gov (United States)

    Liu, Xiaozhou; Li, Chengjun; Zhang, Lei; Shi, Xin; Wu, Sujia

    2017-01-01

    Background Osteosarcoma (OS), an aggressive malignant neoplasm, is the most common primary bone cancer mainly in adolescents and young adults. Differentially expressed modules tend to distinguish differences integrally. Identifying modules individually has been crucial for understanding OS mechanisms and applications of custom therapeutic decisions in the future. Material/Methods Samples came from individuals were used from control group (n=15) and OS group (n=84). Based on clique-merging, module-identification algorithm was used to identify modules from OS PPI networks. A novel approach – the individualized module aberrance score (iMAS) was performed to distinguish differences, making special use of accumulated normal samples (ANS). We performed biological process ontology to classify functionally modules. Then Support Vector Machine (SVM) was used to test distribution results of normal and OS group with screened modules. Results We identified 83 modules containing 2084 genes from PPI network in which 61 modules were significantly different. Cluster analysis of OS using the iMAS method identified 5 modules clusters. Specificity=1.00 and Sensitivity=1.00 proved the distribution outcomes of screened modules were mainly consistent with that of total data, which suggested the efficiency of 61 modules. Conclusions We conclude that a novel pipeline that identified the dysregulated modules in individuals of OS. The constructed process is expected to aid in personalized health care, which may present fruitful strategies for medical therapy. PMID:28190021

  15. Gene expression signature-based screening identifies new broadly effective influenza a antivirals.

    Directory of Open Access Journals (Sweden)

    Laurence Josset

    Full Text Available Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression

  16. Bone Signaling in Middle Ear Development: A Genome‐Wide Differential Expression Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michelle Christine; Bertelsen, Tomas Martin; Friis, Morten

    2014-01-01

    and gene sets in the developing middle ear. Microarray technology was used to identify bone‐related genes and gene sets, which were differentially expressed between the lining tissue of adult (quiescent) bulla and young (resorbing/forming) bulla. Data were analyzed using tools of bioinformatics...... and expression levels of selected genes were validated using quantitative polymerase chain reaction. The candidate gene products were compared with previously published data on middle ear bone metabolism. No differentially expressed genes were found on the outer surface of bulla. On the inner lining a total...... of 260 genes were identified of which 22 genes were involved in bone metabolism. Gene set analysis revealed five enriched bone‐related gene sets. The identified differentially expressed bone‐related mRNAs and gene sets are of potential significance in the normally developing bulla. These factors and gene...

  17. Identification of differentially expressed genes in two new human bladder carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To screen and identify differentially expressed genes in two new human urothelial carcinoma cell lines, BLS-211 and BLX. Methods Suppression subtractive hybridization (SSH) was used to createa subtracted library, and clones were sequenced. Results Totally 13 over-expressed genes in BLX and 9 in BLS-211 cells were obtained, respectively. Among them, 18 were known genes and 4 were new ESTs (Expressed Sequence Tag), and were collected by GenBank dbEST database (The access number was EB390424-7). Conclusion SSH is a powerful method for the identification of differentially expressed genes. The differential expression of some BCG-associated genes in different cells may be related to the different responses to clinical BCG therapy. The identified new ESTs can be cloned for full length to further study their functions.

  18. A sequence-based approach to identify reference genes for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chari Raj

    2010-08-01

    Full Text Available Abstract Background An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer may not be suitable in another (e.g. breast cancer. Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate. Methods Serial analysis of gene expression (SAGE profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR, and their impact on differential expression analysis of microarray data was evaluated. Results We show that (i conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii reference genes identified for lung cancer do not perform well for other cancer types (breast and brain, (iii reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung

  19. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on

  20. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  1. Differential Gene Expression in Retina of Myopic Chicken Eyes Using mRNA Differential Display

    Institute of Scientific and Technical Information of China (English)

    ShenHX; ZhangQJ

    1999-01-01

    Purpose:To study differentially expressed genes in retina of experimental myopic chicken.Methods:Experimental myopia in chicken was induced by form-deprivatin.The mRNA in chicen retina was analyzed by using differential display.Results:Experimental myopia was successfully induced in chicken through form-deprivation.Differentially expressed gene fragments were detected in retina of chicken with myopic evelopment and recovery as compared with normal controld.Conclusion:The differential display of mRNA may be a useful way in cloning myopic-related genes.

  2. Differentially expressed genes in human peripheral blood as potential markers for statin response.

    Science.gov (United States)

    Won, Hong-Hee; Kim, Suk Ran; Bang, Oh Young; Lee, Sang-Chol; Huh, Wooseong; Ko, Jae-Wook; Kim, Hyung-Gun; McLeod, Howard L; O'Connell, Thomas M; Kim, Jong-Won; Lee, Soo-Youn

    2012-02-01

    There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.

  3. Evolution and differential expression of a vertebrate vitellogenin gene cluster

    Directory of Open Access Journals (Sweden)

    Kongshaug Heidi

    2009-01-01

    Full Text Available Abstract Background The multiplicity or loss of the vitellogenin (vtg gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental, cleavage pattern (meroblastic or holoblastic and character of the egg (pelagic or benthic. Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch and Actinopterygii (fish branch. We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration

  4. Identification of differentially expressed proteins in vitamin B 12

    Directory of Open Access Journals (Sweden)

    Swati Varshney

    2015-01-01

    Full Text Available Background: Vitamin B 12 (cobalamin is a water-soluble vitamin generally synthesized by microorganisms. Mammals cannot synthesize this vitamin but have evolved processes for absorption, transport and cellular uptake of this vitamin. Only about 30% of vitamin B 12 , which is bound to the protein transcobalamin (TC (Holo-TC [HoloTC] enters into the cell and hence is referred to as the biologically active form of vitamin B 12 . Vitamin B 12 deficiency leads to several complex disorders, including neurological disorders and anemia. We had earlier shown that vitamin B 12 deficiency is associated with coronary artery disease (CAD in Indian population. In the current study, using a proteomics approach we identified proteins that are differentially expressed in the plasma of individuals with low HoloTC levels. Materials and Methods: We used isobaric-tagging method of relative and absolute quantitation to identify proteins that are differently expressed in individuals with low HoloTC levels when compared to those with normal HoloTC level. Results: In two replicate isobaric tags for relative and absolute quantitation experiments several proteins involved in lipid metabolism, blood coagulation, cholesterol metabolic process, and lipoprotein metabolic process were found to be altered in individuals having low HoloTC levels. Conclusions: Our study indicates that low HoloTc levels could be a risk factor in the development of CAD.

  5. Differential expression of the Smb bacteriocin in Streptococcus mutans isolates.

    Science.gov (United States)

    Yonezawa, Hideo; Kuramitsu, Howard K; Nakayama, Shu-ichi; Mitobe, Jiro; Motegi, Mizuho; Nakao, Ryoma; Watanabe, Haruo; Senpuku, Hidenobu

    2008-08-01

    The two-component lantibiotic Smb is produced by Streptococcus mutans GS5. In the present study, we identified seven strains of S. mutans containing the smb gene cluster. These strains could be classified into high- and low-level Smb producers relative to the levels of Smb production by indicator strains in vitro. This classification was dependent upon the transcription levels of the structural smbA and smbB genes. Sequence analysis upstream of smbA in the high- and low-level Smb-producing strains revealed differences at nucleotide position -46 relative to the smbA start codon. Interestingly, the transcription start site was present upstream of the point mutation, indicating that both groups of strains have the same promoter constructs and that the differential expression of smbA and smbB mRNA occurred subsequent to transcription initiation. In addition, smbA::lacZ fusion expression was higher when it was regulated by the sequences of strains with high-level Smb activity than when it was regulated by the comparable region from strains with low-level Smb activity. Taken together, we conclude that high- or low-level Smb expression is dependent on the presence of a G or a T nucleotide at position -46 relative to the smbA translational start site in S. mutans Smb producers.

  6. Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach

    Science.gov (United States)

    Anjum, Arfa; Jaggi, Seema; Lall, Shwetank; Bhowmik, Arpan; Rai, Anil

    2016-01-01

    Abstract Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product, which may be proteins. A gene is declared differentially expressed if an observed difference or change in read counts or expression levels between two experimental conditions is statistically significant. To identify differentially expressed genes between two conditions, it is important to find statistical distributional property of the data to approximate the nature of differential genes. In the present study, the focus is mainly to investigate the differential gene expression analysis for sequence data based on compound distribution model. This approach was applied in RNA-seq count data of Arabidopsis thaliana and it has been found that compound Poisson distribution is more appropriate to capture the variability as compared with Poisson distribution. Thus, fitting of appropriate distribution to gene expression data provides statistically sound cutoff values for identifying differentially expressed genes. PMID:26949988

  7. Differential gene expression profiles in foetal skin of Rex rabbits with different wool density

    Directory of Open Access Journals (Sweden)

    L. Liu

    2016-09-01

    Full Text Available This study investigated the mechanisms controlling hair follicle development in the Rex rabbit. The Agilent rabbit gene expression microarray was used to determine differentially expressed genes in Rex rabbit foetuses with different wool densities. The expression patterns of selected differentially-expressed genes were further investigated by quantitative real-time PCR. Compared to low wool density rabbits, 1342 differentially expressed probes were identified in high wool density rabbits, including 950 upregulated probes and 392 downregulated probes. Gene ontology analysis revealed that the most upregulated differentially expressed probes belonged to receptors and the most downregulated differentially expressed probes belonged to DNA binding molecules. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed probes were mainly involved in the sonic hedgehog (Shh and Eph signalling pathways. The results also suggest that transforming growth factor-beta 1, growth hormone receptor, and the keratin-associated protein 6.1 genes, as well as the Shh and Eph signalling pathways, may be involved in the regulation of hair follicle developmental in Rex rabbits.

  8. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  9. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Genes and Proteins Differentially Expressed during In Vitro Malignant Transformation of Bovine Pancreatic Duct Cells

    Directory of Open Access Journals (Sweden)

    R. Jesnowski

    2007-02-01

    Full Text Available Pancreatic carcinoma has an extremely bad prognosis due to lack of early diagnostic markers and lack of effective therapeutic strategies. Recently, we have established an in vitro model recapitulating the first steps in the carcinogenesis of the pancreas. SV40 large T antigen-immortalized bovine pancreatic duct cells formed intrapancreatic adenocarcinoma tumors on k-rasmut transfection after orthotopic injection in the nude mouse pancreas. Here we identified genes and proteins differentially expressed in the course of malignant transformation using reciprocal suppression subtractive hybridization and 2D gel electrophoresis and mass spectrometry, respectively. We identified 34 differentially expressed genes, expressed sequence tags, and 15 unique proteins. Differential expression was verified for some of the genes or proteins in samples from pancreatic carcinoma. Among these genes and proteins, the majority had already been described either to be influenced by a mutated ras or to be differentially expressed in pancreatic adenocarcinoma, thus proving the feasibility of our model. Other genes and proteins (e.g., BBC1, GLTSCR2, and rhoGDlα, up to now, have not been implicated in pancreatic tumor development. Thus, we were able to establish an in vitro model of pancreatic carcinogenesis, which enabled us to identify genes and proteins differentially expressed during the early steps of malignant transformation.

  11. Identification of differentially expressed radiation-induced genes in cervix carcinoma cells using suppression subtractive hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Sang; Lee, Young Sook; Lee, Jeung Hoon; Lee, Woong Hee; Seo, Eun Young; Cho, Moon June [Chungnam National University, Daejeon (Korea, Republic of)

    2005-03-15

    A number of genes and their products are induced early or late following exposure of cells to ionizing radiation. These radiation-induced genes have various effects of irradiated cells and tissues. Suppression subtractive hybridization (SSH) based on PCR was used to identify the differentially expressed genes by radiation in cervix carcinoma cells. Total RNA and poly (A){sup +} mRNA were isolated from irradiated and non-irradiated HeLa cells. Forward-and reverse-subtracted cDNA libraries were constructed using SSH. Eighty-eight clones of each were used to randomly select differentially expressed genes using reverse Northern blotting (dot blot analysis). Northern blotting was used to verify the screened genes. Of the 176 clones, 10 genes in the forward-subtracted library and 9 genes in the reverse-subtracted library were identified as differentially expressed radiation-induced genes by PCR-select differential screening. Three clones from the forward-subtracted library were confirmed by Northern blotting, and showed increased expression in a dose-dependent manner, including a telomerase catalytic subunit and sodium channel-like protein gene, and an ESTs (expressed sequence tags) gene. We identified differentially expressed radiation-induced genes with low-abundance genes with SSH, but further characterization of theses genes are necessary to clarify the biological functions of them.

  12. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  13. Differential Expression of Motility-Related Protein-1 Gene in Gastric Cancer and Its Premalignant Lesions

    Institute of Scientific and Technical Information of China (English)

    YaoXu; JieZheng; WentianLiu; JunXing; YanyunLi; XinGeng; WeimingZhang

    2004-01-01

    OBJECTIVE To identify genes related to gastric cancer and to analyze their expression profiles in different gastric tissues. METHODS The differentially expressed cDNA bands were assayed by fluorescent differential display from gastric cancer specimens, matched with normal gastric mucosa and premalignant lesions. The motility-related protein-1 (MRP-1/CD9) gene expression was studied by Northern blots and reverse transcription polymerase chain reaction (RT-PCR) in different kinds of gastric tissue. RESULTS A differentially expressed cDNA fragment showed lower expression in all gastric cancers compared to the normal gastric mucosa and premalignant lesions; and it was found to be homologous to the MRP-1/CD9 gene. Northern blot analysis confirmed the differential expression. RT-PCR analysis showed that the MRP-1/CD9 gene was expressed at a much lower rate in gastric cancers (0.31 +0.18) compared to the matched normal gastric tissue (0.49+0.24) and premalignant lesions (0.47+0.18)(P<0.05). Furthermore, its expression in intestinal-type of gastric cancer (0.38+0.16) was higher than that expressed in a diffuse-type of gastric cancer (0.22±0.17)(P<0.05). CCONCLUSION The MRP-1/CD9 gene expression was down-regulated in gastric cancer and its expression may be related to the carcinogenic process and histological type of gastric cancer.

  14. A Bayesian model for classifying all differentially expressed proteins simultaneously in 2D PAGE gels

    Directory of Open Access Journals (Sweden)

    Wu Steven H

    2012-06-01

    Full Text Available Abstract Background Two-dimensional polyacrylamide gel electrophoresis (2D PAGE is commonly used to identify differentially expressed proteins under two or more experimental or observational conditions. Wu et al (2009 developed a univariate probabilistic model which was used to identify differential expression between Case and Control groups, by applying a Likelihood Ratio Test (LRT to each protein on a 2D PAGE. In contrast to commonly used statistical approaches, this model takes into account the two possible causes of missing values in 2D PAGE: either (1 the non-expression of a protein; or (2 a level of expression that falls below the limit of detection. Results We develop a global Bayesian model which extends the previously described model. Unlike the univariate approach, the model reported here is able treat all differentially expressed proteins simultaneously. Whereas each protein is modelled by the univariate likelihood function previously described, several global distributions are used to model the underlying relationship between the parameters associated with individual proteins. These global distributions are able to combine information from each protein to give more accurate estimates of the true parameters. In our implementation of the procedure, all parameters are recovered by Markov chain Monte Carlo (MCMC integration. The 95% highest posterior density (HPD intervals for the marginal posterior distributions are used to determine whether differences in protein expression are due to differences in mean expression intensities, and/or differences in the probabilities of expression. Conclusions Simulation analyses showed that the global model is able to accurately recover the underlying global distributions, and identify more differentially expressed proteins than the simple application of a LRT. Additionally, simulations also indicate that the probability of incorrectly identifying a protein as differentially expressed (i.e., the False

  15. Identifying modularity structure of a genetic network in gene expression profile data

    Directory of Open Access Journals (Sweden)

    Luigi Augugliaro

    2013-05-01

    Full Text Available Aim of this paper is to define a new statistical framework to identify central modules in Gaussian Graphical Models (GGMs estimated by gene expression data measured on a sample of patients with negative molecular response to Imatinib. Imatinib is a drug used to treat certain types of cancer that inmany medical studies has been reported to have a significant clinic effect on chronic myeloid leukemia (CML in chronic phase as well as in blast crisis. For centralmodule in a GGM we intend a module containing genes that are defined differentially expressed.

  16. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Prakash K Gupta

    2015-10-01

    Full Text Available Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion.

  17. Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression.

    Science.gov (United States)

    Schulten, Hans-Juergen; Hussein, Deema; Al-Adwani, Fatima; Karim, Sajjad; Al-Maghrabi, Jaudah; Al-Sharif, Mona; Jamal, Awatif; Al-Ghamdi, Fahad; Baeesa, Saleh S; Bangash, Mohammed; Chaudhary, Adeel; Al-Qahtani, Mohammed

    2016-01-01

    Meningiomas are the most common primary brain tumors bearing in a minority of cases an aggressive phenotype. Although meningiomas are stratified according to their histology and clinical behavior, the underlying molecular genetics predicting aggressiveness are not thoroughly understood. We performed whole transcript expression profiling in 10 grade I and four grade II meningiomas, three of which invaded the brain. Microarray expression analysis identified deleted in colorectal cancer (DCC) as a differentially expressed gene (DEG) enabling us to cluster meningiomas into DCC low expression (3 grade I and 3 grade II tumors), DCC medium expression (2 grade I and 1 grade II tumors), and DCC high expression (5 grade I tumors) groups. Comparison between the DCC low expression and DCC high expression groups resulted in 416 DEGs (p-value2). The most significantly downregulated genes in the DCC low expression group comprised DCC, phosphodiesterase 1C (PDE1C), calmodulin-dependent 70kDa olfactomedin 2 (OLFM2), glutathione S-transferase mu 5 (GSTM5), phosphotyrosine interaction domain containing 1 (PID1), sema domain, transmembrane domain (TM) and cytoplasmic domain, (semaphorin) 6D (SEMA6D), and indolethylamine N-methyltransferase (INMT). The most significantly upregulated genes comprised chromosome 5 open reading frame 63 (C5orf63), homeodomain interacting protein kinase 2 (HIPK2), and basic helix-loop-helix family, member e40 (BHLHE40). Biofunctional analysis identified as predicted top upstream regulators beta-estradiol, TGFB1, Tgf beta complex, LY294002, and dexamethasone and as predicted top regulator effectors NFkB, PIK3R1, and CREBBP. The microarray expression data served also for a comparison between meningiomas from female and male patients and for a comparison between brain invasive and non-invasive meningiomas resulting in a number of significant DEGs and related biofunctions. In conclusion, based on its expression levels, DCC may constitute a valid biomarker to

  18. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  20. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Science.gov (United States)

    Jiang, Bing; Li, Shuwen; Jiang, Zhi

    2017-01-01

    Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding. PMID:28232943

  1. Expression Profiling Identifies Candidate Genes for Fiber Yield and Quality

    Institute of Scientific and Technical Information of China (English)

    LLEWELLYN D J; MACHADO A; AI-GHAZI Y; WU Y; DENNIS E S

    2008-01-01

    @@ Gene expression profiling at early stages (0~2 DPA) of fiber development in Gossypiurn hirsuturn identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls and which could play a role in controlling early fiber development.Chief among these was GhMYB25,a Mixta-like MYB gene.Transgenic GhMYB25-silenced cotton showeddramatic alterations in fiber initiation and the timing of rapid fiber elongation,reduction in trichomes on other parts of the plant,a delay in lateral root growth,and a reduction in seed production due toreduced fertilization efficiency.

  2. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage.

    Directory of Open Access Journals (Sweden)

    Stephen M Carlin

    Full Text Available The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs. Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4(+ CD8(+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.

  3. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  4. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes.

    Directory of Open Access Journals (Sweden)

    Idan Cohen

    Full Text Available Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.

  5. Analyzing kernel matrices for the identification of differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Xia

    Full Text Available One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs, followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing [Formula: see text]-like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate.

  6. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali; Hamam; Alfayez;

    2016-01-01

    The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchymal or stromal) stem cells (hMSCs) into adipocytes or osteoblasts are still not fully understood. Herein, we performed an epigenetic library functional screen and identified several novel compounds, including...... abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors, and differentiation pathways controlling adipocyte and osteoblast differentiation of hMSCs. Manipulating...

  7. Liapunov structure and asymptotic expressions of linear differential systems

    Institute of Scientific and Technical Information of China (English)

    高维新

    1996-01-01

    With a view to the researches on asymptotic properties for linear differential systems,the characteristic number is transformed into functional dass which can indicate the change trend of the norm for solution,so the invariant structure is given under Liapunov changes and feasible computational method of asymptotic expressions for linear differential systems with variant coefficients,and various asymptotic conclusions induding the necessary and sufllcient conditions of stability are got.

  8. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali, D.; Hamam, R.; Alfayez, M.;

    2016-01-01

    abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition...

  9. The hESC line Envy expresses high levels of GFP in all differentiated progeny.

    Science.gov (United States)

    Costa, Magdaline; Dottori, Mirella; Ng, Elizabeth; Hawes, Susan M; Sourris, Koula; Jamshidi, Pegah; Pera, Martin F; Elefanty, Andrew G; Stanley, Edouard G

    2005-04-01

    Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.

  10. Differentially expressed miRNAs in trisomy 21 placentas.

    Science.gov (United States)

    Svobodová, Iveta; Korabečná, Marie; Calda, Pavel; Břešťák, Miroslav; Pazourková, Eva; Pospíšilová, Šárka; Krkavcová, Miroslava; Novotná, Michaela; Hořínek, Aleš

    2016-08-01

    Molecular pathogenesis of Down syndrome (DS) is still incompletely understood. Epigenetic mechanisms, including miRNAs gene expression regulation, belong to potential influencing factors. The aims of this study were to compare miRNAs expressions in placentas with normal and trisomic karyotype and to associate differentially expressed miRNAs with concrete biological pathways. A total of 80 CVS samples - 41 with trisomy 21 and 39 with normal karyotype - were included in our study. Results obtained in the pilot study using real-time PCR technology and TaqMan Human miRNA Array Cards were subsequently validated on different samples using individual TaqMan miRNA Assays. Seven miRNAs were verified as upregulated in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654); three of these miRNAs are located on chromosome 21 (miR-99a, miR-125b and let-7c). Many essential biological processes, transcriptional regulation or apoptosis, were identified as being potentially influenced by altered miRNA levels. Moreover, miRNAs overexpressed in DS placenta apparently regulate genes involved in placenta development (GJA1, CDH11, EGF, ERVW-1, ERVFRD-1, LEP or INHA). These findings suggest the possible participation of miRNAs in Down syndrome impaired placentation and connected pregnancy pathologies. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  11. Correlation between expression and differentiation of endocan in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li Zuo; Su-Mei Zhang; Ruo-Lei Hu; Hua-Qing Zhu; Qing Zhou; Shu-Yu Gui; Qiang Wu; Yuan Wang

    2008-01-01

    AIM: To investigate the expression frequency of endocan in colorectal cancer and analyze the relationship between endocan expression and clinical parameters and to study the role of endocan in colorectal carcinogenesis.METHODS: Expression of endocan in 72 tumor tissue samples of colorectal cancer as well as in 27 normal mucous membrane tissue samples was analyzed using in situ hybridization, immunohistochemistry on tissue microarray, Western blot and reverse-transcript polymerase chain reaction (RT-PCR).RESULTS: The expression of endocan was higher in normal colon and rectum tissue samples than in cancerous tissue samples (mRNA = 92.6%, protein= 36%), and was lower in colorectal cancer tissuesamples (mRNA = 70.4%, protein = 36.1%). No correlation was found between staining intensity and clinical parameters such as sex, age, tumor size and TNM stage. However, the expression of endocan was positively correlated with the tissue differentiation in colorectal cancer.CONCLUSION: The expression of endocan is down-regulated in colorectal cancer and is positively correlated with the tissue differentiation in colorectal cancer, suggesting that the expression of endocan is associated with development and differentiation of colorectal cancer.

  12. Circadian phase has profound effects on differential expression analysis.

    Directory of Open Access Journals (Sweden)

    Polly Yingshan Hsu

    Full Text Available Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis, rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions, at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals, we demonstrated that even this small difference in circadian phase significantly influences the results of differential expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a cautionary note for all biologists performing genome-level expression analysis.

  13. Differential expression and function of stamp family proteins in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jørgen Sikkeland

    Full Text Available Six transmembrane protein of prostate (Stamp proteins play an important role in prostate cancer cell growth. Recently, we found that Stamp2 has a critical role in the integration of inflammatory and metabolic signals in adipose tissue where it is highly expressed and regulated by nutritional and metabolic cues. In this study, we show that all Stamp family members are differentially regulated during adipogenesis: whereas Stamp1 expression is significantly decreased upon differentiation, Stamp2 expression is increased. In contrast, Stamp3 expression is modestly changed in adipocytes compared to preadipocytes, and has a biphasic expression pattern during the course of differentiation. Suppression of Stamp1 or Stamp2 expression both led to inhibition of 3T3-L1 differentiation in concert with diminished expression of the key regulators of adipogenesis - CCAAT/enhancer binding protein alpha (C/ebpα and peroxisome proliferator-activated receptor gamma (Pparγ. Upon Stamp1 knockdown, mitotic clonal expansion was also inhibited. In contrast, Stamp2 knockdown did not affect mitotic clonal expansion, but resulted in a marked decrease in superoxide production that is known to affect adipogenesis. These results suggest that Stamp1 and Stamp2 play critical roles in adipogenesis, but through different mechanisms.

  14. Multicriteria Gene Screening for Analysis of Differential Expression with DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Alfred O. Hero

    2004-01-01

    Full Text Available This paper introduces a statistical methodology for the identification of differentially expressed genes in DNA microarray experiments based on multiple criteria. These criteria are false discovery rate (FDR, variance-normalized differential expression levels (paired t statistics, and minimum acceptable difference (MAD. The methodology also provides a set of simultaneous FDR confidence intervals on the true expression differences. The analysis can be implemented as a two-stage algorithm in which there is an initial screen that controls only FDR, which is then followed by a second screen which controls both FDR and MAD. It can also be implemented by computing and thresholding the set of FDR P values for each gene that satisfies the MAD criterion. We illustrate the procedure to identify differentially expressed genes from a wild type versus knockout comparison of microarray data.

  15. Suppression subtractive hybridization identified genes differentially expressed in a human lung adenocarcinoma multidrug resistance cell line%应用抑制消减杂交(SSH)克隆肺腺癌多药耐药细胞特异表达基因

    Institute of Scientific and Technical Information of China (English)

    陈杰; 钱桂生; 等

    2001-01-01

    目的 克隆和筛选肺腺癌多药耐药细胞特异表达基因。方法 将肺腺癌多药耐药细胞(SPC-A-1/CDDP)作为实验组,肺腺癌细胞(SPC-A-1)作为对照组,应用抑制消减杂交技术,构建实验组特异表达cDNA消减文库;用斑点杂交初步筛选cDNA消减文库后,将获得的阳性克隆进行测序和同源性分析(Genebank)。结果 建立了一个肺腺癌多药耐药细胞(SPC-A-1/CDDP)特异表达cDNA消减文库,斑点杂交初步筛选显示23个克隆中有SPC-A-1/CDDP特异表达cDNA片断,测序和同源性分析表明2个cDNA片断为新序列,其余cDNA片断与已知基因有96%~100%的同源性。结论 2个新的cDNA序列可能为未知肺腺癌多药耐药相关基因序列;抑制消减杂交是克隆特异表达基因的有效方法。%Objective To clone and screen multidrug resistance related gene of human adenocarcinoma cell. Methods Suppression subtractive hybridization (SSH) was performed on human adenocarcinoma multidrug resistance cell line (SPC-A-1/CDDP, as tester, which was established from cell line SPC-A-1 under the inducement of cisplatin) and human adenocarcinoma cell line (SPC-A-1, as driver). After the construction of subtracted cDNA library, dot blot was used to screen the subtracted cDNA library with forward- and reverse-subtracted cDNA probes. The differentially expressed cDNA fragments in SPC-A-1/CDDP was sequenced and analyzed in Genebank with Blast search. Results A subtracted cDNA library of high quality was constructed. Twenty-three differentially expressed cDNA fragments in SPC-A-1/CDDP were identified. Two of them were novel cDNA sequences and the others shared 96%~100% homology with the known sequence. Conclusion The novel cDNA sequences might be the human lung adenocarcinoma multidrug resistance related genes. SSH is an effective approach to identify differentially expressed genes.

  16. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    Science.gov (United States)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  17. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Robles José A

    2012-09-01

    Full Text Available Abstract Background RNA sequencing (RNA-Seq has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  18. MicroRNA-150 Expression Induces Myeloid Differentiation of Human Acute Leukemia Cells and Normal Hematopoietic Progenitors

    Science.gov (United States)

    Morris, Valerie A.; Zhang, Ailin; Yang, Taimei; Stirewalt, Derek L.; Ramamurthy, Ranjani; Meshinchi, Soheil; Oehler, Vivian G.

    2013-01-01

    In acute myeloid leukemia (AML) and blast crisis (BC) chronic myeloid leukemia (CML) normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA) signaling. High-throughput gene expression profiling (GEP) studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells. PMID:24086639

  19. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Valerie A Morris

    Full Text Available In acute myeloid leukemia (AML and blast crisis (BC chronic myeloid leukemia (CML normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA signaling. High-throughput gene expression profiling (GEP studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells.

  20. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Science.gov (United States)

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  1. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Directory of Open Access Journals (Sweden)

    Priti Roy

    Full Text Available Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  2. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells.

    Science.gov (United States)

    Lakshmipathy, Uma; Love, Brad; Goff, Loyal A; Jörnsten, Rebecka; Graichen, Ralph; Hart, Ronald P; Chesnut, Jonathan D

    2007-12-01

    Many of the currently established human embryonic stem (hES) cell lines have been characterized extensively in terms of their gene expression profiles and genetic stability in culture. Recent studies have indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Using both microarrays and quantitative PCR, we report here the differences in miRNA expression between undifferentiated hES cells and their corresponding differentiated cells that underwent differentiation in vitro over a period of 2 weeks. Our results confirm the identity of a signature miRNA profile in pluripotent cells, comprising a small subset of differentially expressed miRNAs in hES cells. Examining both mRNA and miRNA profiles under multiple conditions using cross-correlation, we find clusters of miRNAs grouped with specific, biologically interpretable mRNAs. We identify patterns of expression in the progression from hES cells to differentiated cells that suggest a role for selected miRNAs in maintenance of the undifferentiated, pluripotent state. Profiling of the hES cell "miRNA-ome" provides an insight into molecules that control cellular differentiation and maintenance of the pluripotent state, findings that have broad implications in development, homeostasis, and human disease states.

  3. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    Science.gov (United States)

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  4. Expression of the Intestinal Biomarkers Guanylyl Cyclase C and CDX2 in Poorly Differentiated Colorectal Carcinomas

    Science.gov (United States)

    Winn, Brody; Tavares, Rosemarie; Matoso, Andres; Noble, Lelia; Fanion, Jacqueline; Waldman, Scott A.; Resnick, Murray B.

    2009-01-01

    Guanylyl cyclase C a receptor for bacterial diarrheagenic enterotoxins is expressed selectively by intestinal epithelium and is an endogenous downstream target of CDX2. The expression of Guanylyl cyclase C is preserved throughout the adenoma/carcinoma sequence in the colorectum. Detection of Guanylyl cyclase C expression by RT-PCR is currently being validated as a technique to identify occult lymph node metastases in patients with colorectal cancer and for circulating cells in the blood for postoperative surveillance. Although Guanylyl cyclase C is widely expressed by well differentiated colorectal cancer, its expression in poorly differentiated colorectal cancer has not been evaluated. A tissue microarray was created from 69 archival specimens including 44 poorly differentiated, 15 undifferentiated or medullary and 10 signet ring cell colorectal carcinomas. Matched normal colonic mucosa was used as a positive control. Immunohistochemical staining for Guanylyl cyclase C and CDX2 was evaluated as positive or negative based on at least a 10% extent of staining. Out of the 69 tumor samples 75%, 47%, and 90% of the poorly differentiated, medullary and signet ring cell tumors were positive for Guanylyl cyclase C and 75%, 40% and 90% of these subsets were positive for CDX2 respectively. There was excellent correlation between Guanylyl cyclase C and CDX2 expression on a case per case basis (p<0.0001). There was also a statistically significant difference in the GCC staining pattern between MC and PDC (p=0.05). Immunopositivity for Guanylyl cyclase C was greater than 95% in a separately stained microarray series of well/moderately differentiated colorectal carcinomas. In conclusion, Guanylyl cyclase C expression is lost in a quarter of poorly differentiated and half of undifferentiated colorectal carcinomas. Therefore the utility of Guanylyl cyclase C expression as a diagnostic marker for colorectal carcinoma may be questionable in poorly differentiated colorectal

  5. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Bortoluzzi Stefania

    2004-06-01

    Full Text Available Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.

  6. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  7. Identification of differentially expressed proteins during human urinary bladder cancer progression

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; chang, Jong. w; Oh, Bong R.

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly...

  8. Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis

    Science.gov (United States)

    The objectives of the current study were to profile changes in protein composition using 2-dimensional gel electrophoresis (2D-GE) on whey samples from a group of 8 cows prior to and 18 hours after infection with Escherichia coli, and to identify differentially expressed milk proteins by peptide seq...

  9. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns

    OpenAIRE

    Mohammad Manir Hossain Mollah; Rahman Jamal; Norfilza Mohd Mokhtar; Roslan Harun; Md. Nurul Haque Mollah

    2015-01-01

    Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt ...

  10. Differential expression of Notch family members in astrocytomas and medulloblastomas.

    Science.gov (United States)

    Xu, Peng; Yu, Shizhu; Jiang, Rongcai; Kang, Chunsheng; Wang, Guangxiu; Jiang, Hao; Pu, Peiyu

    2009-12-01

    Notch signaling pathway plays an integral role in determining cell fates in development. Growing evidence demonstrates that Notch signaling pathway has versatile effects in tumorigenesis depending on the tumor type, grade and stage. Notch signaling pathway is deregulated in some brain tumors. To examine the differential expression of Notch family members (Notch1, 2, 3, 4) in human astrocytomas and medulloblastomas, and to evaluate their roles in the development of both tumor types. Immunohistochemical staining and Western blot analysis were used to detect Notch1, 2, 3, 4 expression in tissue microarray and freshly resected tissue samples of normal brain, astrocytomas and medulloblastomas. Notch family members were not expressed or barely detectable in normal brain tissues. Notch1, 3, 4 were highly expressed but Notch2 was not expressed in astrocytomas. The percentage of immunopositive tumor cells and level of Notch1 expression was increased with tumor grade. In addition, overexpression of Notch2 was detected in medulloblastomas in contrast to low or no expression of Notch1, 3, 4. Differential expression of Notch1, 2, 3, 4 is detected in astrocytomas and medulloblastomas, that may be related to their different roles playing in the development of brain tumors.

  11. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    Directory of Open Access Journals (Sweden)

    Hummel Michael

    2010-11-01

    Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic

  12. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  13. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    Science.gov (United States)

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  14. Differential expression analysis for RNAseq using Poisson mixed models.

    Science.gov (United States)

    Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang

    2017-06-20

    Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Differentially expressed genes between female and male adult Anopheles anthropophagus.

    Science.gov (United States)

    Geng, Yi-Jie; Gao, Shi-Tong; Huang, Da-Na; Zhao, Yi-Rui; Liu, Jian-ping; Li, Xiao-Heng; Zhang, Ren-Li

    2009-09-01

    The aim of the present study was to identify sex-specific genes in adult Anopheles anthropophagus. As the major malaria vector and Brugia malayi vector in the Asian continent, female Anopheles mosquitoes take blood meals and transmit pathogens through this pathway, while males are nectar feeders. This complex behavior is controlled at several levels, but is probably initiated by the genetic background difference between these two groups. In our study, a subtractive cDNA library for female A. anthropophagus was constructed using the suppression subtractive hybridization (SSH) technique and then 3,074 clones from the female SSH library were analyzed using a microarray-based survey. Genes that were expressed differentially according to sex in A. anthropophagus were screened using real-time polymerase chain reaction and reverse transcription polymerase chain reaction. In our results, we report a series of genes which may be involved in female-specific mosquito behavior, including an inorganic phosphate transporter, a serine protease, the salivary protein GP35-2, and the D7 cluster salivary protein. These findings will provide clues to the nature of insect vectors and open up unprecedented opportunities to develop novel strategies for the control of mosquito-borne diseases.

  16. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation.

    Science.gov (United States)

    Rovira, Meritxell; Huang, Wei; Yusuff, Shamila; Shim, Joong Sup; Ferrante, Anthony A; Liu, Jun O; Parsons, Michael J

    2011-11-29

    Pancreatic β-cells are an essential source of insulin and their destruction because of autoimmunity causes type I diabetes. We conducted a chemical screen to identify compounds that would induce the differentiation of insulin-producing β-cells in vivo. To do this screen, we brought together the use of transgenic zebrafish as a model of β-cell differentiation, a unique multiwell plate that allows easy visualization of lateral views of swimming larval fish and a library of clinical drugs. We identified six hits that can induce precocious differentiation of secondary islets in larval zebrafish. Three of these six hits were known drugs with a considerable background of published data on mechanism of action. Using pharmacological approaches, we have identified and characterized two unique pathways in β-cell differentiation in the zebrafish, including down-regulation of GTP production and retinoic acid biosynthesis.

  17. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales.

    Science.gov (United States)

    Margres, Mark J; Wray, Kenneth P; Seavy, Margaret; McGivern, James J; Herrera, Nathanael D; Rokyta, Darin R

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression

  18. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions.

    Science.gov (United States)

    Davidson, Ben; Stavnes, Helene Tuft; Risberg, Björn; Nesland, Jahn M; Wohlschlaeger, Jeremias; Yang, Yanqin; Shih, Ie-Ming; Wang, Tian-Li

    2012-05-01

    Lung and breast adenocarcinoma at advanced stages commonly involve the serosal cavities, giving rise to malignant effusions. The aim of the present study was to compare the global gene expression patterns of metastases from these 2 malignancies, to expand and improve the diagnostic panel of biomarkers currently available for their differential diagnosis, as well as to define type-specific biological targets. Gene expression profiles of 7 breast and 4 lung adenocarcinoma effusions were analyzed using the HumanRef-8 BeadChip from Illumina. Differentially expressed candidate genes were validated using quantitative real-time polymerase chain reaction and immunohistochemistry. Unsupervised hierarchical clustering using all 54,675 genes in the array separated lung from breast adenocarcinoma samples. We identified 289 unique probes that were significantly differentially expressed in the 2 cancers by greater than 2-fold using moderated t statistics, of which 65 and 224 were overexpressed in breast and lung adenocarcinoma, respectively. Genes overexpressed in breast adenocarcinoma included TFF1, TFF3, FOXA1, CA12, PITX1, RARRES1, CITED4, MYC, TFAP2A, EFHD1, TOB1, SPDEF, FASN, and TH. Genes overexpressed in lung adenocarcinoma included TITF1, SFTPG, MMP7, EVA1, GPR116, HOP, SCGB3A2, and MET. The differential expression of 15 genes was validated by quantitative real-time PCR, and differences in 8 gene products were confirmed by immunohistochemistry. Expression profiling distinguishes breast adenocarcinoma from lung adenocarcinoma and identifies genes that are differentially expressed in these 2 tumor types. The molecular signatures unique to these cancers may facilitate their differential diagnosis and may provide a molecular basis for therapeutic target discovery. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia;

    2008-01-01

    The widespread microarray technology capable of analyzing global gene expression at the level of transcription is expanding its application not only in medicine but also in studies on basic biology. This paper presents our analysis on microarray gene expression data in the CEPH Utah families...... focusing on the demographic characteristics such as age and sex on differential gene expression patterns. Our results show that the differential gene expression pattern between age groups is dominated by down-regulated transcriptional activities in the old subjects. Functional analysis on age......-regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...

  20. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  1. Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer

    Directory of Open Access Journals (Sweden)

    Green Adèle C

    2009-10-01

    Full Text Available Abstract Background The malignant potential of serous ovarian tumors, the most common ovarian tumor subtype, varies from benign to low malignant potential (LMP tumors to frankly invasive cancers. Given the uncertainty about the relationship between these different forms, we compared their patterns of gene expression. Methods Expression profiling was carried out on samples of 7 benign, 7 LMP and 28 invasive (moderate and poorly differentiated serous tumors and four whole normal ovaries using oligonucleotide microarrays representing over 21,000 genes. Results We identified 311 transcripts that distinguished invasive from benign tumors, and 20 transcripts that were significantly differentially expressed between invasive and LMP tumors at p SLPI and WNT7A and down-regulation of C6orf31, PDGFRA and GLTSCR2 were measured in invasive and LMP compared with benign and normal tissues. Over-expression of WNT7A in an ovarian cancer cell line led to increased migration and invasive capacity. Conclusion These results highlight several genes that may play an important role across the spectrum of serous ovarian tumorigenesis.

  2. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.

  3. PAX3 inhibits β-Tubulin-III expression and neuronal differentiation of neural stem cell.

    Science.gov (United States)

    Cao, Sixian; Du, Jinfeng; Lv, Yan; Lin, Hengrong; Mao, Zuming; Xu, Man; Liu, Mei; Liu, Yan

    2017-02-20

    PAX3 functions at the nodal point in neural stem cell maintenance and differentiation. Using bioinformatics methods, we identified PAX3 as a potential regulator of β-Tubulin-III (TUBB3) gene transcription, and the results indicated that PAX3 might be involved in neural stem cell (NSC) differentiation by orchestrating the expression of cytoskeletal proteins. In the present study, we reported that PAX3 could inhibit the differentiation of NSCs and the expression of TUBB3. Further, using luciferase and electrophoretic mobility shift assays, we demonstrated that PAX3 could bind to the promoter region of TUBB3 and inhibit TUBB3 transcription. Finally, we confirmed that PAX3 could bind to the promoter region of endogenous TUBB3 in the native chromatin of NSCs. These findings indicated that PAX3 is a pivotal factor targeting various molecules during differentiation of NSCs in vitro.

  4. Differentially expressed protein markers in human submandibular and sublingual secretions.

    Science.gov (United States)

    Hu, Shen; Denny, Patricia; Denny, Paul; Xie, Yongming; Loo, Joseph A; Wolinsky, Lawrence E; Li, Yang; McBride, Jim; Ogorzalek Loo, Rachel R; Navazesh, Mavash; Wong, David T

    2004-11-01

    Proteome analysis of secretions from individual salivary glands is important for understanding the health of the oral cavity and pathogenesis of certain diseases. However, cross-contamination of submandibular (SM) and sublingual (SL) glandular secretions can occur. The close anatomic relationship of the SM and SL ductal orifices can lead to such contamination. Additionally, these glands may share common ducts. To insure the purity of SM/SL secretions for proteomic analysis, it is important to develop unique biomarkers which could be used to verify the integrity of the individual glandular saliva. In this study, a proteomics approach based on mass spectrometry and gel electrophoresis techniques was utilized to identify and verify a set of proteins (cystatin C, calgranulin B and MUC5B mucin), which are differentially expressed in SM/SL secretions. SM/SL fluids were obtained from nine healthy subjects. Cystatin C was found to be an SM-selective protein as it was found in all SM fluids but not detected in two SL fluids. MUC5B mucin and calgranulin B, on the other hand, were found to be SL-selective proteins. All SL samples contained MUC5B mucin, whereas MUC5B mucin was not detected in four SM samples. Eight of the SL samples contained calgranulin B; however, calgranulin B was absent in eight SM samples. This set of protein markers, especially calgranulin B, can be used to determine the purity of SM/SL samples, and therefore identify potential individuals who do not exhibit cross-contaminated SM/SL secretions, an important requirement for subsequent proteome analysis of pure SM and SL secretions.

  5. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2011-09-01

    Full Text Available Abstract Background The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. Results Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. Conclusion It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.

  6. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2011-09-03

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  7. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.

    Science.gov (United States)

    Jia, Yujie; Nie, Kun; Li, Jing; Liang, Xinyue; Zhang, Xuezhu

    2016-11-01

    In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer

  8. Differential expression of a novel colorectal cancer differentiation-related gene in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Xing-Guo Li; Jin-Dan Song; Yun-Qing Wang

    2001-01-01

    AIM To investigate SBA2 expression in CRC cell lines snd surgical specimens of CRC and sutologous healthy mucosa. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was used for relative quantification of SBA2 mRNA levels in 4 human CRC cell lines with different grades of differentiation and 30 clinical samples.Normalization of the results was achieved by simultaneous amplification of β-actin as an internal control. RESULTS In the exponential range of amplification, fairly good linearity demonstrated identical amplification efficiency for SBA2 and β-actin (82%). Markedly lower levels of SBA2 mRNA were detectable in tumors, as compared with the coupled normal counterparts ( P < 0.01 ). SBA2 expression was significantly (0.01 < P <0.05) correlated with the grade of differentiation in CRC,with relatively higher levels in well-differentiated samples and lower in poorly-differentiated cases. Of the 9 cases with lymph nodes affected, 78% (7/9) had reduced SBA2 mRNA expression in contrast to 24% (5/21) in nonmetastasis samples (0.01 < P < 0.05 ). CONCLUSION SBA2 gene might be a promising novel biomarker of cell differentiation in colorectal cancer and its biological features need further studies.

  9. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes.

    Science.gov (United States)

    Pardinas, J R; Combates, N J; Prouty, S M; Stenn, K S; Parimoo, S

    1998-03-15

    We have developed a novel efficient approach, termed differential subtraction display, for the identification of differentially expressed genes. Several critical parameters for the reproducibility and enhanced sensitivity of display, as well as steps to reduce the number of false positive cDNA species, have been defined. These include- (a) use of standardized oligo(dT)-primed cDNA pools rather than total RNA as the starting material for differential display, (b) critical role of optimal cDNA input for each distinct class of primers, (c) phenomena of primer dominance and interference, and (d) design of a novel set of enhanced specificity anchor primers. Introduction of an efficient subtractive hybridization step prior to cloning of cDNA species enriches the bona fide cDNA species that are either exclusively present in one sample (+/-) or show altered expression (up-/down-regulation) in RNA samples from two different tissues or cell types. This approach, in comparison to differential display, has several advantages in terms of reproducibility and enhanced sensitivity of display coupled to the cloning of enriched bona fide cDNA species corresponding to differentially expressed RNAs.

  10. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development.

    Science.gov (United States)

    Wang, Qi; Qi, Renli; Wang, Jing; Huang, Wenming; Wu, Yongjiang; Huang, Xiaofeng; Yang, Feiyun; Huang, Jinxiu

    2017-06-30

    MicroRNAs (miRNAs) are a class of non-coding RNAs that play a crucial regulatory role in many biological processes. Previous studies have reported miRNAs that are associated with the growth, differentiation, and proliferation of myocytes and adipocytes in pigs. However, differences in the miRNA expression profiles between muscle and adipose tissues during porcine development are unknown. Muscle and adipose tissues are the two major organs that are crucial for dynamic energy balance in the development and metabolism. Identification of differential expression profile of miRNAs will be useful for understanding the regulatory role of miRNAs in growth, development and evolution of these two tissues, and the research results will provide theoretical basis to improve meat quality. Therefore, we applied Hiseq sequencing to profile miRNAs in muscle and adipose tissues during four development stage at 1, 30, 90 and 240-day-old to explore their regulatory patterns at critical growth stages of pigs. We slaughtered 6 pigs at each developmental stages (24 pigs in total), respectively, RNA of three individual pigs were pooled and duplicate samples at each time point were given to sequence. We obtained a total of 96 million clean reads, and identified 329 known miRNAs and 157 novel miRNAs from all the libraries. We detected 37 miRNAs that were differentially expressed between porcine muscle and adipose tissues; 17 miRNAs which differentially expressed at 30, 90 and 240-day-old were considered as core differentially expressed miRNAs, among them, three miRNAs (ssc-miR-128, -133a-5p, -489) were differentially expressed at all four stages. KEGG analysis revealed the target genes of 17 core differentially expressed miRNAs were involved in 27 significantly enriched pathways (Pmuscle and adipose tissues, respectively, of 30, 90, and 240-day-old pigs compared with the tissues of 1-day-old pigs. We selected five miRNAs from 17 core differentially expressed miRNAs to validate the mi

  11. [Differential gene expression in the jellyfish Aurelia aurita].

    Science.gov (United States)

    Matveev, I V

    2005-01-01

    The body of Aurelia aurita, as well as other diploblasts, consists of two epithelial layers: ectodermal and gastral epithelium. These two tissues are separated by mesoglea, or extracellular matrix. In most coelenterates mesoglea is acellular. In A. aurita mesogleal cells are scattered in mesoglea. Differential display PCR was used to compare mRNA pools from ectodermal epithelium, gastral epithelium and mesoglea. 4 novel gene fragments were cloned and sequenced. According to RTPCR results, one of these fragments is differentially expressed in the ectodermal epithelium.

  12. Integral expressions of Lyapunov exponents for autonomous ordinary differential systems

    Institute of Scientific and Technical Information of China (English)

    DAI XiongPing

    2009-01-01

    In the paper,the author addresses the Lyapunov characteristic spectrum of an ergodic autonomous ordinary differential system on a complete riemannian manifold of finite dimension such as the d-dimensional euclidean space Rd,not necessarily compact,by Liaowise spectral theorems that give integral expressions of Lyapunov exponents.In the context of smooth linear skew-product flows with Polish driving systems,the results are still valid.This paper seems to be an interesting contribution to the stability theory of ordinary differential systems with non-compact phase spaces.

  13. Integral expressions of Lyapunov exponents for autonomous ordinary differential systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the paper, the author addresses the Lyapunov characteristic spectrum of an ergodic autonomous ordinary differential system on a complete riemannian manifold of finite dimension such as the d-dimensional euclidean space Rd, not necessarily compact, by Liaowise spectral theorems that give integral expressions of Lyapunov exponents. In the context of smooth linear skew-product flows with Polish driving systems, the results are still valid. This paper seems to be an interesting contribution to the stability theory of ordinary differential systems with non-compact phase spaces.

  14. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    Directory of Open Access Journals (Sweden)

    Brian A Chow

    Full Text Available Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  15. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation.

    Science.gov (United States)

    Zhan, Junpeng; Thakare, Dhiraj; Ma, Chuang; Lloyd, Alan; Nixon, Neesha M; Arakaki, Angela M; Burnett, William J; Logan, Kyle O; Wang, Dongfang; Wang, Xiangfeng; Drews, Gary N; Yadegari, Ramin

    2015-03-01

    Endosperm is an absorptive structure that supports embryo development or seedling germination in angiosperms. The endosperm of cereals is a main source of food, feed, and industrial raw materials worldwide. However, the genetic networks that regulate endosperm cell differentiation remain largely unclear. As a first step toward characterizing these networks, we profiled the mRNAs in five major cell types of the differentiating endosperm and in the embryo and four maternal compartments of the maize (Zea mays) kernel. Comparisons of these mRNA populations revealed the diverged gene expression programs between filial and maternal compartments and an unexpected close correlation between embryo and the aleurone layer of endosperm. Gene coexpression network analysis identified coexpression modules associated with single or multiple kernel compartments including modules for the endosperm cell types, some of which showed enrichment of previously identified temporally activated and/or imprinted genes. Detailed analyses of a coexpression module highly correlated with the basal endosperm transfer layer (BETL) identified a regulatory module activated by MRP-1, a regulator of BETL differentiation and function. These results provide a high-resolution atlas of gene activity in the compartments of the maize kernel and help to uncover the regulatory modules associated with the differentiation of the major endosperm cell types. © 2015 American Society of Plant Biologists. All rights reserved.

  16. Identifying differentially methylated genes using mixed effect and generalized least square models

    OpenAIRE

    2009-01-01

    Abstract Background DNA methylation plays an important role in the process of tumorigenesis. Identifying differentially methylated genes or CpG islands (CGIs) associated with genes between two tumor subtypes is thus an important biological question. The methylation status of all CGIs in the whole genome can be assayed with differential methylation hybridization (DMH) microarrays. However, patient samples or cell lines are heterogeneous, so their methylation pattern may be very different. In a...

  17. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen;

    2005-01-01

    One of the major limitations for understanding the biology of human mesenchymal stem cells (hMSCs) is the absence of prospective markers needed for distinguishing them from other cells and for monitoring lineage-specific differentiation. Mass spectrometry (MS)-based proteomics has proven extremely...... in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...... or membrane-anchored proteins and 159 membrane-associated proteins. Twenty-nine integrins and cell adhesion molecules, 20 receptors, and 18 Ras-related small GTPases were also identified. Upon OB differentiation, the expression levels of 83 proteins increased by at least twofold whereas the levels of another...

  18. Monocyte-macrophage differentiation of acute myeloid leukemia cell lines by small molecules identified through interrogation of the Connectivity Map database.

    Science.gov (United States)

    Manzotti, Gloria; Parenti, Sandra; Ferrari-Amorotti, Giovanna; Soliera, Angela Rachele; Cattelani, Sara; Montanari, Monica; Cavalli, Daniel; Ertel, Adam; Grande, Alexis; Calabretta, Bruno

    2015-01-01

    The transcription factor C/EBPα is required for granulocytic differentiation of normal myeloid progenitors and is frequently inactivated in acute myeloid leukemia (AML) cells. Ectopic expression of C/EBPα in AML cells suppresses proliferation and induces differentiation suggesting that restoring C/EBPα expression/activity in AML cells could be therapeutically useful. Unfortunately, current approaches of gene or protein delivery in leukemic cells are unsatisfactory. However, "drug repurposing" is becoming a very attractive strategy to identify potential new uses for existing drugs. In this study, we assessed the biological effects of candidate C/EBPα-mimetics identified by interrogation of the Connectivity Map database. We found that amantadine, an antiviral and anti-Parkinson agent, induced a monocyte-macrophage-like differentiation of HL60, U937, Kasumi-1 myeloid leukemia cell lines, as indicated by morphology and differentiation antigen expression, when used in combination with suboptimal concentration of all trans retinoic acid (ATRA) or Vit D3. The effect of amantadine depends, in part, on increased activity of the vitamin D receptor (VDR), since it induced VDR expression and amantadine-dependent monocyte-macrophage differentiation of HL60 cells was blocked by expression of dominant-negative VDR. These results reveal a new function for amantadine and support the concept that screening of the Connectivity Map database can identify small molecules that mimic the effect of transcription factors required for myelo-monocytic differentiation.

  19. MultiRankSeq: multiperspective approach for RNAseq differential expression analysis and quality control.

    Science.gov (United States)

    Guo, Yan; Zhao, Shilin; Ye, Fei; Sheng, Quanhu; Shyr, Yu

    2014-01-01

    After a decade of microarray technology dominating the field of high-throughput gene expression profiling, the introduction of RNAseq has revolutionized gene expression research. While RNAseq provides more abundant information than microarray, its analysis has proved considerably more complicated. To date, no consensus has been reached on the best approach for RNAseq-based differential expression analysis. Not surprisingly, different studies have drawn different conclusions as to the best approach to identify differentially expressed genes based upon their own criteria and scenarios considered. Furthermore, the lack of effective quality control may lead to misleading results interpretation and erroneous conclusions. To solve these aforementioned problems, we propose a simple yet safe and practical rank-sum approach for RNAseq-based differential gene expression analysis named MultiRankSeq. MultiRankSeq first performs quality control assessment. For data meeting the quality control criteria, MultiRankSeq compares the study groups using several of the most commonly applied analytical methods and combines their results to generate a new rank-sum interpretation. MultiRankSeq provides a unique analysis approach to RNAseq differential expression analysis. MultiRankSeq is written in R, and it is easily applicable. Detailed graphical and tabular analysis reports can be generated with a single command line.

  20. Differential gene expression profiling of human epidermal growth factor receptor 2-overexpressing mammary tumor

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Haining Peng; Yingli Zhong; Daiqiang Li; Mi Tang; Xiaofeng Ding; Jian Zhang

    2008-01-01

    Human epidermal growth factor receptor 2 (HER2) is highly expressed in approximately 30% of breast cancer patients,and substantial evidence supports the relationship between HER2 overexpression and poor overall survival. However,the biological function of HER2 signaltransduction pathways is not entirely clear. To investigate gene activation within the pathways, we screened differentially expressed genes in HER2-positive mouse mammary tumor using two-directional suppression subtractive hybridization combined with reverse dot-blotting analysis. Forty genes and expressed sequence tags related to transduction, cell proliferation/growth/apoptosis and secreted/extracellular matrix proteins were differentially expressed in HER2-positive mammary tumor tissue. Among these, 19 were already reported to be differentially expressed in mammary tumor, 11 were first identified to be differentially expressed in mammary tumor in this study but were already reported in other tumors, and 10 correlated with other cancers. These genes can facilitate the understanding of the role of HER2 signaling in breast cancer.

  1. Differential gene expression in CD45 cells at para-aortic foci stage of chicken haematopoiesis.

    Science.gov (United States)

    Säynäjäkangas, R; Uchida, T; Vainio, O

    2009-09-01

    Para-aortic foci of chicken embryos at 6-7 days of development are considered to provide a microenvironment for haematopoietic stem cell proliferation and initial differentiation similar to that of fetal liver in mammals. Here, we have investigated the genes involved in this process by constructing and analysing a subtractive cDNA library from CD45(+) cells in para-aortic region. Among 394 analysed clones 99 distinct genes were identified by sequence homology search. Classification of the identified genes according to biological processes revealed that innate immunity-related genes are highly expressed at this stage. This can be explained by the presence of yolk sac-derived macrophages in the original tissue sample but also by the indiscriminate expression of multiple lineage-specific genes in haematopoietic stem cells and primitive progenitors. Differentially expressed genes related to transcription, signalling and lymphocyte functions are potential candidates involved in lineage commitment.

  2. Use of local rice cultivars as additional differentials to identify pathotypes of Pyricularia oryzae

    Directory of Open Access Journals (Sweden)

    Gisele Barata da Silva

    2011-01-01

    Full Text Available Eight additional rice cultivars as differentials were selected to identify pathotypes occurring in the Tocantins State. They were BRS Jaburu, BRS Taim, BRS Biguá, BR IRGA-417, Epagri 109, Javaé, Metica-1 and Supremo. These differentials were used in addition to the international set to determine the pathogenic diversity of 193 Pyricularia oryzae isolates collected during 1994-2002 from irrigated rice cultivars. They were conserved in Pyricularia culture collection of Embrapa Rice and Bean Research center. From 193 P. oryzae isolates 38 pathotypes were identified based on leaf blast reactions of international set and 29 pathotypes based on these additional differentials. The predominant pathotypes (TI-1, TG-2, TD-15 and TF-2 were represented by 53% of the tested isolates. The major international pathotypes (IB-45, IB-41, II-1 and ID-13 were represented by 43% of the isolates tested. The virulence pattern of 28 isolates belonging to the pathotype IB-45 was further differentiated into nine local pathotypes using additional set of differentials. The irrigated rice cultivars used as additional differentials serve as complementary set to identify pathotypes of interest for breeding blast resistant cultivars for Tocantins State.

  3. microRNA EXPRESSION PROFILES IDENTIFY SUBTYPES OF MANTLE CELL LYMPHOMA WITH DIFFERENT CLINICOBIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    Navarro, Alba; Clot, Guillem; Prieto, Miriam; Royo, Cristina; Vegliante, Maria Carmela; Amador, Virginia; Hartmann, Elena; Salaverria, Itziar; Beà, Sílvia; Martín-Subero, Jose Ignacio; Rosenwald, Andreas; Ott, German; Wiestner, Adrian; Wilson, Wyndham H.; Campo, Elías; Hernández, Luis

    2013-01-01

    Purpose MicroRNAs (miRs) are post-transcriptional gene regulators that may be useful as diagnostic and/or prognostic biomarkers. We aim to study the expression profiles of a high number of miRs and their relationship with clinicopathological and biological relevant features in leukemic mantle cell lymphomas (MCL). Experimental design Expression profiling of 664 miRs was investigated using a high-throughput quantitative real-time PCR platform in 30 leukemic MCL. Statistical and bioinformatic analysis were performed to define miRs associated with different clinicopathological parameters. Gene expression profiling was investigated by microarrays in 16 matching cases to study the potential genes and pathways targeted by selected miRs. The prognostic value of miR-34a was investigated in two independent series of 29 leukemic and 50 nodal MCL. Results Robust consensus clustering defined two main MCL subgroups with significant differences in the immunoglobulin (IGHV) mutational status, SOX11 expression, genomic complexity and nodal clinical presentation. Supervised analyses regarding IGHV and SOX11 categories identified 17 and 22 miRs differentially expressed, respectively. Enriched targets of these miRs corresponded to relevant pathways in MCL pathogenesis such as DNA stress response, CD40 signaling and chromatin modification. Additionally, we found seven miRs showing prognostic significance independently of IGHV status and SOX11 expression. Among them, miR-34a was also associated with poor prognosis in two independent series of leukemic and nodal MCL, and in cooperation with high expression of the MYC oncogene. Conclusion We have identified miRs and target pathways related to clinical and biological variants of leukemic MCL, and validated miR-34a as a prognostic marker in MCL. PMID:23640973

  4. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  5. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes.

    Science.gov (United States)

    Yang, G P; Ross, D T; Kuang, W W; Brown, P O; Weigel, R J

    1999-03-15

    Comparing patterns of gene expression in cell lines and tissues has important applications in a variety of biological systems. In this study we have examined whether the emerging technology of cDNA microarrays will allow a high throughput analysis of expression of cDNA clones generated by suppression subtractive hybridization (SSH). A set of cDNA clones including 332 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with fluorescent labeled probes prepared from RNA from ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231 and HBL-100) breast cancer cell lines. Ten clones were identified that were over-expressed by at least a factor of five in the ER-positive cell lines. Northern blot analysis confirmed over-expression of these 10 cDNAs. Sequence analysis identified four of these clones as cytokeratin 19, GATA-3, CD24 and glutathione-S-transferase mu-3. Of the remaining six cDNA clones, four clones matched EST sequences from two different genes and two clones were novel sequences. Flow cytometry and immunofluorescence confirmed that CD24 protein was over-expressed in the ER-positive cell lines. We conclude that SSH and microarray technology can be successfully applied to identify differentially expressed genes. This approach allowed the identification of differentially expressed genes without the need to obtain previously cloned cDNAs.

  6. Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    GUO ChunYu; YIN HuiJun; JIANG YueRong; XUE Mei; SHI DaZhuo

    2008-01-01

    To determine the differential genes in ischemic myocardium of Wistar rats with acute myocardial in-farction (AMI),we constructed two differential gone expression profiles.AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats.Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point at the 8th day after the operation.Dif-ferential gone expression profiles of the two samples were constructed by using long serial analysis of gone expression (LongSAGE).Real time fluorescence quantitative PCR (Q-PCR) was used to confirm the expression changes of partial target genes.The main results were as follows:a total of 15966 tags were screened from the normal and the ischemic LongSAGE maps,and 9646 tags in the normal tissue and 9563 tags in the ischemic tissue were obtained.Among them,7665 novel tags were identified by NCBI BLAST search.In the ischemic tissue,142 genes significantly changed compared to those in the normal tissue (P<0.05).These differentially expressed genes may play important roles in the pathways of oxidation and phosphoryiation,ATP synthesis and glycolysis and so on.Partial genes identified by the LongSAGE were confirmed by Q-PCR.The results show that AMI causes a series of gone expres-sion changes in the regulation of the pathways related to energy metabolism.

  7. Identification of differentially expressed genes in uveal melanoma using suppressive subtractive hybridization

    Science.gov (United States)

    Landreville, Solange; Lupien, Caroline B.; Vigneault, Francois; Gaudreault, Manon; Mathieu, Mélissa; Rousseau, Alain P.; Guérin, Sylvain L.

    2011-01-01

    Purpose Uveal melanoma (UM) is the most common primary cancer of the eye, resulting not only in vision loss, but also in metastatic death. This study attempts to identify changes in the patterns of gene expression that lead to malignant transformation and proliferation of normal uveal melanocytes (UVM) using the Suppressive Subtractive Hybridization (SSH) technique. Methods The SSH technique was used to isolate genes that are differentially expressed in the TP31 cell line derived from a primary UM compared to UVM. The expression level of selected genes was further validated by microarray, semi-quantitative RT–PCR and western blot analyses. Results Analysis of the subtracted libraries revealed that 37 and 36 genes were, respectively, up- and downregulated in TP31 cells compared to UVM. Differential expression of the majority of these genes was confirmed by comparing UM cells with UVM by microarray. The expression pattern of selected genes was analyzed by semi-quantitative RT–PCR and western blot, and was found to be consistent with the SSH findings. Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes in UM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. PMID:21647268

  8. Integrated Analysis of Expression Profile Based on Differentially Expressed Genes in Middle Cerebral Artery Occlusion Animal Models

    Directory of Open Access Journals (Sweden)

    Huaqiang Zhou

    2016-05-01

    Full Text Available Stroke is one of the most common causes of death, only second to heart disease. Molecular investigations about stroke are in acute shortage nowadays. This study is intended to explore a gene expression profile after brain ischemia reperfusion. Meta-analysis, differential expression analysis, and integrated analysis were employed on an eight microarray series. We explored the functions and pathways of target genes in gene ontology (GO enrichment analysis and constructed a protein-protein interaction network. Meta-analysis identified 360 differentially expressed genes (DEGs for Mus musculus and 255 for Rattus norvegicus. Differential expression analysis identified 44 DEGs for Mus musculus and 21 for Rattus norvegicus. Timp1 and Lcn2 were overexpressed in both species. The cytokine-cytokine receptor interaction and chemokine signaling pathway were highly enriched for the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway. We have exhibited a global view of the potential molecular differences between middle cerebral artery occlusion (MCAO animal model and sham for Mus musculus or Rattus norvegicus, including the biological process and enriched pathways in DEGs. This research helps contribute to a clearer understanding of the inflammation process and accurate identification of ischemic infarction stages, which might be transformed into a therapeutic approach.

  9. Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection

    Directory of Open Access Journals (Sweden)

    Wenzel Andreas

    2008-02-01

    Full Text Available Abstract Background Retinal degeneration is a main cause of blindness in humans. Neuroprotective therapies may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1α in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration. To address the molecular mechanisms of the protection, we analyzed the transcriptome of the hypoxic retina using microarrays and real-time PCR. Results Hypoxic exposure induced a marked alteration in the retinal transcriptome with significantly different expression levels of 431 genes immediately after hypoxic exposure. The normal expression profile was restored within 16 hours of reoxygenation. Among the differentially regulated genes, several candidates for neuroprotection were identified like metallothionein-1 and -2, the HIF-1 target gene adrenomedullin and the gene encoding the antioxidative and cytoprotective enzyme paraoxonase 1 which was previously not known to be a hypoxia responsive gene in the retina. The strongly upregulated cyclin dependent kinase inhibitor p21 was excluded from being essential for neuroprotection. Conclusion Our data suggest that neuroprotection after hypoxic preconditioning is the result of the differential expression of a multitude of genes which may act in concert to protect visual cells against a toxic insult.

  10. Analysis of DNA strand-specific differential expression with high density tiling microarrays

    Directory of Open Access Journals (Sweden)

    Antequera Francisco

    2010-03-01

    Full Text Available Abstract Background DNA microarray technology allows the analysis of genome structure and dynamics at genome-wide scale. Expression microarrays (EMA contain probes for annotated open reading frames (ORF and are widely used for the analysis of differential gene expression. By contrast, tiling microarrays (TMA have a much higher probe density and provide unbiased genome-wide coverage. The purpose of this study was to develop a protocol to exploit the high resolution of TMAs for quantitative measurement of DNA strand-specific differential expression of annotated and non-annotated transcripts. Results We extensively filtered probes present in Affymetrix Genechip Yeast Genome 2.0 expression and GeneChip S. pombe 1.0FR tiling microarrays to generate custom Chip Description Files (CDF in order to compare their efficiency. We experimentally tested the potential of our approach by measuring the differential expression of 4904 genes in the yeast Schizosaccharomyces pombe growing under conditions of oxidative stress. The results showed a Pearson correlation coefficient of 0.943 between both platforms, indicating that TMAs are as reliable as EMAs for quantitative expression analysis. A significant advantage of TMAs over EMAs is the possibility of detecting non-annotated transcripts generated only under specific physiological conditions. To take full advantage of this property, we have used a target-labelling protocol that preserves the original polarity of the transcripts and, therefore, allows the strand-specific differential expression of non-annotated transcripts to be determined. By using a segmentation algorithm prior to generating the corresponding custom CDFs, we identified and quantitatively measured the expression of 510 transcripts longer than 180 nucleotides and not overlapping previously annotated ORFs that were differentially expressed at least 2-fold under oxidative stress. Conclusions We show that the information derived from TMA

  11. Identification of differentially expressed genes in normal mucosa, adenoma and adenocarcinoma of colon by SSH

    Institute of Scientific and Technical Information of China (English)

    Min-Jie Luo; Mao-De Lai

    2001-01-01

    AIM To construct subtracted cDNA libraries and further identify differentially expressed genes that are related to the development of colorectal carcinoma (CRC).``METHODS Suppression subtractive hybridization(SSH)was done on cDNAs of normal mucosa, adenoma and adenocarcinoma tissues from the same patient. Three subtracted cDNA libraries were constructed and then hybridized with forward and backward subtracted probes for differential screening. Positive clones from each subtracted cDNA library were selected for sequencing and BLAST analysis. Finally, virtual Northern Blot confirmed such differential expression.``RESULTS By this way, there were about 3 -4× l02clones identified in each subtracted cDNA library, in which about 85% positive clones were differentially screened. Sequencing and BLAST homology search revealed some clones containing sequences of known gene fragments and several possibly novel genes showing few or no sequence homologies with any known sequences in the database.``CONCLUSION All results confirmed the effectiveness and sensitivity of SSH. The differentially expressed genes during the development of CRC can be used to shed light on the pathogenesis of CRC and be useful genetic markers for early diagnosis and therapy.``

  12. Strontium Promotes Cementoblasts Differentiation through Inhibiting Sclerostin Expression In Vitro

    Directory of Open Access Journals (Sweden)

    Xingfu Bao

    2014-01-01

    Full Text Available Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  13. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  14. Identifying promoters for gene expression in Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Daniel G. Olson

    2015-12-01

    Full Text Available A key tool for metabolic engineering is the ability to express heterologous genes. One obstacle to gene expression in non-model organisms, and especially in relatively uncharacterized bacteria, is the lack of well-characterized promoters. Here we test 17 promoter regions for their ability to drive expression of the reporter genes β-galactosidase (lacZ and NADPH-alcohol dehydrogenase (adhB in Clostridium thermocellum, an important bacterium for the production of cellulosic biofuels. Only three promoters have been commonly used for gene expression in C. thermocellum, gapDH, cbp and eno. Of the new promoters tested, 2638, 2926, 966 and 815 showed reliable expression. The 2638 promoter showed relatively higher activity when driving adhB (compared to lacZ, and the 815 promoter showed relatively higher activity when driving lacZ (compared to adhB.

  15. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population.

    Science.gov (United States)

    Metzger, Todd C; Khan, Imran S; Gardner, James M; Mouchess, Maria L; Johannes, Kellsey P; Krawisz, Anna K; Skrzypczynska, Katarzyna M; Anderson, Mark S

    2013-10-17

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire(+) mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire(-) mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Lineage Tracing and Cell Ablation Identify a Post-Aire-Expressing Thymic Epithelial Cell Population

    Directory of Open Access Journals (Sweden)

    Todd C. Metzger

    2013-10-01

    Full Text Available Thymic epithelial cells in the medulla (mTECs play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire, a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.

  17. Lineage tracing and cell ablation identifies a post-Aire expressing thymic epithelial cell population

    Science.gov (United States)

    Metzger, Todd C.; Khan, Imran S.; Gardner, James M.; Mouchess, Maria L.; Johannes, Kellsey P.; Krawisz, Anna K.; Skrzypczynska, Katarzyna M.; Anderson, Mark S.

    2013-01-01

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and MHC II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates towards the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. PMID:24095736

  18. Network analysis of differential expression for the identification of disease-causing genes.

    Directory of Open Access Journals (Sweden)

    Daniela Nitsch

    Full Text Available Genetic studies (in particular linkage and association studies identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved. We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes.

  19. Efficacy of SSH PCR in isolating differentially expressed genes

    Directory of Open Access Journals (Sweden)

    Cai Li

    2002-05-01

    Full Text Available Abstract Background Suppression Subtractive Hybridization PCR (SSH PCR is a sophisticated cDNA subtraction method to enrich and isolate differentially expressed genes. Despite its popularity, the method has not been thoroughly studied for its practical efficacy and potential limitations. Results To determine the factors that influence the efficacy of SSH PCR, a theoretical model, under the assumption that cDNA hybridization follows the ideal second kinetic order, is proposed. The theoretical model suggests that the critical factor influencing the efficacy of SSH PCR is the concentration ratio (R of a target gene between two cDNA preparations. It preferentially enriches "all or nothing" differentially expressed genes, of which R is infinite, and strongly favors the genes with large R. The theoretical predictions were validated by our experiments. In addition, the experiments revealed some practical limitations that are not obvious from the theoretical model. For effective enrichment of differentially expressed genes, it requires fractional concentration of a target gene to be more than 0.01% and concentration ratio to be more than 5 folds between two cDNA preparations. Conclusion Our research demonstrated theoretical and practical limitations of SSH PCR, which could be useful for its experimental design and interpretation.

  20. Differential expression of ETS family transcription factors in NCCIT human embryonic carcinoma cells upon retinoic acid-induced differentiation.

    Science.gov (United States)

    Park, Sung-Won; Do, Hyun-Jin; Ha, Woo Tae; Han, Mi-Hee; Song, Hyuk; Uhm, Sang-Jun; Chung, Hak-Jae; Kim, Jae-Hwan

    2014-01-01

    E26 transformation-specific (ETS) transcription factors play important roles in normal and tumorigenic processes during development, differentiation, homeostasis, proliferation, and apoptosis. To identify critical ETS factor(s) in germ cell-derived cancer cells, we examined the expression patterns of the 27 ETS transcription factors in naive and differentiated NCCIT human embryonic carcinoma cells, which exhibit both pluripotent and tumorigenic characteristics. Overall, expression of ETS factors was relatively low in NCCIT cells. Among the 27 ETS factors, polyomavirus enhancer activator 3 (PEA3) and epithelium-specific ETS transcription factor-1 (ESE-1) exhibited the most significant changes in their expression levels. Western blot analysis confirmed these patterns, revealing reduced levels of PEA3 protein and elevated levels of ESE-1 protein in differentiated cells. PEA3 increased the proportion of cells in S-phase and promoted cell growth, whereas ESE-1 reduced proliferation potential. These data suggest that PEA3 and ESE-1 may play important roles in pluripotent and tumorigenic embryonic carcinoma cells. These findings contribute to our understanding of the functions of oncogenic ETS factors in germ cell-derived stem cells during processes related to tumorigenesis and pluripotency.

  1. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans.

    Science.gov (United States)

    Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio

    2016-03-15

    T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4(+) naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments.

  2. Current Challenges in Development of Differentially Expressed and Prognostic Prostate Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Steven M. Lucas

    2012-01-01

    Full Text Available Introduction. Predicting the aggressiveness of prostate cancer at biopsy is invaluable in making treatment decisions. In this paper we review the differential expression of genes and microRNAs identified through microarray analysis as potentially useful markers for prostate cancer prognosis and discuss some of the challenges associated with their development. Methods. A review of the literature was conducted through Medline. Articles were identified through searches of the following terms: “prostate cancer AND differential expression”, “prostate cancer prognosis”, and “prostate cancer AND microRNAs”. Results. Though numerous differentially expressed genes and microRNAs were identified as possible prognostic markers, the significance of several of these genes is either debated due to conflicting results or is not validated in other study populations. A few of the articles constructed predictive nomograms using a panel of biomarkers which require further validation. Challenges to the development of useful markers include different methodology, cancer heterogeneity, and sampling error. These can be overcome by categorizing prognostic factors into particular gene pathways or by supplementing biopsy information with blood or urine-based biomarkers. Conclusion. Though biomarkers based on differential expression offer the potential to improve decision making concerning prostate cancer, further validation of their utility and accuracy at the biopsy level is needed.

  3. Differential effects of detergents on keratinocyte gene expression.

    Science.gov (United States)

    van Ruissen, F; Le, M; Carroll, J M; van der Valk, P G; Schalkwijk, J

    1998-04-01

    We have studied the effect of various detergents on keratinocyte gene expression in vitro, using an anionic detergent (sodium dodecyl sulfate), a cationic detergent cetyltrimethylammoniumbromide (CTAB), and two nonionic detergents, Nonidet P-40 and Tween-20. We measured the effect of these detergents on direct cellular toxicity (lactate dehydrogenase release), on the expression of markers for normal differentiation (cytokeratin 1 and involucrin expression), and on disturbed keratinocyte differentiation (SKALP) by northern blot analysis. As reported in other studies, large differences were noted in direct cellular toxicity. In a culture model that mimics normal epidermal differentiation we found that low concentrations of sodium dodecyl sulfate could induce the expression of SKALP, a proteinase inhibitor that is not normally expressed in human epidermis but is found in hyperproliferative skin. Sodium dodecyl sulfate caused upregulation of involucrin and downregulation of cytokeratin 1 expression, which is associated with the hyperproliferative/inflammatory epidermal phenotype found in psoriasis, wound healing, and skin irritation. These changes were not induced after treatment of cultures with CTAB, Triton X-100, and Nonidet-P40. This effect appeared to be specific for the class of anionic detergents because sodium dodecyl benzene sulfonate and sodium laurate also induced SKALP expression. These in vitro findings showed only a partial correlation with the potential of different detergents to induce clinical, biophysical, and cell biologic changes in vivo in human skin. Both sodium dodecyl sulfate and CTAB were found to cause induction and upregulation of SKALP and involucrin at low doses following a 24 h patch test, whereas high concentrations of Triton X-100 did not. Sodium dodecyl sulfate induced higher rates of transepidermal water loss, whereas CTAB treated skin showed more signs of cellular toxicity. We conclude that the action of anionic detergents on

  4. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation.

    Science.gov (United States)

    Obayashi, Shinya; Tabunoki, Hiroko; Kim, Seung U; Satoh, Jun-ichi

    2009-05-01

    Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.

  5. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  6. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  7. Detecting splicing variants in idiopathic pulmonary fibrosis from non-differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Nan Deng

    Full Text Available Idiopathic pulmonary fibrosis (IPF is an interstitial lung disease of unknown cause that lacks a proven therapy for altering its high mortality rate. Microarrays have been employed to investigate the pathogenesis of IPF, but are presented mostly at the gene-expression level due to technologic limitations. In as much as, alternative RNA splicing isoforms are increasingly identified as potential regulators of human diseases, including IPF, we propose a new approach with the capacity to detect splicing variants using RNA-seq data. We conducted a joint analysis of differential expression and differential splicing on annotated human genes and isoforms, and identified 122 non-differentially expressed genes with a high degree of "switch" between major and minor isoforms. Three cases with variant mechanisms for alternative splicing were validated using qRT-PCR, among the group of genes in which expression was not significantly changed at the gene level. We also identified 35 novel transcripts that were unique to the fibrotic lungs using exon-exon junction evidence, and selected a representative for qRT-PCR validation. The results of our study are likely to provide new insight into the pathogenesis of pulmonary fibrosis and may eventuate in new treatment targets.

  8. Using Multiple-Variable Matching to Identify Cultural Sources of Differential Item Functioning

    Science.gov (United States)

    Wu, Amery D.; Ercikan, Kadriye

    2006-01-01

    Identifying the sources of differential item functioning (DIF) in international assessments is very challenging, because such sources are often nebulous and intertwined. Even though researchers frequently focus on test translation and content area, few actually go beyond these factors to investigate other cultural sources of DIF. This article…

  9. Different Skills: Identifying Differentially Effective Teachers of English Language Learners. Working Paper 68

    Science.gov (United States)

    Master, Ben; Loeb, Susanna; Whitney, Camille; Wyckoff, James

    2012-01-01

    This study seeks to identify the characteristics and training experiences of teachers who are differentially effective at promoting academic achievement among English language learners (ELLs). Our analyses indicate that general skills such as those reflected by scores on teacher certification exams and experience teaching non-ELL students are less…

  10. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available BACKGROUND: The expression of myogenic regulatory factors (MRFs consisting of MyoD, Myf5, myogenin (MyoG and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd in primary bovine muscle satellite cells (MSCs. RESULTS: About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS: This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L, Protein lyl-1 (LYL1, various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle

  11. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus

    Directory of Open Access Journals (Sweden)

    Yokoyama Jun

    2009-09-01

    Full Text Available Abstract Background In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor in bumblebees (Bombus ignitus and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. Findings A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%. As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P P = 0.018, within foragers. Conclusion These findings indicate that Bifor expression is size dependent and support the idea that Bifor expression levels are related to behavioral caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.

  12. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  13. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  14. Identification of differentially expressed genes in human uterine leiomy omas using differential display

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching of differentially expressed genes in human uterine leiomyomas, differential display was used with twelve pairs of primers to compare human uterine leiomyomas with matched myometrium. False positives were eliminated by reverse Northern analysis. Positives were confirmed by Northern blot analysis.RESULTS: [1] Four of 69 cDNA fragments (3 up-regulated named L1, L2 and L3 and 1 down-regulated named M1 in leiomyoma) were confirmed by Northern analysis. [2] Sequence comparison and Northern analysis proved that L1 is exactly the human ribosomal protein S19. [3] It was present ubiquitously in 13tissues tested but in various levels and even in different size. [4] L1 was highly expressed in parotidean cystadenocarcinoma, pancreatic cancer and breast cancer examined. [5] No mutations have been found in human uterine leiomyomas (n=6). CONCLUSIONS: hRPS19 overexpression might be a universal signal in rapid cell growth tissues.

  15. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia.

    Science.gov (United States)

    Pérez-Santiago, Josué; Diez-Alarcia, Rebeca; Callado, Luis F; Zhang, Jin X; Chana, Gursharan; White, Cory H; Glatt, Stephen J; Tsuang, Ming T; Everall, Ian P; Meana, J Javier; Woelk, Christopher H

    2012-11-01

    Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia.

  16. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  17. Differential Expression of Sirtuins in the Ageing Rat Brain

    Directory of Open Access Journals (Sweden)

    Gilles J. Guillemin

    2015-05-01

    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  18. miR-203 and miR-205 expression patterns identify subgroups of prognosis in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Cañueto, J; Cardeñoso-Álvarez, E; García-Hernández, J L; Galindo-Villardón, P; Vicente-Galindo, P; Vicente-Villardón, J L; Alonso-López, D; De Las Rivas, J; Valero, J; Moyano-Sáez, E; Fernández-López, E; Mao, J H; Castellanos-Martín, A; Román-Curto, C; Pérez-Losada, J

    2016-12-11

    Cutaneous squamous cell carcinoma is the second most widespread cancer in humans and its incidence is rising. These tumours can evolve as poor-prognosis diseases, and therefore it is important to identify new markers to better predict its clinical evolution. Here, we identified the expression pattern of miRNAs at different stages of skin cancer progression in a panel of murine skin cancer cell lines. We determined that miR-203 and miR-205 are differentially expressed in this panel, and evaluated their potential use as biomarkers of prognosis in human tumours. MiR-205 was expressed in tumours with pathological features recognized as indicators of poor prognosis such as desmoplasia, perineural invasion and infiltrative growth pattern. MiR-205 was mainly expressed in undifferentiated areas and in the invasion front, and was associated with both local recurrence and the development of general clinical events of poor evolution. MiR-205 expression was an independent variable selected to predict events of poor clinical evolution using the multinomial logistic regression model described in this study. In contrast, miR-203 was mainly expressed in tumours exhibiting the characteristics associated with a good prognosis, was mainly present in well-differentiated zones, and rarely expressed in the invasion front. Therefore, the expression and associations of miR-205 and miR-203 were mostly mutually exclusive. Finally, using a logistic biplot we identified three clusters of patients with differential prognosis based on miR-203 and miR-205 expression, and pathological tumour features. This work highlights the utility of miRNA-205 and miRNA-203 as prognostic markers in cutaneous squamous cell carcinoma. This article is protected by copyright. All rights reserved.

  19. Identification of differentially expressed genes associated with semigamy in Pima cotton (Gossypium barbadense L. through comparative microarray analysis

    Directory of Open Access Journals (Sweden)

    Stewart J McD

    2011-03-01

    Full Text Available Abstract Background Semigamy in cotton is a type of facultative apomixis controlled by an incompletely dominant autosomal gene (Se. During semigamy, the sperm and egg cells undergo cellular fusion, but the sperm and egg nucleus fail to fuse in the embryo sac, giving rise to diploid, haploid, or chimeric embryos composed of sectors of paternal and maternal origin. In this study we sought to identify differentially expressed genes related to the semigamy genotype by implementing a comparative microarray analysis of anthers and ovules between a non-semigametic Pima S-1 cotton and its doubled haploid natural isogenic mutant semigametic 57-4. Selected differentially expressed genes identified by the microarray results were then confirmed using quantitative reverse transcription PCR (qRT-PCR. Results The comparative analysis between isogenic 57-4 and Pima S-1 identified 284 genes in anthers and 1,864 genes in ovules as being differentially expressed in the semigametic genotype 57-4. Based on gene functions, 127 differentially expressed genes were common to both semigametic anthers and ovules, with 115 being consistently differentially expressed in both tissues. Nine of those genes were selected for qRT-PCR analysis, seven of which were confirmed. Furthermore, several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues. Conclusion As the first report using microarray analysis, several important metabolic pathways affected by differentially expressed genes in the semigametic cotton genotype have been identified and described in detail. While these genes are unlikely to be the semigamy gene itself, the effects associated with expression changes in those genes do mimic phenotypic traits observed in semigametic plants

  20. Differential expression analysis of Liprin-α2 in hibernating bat (Rhinolophus ferrumequinum)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A PCR-based subtractive hybridization technique was used to identify genes up-regulated in the hibernating bat brain to explore the molecular mechanism of hibernation. Three genes, Liprin-α2, PTP4A2 and CAMKKβ were differentially expressed in hibernating bat brain tissue compared to active bat brain tissue. One of them, Liprin-α2, which has recently been shown to have the key function in the organization of presynaptic and postsynaptic multiprotein complexes was studied in detail. We demonstrated that the expression level of Liprin-α2 was up-regulated almost 4-fold in hibernating bat brains by RT-PCR compared to levels in active bats. The differential expression pattern of Liprin-α2 was also detected in muscle, fat, brain and heart tissue of hibernating bats by real-time quantitative PCR. The result indicated that Liprin-α2 was over-expressed in brain and heart tissue and down-regulated in muscle and fat. In brain tissue of hibernating bats, Liprin-α2 expression was statistically significantly higher than in brain tissue of active controls (P = 0.029).The precise control of transcriptional level and the distinctively differential expression pattern of Liprin-α2 in different organs during circannual hibernation may have important physiological significance, not only in maintaining normal function of many key organs but also in effectively conserving limited energy resources without physiological damage.

  1. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients' (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA.

  2. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients

    Science.gov (United States)

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients’ (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA. PMID:28210261

  3. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Zou

    2015-02-01

    Full Text Available We generated a RUNX2-yellow fluorescent protein (YFP reporter system to study osteogenic development from human embryonic stem cells (hESCs. Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development.

  4. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    Science.gov (United States)

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  5. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    Science.gov (United States)

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  6. Microarray-Based Differential Expression Monitoring of 79 Novel Genes in Human Fetal Tissues

    Institute of Scientific and Technical Information of China (English)

    Ma; Shu-hua; Wang; Dun-cheng; 等

    2003-01-01

    79 ESTs fragments with represents corresponding novel genes were obtained by sequencing and bioinformatics analysis of human fetal kidney cDNA library. Microarray was prepared by using these novel EST fragments by automatic spotting. Expression patters of 79 ESTs of novel genes from human fetal kidney were analyzed in fetal brain and fetal heart tissues of 20-week-and 26-week-age fetus by performing of cDNA chip hybridization. This provides clues for studying exact functions of the novel genes. 8 genes were obtained which were expressed differentially in the fetal brain and heart of 20-week-and 26-week-age respectively. Then differentially expressed genes were identified by Northern analysis. The more exact function of the novel genes is under study.

  7. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.

    Science.gov (United States)

    Mexal, S; Frank, M; Berger, R; Adams, C E; Ross, R G; Freedman, R; Leonard, S

    2005-10-03

    Nicotine is known to induce the release of multiple neurotransmitters, including glutamate and dopamine, through activation of nicotinic receptors. Gene expression in the N-methyl-d-aspartate postsynaptic density (NMDA-PSD), as well as other functional groups, was compared in postmortem hippocampus of schizophrenic and nonmentally ill smokers and nonsmokers utilizing a microarray and quantitative RT-PCR approach. The expression of 277 genes was significantly changed between all smokers and nonsmokers. Specific gene groups, most notably genes expressed in the NMDA-PSD, were prevalent among these transcripts. Analysis of the interaction between smoking and schizophrenia identified several genes in the NMDA-PSD that were differentially affected by smoking in patients. The present findings suggest that smoking may differentially modulate glutamatergic function in schizophrenic patients and control subjects. The biological mechanisms underlying chronic tobacco use are likely to differ substantially between these two groups.

  8. Comparative proteomic analysis of differentially expressed proteins between K562 and K562/ADM cells

    Institute of Scientific and Technical Information of China (English)

    SHEN Shao-hua; GU Long-jun; LIU Pei-qing; YE Xin; CHANG Wei-shan; LI Ben-shang

    2008-01-01

    Background Multidrug resistance to chemotherapeutic agents is an important clinical problem during the treatment of leukemia.The resistance process is multifactorial.To realize the totaI factors involved in multidrug resistance,we analyzed the differentially expressed proteins of K562 and K562/ADM cells and we investigated one of the up-regulated proteins(CRKL)using siRNA to determine its role in K562/ADM cells.Methods Altered protein expressions between K562/S(K562 ADM-sensitive cell line)and K562/ADM(K562 multidrug resistant cell line induced by adriamycin)were identified by 2D-DIGE coupled with mass spectrometry. Meanwhile,we confirmed the differential expression of CRKL and Stathmin in both K562 and K562/ADM cells by Western blot analysis.Furthermore,we used RNA interference to silence the CRKL gene expression.Results Among the 9 differentially expressed proteins,3 were up-regulated in K562/ADM cells,while 6 were down-regulated in the K562/ADM cells compared with its parent cell line.The expression of CRKL was up-regulated significantly in K562/ADM cells,and it can be decreased by recombinant lentivirus.Moreover,the multidrug resistance of K562/ADM cells was efficiently reversed by silence of CRKL gene expression.Conclusions The data provided the differentially expressed proteins jn K562 and jts resistant cell line and highlights the power of 2D-DIGE for the discovery of resistance markers in cancer.We found CRKL may be a new protein involved in the multidrug resistanse of leukaemia cells.

  9. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation

    Directory of Open Access Journals (Sweden)

    Winger Quinton A

    2011-01-01

    Full Text Available Abstract Background Gonadal differentiation in the mammalian fetus involves a complex dose-dependent genetic network. Initiation and progression of fetal ovarian and testicular pathways are accompanied by dynamic expression patterns of thousands of genes. We postulate these expression patterns are regulated by small non-coding RNAs called microRNAs (miRNAs. The aim of this study was to identify the expression of miRNAs in mammalian fetal gonads using sheep as a model. Methods We determined the expression of 128 miRNAs by real time PCR in early-gestational (gestational day (GD 42 and mid-gestational (GD75 sheep ovaries and testes. Expression data were further examined and validated by bioinformatic analysis. Results Expression analysis revealed significant differences between ovaries and testes among 24 miRNAs at GD42, and 43 miRNAs at GD75. Bioinformatic analysis revealed that a number of differentially expressed miRNAs are predicted to target genes known to be important in mammalian gonadal development, including ESR1, CYP19A1, and SOX9. In situ hybridization revealed miR-22 localization within fetal testicular cords. As estrogen signaling is important in human and sheep ovarian development, these data indicate that miR-22 is involved in repressing estrogen signaling within fetal testes. Conclusions Based on our results we postulate that gene expression networks underlying fetal gonadal development are regulated by miRNAs.

  10. Identification of novel adipokines in the joint. Differential expression in healthy and osteoarthritis tissues.

    Directory of Open Access Journals (Sweden)

    Javier Conde

    Full Text Available Emerging data suggest that several metabolic factors, released mainly by white adipose tissue (WAT and joint tissues, and collectively named adipokines, might have a role in the pathophysiology of OA. Recently, novel adipokines such as SERPINE2, WISP2, GPNMB and ITIH5 have been identified in WAT. The main goal of this study was to analyse the expression of these novel adipokines in synovium, infrapatellar fat pad and chondrocytes and to compare the expression of these molecules in healthy and OA tissues.Synovial tissues, infrapatellar fat pad and chondrocytes were obtained from 36 OA patients (age 52-85; mean BMI 28.9 who underwent total knee replacement surgery. Healthy synovial tissues and infrapatellar fat pad were obtained from 15 traumatic knee patients (age 23-53; mean BMI 23.5. mRNA and protein expression were determined by qRT-PCR and western blot analysis respectively.All the novel adipokines, matter of our study, are expressed in OA synovium, infrapatellar fat pad and chondrocytes. Moreover, we detected a differential expression of SERPINE2 and ITIH5 in OA synovial tissues as compared to healthy samples. Finally, we also observed an increased expression of WISP2 in OA infrapatellar fat pad in comparison to healthy controls.In this study we demonstrated for the first time the expression of four novel adipokines in different joint tissues and how these molecules are differentially expressed in healthy and OA joint tissues.

  11. Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

    Science.gov (United States)

    Stanley, Erin L; Johnston, Daniel S; Fan, Jinjiang; Papadopoulos, Vassilios; Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R; Jelinsky, Scott A

    2011-12-01

    Leydig cells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.

  12. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression.

    Directory of Open Access Journals (Sweden)

    Xiaodong Shi

    Full Text Available Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.

  13. The lncRNA DEANR1 Facilitates Human Endoderm Differentiation by Activating FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2015-04-01

    Full Text Available Long non-coding RNAs (lncRNAs regulate diverse biological processes, including cell lineage specification. Here, we report transcriptome profiling of human endoderm and pancreatic cell lineages using purified cell populations. Analysis of the data sets allows us to identify hundreds of lncRNAs that exhibit differentiation-stage-specific expression patterns. As a first step in characterizing these lncRNAs, we focus on an endoderm-specific lncRNA, definitive endoderm-associated lncRNA1 (DEANR1, and demonstrate that it plays an important role in human endoderm differentiation. DEANR1 contributes to endoderm differentiation by positively regulating expression of the endoderm factor FOXA2. Importantly, overexpression of FOXA2 is able to rescue endoderm differentiation defects caused by DEANR1 depletion. Mechanistically, DEANR1 facilitates FOXA2 activation by facilitating SMAD2/3 recruitment to the FOXA2 promoter. Thus, our study not only reveals a large set of differentiation-stage-specific lncRNAs but also characterizes a functional lncRNA that is important for endoderm differentiation.

  14. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells.

    Science.gov (United States)

    Kucknoor, Ashwini; Mundodi, Vasanthakrishna; Alderete, John F

    2005-06-01

    Trichomonas vaginalis, an ancient protist, colonizes the vaginal mucosa causing trichomonosis, a vaginitis that sometimes leads to severe health complications. Preparatory to colonization of the vagina is the adhesion to vaginal epithelial cells (VECs) by trichomonads. We hypothesized that VECs alter the gene expression to form a complex signalling cascade in response to trichomonal adherence. In order to identify the genes that are upregulated, we constructed a subtraction cDNA library after contact with parasites that is enriched for differentially expressed genes from the immortalized MS-74 VECs. Sixty cDNA clones were sequenced and to our knowledge for the first time, differentially regulated genes were identified in response to early trichomonal infection. The identified genes were found to encode functional proteins with specific functions associated with cell structure maintenance and extracellular matrix components, proinflammatory molecules and apoptosis. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed expression of selected genes. Further, cyclooxygenase 2 (COX-2) protein expression was analysed using Western blot and immunofluorescence assays. Data suggest that p38 mitogen-activated protein (MAP) kinase and tyrosine kinases play a role in COX-2 induction. Finally, T. vaginalis and Tritrichomonas foetus but not Pentatrichomonas hominis induce expression of COX-2. This is a first attempt at elucidating the basis of interaction of trichomonads with host cells and the corresponding host responses triggered by the parasites.

  15. A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks.

    Science.gov (United States)

    Chen, Shuo; Kang, Jian; Xing, Yishi; Wang, Guoqing

    2015-12-01

    Group-level functional connectivity analyses often aim to detect the altered connectivity patterns between subgroups with different clinical or psychological experimental conditions, for example, comparing cases and healthy controls. We present a new statistical method to detect differentially expressed connectivity networks with significantly improved power and lower false-positive rates. The goal of our method was to capture most differentially expressed connections within networks of constrained numbers of brain regions (by the rule of parsimony). By virtue of parsimony, the false-positive individual connectivity edges within a network are effectively reduced, whereas the informative (differentially expressed) edges are allowed to borrow strength from each other to increase the overall power of the network. We develop a test statistic for each network in light of combinatorics graph theory, and provide p-values for the networks (in the weak sense) by using permutation test with multiple-testing adjustment. We validate and compare this new approach with existing methods, including false discovery rate and network-based statistic, via simulation studies and a resting-state functional magnetic resonance imaging case-control study. The results indicate that our method can identify differentially expressed connectivity networks, whereas existing methods are limited.

  16. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  17. Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. METHODOLOGY/PRINCIPAL FINDINGS: The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8-12 kgs weight loss could always be differentiated from non-responders (<4 kgs weight loss. We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%+/-8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier improved prediction accuracy to 80.9%+/-2.2%. CONCLUSION: Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition.

  18. Microarray profile of gene expression during osteoclast differentiation in modelled microgravity.

    Science.gov (United States)

    Sambandam, Yuvaraj; Blanchard, Jeremy J; Daughtridge, Giffin; Kolb, Robert J; Shanmugarajan, Srinivasan; Pandruvada, Subramanya N M; Bateman, Ted A; Reddy, Sakamuri V

    2010-12-01

    Microgravity (µXg) leads to a 10-15% loss of bone mass in astronauts during space flight. Osteoclast (OCL) is the multinucleated bone-resorbing cell. In this study, we used the NASA developed ground-based rotating wall vessel bioreactor (RWV), rotary cell culture system (RCCS) to simulate µXg conditions and demonstrated a significant increase (2-fold) in osteoclastogenesis compared to normal gravity control (Xg). Gene expression profiling of RAW 264.7 OCL progenitor cells in modelled µXg by Agilent microarray analysis revealed significantly increased expression of critical molecules such as cytokines/growth factors, proteases and signalling proteins, which play an important role in enhanced OCL differentiation/function. Transcription factors such as c-Jun, MITF and CREB implicated in OCL differentiation are upregulated; however no significant change in the levels of NFATc1 expression in preosteoclast cells subjected to modelled µXg. We also identified high-level expression of calcium-binding protein, S100A8 (calcium-binding protein molecule A8/calgranulin A) in preosteoclast cells under µXg. Furthermore, modelled µXg stimulated RAW 264.7 cells showed elevated cytosolic calcium (Ca(2+)) levels/oscillations compared to Xg cells. siRNA knock-down of S100A8 expression in RAW 264.7 cells resulted in a significant decrease in modelled µXg stimulated OCL differentiation. We also identified elevated levels of phospho-CREB in preosteoclast cells subjected to modelled µXg compared to Xg. Thus, modelled µXg regulated gene expression profiling in preosteoclast cells provide new insights into molecular mechanisms and therapeutic targets of enhanced OCL differentiation/activation to prevent bone loss and fracture risk in astronauts during space flight missions.

  19. Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection

    Directory of Open Access Journals (Sweden)

    Fang Lo Chu

    2010-07-01

    Full Text Available Abstract Background Viral and bacterial diseases can cause mass mortalities in commercial shrimp aquaculture. In contrast to studies on the antiviral response, the responses of shrimps to bacterial infections by high throughput techniques have been reported only at the transcriptional level and not at the translational level. In this study, a proteomic analysis of shrimp hemocytes to identify differentially expressed proteins in response to a luminous bacterium Vibrio harveyi was evaluated for its feasibility and is reported for the first time. Results The two-dimensional gel electrophoresis (2-DE patterns of the hemocyte proteins from the unchallenged and V. harveyi challenged shrimp, Penaeus monodon, at 24 and 48 h post infection were compared. From this, 27 differentially expressed protein spots, and a further 12 weakly to non-differentially regulated control spots, were selected for further analyses by the LC-ESI-MS/MS. The 21 differentially expressed proteins that could be identified by homologous annotation were comprised of proteins that are directly involved in the host defense responses, such as hemocyanin, prophenoloxidase, serine proteinase-like protein, heat shock protein 90 and alpha-2-macroglobulin, and those involved in signal transduction, such as the14-3-3 protein epsilon and calmodulin. Western blot analysis confirmed the up-regulation of hemocyanin expression upon bacterial infection. The expression of the selected proteins which were the representatives of the down-regulated proteins (the 14-3-3 protein epsilon and alpha-2-macroglobulin and of the up-regulated proteins (hemocyanin was further assessed at the transcription level using real-time RT-PCR. Conclusions This work suggests the usefulness of a proteomic approach to the study of shrimp immunity and revealed hemocyte proteins whose expression were up regulated upon V. harveyi infection such as hemocyanin, arginine kinase and down regulated such as alpha-2-macroglobulin

  20. Differential expression of ZFX gene in gastric cancer

    Indian Academy of Sciences (India)

    Parvaneh Nikpour; Modjtaba Emadi-Baygi; Faezeh Mohammad-Hashem; Mohamad Reza Maracy; Shaghayegh Haghjooy-Javanmard

    2012-03-01

    Gastric cancer accounts for 8% of the total cancer cases and 10% of total cancer deaths worldwide. In Iran, gastric cancer is the leading cause of national cancer-related mortality. Most human cancers show substantial heterogeneity. The cancer stem cell (CSC) hypothesis has been proposed to reconcile this heterogeneity. ZFX encodes a member of the krueppel C2H2-type zinc-finger protein family that is required as a transcriptional regulator for self-renewal of stem cells. A total of 30 paired tissue gastric samples were examined for ZFX gene expression by quantitative real-time RT-PCR. Although the relative expression of the gene was significantly high in 47% of the examined tumour tissues, its expression was low in the others (53%). There was a statistically significant association between the ZFX gene expression and different tumour types and grades. This is the first report that shows ZFX was differentially expressed in gastric cancer. Of note, it was overexpressed in diffused-type and grade III gastric tumoural tissues. Due to this, ZFX may have the potential to be used as a target for therapeutic interventions.

  1. Differential expression of angiogenic factors in peripheral nerve sheath tumors.

    Science.gov (United States)

    Wasa, Junji; Nishida, Yoshihiro; Suzuki, Yoshitaka; Tsukushi, Satoshi; Shido, Yoji; Hosono, Kozo; Shimoyama, Yoshie; Nakamura, Shigeo; Ishiguro, Naoki

    2008-01-01

    It is difficult to differentiate some malignant peripheral nerve sheath tumors (MPNST) from benign peripheral nerve sheath tumors (BPNST) histologically, and to predict the clinical outcome of patients with MPNST. In this study, the expression of VEGF and MVD were evaluated immunohistochemically in 22 cases of MPNST, 14 of neurofibroma and 19 of schwannoma and correlation of the staining grade of VEGF or MVD and the various clinical factors were analyzed, and statistically evaluated. Levels of VEGF mRNA expression were also determined with real-time RT-PCR. Statistically higher positive staining for VEGF was observed in MPNST compared to neurofibroma (P=0.004) and schwannoma (PMPNST showed higher VEGF positive staining than neurofibroma. Moreover, high VEGF expression statistically correlated with the poor prognosis of the patients with MPNST (P=0.015). Although MVD in MPNST was significantly higher than that in neurofibroma (P=0.038) and schwannoma (PMPNST. Although VEGF mRNA expression tended to be higher in MPNST compared to neurofibroma, the difference was not significant. Levels of VEGF protein expression serve as a novel diagnostic and prognostic tools for peripheral nerve sheath tumors.

  2. Candidate egg case silk genes for the spider Argiope argentata from differential gene expression analyses.

    Science.gov (United States)

    Chaw, R C; Arensburger, P; Clarke, T H; Ayoub, N A; Hayashi, C Y

    2016-12-01

    Orb-web weaving spiders produce a variety of task-specific silks from specialized silk glands. The genetics underlying the synthesis of specific silk types are largely unknown, and transcriptome analysis could be a powerful approach for identifying candidate genes. However, de novo assembly and expression profiling of silk glands with RNA-sequencing (RNAseq) are problematic because the few known gene transcripts for silk proteins are extremely long and highly repetitive. To identify candidate genes for tubuliform (egg case) silk synthesis by the orb-weaver Argiope argentata (Araneidae), we estimated transcript abundance using two sequencing methods: RNAseq reads from throughout the length of mRNA molecules, and 3' digital gene expression reads from the 3' region of mRNA molecules. Both analyses identified similar sets of genes as differentially expressed when comparing tubuliform and nonsilk gland tissue. However, incompletely assembled silk gene transcripts were identified as differentially expressed because of RNAseq read alignments to highly repetitive regions, confounding interpretation of RNAseq results. Homologues of egg case silk protein (ECP) genes were upregulated in tubuliform glands. This discovery is the first description of ECP homologues in an araneid. We also propose additional candidate genes involved in synthesis of tubuliform or other silk types. © 2016 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  3. Differential gene expression in stromal cells of human giant cell tumor of bone.

    Science.gov (United States)

    Wuelling, M; Delling, G; Kaiser, E

    2004-12-01

    Giant cell tumor (GCT) offers a unique model for the hematopoietic-stromal cell interaction in human bone marrow. Evidence has been presented that GCT stromal cells (GCTSCs) promote accumulation, size and activity of the giant cells. Although GCTSCs are considered the neoplastic component of GCT, little is known about their genetic basis and, to date, a tumor-specific gene expression pattern has not been characterized. Mesenchymal stem cells (MSCs) have been identified as the origin of the GCT neoplastic stromal cell. Using state of the art array technology, expression profiling was applied to enriched stromal cell populations from five different GCTs and two primary MSCs as controls. Of the 29 differentially expressed genes found, 25 showed an increased expression. Differential mRNA expression was verified by real-time polymerase chain reaction analysis of 10 selected genes, supporting the validity of cDNA arrays as a tool to identify tumor-related genes in GCTSCs. Increased expression of two oncogenes, JUN and NME2, was substantiated at the protein level, utilizing immunohistochemical evaluation of GCT sections and Western-blot analysis. Increased phosphorylation of JUN Ser-63 was also found.

  4. Identification of differentially expressed microRNAs across the developing human brain.

    Science.gov (United States)

    Ziats, M N; Rennert, O M

    2014-07-01

    We present a spatio-temporal assessment of microRNA (miRNA) expression throughout early human brain development. We assessed the prefrontal cortex, hippocampus and cerebellum of 18 normal human donor brains spanning infancy through adolescence by RNA-seq. We discovered differentially expressed miRNAs and broad miRNA patterns across both temporal and spatial dimensions, and between male and female prefrontal cortex. Putative target genes of the differentially expressed miRNAs were identified, which demonstrated functional enrichment for transcription regulation, synaptogenesis and other basic intracellular processes. Sex-biased miRNAs also targeted genes related to Wnt and transforming growth factor-beta pathways. The differentially expressed miRNA targets were highly enriched for gene sets related to autism, schizophrenia, bipolar disorder and depression, but not neurodegenerative diseases, epilepsy or other adult-onset psychiatric diseases. Our results suggest critical roles for the identified miRNAs in transcriptional networks of the developing human brain and neurodevelopmental disorders.

  5. Identification and isolation of gene differentially expressed on scrotal ...

    African Journals Online (AJOL)

    Yomi

    2012-01-05

    Jan 5, 2012 ... identify tissue-specific gene expression in larger scrotal ... deeper area of the testis and preserved in liquid nitrogen. A small. Gao et al. ... vacuum and heat (10 min) to 3 µL and adjusted with glycerol to 5%, .... 480/485 (98%).

  6. Identifying differentially methylated genes using mixed effect and generalized least square models

    Directory of Open Access Journals (Sweden)

    Yan Pearlly S

    2009-12-01

    Full Text Available Abstract Background DNA methylation plays an important role in the process of tumorigenesis. Identifying differentially methylated genes or CpG islands (CGIs associated with genes between two tumor subtypes is thus an important biological question. The methylation status of all CGIs in the whole genome can be assayed with differential methylation hybridization (DMH microarrays. However, patient samples or cell lines are heterogeneous, so their methylation pattern may be very different. In addition, neighboring probes at each CGI are correlated. How these factors affect the analysis of DMH data is unknown. Results We propose a new method for identifying differentially methylated (DM genes by identifying the associated DM CGI(s. At each CGI, we implement four different mixed effect and generalized least square models to identify DM genes between two groups. We compare four models with a simple least square regression model to study the impact of incorporating random effects and correlations. Conclusions We demonstrate that the inclusion (or exclusion of random effects and the choice of correlation structures can significantly affect the results of the data analysis. We also assess the false discovery rate of different models using CGIs associated with housekeeping genes.

  7. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    RNA-TF-mRNA sub-networks vary across different identified subtypes. In addition, pathway enrichment analyses show that the top pathways involving the most differentially expressed genes in each of the identified subtypes are different. The results would provide valuable information for understanding the mechanisms characterising different cancer subtypes and assist the design of treatment therapies. All datasets and the R scripts to reproduce the results are available online at the website: http://nugget.unisa.edu.au/Thuc/cancersubtypes/.

  8. Identification of differentially expressed circular RNAs in human colorectal cancer.

    Science.gov (United States)

    Zhang, Peili; Zuo, Zhigui; Shang, Wenjing; Wu, Aihua; Bi, Ruichun; Wu, Jianbo; Li, Shaotang; Sun, Xuecheng; Jiang, Lei

    2017-03-01

    Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.

  9. Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads

    Directory of Open Access Journals (Sweden)

    Hale Matthew C

    2011-08-01

    Full Text Available Abstract Background There are large differences between the sexes at the genetic level; these differences include heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout (Oncorhynchus mykiss qRT-PCR studies have found significant differences in expression of several candidate sex determining genes. However, these genes represent a very small fraction of the genome and research in other species suggests there are large portions of the transcriptome that are differentially expressed between the sexes. These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is known at earlier stages of development. Here we use data from a microarray and qRT-PCR to identify genes differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of sexual differentiation in this species. Results The microarray study revealed 883 differentially expressed features between the sexes with roughly equal numbers of male and female upregulated features across time points. Most of the differentially expressed genes on the microarray were not related to sex function, suggesting large scale differences in gene expression between the sexes are present early in development. Candidate gene analysis revealed sox9, DMRT1, Nr5a1 and wt1 were upregulated in males at some time points and foxl2, ovol1, fst and cyp19a1a were upregulated in females at some time points. Conclusion This is the first study to identify sexual dimorphism in expression of the genome during embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of gonadogenesis.

  10. Differentially Expressed Genes for Aggressive Pecking Behaviour in Laying Hens

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Hedegaard, Jakob; Janss, Luc

    2009-01-01

    Background Aggressive behaviour is an important aspect in the daily lives of animals living in groups. Aggressive animals have advantages, such as better access to food or territories, and they produce more offspring than low ranking animals. The social hierarchy in chickens is measured using the...... expressed genes may elucidate how the pecking order forms in laying hens at a molecular level....... the 'pecking order' concept, which counts the number of aggressive pecks given and received. To date, little is known about the underlying genetics of the 'pecking order'. Results A total of 60 hens from a high feather pecking selection line were divided into three groups: only receivers (R), only peckers (P...... binding (GO:0035254). Conclusion In conclusion, our study provides new insights into which genes are involved in aggressive behaviours in chickens. Pecking and receiving hens exhibited different gene expression profiles in their brains. Following confirmation, the identification of differentially...

  11. Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba.

    Science.gov (United States)

    Gao, Ming; Lin, Liyuan; Chen, Yicun; Wang, Yangdong

    2016-09-20

    Mountain pepper (Litseacubeba (Lour.) Pers.) (Lauraceae) is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs) involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE) using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF) served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR) results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.

  12. Deep immune profiling by mass cytometry links human T and NK cell differentiation and cytotoxic molecule expression patterns.

    Science.gov (United States)

    Bengsch, Bertram; Ohtani, Takuya; Herati, Ramin Sedaghat; Bovenschen, Niels; Chang, Kyong-Mi; Wherry, E John

    2017-03-19

    The elimination of infected or tumor cells by direct lysis is a key T and NK cell effector function. T and NK cells can kill target cells by coordinated secretion of cytotoxic granules containing one or both pore-forming proteins, perforin and granulysin and combinations of granzyme (Gzm) family effector proteases (in humans: Gzm A, B, K, M and H). Understanding the pattern of expression of cytotoxic molecules and the relationship to different states of T and NK cells may have direct relevance for immune responses in autoimmunity, infectious disease and cancer. Approaches capable of simultaneously evaluating expression of multiple cytotoxic molecules with detailed information on T and NK differentiation state, however, remain limited. Here, we established a high dimensional mass cytometry approach to comprehensively interrogate single cell proteomic expression of cytotoxic programs and lymphocyte differentiation. This assay identified a coordinated expression pattern of cytotoxic molecules linked to CD8 T cell differentiation stages. Coordinated high expression of perforin, granulysin, Gzm A, Gzm B and Gzm M was associated with markers of late effector memory differentiation and expression of chemokine receptor CX3CR1. However, classical gating and dimensionality reduction approaches also identified other discordant patterns of cytotoxic molecule expression in CD8 T cells, including reduced perforin, but high Gzm A, Gzm K and Gzm M expression. When applied to non-CD8 T cells, this assay identified different patterns of cytotoxic molecule co-expression by CD56(hi) versus CD56(dim) defined NK cell developmental stages; in CD4 T cells, low expression of cytotoxic molecules was found mainly in TH1 phenotype cells, but not in Tregs or T follicular helper cells (TFH). Thus, this comprehensive, single cell, proteomic assessment of cytotoxic protein co-expression patterns demonstrates specialized cytotoxic programs in T cells and NK cells linked to their differentiation

  13. Differential expression of pancreatic protein andchemosensing receptor mRNAs in NKCC1-null intestine

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    AIM To investigate the intestinal functions of the NKCC1Na+-K+-2Cl cotransporter (SLC12a2 gene), differentialmRNA expression changes in NKCC1-null intestine wereanalyzed.METHODS: Microarray analysis of mRNA from intestinesof adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed toidentify patterns of differential gene expression changes.Differential expression patterns were further examinedby Gene Ontology analysis using the online Gorillaprogram, and expression changes of selected genes wereverified using northern blot analysis and quantitativereal time-polymerase chain reaction. Histological stainingand immunofluorescence were performed to identify celltypes in which upregulated pancreatic digestive enzymeswere expressed.RESULTS: Genes typically associated with pancreaticfunction were upregulated. These included lipase,amylase, elastase, and serine proteases indicative ofpancreatic exocrine function, as well as insulin andregenerating islet genes, representative of endocrinefunction. Northern blot analysis and immunohistochemistryshowed that differential expression of exocrinepancreas mRNAs was specific to the duodenum andlocalized to a subset of goblet cells. In addition, a majorpattern of changes involving differential expression ofolfactory receptors that function in chemical sensing, aswell as other chemosensing G-protein coupled receptors,was observed. These changes in chemosensory receptorexpression may be related to the failure of intestinalfunction and dependency on parenteral nutritionobserved in humans with SLC12a2 mutations.CONCLUSION: The results suggest that loss of NKCC1affects not only secretion, but also goblet cell functionand chemosensing of intestinal contents via G-proteincoupled chemosensory receptors.

  14. Differentially expressed genes associated with the metastatic phenotype in breast cancer.

    Science.gov (United States)

    Kirschmann, D A; Seftor, E A; Nieva, D R; Mariano, E A; Hendrix, M J

    1999-05-01

    We have previously shown that human breast carcinoma cells demonstrating an interconverted phenotype, where keratin (epithelial marker) and vimentin (mesenchymal marker) intermediate filaments are both expressed, have an increased ability to invade a basement membrane matrix in vitro. This increase in invasive potential has been demonstrated in MDA-MB-231 cells, which constitutively express keratins and vimentin, and in MCF-7 cells transfected with the mouse vimentin gene (MoVi). However, vimentin expression alone is not sufficient to confer the complete metastatic phenotype in MoVi cells, as determined by orthotopic administration. Thus, in the present study, differential display analysis was utilized to identify genes that are associated with the invasive and/or metastatic phenotype of several human breast cancer cell lines. Forty-four of 84 PCR fragments were differentially expressed as assessed by Northern hybridization analysis of RNA isolated from MCF-7, MoVi, and MB-231 cell lines. Polyadenylated RNA from a panel of poorly invasive, invasive/non-metastatic, and invasive/metastatic breast carcinoma cell lines was used to differentiate between cell-specific gene expression and genes associated with the invasive and/or metastatic phenotype(s). We observed that lysyl oxidase and a zinc finger transcription factor were expressed only in the invasive and/or metastatic cell lines; whereas, a thiol-specific antioxidant and a heterochromatin protein were down-regulated in these cells. In contrast, tissue factor was expressed only in breast carcinoma cell lines having the highest invasive potential. These results suggest that specific genes involved in breast cancer invasion and metastasis can be separated by differential display methodology to elucidate the molecular basis of tumor cell progression.

  15. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  16. EntropyExplorer: an R package for computing and comparing differential Shannon entropy, differential coefficient of variation and differential expression.

    Science.gov (United States)

    Wang, Kai; Phillips, Charles A; Saxton, Arnold M; Langston, Michael A

    2015-12-30

    Differential Shannon entropy (DSE) and differential coefficient of variation (DCV) are effective metrics for the study of gene expression data. They can serve to augment differential expression (DE), and be applied in numerous settings whenever one seeks to measure differences in variability rather than mere differences in magnitude. A general purpose, easily accessible tool for DSE and DCV would help make these two metrics available to data scientists. Automated p value computations would additionally be useful, and are often easier to interpret than raw test statistic values alone. EntropyExplorer is an R package for calculating DSE, DCV and DE. It also computes corresponding p values for each metric. All features are available through a single R function call. Based on extensive investigations in the literature, the Fligner-Killeen test was chosen to compute DCV p values. No standard method was found to be appropriate for DSE, and so permutation testing is used to calculate DSE p values. EntropyExplorer provides a convenient resource for calculating DSE, DCV, DE and associated p values. The package, along with its source code and reference manual, are freely available from the CRAN public repository at http://cran.r-project.org/web/packages/EntropyExplorer/index.html.

  17. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    Directory of Open Access Journals (Sweden)

    Eric L. Allen

    2016-10-01

    Full Text Available Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.

  18. Differential gene expression in brain tissues of aggressive and non-aggressive dogs

    Directory of Open Access Journals (Sweden)

    Tverdal Aage

    2010-06-01

    Full Text Available Abstract Background Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation. Results This study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex. Sex differences in transcription levels were detected for five of the nine studied genes. Conclusions The study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.

  19. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Ullrich congenital muscular dystrophy (UCMD, caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.

  20. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    Science.gov (United States)

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  1. Identification of differentially expressed proteins in SH-SY5Y cells treated with resveratrol

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Zhong Dong; Hongyan Fan; Ming Chang; Guoyi Li; Linsen Hu

    2011-01-01

    To gain insight into the molecular mechanisms of resveratrol-mediated neuroprotection, two-dimensional difference gel electrophoresis in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to identify proteins differentially-expressed in SH-SY5Y cells treated with resveratrol. Compared with the control group, resveratrol treatment significantly affected the expression of four proteins: endoplasmic reticulum oxidoreductin 1-like protein alpha, p21-activated kinase 1, Archain 1, and T cell receptor beta chain. The former three were downregulated and the latter was upregulated. These proteins are primarily associated with endoplasmic reticulum stress, intracellular trafficking, and immune function.

  2. Expression of lactoperoxidase in differentiated mouse colon epithelial cells.

    Science.gov (United States)

    Kim, Byung-Wook; Esworthy, R Steven; Hahn, Maria A; Pfeifer, Gerd P; Chu, Fong-Fong

    2012-05-01

    Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

  3. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Zhang, Zi-ji; Zhang, Hao; Kang, Yan; Sheng, Pu-yi; Ma, Yuan-chen; Yang, Zi-bo; Zhang, Zhi-qi; Fu, Ming; He, Ai-shan; Liao, Wei-ming

    2012-03-01

    Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering. © 2011 Wiley Periodicals, Inc.

  4. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Brian S Letzen

    Full Text Available BACKGROUND: Cells of the oligodendrocyte (OL lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs are considered the "micromanagers" of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. METHODOLOGY/PRINCIPAL FINDINGS: We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse central nervous system. Principal component analysis revealed four main clusters of miRNA expression corresponding to early, mid, and late progenitors, and mature OLs. These results were supported by correlation analyses between adjacent stages. Interestingly, the highest differentially-expressed miRNAs demonstrated a similar pattern of expression throughout all stages of differentiation, suggesting that they potentially regulate a common target or set of targets in this process. The predicted targets of these miRNAs include those with known or suspected roles in

  5. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Institute of Scientific and Technical Information of China (English)

    Yonglong Yu; Dong Zhu; Chaoying Ma; Hui Cao; Yaping Wang; Yanhao Xu; Wenying Zhang; Yueming Yan

    2016-01-01

    Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20) during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further informa-tion about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  6. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  7. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures

    Science.gov (United States)

    Juric, Dejan; Sale, Sanja; Hromas, Robert A.; Yu, Ron; Wang, Yan; Duran, George E.; Tibshirani, Robert; Einhorn, Lawrence H.; Sikic, Branimir I.

    2005-01-01

    Germ cell tumors (GCTs) of the testis are the predominant cancer among young men. We analyzed gene expression profiles of 50 GCTs of various subtypes, and we compared them with 443 other common malignant tumors of epithelial, mesenchymal, and lymphoid origins. Significant differences in gene expression were found among major histological subtypes of GCTs, and between them and other malignancies. We identified 511 genes, belonging to several critical functional groups such as cell cycle progression, cell proliferation, and apoptosis, to be significantly differentially expressed in GCTs compared with other tumor types. Sixty-five genes were sufficient for the construction of a GCT class predictor of high predictive accuracy (100% training set, 96% test set), which might be useful in the diagnosis of tumors of unknown primary origin. Previously described diagnostic and prognostic markers were found to be expressed by the appropriate GCT subtype (AFP, POU5F1, POV1, CCND2, and KIT). Several additional differentially expressed genes were identified in teratomas (EGR1 and MMP7), yolk sac tumors (PTPN13 and FN1), and seminomas (NR6A1, DPPA4, and IRX1). Dynamic computation of interaction networks and mapping to existing pathways knowledge databases revealed a potential role of EGR1 in p21-induced cell cycle arrest and intrinsic chemotherapy resistance of mature teratomas. PMID:16306258

  8. Protective antigens against glanders identified by expression library immunization.

    Science.gov (United States)

    Whitlock, Gregory C; Robida, Mark D; Judy, Barbara M; Qazi, Omar; Brown, Katherine A; Deeraksa, Arpaporn; Taylor, Katherine; Massey, Shane; Loskutov, Andrey; Borovkov, Alex Y; Brown, Kevin; Cano, Jose A; Torres, Alfredo G; Estes, D Mark; Sykes, Kathryn F

    2011-01-01

    Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia mallei and the very closely related species B. pseudomallei is due to the pathogens' proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations. These Burkholderia species are nearly impervious to antibiotic treatments and no vaccine exists. In this study, the genome of the highly virulent B. mallei ATCC23344 strain was examined by expression library immunization for gene-encoded protective antigens. This protocol for genomic-scale functional screening was customized to accommodate the unusually large complexity of Burkholderia, and yielded 12 new putative vaccine candidates. Five of the candidates were individually tested as protein immunogens and three were found to confer significant partial protection against a lethal pulmonary infection in a murine model of disease. Determinations of peripheral blood cytokine and chemokine profiles following individual protein immunizations show that interleukin-2 (IL-2) and IL-4 are elicited by the three confirmed candidates, but unexpectedly interferon-γ and tumor necrosis factor-α are not. We suggest that these pathogen components, discovered using genetic immunization and confirmed in a conventional protein format, will be useful toward the development of a safe and effective glanders vaccine.

  9. Protective antigens against glanders identified by expression library immunization

    Directory of Open Access Journals (Sweden)

    Gregory C. Whitlock

    2011-11-01

    Full Text Available Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia (B. mallei and the very closely related species B. pseudomallei is due to the pathogens’ proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations. These Burkholderia species are nearly impervious to antibiotic treatments and no vaccine exists. In this study, the genome of the highly virulent B. mallei ATCC23344 strain was examined by expression library immunization for gene-encoded protective antigens. This protocol for genomic-scale functional screening was customized to accommodate the unusually large complexity of Burkholderia, and yielded 12 new putative vaccine candidates. Five of the candidates were individually tested as protein immunogens and three were found to confer significant partial protection against a lethal pulmonary infection in a murine model of disease. Determinations of peripheral blood cytokine and chemokine profiles following individual protein immunizations show that IL-2 and IL-4 are elicited by the three confirmed candidates, but unexpectedly interferon-and tumor necrosis factor-are not. We suggest that these pathogen components, discovered using genetic immunization and confirmed in a conventional protein format, will be useful toward the development of a safe and effective glanders vaccine.

  10. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance. Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene, Lutein/Zeaxanthine (5 genes, and Vitamin E (4 genes were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  11. Candidate gene prioritization by network analysis of differential expression using machine learning approaches

    Directory of Open Access Journals (Sweden)

    Nitsch Daniela

    2010-09-01

    Full Text Available Abstract Background Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals. To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. Results We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking. Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. Conclusion In this study we

  12. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology.

    Directory of Open Access Journals (Sweden)

    Silvia Zucchini

    Full Text Available The microRNAs (miRNAs are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells, an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets.

  13. Methylation Linear Discriminant Analysis (MLDA for identifying differentially methylated CpG islands

    Directory of Open Access Journals (Sweden)

    Vass J Keith

    2008-08-01

    Full Text Available Abstract Background Hypermethylation of promoter CpG islands is strongly correlated to transcriptional gene silencing and epigenetic maintenance of the silenced state. As well as its role in tumor development, CpG island methylation contributes to the acquisition of resistance to chemotherapy. Differential Methylation Hybridisation (DMH is one technique used for genome-wide DNA methylation analysis. The study of such microarray data sets should ideally account for the specific biological features of DNA methylation and the non-symmetrical distribution of the ratios of unmethylated and methylated sequences hybridised on the array. We have therefore developed a novel algorithm tailored to this type of data, Methylation Linear Discriminant Analysis (MLDA. Results MLDA was programmed in R (version 2.7.0 and the package is available at CRAN 1. This approach utilizes linear regression models of non-normalised hybridisation data to define methylation status. Log-transformed signal intensities of unmethylated controls on the microarray are used as a reference. The signal intensities of DNA samples digested with methylation sensitive restriction enzymes and mock digested are then transformed to the likelihood of a locus being methylated using this reference. We tested the ability of MLDA to identify loci differentially methylated as analysed by DMH between cisplatin sensitive and resistant ovarian cancer cell lines. MLDA identified 115 differentially methylated loci and 23 out of 26 of these loci have been independently validated by Methylation Specific PCR and/or bisulphite pyrosequencing. Conclusion MLDA has advantages for analyzing methylation data from CpG island microarrays, since there is a clear rational for the definition of methylation status, it uses DMH data without between-group normalisation and is less influenced by cross-hybridisation of loci. The MLDA algorithm successfully identified differentially methylated loci between two classes of

  14. WEBSAGE: a web tool for visual analysis of differentially expressed human SAGE tags.

    Science.gov (United States)

    Pylouster, Jean; Sénamaud-Beaufort, Catherine; Saison-Behmoaras, Tula Ester

    2005-07-01

    The serial analysis of gene expression (SAGE) is a powerful method to compare gene expression of mRNA populations. To provide quantitative expression levels on a genome-wide scale, the Cancer Genome Anatomy Project (CGAP) uses SAGE. Over 7 million SAGE tags, from 171 human cell types have been assembled. The growing number of laboratories involved in SAGE research necessitates the use of software that provides statistical analysis of raw data, allowing the rapid visualization and interpretation of results. We have created the first simple tool that performs statistical analysis on SAGE data, identifies the tags differentially expressed and shows the results in a scatter plot. It is freely available and accessible at http://bioserv.rpbs.jussieu.fr/websage/index.php.

  15. Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats.

    Science.gov (United States)

    Pisoni, G; Moroni, P; Genini, S; Stella, A; Boettcher, P J; Cremonesi, P; Scaccabarozzi, L; Giuffra, E; Castiglioni, B

    2010-06-15

    To study gene expression within the mammary glands of dairy goats with mastitis, mRNA was collected from milk somatic cells (MSCs) of left udder halves challenged with Staphylococcus aureus and right udder halves infused with PBS, as control, at different time points (0, 12, 24 and 48h post-infection). Transcriptional profiles were investigated using bovine cDNA microarrays; of the total 288 differentially expressed genes identified with ANOVA analysis (False Discovery Rate=0.05, 1.5-fold change), 26, 36 and 16 genes were down-regulated at 12, 24 and 48h post-infection, respectively, while 60, 141 and 9 genes were up-regulated at the same corresponding time points. The expression profiles clearly changed at 24h post-infection with 177 genes significantly altered, corresponding to a 10-fold increase of S. aureus bacterial count in milk from infected udders. Differential expression of selected genes (CD2BP2, BCAP31, MHCII, FOSL2, MAPK13, ILT5 and JUNB) was also confirmed by real-time PCR at the different time points considered, showing high correlation with the microarray measurements and high reliability of the microarray analyses. The most readily inducible classes of genes in caprine MSCs infected with S. aureus were pro-inflammatory cytokines, chemokines and their receptors; IL-1alpha, lymphotoxin alpha, granulocyte chemotactic protein (CXCL6), and IL-2 receptor gamma were all up-regulated in infected udders versus healthy controls. This study identified a number of differentially expressed genes induced by S. aureus intramammary infection and demonstrates the intricacy of the patterns of gene expression that influence host response to a complex pathogen of significant relevance to both human and veterinary medicine.

  16. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2003-01-01

    Full Text Available Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60% of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK, α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240 and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of

  17. Differential expression of decorin and biglycan genes during mouse tooth development

    Science.gov (United States)

    Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.

  18. HIVed, a knowledgebase for differentially expressed human genes and proteins during HIV infection, replication and latency

    Science.gov (United States)

    Li, Chen; Ramarathinam, Sri H.; Revote, Jerico; Khoury, Georges; Song, Jiangning; Purcell, Anthony W.

    2017-01-01

    Measuring the altered gene expression level and identifying differentially expressed genes/proteins during HIV infection, replication and latency is fundamental for broadening our understanding of the mechanisms of HIV infection and T-cell dysfunction. Such studies are crucial for developing effective strategies for virus eradication from the body. Inspired by the availability and enrichment of gene expression data during HIV infection, replication and latency, in this study, we proposed a novel compendium termed HIVed (HIV expression database; http://hivlatency.erc.monash.edu/) that harbours comprehensive functional annotations of proteins, whose genes have been shown to be dysregulated during HIV infection, replication and latency using different experimental designs and measurements. We manually curated a variety of third-party databases for structural and functional annotations of the protein entries in HIVed. With the goal of benefiting HIV related research, we collected a number of biological annotations for all the entries in HIVed besides their expression profile, including basic protein information, Gene Ontology terms, secondary structure, HIV-1 interaction and pathway information. We hope this comprehensive protein-centric knowledgebase can bridge the gap between the understanding of differentially expressed genes and the functions of their protein products, facilitating the generation of novel hypotheses and treatment strategies to fight against the HIV pandemic. PMID:28358052

  19. Isolation and identification of genes expressed differentially in rice inflorescence meristem with suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A subtracted cDNA library of rice (Oryza sativa L.) inflorescence meristem (IM) was constructed using the sup-pression subtractive hybridization (SSH) method. The cDNAs of the rice shoot apical meristem (SAM) were used as "driver" and inflorescence meristem (IM) as "tester" in the experiment, respectively. Forty of 250 randomly chosen cDNA clones were identified by differential screening, which were IM-specific or IM-highly expressed. Most of the rice IM cDNAs cloned by SSH appear to represent rare transcripts, 40% of which were derived from truly differentially ex-pressed genes. Of all the forty sequenced cDNA inserts, eleven contain the regions with 60%-90% identity to their homolog in GenBank, eighteen are expected to be new genes, only two correspond to published rice genes.

  20. Identification of differentially expressed microRNAs in human male breast cancer

    Directory of Open Access Journals (Sweden)

    Schipper Elisa

    2010-03-01

    Full Text Available Abstract Background The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases. Methods The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods. Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer. Results Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer. Conclusions Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.

  1. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    Directory of Open Access Journals (Sweden)

    Gaurang Mahajan

    Full Text Available High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  2. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    Science.gov (United States)

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  3. Computational annotation of genes differentially expressed along olive fruit development

    Directory of Open Access Journals (Sweden)

    Martinelli Federico

    2009-10-01

    Full Text Available Abstract Background Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. Results mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1, completed pit hardening (stage 2 and veraison (stage 3] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B, and 2 and 3 (libraries C and D. All sequenced clones (1,132 in total were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO: cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was

  4. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.

    Science.gov (United States)

    Gao, Chuan; McDowell, Ian C; Zhao, Shiwen; Brown, Christopher D; Engelhardt, Barbara E

    2016-07-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.

  5. High-throughput gene expression profiling of memory differentiation in primary human T cells

    Directory of Open Access Journals (Sweden)

    Russell Kate

    2008-08-01

    Full Text Available Abstract Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1 the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2 a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

  6. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. RNA sequencing identifies gene expression profile changes associated with β-estradiol treatment in U2OS osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Chen B

    2017-07-01

    Full Text Available Bin Chen, Zude Liu, Jidong Zhang, Hantao Wang, Bo Yu Department of Orthopedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: This study was conducted to identify gene expression profile changes associated with β-estradiol (E2 treatment in U2OS osteosarcoma cells by high-throughput RNA sequencing (RNA-seq. Two U2OS cell samples treated with E2 (15 µmol/L and two untreated control U2OS cell samples were subjected to RNA-seq. Differentially expressed genes (DEGs between the groups were identified, and main biological process enrichment was performed using gene ontology (GO analysis. A protein–protein interaction (PPI network was constructed using Cytoscape based on the Human Protein Reference Database. Finally, NFKB1 expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR. The map ratios of the four sequenced samples were >65%. In total, 128 upregulated and 92 downregulated DEGs were identified in E2 samples. After GO enrichment, the downregulated DEGs, such as AKT1, were found to be mainly enriched in cell cycle processes, whereas the upregulated DEGs, such as NFKB1, were involved in the regulation of gene expression. Moreover, AKT1 (degree =117 and NFKB1 (degree =72 were key nodes with the highest degrees in the PPI network. Similarly, the results of qRT-PCR confirmed that E2 upregulated NFKB1 expression. The results suggest that E2 upregulates the expression of NFKB1, ATF7IP, and HDAC5, all of which are involved in the regulation of gene expression and transcription, but downregulates that of TCF7L2, ALCAM, and AKT, which are involved in Wnt receptor signaling through β-catenin and morphogenesis in U2OS osteosarcoma cells. Keywords: differentially expressed genes, Wnt receptor signaling, β-catenin, protein-protein interaction network

  8. Analysis of differentially expressed proteins in cancerous and normal colonic tissues

    Institute of Scientific and Technical Information of China (English)

    Lay-Harn Gam; Chiuan-Herng Leow; Che Nin Man; Boon-Hui Gooi; Manjit Singh

    2006-01-01

    AIM: To identify and analyze the differentially expressed proteins in normal and cancerous tissues of four patients suffering from colon cancer.METHODS: Colon tissues (normal and cancerous)were homogenized and the proteins were extracted using three protein extraction buffers. The extraction buffers were used in an orderly sequence of increasing extraction strength for proteins with hydrophobic properties. The protein extracts were separated using the SDS-PAGE method and the images were captured and analyzed using Quantity One software. The target protein bands were subjected to in-gel digestion with trypsin and finally analyzed using an ESI-ion trap mass spectrometer.RESULTS: A total of 50 differentially expressed proteins in colonic cancerous and normal tissues were identified.CONCLUSION: Many of the identified proteins have been reported to be involved in the progression of similar or other types of cancers. However, some of the identified proteins have not been reported before. In addition, a number of hypothetical proteins were also identified.

  9. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  10. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  11. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  12. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers

    Science.gov (United States)

    Yang, Zhen; Wu, Liangcai; Wang, Anqiang; Tang, Wei; Zhao, Yi; Zhao, Haitao; Teschendorff, Andrew E.

    2017-01-01

    MicroRNAs (miRNAs) are often deregulated in cancer and are thought to play an important role in cancer development. Large amount of differentially expressed miRNAs have been identified in various cancers by using high-throughput methods. It is therefore quite important to make a comprehensive collection of these miRNAs and to decipher their roles in oncogenesis and tumor progression. In 2010, we presented the first release of dbDEMC, representing a database for collection of differentially expressed miRNAs in human cancers obtained from microarray data. Here we describe an update of the database. dbDEMC 2.0 documents 209 expression profiling data sets across 36 cancer types and 73 subtypes, and a total of 2224 differentially expressed miRNAs were identified. An easy-to-use web interface was constructed that allows users to make a quick search of the differentially expressed miRNAs in certain cancer types. In addition, a new function of ‘meta-profiling’ was added to view differential expression events according to user-defined miRNAs and cancer types. We expect this database to continue to serve as a valuable source for cancer investigation and potential clinical application related to miRNAs. dbDEMC 2.0 is freely available at http://www.picb.ac.cn/dbDEMC. PMID:27899556

  13. Large-scale proteomics differentiates cholesteatoma from surrounding tissues and identifies novel proteins related to the pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anders Britze

    Full Text Available Cholesteatoma is the growth of keratinizing squamous epithelium in the middle ear. It is associated with severe complications and has a poorly understood etiopathogenesis. Here, we present the results from extensive bioinformatics analyses of the first large-scale proteomic investigation of cholesteatoma. The purpose of this study was to take an unbiased approach to identifying alterations in protein expression and in biological processes, in order to explain the characteristic phenotype of this skin-derived tumor. Five different human tissue types (cholesteatoma, neck of cholesteatoma, tympanic membrane, external auditory canal skin, and middle ear mucosa were analyzed. More than 2,400 unique proteins were identified using nanoLC-MS/MS based proteomics (data deposited to the ProteomeXchange, and 295 proteins were found to be differentially regulated in cholesteatoma. Validation analyses were performed by SRM mass spectrometry. Proteins found to be up- or down-regulated in cholesteatoma were analyzed using Ingenuity Pathway Analysis and clustered into functional groups, for which activation state and associations to disease processes were predicted. Cholesteatoma contained high levels of pro-inflammatory S100 proteins, such as S100A7A and S100A7. Several proteases, such as ELANE, were up-regulated, whereas extracellular matrix proteins, such as COL18A1 and NID2, were under-represented. This may lead to alterations in integrity and differentiation of the tissue (as suggested by the up-regulation of KRT4 in the cholesteatoma. The presented data on the differential protein composition in cholesteatoma corroborate previous studies, highlight novel protein functionalities involved in the pathogenesis, and identify new areas for targeted research that hold therapeutic potential for the disease.

  14. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  15. Differential Expression Profiles in the Midgut of Triatoma infestans Infected with Trypanosoma cruzi

    Science.gov (United States)

    Buarque, Diego S.; Braz, Glória R. C.; Martins, Rafael M.; Tanaka-Azevedo, Anita M.; Gomes, Cícera M.; Oliveira, Felipe A. A.; Schenkman, Sergio; Tanaka, Aparecida S.

    2013-01-01

    Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs) from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp). Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification) showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP), which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease. PMID:23658688

  16. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber.

    Science.gov (United States)

    Li, Jian-Wu; Liu, Jun; Zhang, He; Xie, Cong-Hua

    2011-03-01

    To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT-PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.

  17. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    Directory of Open Access Journals (Sweden)

    Gerardo Botti

    2013-11-01

    Full Text Available Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13 in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers.

  18. Identification of Differentially Expressed Kinase and Screening Potential Anticancer Drugs in Papillary Thyroid Carcinoma

    Science.gov (United States)

    Zhang, Huairong

    2016-01-01

    Aim. We aim to identify protein kinases involved in the pathophysiology of papillary thyroid carcinoma (PTC) in order to provide potential therapeutic targets for kinase inhibitors and unfold possible molecular mechanisms. Materials and Methods. The gene expression profile of GSE27155 was analyzed to identify differentially expressed genes and mapped onto human protein kinases database. Correlation of kinases with PTC was addressed by systematic literature search, GO and KEGG pathway analysis. Results. The functional enrichment analysis indicated that “mitogen-activated protein kinases pathway” expression was extremely enriched, followed by “neurotrophin signaling pathway,” “focal adhesion,” and “GnRH signaling pathway.” MAPK, SRC, PDGFRa, ErbB, and EGFR were significantly regulated to correct these pathways. Kinases investigated by the literature on carcinoma were considered to be potential novel molecular therapeutic target in PTC and application of corresponding kinase inhibitors could be possible therapeutic tool. Conclusion. SRC, MAPK, and EGFR were the most important differentially expressed kinases in PTC. Combined inhibitors may have high efficacy in PTC treatment by targeting these kinases. PMID:27703281

  19. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Diego S Buarque

    Full Text Available Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp. Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP, which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.

  20. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.

    Science.gov (United States)

    Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel

    2014-09-01

    Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  1. Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton

    Institute of Scientific and Technical Information of China (English)

    ZHU HuaGuo; TU LiLi; JIN ShuangXia; XU Li; TAN JiaFu; DENG FengLin; ZHANG XianLong

    2008-01-01

    The early phase of phytohormone induction is a vital stage of somatic embryogenesis. This phase includes a key process for acquiring cellular totipotency through cellular dedifferentiation. To unravel the molecular mechanism of cellular dedifferentiation in cotton, we constructed a cDNA library using the suppression subtractive hybridization method. A total of 286 differential cDNA clones were sequenced and identified. Among these clones, 112 unique ESTs were significantly up-regulated during the early phase of phytohormone induction, and 40.2% of the ESTs were first identified. GST was highly expressed from 6 to 24 h after induction with phytohormone treatment. PRPs were predominantly expressed and exhibited distinct expression patterns in different treatments, suggesting that they are closely related to cellular dedifferentiation in cotton. Putative GhSAMS, GhSAMDC, GhSAHH and GhACO3 involvement in SAM metabolism was identified in this library. The analysis of qRT-PCR showed that two remarkable increased expressions of the four SAM-related genes happened during the early phase of phytohormone induction, and that a highly positive correlation existed between GhSAMS and GhSAHH. The highest expression level of GhSAMS might be associated with its reentry into the cell cycle. The histological observations further showed that some cells accomplished cellular dedifferentiation and division within 72 h in 2,4-D treatment, and that cellular dedifferentiation might be regulated through two alterations in SAM-dependent transmethylation activity in cotton. In addition, the expression patterns of differential genes in different treatments disclosed the complicated interaction between 2, 4-D and kinetin.

  2. Differential expression of ribosomal proteins in myelodysplastic syndromes.

    Science.gov (United States)

    Rinker, Elizabeth B; Dueber, Julie C; Qualtieri, Julianne; Tedesco, Jason; Erdogan, Begum; Bosompem, Amma; Kim, Annette S

    2016-02-01

    Aberrations of ribosomal biogenesis have been implicated in several congenital bone marrow failure syndromes, such as Diamond-Blackfan anaemia, Shwachman-Diamond syndrome and Dyskeratosis Congenita. Recent studies have identified haploinsufficiency of RPS14 in the acquired bone marrow disease isolated 5q minus syndrome, a subtype of myelodysplastic syndromes (MDS). However, the expression of various proteins comprising the ribosomal subunits and other proteins enzymatically involved in the synthesis of the ribosome has not been explored in non-5q minus MDS. Furthermore, differences in the effects of these expression alterations among myeloid, erythroid and megakaryocyte lineages have not been well elucidated. We examined the expression of several proteins related to ribosomal biogenesis in bone marrow biopsy specimens from patients with MDS (5q minus patients excluded) and controls with no known myeloid disease. Specifically, we found that there is overexpression of RPS24, DKC1 and SBDS in MDS. This overexpression is in contrast to the haploinsufficiency identified in the congenital bone marrow failure syndromes and in acquired 5q minus MDS. Potential mechanisms for these differences and aetiology for these findings in MDS are discussed.

  3. Differential elliptic flow of identified hadrons and constituent quark number scaling at FAIR

    OpenAIRE

    Bhaduri, Partha Pratim; Chattopadhyay, Subhasis

    2010-01-01

    Differential elliptic flow $v_2(p_{T})$ for identified hadrons has been investigated in the FAIR energy regime, employing a hadronic-string transport model (UrQMD) as well as a partonic transport model (AMPT). It has been observed that both the models show a mass ordering of $v_2$ at low $p_{T}$ and a switch over resulting a baryon-meson crossing at intermediate $p_{T}$. AMPT generates higher $v_2$ values compared to UrQMD. In addition, constituent quark number scaling behavior of elliptic fl...

  4. Differential expression and function of CD27 in chronic lymphocytic leukemia cells expressing ZAP-70.

    Science.gov (United States)

    Lafarge, Sandrine T; Hou, Sen; Pauls, Samantha D; Johnston, James B; Gibson, Spencer B; Marshall, Aaron J

    2015-07-01

    Chronic lymphocytic leukemia is a malignancy driven by abberant B cell signaling and survival. Leukemic B cells accumulate in the peripheral blood and the lymphoid organs where contact with stromal cells and T cells provide critical survival signals. Clinical severity of CLL is associated with several prognostic markers including expression of the kinase ZAP-70. ZAP-70 expression enhances signaling via the B cell antigen receptor and is associated with increased cell adhesion and migration capacity. Here we report that ZAP-70-positive CLL patients display significantly higher expression of the TNF superfamily receptor and memory marker CD27 than do ZAP-70 negative patients. CD27 expression by CLL was acutely elevated upon BCR cross-linking, or upon ectopic expression of ZAP-70. CD27 expression correlated with functional capacity to adhere to stromal cells and antibody blockade of CD27 impaired CLL binding to stroma. These results provide the first evidence for differential expression of CD27 among CLL prognostic groups, suggest a role for ZAP-70 dependent signaling in CD27 induction and implicate CD27 in cell-cell interactions with the lymphoid tissue microenvironment.

  5. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    Full Text Available BACKGROUND: Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease. METHODOLOGY/PRINCIPLE FINDINGS: In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the

  6. Study with microarrays of the differential gene expression profiles of glioblastoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-lin; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan; LUO Cheng-yi; JIN Ying; HU Gen-xi

    2001-01-01

    Objective: This study aims to screen the differentially expressed genes of glioblastoma using microarray technique. Methods: Specimens of glioblastoma and normal brain tissue were obtained from pathologically confirmed patients.A cDNA microarray comprising 14 000 clones covering the whole sets of the retro-transcriptional products of the mRNAs of various gliomas and those of normal brain tissues was established, with which the differences in gene expression between glioblastoma and normal brain tissues were investigated. Results: It was found that 94 genes were more than 3-fold differentially expressed with 298 more than doubled in the glioblastoma in comparison with the normal brain tissue. Some over-expressed genes in the glioblastoma were scarcely expressed in normal brain tissues, and several novel genes that may have biological relevance in the process ofglioma genesis were identified. Conclusion: Microarray technique combined with relevant cDNA repository can facilitate rapid large-scale identification of potential target genes for diagnosis and.therapy of glioma.

  7. Differential expression of genes and proteins associated with wool follicle cycling.

    Science.gov (United States)

    Liu, Nan; Li, Hegang; Liu, Kaidong; Yu, Juanjuan; Cheng, Ming; De, Wei; Liu, Jifeng; Shi, Shuyan; He, Yanghua; Zhao, Jinshan

    2014-08-01

    Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation.

  8. Differential regulation of dentin matrix protein 1 expression during odontogenesis.

    Science.gov (United States)

    Lu, Yongbo; Zhang, Shubin; Xie, Yixia; Pi, Yuli; Feng, Jian Q

    2005-01-01

    Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development. 2005 S. Karger AG, Basel

  9. Differential gene expression regulated by oscillatory transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Cerone

    Full Text Available Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.

  10. Chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells.

    Science.gov (United States)

    Funakoshi, Tadanao; Spector, Myron

    2010-06-01

    Reparative strategies for the treatment of injuries to tendons, including those of the rotator cuff of the shoulder, need to address the formation of the cartilage which serves as the attachment apparatus to bone and which forms at regions undergoing compressive loading. Moreover, recent work indicates that cells employed for rotator cuff repair may need to synthesize a lubricating glycoprotein, lubricin, which has recently been found to play a role in tendon tribology. The objective of the present study was to investigate the chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells in monolayer and three-dimensional culture, and to compare the behavior with bone marrow-derived mesenchymal stem cells (MSCs). The results demonstrated that while tendon cells in various media, including chondrogenic medium, expressed lubricin, virtually none of the MSCs synthesized this important lubricating molecule. Also of interest was that the cartilage formation capacity of the tendon cells grown in pellet culture in chondrogenic medium was comparable with MSCs. These data inform the use of tendon cells for rotator cuff repair, including for fibrocartilaginous zones.

  11. Widespread DNA hypomethylation and differential gene expression in Turner syndrome

    Science.gov (United States)

    Trolle, Christian; Nielsen, Morten Muhlig; Skakkebæk, Anne; Lamy, Philippe; Vang, Søren; Hedegaard, Jakob; Nordentoft, Iver; Ørntoft, Torben Falck; Pedersen, Jakob Skou; Gravholt, Claus Højbjerg

    2016-01-01

    Adults with 45,X monosomy (Turner syndrome) reflect a surviving minority since more than 99% of fetuses with 45,X monosomy die in utero. In adulthood 45,X monosomy is associated with increased morbidity and mortality, although strikingly heterogeneous with some individuals left untouched while others suffer from cardiovascular disease, autoimmune disease and infertility. The present study investigates the leukocyte DNAmethylation profile by using the 450K-Illumina Infinium assay and the leukocyte RNA-expression profile in 45,X monosomy compared with karyotypically normal female and male controls. We present results illustrating that genome wide X-chromosome RNA-expression profile, autosomal DNA-methylation profile, and the X-chromosome methylation profile clearly distinguish Turner syndrome from controls. Our results reveal genome wide hypomethylation with most differentially methylated positions showing a medium level of methylation. Contrary to previous studies, applying a single loci specific analysis at well-defined DNA loci, our results indicate that the hypomethylation extend to repetitive elements. We describe novel candidate genes that could be involved in comorbidity in TS and explain congenital urinary malformations (PRKX), premature ovarian failure (KDM6A), and aortic aneurysm formation (ZFYVE9 and TIMP1). PMID:27687697

  12. Identification of differentially expressed genes between developing seeds of different soybean cultivars

    Directory of Open Access Journals (Sweden)

    Rongshuang Lin

    2015-12-01

    Full Text Available Soybean is a major source of protein and oil and a primary feedstock for biodiesel production. Research on soybean seed composition and yield has revealed that protein, oil and yield are controlled quantitatively and quantitative trait loci (QTL have been identified for each of these traits. However, very limited information is available regarding the genetic mechanisms controlling seed composition and yield. To help address this deficiency, we used Affymetrix Soybean GeneChips® to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean cultivars, which differ in seed weight, yield, protein content and oil content. A total of 700 probe sets were found to be expressed at significantly different (defined as having an adjusted p-value below or equal to 0.05 and an at least 2-fold difference levels between the two cultivars at one or more of the three developmental stages and in at least one of the two years assayed. Comparison of data from soybeans collected in two different years revealed that 97 probe sets were expressed at significantly different levels in both years. Functional annotations were assigned to 78% of these 97 probe sets based on the SoyBase Affymetrix™ GeneChip® Soybean Genome Array Annotation. Genes involved in receptor binding/activity and protein binding are overrepresented among the group of 97 probe sets that were differentially expressed in both years assayed. Probe sets involved in growth/development, signal transduction, transcription, defense/stress response and protein and lipid metabolism were also identified among the 97 probe sets and their possible implications in the regulation of agronomic traits are discussed. As the Minsoy and Archer soybean cultivars differ with respect to seed size, yield, protein content and lipid content, some of the differentially expressed probe sets identified in this study may thus play important roles in controlling these traits

  13. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  14. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    Science.gov (United States)

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  15. DEIVA: a web application for interactive visual analysis of differential gene expression profiles.

    Science.gov (United States)

    Harshbarger, Jayson; Kratz, Anton; Carninci, Piero

    2017-01-07

    Differential gene expression (DGE) analysis is a technique to identify statistically significant differences in RNA abundance for genes or arbitrary features between different biological states. The result of a DGE test is typically further analyzed using statistical software, spreadsheets or custom ad hoc algorithms. We identified a need for a web-based system to share DGE statistical test results, and locate and identify genes in DGE statistical test results with a very low barrier of entry. We have developed DEIVA, a free and open source, browser-based single page application (SPA) with a strong emphasis on being user friendly that enables locating and identifying single or multiple genes in an immediate, interactive, and intuitive manner. By design, DEIVA scales with very large numbers of users and datasets. Compared to existing software, DEIVA offers a unique combination of design decisions that enable inspection and analysis of DGE statistical test results with an emphasis on ease of use.

  16. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hao Song

    2016-07-01

    Full Text Available During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  17. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    Science.gov (United States)

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  18. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  19. Identification of differentially expressed genes in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Nan Cui; Jian-Wu Tang; Li Hou; Bo Song; Li-Ying Ban

    2006-01-01

    AIM:To identify genes differentially expressed in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis.METHODS:A subtracted cDNA library of mouse hepatocarcinoma cell line with low potential of lymphogenous metastasis Hca-P and its synogenetic cell line Hca-F with high metastatic potential was constructed by suppression subtracted hybridization (SSH) method. The screened clones of the subtracted library were sequenced and GenBank homology search was performed.RESULTS:Fifteen differentially expressed cDNA fragments of Hca-P were obtained which revealed 8 known genes, 4 expressed sequence tags (ESTs) and 3 cDNAs showed no homology.CONCLUSION:Tumor metastasis is an incident involving multiple genes. SSH is a useful technique to detect differentially expressed genes and an effective method to clone novel genes.

  20. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid

    DEFF Research Database (Denmark)

    Westergaard, M; Henningsen, J; Svendsen, M L

    2001-01-01

    Peroxisome proliferator-activated receptors (PPARs) are pleiotropic regulators of growth and differentiation of many cell types. We have performed a comprehensive analysis of the expression of PPARs, transcriptional cofactors, and marker genes during differentiation of normal human keratinocytes ...

  1. Differentially expressed proteins in fluconazole-susceptible and fluconazole-resistant isolates of Candida glabrata.

    Science.gov (United States)

    Shen, Yinzhong; Zhang, Lijun; Jia, Xiaofang; Zhang, Yongxin; Lu, Hongzhou

    2015-06-01

    The current study aimed to identify the differences presented in the proteome of fluconazole-susceptible isolates of Candida glabrata compared to those with fluconazole-resistant ones. Two-dimensional differential gel electrophoresis was applied to identify proteins that were differentially expressed in fluconazole-susceptible and fluconazole-resistant isolates of C. glabrata. Eight proteins including aspartyl-tRNA synthetase, translation elongation factor 3, 3-phosphoglycerate kinase, ribosomal protein L5, coproporphyrinogen III oxidase, pyruvate kinase, G-beta like protein, and F1F0-ATPase alpha subunit were found to be more abundantly represented, while four proteins including vitamin B12-(cobalamin)-independent isozyme of methionine synthase, microtubule-associated protein, adenylosuccinate synthetase, and aldose reductase were found to be less abundantly represented in fluconazole-resistant strains versus those with fluconazole-susceptible ones. These differentially expressed proteins were primarily associated with energy metabolism, stress response, and macromolecule synthesis. Proteins associated with energy metabolism, stress response, and macromolecule synthesis may play a role in the development of fluconazole resistance in the clinical isolates of C. glabrata. Multiple different mechanisms are involved in the development of fluconazole resistance in C. glabrata. These findings provide a scientific basis for discovering new genes and mechanisms associated with fluconazole resistance in C. glabrata.

  2. Detection of differentially expressed genes in methylnitrosourea-induced rat mammary adenocarcinomas.

    Science.gov (United States)

    Hu, L; Lin, L; Crist, K A; Kelloff, G J; Steele, V E; Lubet, R A; You, M; Wang, Y

    1997-01-01

    In this study, altered gene expression in five methylnitrosourea (MNU)-induced rat mammary adenocarcinomas was investigated using a newly developed competitive cDNA library screening assay. In order to detect the differentially expressed cDNA transcripts, three cDNA libraries (rat mammary, rat liver, and rat kidney) with over 18,000 clones were differentially screened with competing normal and neoplastic mammary cDNA probes. Ninety-eight clones indicated by competitive hybridization to be differentially expressed in tumors were verified by dot-blot hybridization analysis. Of these clones, 45 were found to be overexpressed while 53 were underexpressed in tumors. Forty-five of the confirmed clones were further analyzed by single-pass cDNA sequence determination. Four clones showed homology with cytochrome oxidase subunit I, polyoma virus PTA noncoding region, cytoplasmic beta-actin, and mouse secretory protein containing thrombospondin motifs. Further investigation into the potential roles of these identified genes should contribute significantly to our understanding of the molecular mechanism(s) of rat mammary tumorigenesis.

  3. Proteomic analysis of differential protein expression in early process of pancreatic regeneration in pancreatectomized rats

    Institute of Scientific and Technical Information of China (English)

    Ming YANG; Wei LIU; Chun-you WANG; Tao LIU; Feng ZHOU; Jing TAO; Yang WANG; Ming-tao LI

    2006-01-01

    Aim: A broad-range proteomic approach was applied to investigate the complexity of the mechanisms involved in pancreatic regeneration for identification of new targets of diabetes treatment and potential markers of pancreatic stem cells. Methods: A regeneration pancreatic model was induced by 90% partial pancreatectomy (Px) in rats. Changes in the protein expression in regenerating rat pancreas on the third day after Px, as compared with rats that received sham surgery, were analyzed by using 2-D gel electrophoresis (2-DE), mass spectrometry(MS), and mass fingerprinting. Results: 2-DE revealed 91 spots with at least 1.5-fold increases in expression at 3 d after pancreatectomy and 53 differentially expressed proteins that were identified by peptide mass fingerprinting (PMF). These included cell growth-related, lipid and energy metabolism-related, protein and amino acid metabolism-related proteins, and signal transduction proteins. Vimentin, CK8, L-plastin. hnRNP A2/B1, and AGAT are associated with embryogenesis and cell differentiation, and may be new potential pancreatic stem cells markers. Conclusion: The proteome profiling technique provided a broad-based and effective approach for the rapid assimilation and identification of adaptive protein changes during pancreas regeneration induced by pancreatectomy. Our data clarify the global proteome during the pancreatic proliferation and differentiation processes, which is important for better understanding of pancreatic regeneration and for discovering of protein biomarkers for pancreatic stem cells.

  4. Differential expression of miRNAs and their relation to active tuberculosis.

    Science.gov (United States)

    Xu, Zhihong; Zhou, Aiping; Ni, Jinjing; Zhang, Qiufen; Wang, Ying; Lu, Jie; Wu, Wenjuan; Karakousis, Petros C; Lu, Shuihua; Yao, Yufeng

    2015-07-01

    The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Concentration-response analysis of differential gene expression in the zebrafish embryotoxicity test following flusilazole exposure.

    Science.gov (United States)

    Hermsen, Sanne A B; Pronk, Tessa E; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2012-05-01

    The zebrafish embryotoxicity test (ZET) is considered a promising alternative model in predictive toxicology. Currently, morphological assessment of the embryo is the main readout for this assay. However, implementation of transcriptomics may help to detect more subtle effects, which may increase the sensitivity and predictability of the test. In this study, we tested a concentration response of flusilazole in the ZET. After exposure for 24 h postfertilization, microarray analysis revealed a number of processes to be regulated in a concentration-dependent way. We identified development related processes, retinol metabolism and transcription, as well as processes corresponding to the antifungal mechanism of action, steroid biosynthesis, and fatty acid metabolism, to be differentially regulated. Retinol metabolism and transcription were already significantly altered at concentrations that were not inducing morphological effects. Differential expression of genes related to steroid biosynthesis and fatty acid metabolism showed a concentration response similar to morphological response. An increase in concentration was also positively associated with an increase in magnitude of expression for individual genes within functional processes. Our study shows that transcriptomics analysis in the ZET is a more sensitive readout of compound-induced effects than morphological assessment. However, the interpretation of differential gene expression in terms of predicting morphological effects is not straightforward and requires further study.

  6. RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage

    Science.gov (United States)

    Piras, S.; Furfaro, A. L.; Domenicotti, C.; Traverso, N.; Marinari, U. M.; Pronzato, M. A.; Nitti, M.

    2016-01-01

    RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells. PMID:27313835

  7. RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage.

    Science.gov (United States)

    Piras, S; Furfaro, A L; Domenicotti, C; Traverso, N; Marinari, U M; Pronzato, M A; Nitti, M

    2016-01-01

    RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.

  8. Genetic identity and differential gene expression between Trichomonas vaginalis and Trichomonas tenax.

    Science.gov (United States)

    Kucknoor, Ashwini S; Mundodi, Vasanthakrishna; Alderete, Jf

    2009-03-18

    Trichomonas vaginalis is a human urogenital pathogen responsible for trichomonosis, the number-one, non-viral sexually transmitted disease (STD) worldwide, while T. tenax is a commensal of the human oral cavity, found particularly in patients with poor oral hygiene and advanced periodontal disease. The extent of genetic identity between T. vaginalis and its oral commensal counterpart is unknown. Genes that were differentially expressed in T. vaginalis were identified by screening three independent subtraction cDNA libraries enriched for T. vaginalis genes. The same thirty randomly selected cDNA clones encoding for proteins with specific functions associated with colonization were identified from each of the subtraction cDNA libraries. In addition, a T. vaginalis cDNA expression library was screened with patient sera that was first pre-adsorbed with an extract of T. tenax antigens, and seven specific cDNA clones were identified from this cDNA library. Interestingly, some of the clones identified by the subtraction cDNA screening were also obtained from the cDNA expression library with the pre-adsorbed sera. Moreover and noteworthy, clones identified by both the procedures were found to be up-regulated in expression in T. vaginalis upon contact with vaginal epithelial cells, suggesting a role for these gene products in host colonization. Semi-quantitative RT-PCR analysis of select clones showed that the genes were not unique to T. vaginalis and that these genes were also present in T. tenax, albeit at very low levels of expression. These results suggest that T. vaginalis and T. tenax have remarkable genetic identity and that T. vaginalis has higher levels of gene expression when compared to that of T. tenax. The data may suggest that T. tenax could be a variant of T. vaginalis.

  9. Genetic identity and differential gene expression between Trichomonas vaginalis and Trichomonas tenax

    Directory of Open Access Journals (Sweden)

    Mundodi Vasanthakrishna

    2009-03-01

    Full Text Available Abstract Background Trichomonas vaginalis is a human urogenital pathogen responsible for trichomonosis, the number-one, non-viral sexually transmitted disease (STD worldwide, while T. tenax is a commensal of the human oral cavity, found particularly in patients with poor oral hygiene and advanced periodontal disease. The extent of genetic identity between T. vaginalis and its oral commensal counterpart is unknown. Results Genes that were differentially expressed in T. vaginalis were identified by screening three independent subtraction cDNA libraries enriched for T. vaginalis genes. The same thirty randomly selected cDNA clones encoding for proteins with specific functions associated with colonization were identified from each of the subtraction cDNA libraries. In addition, a T. vaginalis cDNA expression library was screened with patient sera that was first pre-adsorbed with an extract of T. tenax antigens, and seven specific cDNA clones were identified from this cDNA library. Interestingly, some of the clones identified by the subtraction cDNA screening were also obtained from the cDNA expression library with the pre-adsorbed sera. Moreover and noteworthy, clones identified by both the procedures were found to be up-regulated in expression in T. vaginalis upon contact with vaginal epithelial cells, suggesting a role for these gene products in host colonization. Semi-quantitative RT-PCR analysis of select clones showed that the genes were not unique to T. vaginalis and that these genes were also present in T. tenax, albeit at very low levels of expression. Conclusion These results suggest that T. vaginalis and T. tenax have remarkable genetic identity and that T. vaginalis has higher levels of gene expression when compared to that of T. tenax. The data may suggest that T. tenax could be a variant of T. vaginalis.

  10. Differential gene expression in Anopheles stephensi following infection with drug-resistant Plasmodium yoelii.

    Science.gov (United States)

    Zhang, Jingru; Huang, Jiacheng; Zhu, Feng; Zhang, Jian

    2017-08-29

    The transmission of drug-resistant parasites by the mosquito may be influenced by the altered biological fitness of drug-resistant parasites and different immune reactions or metabolic change in the mosquito. At this point, little is known about the variations in mosquito immunity and metabolism when mosquitoes are infected with drug-resistant parasites. To understand the differential gene expression in Anopheles following infection with drug-resistant Plasmodium, we conducted a genome-wide transcriptomic profiling analysis of Anopheles stephensi following feeding on mice with drug-resistant or drug-sensitive P. yoelii, observed changes in gene expression profiles and identified transcripts affected by the drug-resistant parasite. To study the impact of drug-resistant Plasmodium infections on An. stephensi gene transcription, we analyzed the three major transition stages of Plasmodium infections: at 24 h and 13 and 19 days after blood-feeding. Six cDNA libraries (R-As24h, R-As13d, R-As19d,S-As24h, S-As13dand S-As19d) were constructed, and RNA sequencing was subsequently performed. In total, approximately 50.1 million raw reads, 47.9 million clean reads and 7.18G clean bases were obtained. Following differentially expressed gene (DEG) analysis, GO enrichment analysis of DEGs, and functional classification by KEGG, we showed that the variations in gene expression in An. stephensi infected by the drug-resistant P. yoelii NSM occurred mainly at 13 days after blood meal during sporozoite migration through the hemolymph. The differentially expressed genes included those functioning in some important immune reaction and iron metabolism pathways, such as pattern recognition receptors, regulators of the JNK pathway, components of the phagosome pathway, regulators of the melanization response, activators of complement reactions, insulin signaling cascade members, oxidative stress and detoxification proteins. Our study shows that drug-resistant P. yoelii NSM has an

  11. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  12. Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Kim, Renaid

    2017-03-01

    Understanding the key radiogenomic associations for breast cancer between DCE-MRI and micro-RNA expressions is the foundation for the discovery of radiomic features as biomarkers for assessing tumor progression and prognosis. We conducted a study to analyze the radiogenomic associations for breast cancer using the TCGA-TCIA data set. The core idea that tumor etiology is a function of the behavior of miRNAs is used to build the regression models. The associations based on regression are analyzed for three study outcomes: diagnosis, prognosis, and treatment. The diagnosis group consists of miRNAs associated with clinicopathologic features of breast cancer and significant aberration of expression in breast cancer patients. The prognosis group consists of miRNAs which are closely associated with tumor suppression and regulation of cell proliferation and differentiation. The treatment group consists of miRNAs that contribute significantly to the regulation of metastasis thereby having the potential to be part of therapeutic mechanisms. As a first step, important miRNA expressions were identified and their ability to classify the clinical phenotypes based on the study outcomes was evaluated using the area under the ROC curve (AUC) as a figure-of-merit. The key mapping between the selected miRNAs and radiomic features were determined using least absolute shrinkage and selection operator (LASSO) regression analysis within a two-loop leave-one-out cross-validation strategy. These key associations indicated a number of radiomic features from DCE-MRI to be potential biomarkers for the three study outcomes.

  13. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression.

    Science.gov (United States)

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets.

  14. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.

    Science.gov (United States)

    Polyakov, Felix

    2017-02-01

    Neuroscientific studies of drawing-like movements usually analyze neural representation of either geometric (e.g., direction, shape) or temporal (e.g., speed) parameters of trajectories rather than trajectory's representation as a whole. This work is about identifying geometric building blocks of movements by unifying different empirically supported mathematical descriptions that characterize relationship between geometric and temporal aspects of biological motion. Movement primitives supposedly facilitate the efficiency of movements' representation in the brain and comply with such criteria for biological movements as kinematic smoothness and geometric constraint. The minimum-jerk model formalizes criterion for trajectories' maximal smoothness of order 3. I derive a class of differential equations obeyed by movement paths whose nth-order maximally smooth trajectories accumulate path measurement with constant rate. Constant rate of accumulating equi-affine arc complies with the 2/3 power-law model. Candidate primitive shapes identified as equations' solutions for arcs in different geometries in plane and in space are presented. Connection between geometric invariance, motion smoothness, compositionality and performance of the compromised motor control system is proposed within single invariance-smoothness framework. The derived class of differential equations is a novel tool for discovering candidates for geometric movement primitives.

  15. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification.

    Science.gov (United States)

    Gandillet, Arnaud; Serrano, Alicia G; Pearson, Stella; Lie-A-Ling, Michael; Lacaud, Georges; Kouskoff, Valerie

    2009-11-26

    The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.

  16. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach

    Directory of Open Access Journals (Sweden)

    Cecilia Granéli

    2014-01-01

    It has been concluded from the present results that CD10 and CD92 are potential markers of osteogenic and adipogenic differentiation and that CRYaB is a potential novel osteogenic marker specifically expressed during the osteogenic differentiation of hBMSCs in vitro.

  17. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake.

    Science.gov (United States)

    Chen, Y; Gondro, C; Quinn, K; Herd, R M; Parnell, P F; Vanselow, B

    2011-10-01

    Feed efficiency is an economically important trait in beef production. It can be measured as residual feed intake. This is the difference between actual feed intake recorded over a test period and the expected feed intake of an animal based on its size and growth rate. DNA-based marker-assisted selection would help beef breeders to accelerate genetic improvement for feed efficiency by reducing the generation interval and would obviate the high cost of measuring residual feed intake. Although numbers of quantitative trait loci and candidate genes have been identified with the advance of molecular genetics, our understanding of the physiological mechanisms and the nature of genes underlying residual feed intake is limited. The aim of the study was to use global gene expression profiling by microarray to identify genes that are differentially expressed in cattle, using lines genetically selected for low and high residual feed intake, and to uncover candidate genes for residual feed intake. A long-oligo microarray with 24 000 probes was used to profile the liver transcriptome of 44 cattle selected for high or low residual feed intake. One hundred and sixty-one unique genes were identified as being differentially expressed between animals with high and low residual feed intake. These genes were involved in seven gene networks affecting cellular growth and proliferation, cellular assembly and organization, cell signalling, drug metabolism, protein synthesis, lipid metabolism, and carbohydrate metabolism. Analysis of functional data using a transcriptional approach allows a better understanding of the underlying biological processes involved in residual feed intake and also allows the identification of candidate genes for marker-assisted selection. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  18. Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig.

    Science.gov (United States)

    Komatsu, Yuuta; Sukegawa, Shin; Yamashita, Mai; Katsuda, Naoki; Tong, Bin; Ohta, Takeshi; Kose, Hiroyuki; Yamada, Takahisa

    2016-06-01

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 colocalized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding the molecular mechanism underlying growth rate in Landrace pig breed.

  19. Differential CARM1 expression in prostate and colorectal cancers

    Directory of Open Access Journals (Sweden)

    Nguyen Nguyen

    2010-05-01

    Full Text Available Abstract Background Coactivator-associated arginine methyltransferase 1 (CARM1 functions as a transcriptional coactivator of androgen receptor (AR-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors. Methods Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1. Results The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65 but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-κB target gene transcription. Conclusions The results of this study suggest that, in

  20. Differential Proteins Expressed in Rice Leaves and Grains in Response to Salinity and Exogenous Spermidine Treatments

    Directory of Open Access Journals (Sweden)

    Paweena Saleethong

    2016-01-01

    Full Text Available Exogenous application of spermidine (Spd has been reported to modulate physiological processes and alleviate salt-induced damage to growth and productivity of several plants including rice. Employing a proteomic approach, we aimed at identifying rice leaf and grain proteins differentially expressing under salt stress, and in response to Spd prior to NaCl treatment. A total of 9 and 20 differentially expressed protein spots were identified in the leaves of salt-tolerant (Pokkali and salt-sensitive (KDML105 rice cultivars, respectively. Differential proteins common to both cultivars included a photosynthetic light reaction protein (oxygen-evolving complex protein 1, enzymes of Calvin cycle and glycolysis (fructose-bisphosphate aldolase and triose-phosphate isomerase, malate dehydrogenase, superoxide dismutase and a hypothetical protein (OsI_18213. Most proteins were present at higher intensities in Pokkali leaves. The photosynthetic oxygen-evolving enhancer protein 2 was detected only in Pokkali and was up-regulated by salt-stress and further enhanced by Spd treatment. All three spots identified as superoxide dismutase in KDML105 were up-regulated by NaCl but down-regulated when treated with Spd prior to NaCl, indicating that Spd acted directly as antioxidants. Important differential stress proteins detected in mature grains of both rice cultivars were late embryogenesis abundant proteins with protective roles and an antioxidant protein, 1-Cys-peroxiredoxin. Higher salt tolerance of Pokkali partly resulted from higher intensities and more responsiveness of the proteins relating to photosynthesis light reactions, energy metabolism, antioxidant enzymes in the leaves, and stress proteins with protective roles in the grains.

  1. Identification of differentially expressed genes after partial rat liver ischemia/reperfusion by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    Christine Fallsehr; Christina Zapletal; Michael Kremer; Resit Demir; Magnus von Knebel Doeberitz; Ernst Klar

    2005-01-01

    AIM: To identify potential diagnostic target genes in early reperfusion periods following warm liver ischemia before irreversible liver damage occurs.METHODS: We used two strategies (SSH suppression subtractive hybridization and hybridization of cDNA arrays)to determine early changes in gene expression profiles in a rat model of partial WI/R, comparing postischemic and adjacent nonischemic liver lobes. Differential gene expression was verified (WT/R; 1 h/2 h) and analyzed in more detail after warm ischemia (1 h) in a reperfusion time kinetics (0, 1, 2 and 6 h) and compared to untreated livers by Northern blot hybridizations. Protein expression was examined on Western blots and by immunohistochemistry for four differentially expressed target genes (Hsp70,Hsp27, Gadd45a and IL-1rl).RESULTS: Thirty-two individual WI/R target genes showing altered RNA levels after confirmation by Northern blot analyzes were identified. Among them, six functionally uncharacteristic expressed sequences and 26 known genes (12 induced in postischemic liver lobes, 14 with higher transcriptional expression in adjacent nonischemic liver lobes). Functional categories of the verified marker genes indicate on the one hand cellular stress and tissue damage but otherwise activation of protective cellular reactions (AP-1 transcription factors, apoptosis related genes, heat shock genes). In order to assign the transcriptional status to the biological relevant protein level we demonstrated that Hsp70, Hsp27, Gadd45a and IL-1rI were clearly up-regulated comparing postischemic and untreated rat livers, suggesting their involvement in the WI/R context.CONCLUSION: This study unveils a WI/R response gene set that will help to explore molecular pathways involved in the tissue damage after WI/R. In addition, these genes especially Hsp70and Gadd45a might represent promising new candidates indicating WI/R liver damage.

  2. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  3. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi).

    Science.gov (United States)

    Tian, Changxu; Li, Ling; Liang, Xu-Fang; He, Shan; Guo, Wenjie; Lv, Liyuan; Wang, Qingchao; Song, Yi

    2016-08-01

    Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.

  4. Identification of genes differentially expressed as result of adenovirus type 5- and adenovirus type 12-transformation

    Directory of Open Access Journals (Sweden)

    Kellam Paul

    2009-02-01

    Full Text Available Abstract Background Cells transformed by human adenoviruses (Ad exhibit differential capacities to induce tumours in immunocompetent rodents; for example, Ad12-transformed rodent cells are oncogenic whereas Ad5-transformed cells are not. The E1A gene determines oncogenic phenotype, is a transcriptional regulator and dysregulates host cell gene expression, a key factor in both cellular transformation and oncogenesis. To reveal differences in gene expression between cells transformed with oncogenic and non-oncogenic adenoviruses we have performed comparative analysis of transcript profiles with the aim of identifying candidate genes involved in the process of neoplastic transformation. Results Analysis of microarray data revealed that a total of 232 genes were differentially expressed in Ad12 E1- or Ad5 E1-transformed BRK cells compared to untransformed baby rat kidney (BRK cells. Gene information was available for 193 transcripts and using gene ontology (GO classifications and literature searches it was possible to assign known or suggested functions to 166 of these identified genes. A subset of differentially-expressed genes from the microarray was further examined by real-time PCR and Western blotting using BRK cells immortalised by Ad12 E1A or Ad5 E1A in addition to Ad12 E1- or Ad5 E1-transformed BRK cells. Up-regulation of RelA and significant dysregulation of collagen type I mRNA transcripts and proteins were found in Ad-transformed cells. Conclusion These results suggest that a complex web of cellular pathways become altered in Ad-transformed cells and that Ad E1A is sufficient for the observed dysregulation. Further work will focus on investigating which splice variant of Ad E1A is responsible for the observed dysregulation at the pathway level, and the mechanisms of E1A-mediated transcriptional regulation.

  5. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  6. Differential expression of cellular microRNAs in HPV 11, -16, and -45 transfected cells

    DEFF Research Database (Denmark)

    Dreher, Anita; Rossing, Maria; Kaczkowski, Bogumil;

    2011-01-01

    Human papillomaviruses (HPVs) are highly prevalent giving rise to both benign and malignant lesions why they are classified as high- and low-risk viruses. In this study we selected one low-risk (HPV 11) and two high-risk (HPV 16 and -45) types for genomewide miRNA analysis to investigate possible...... common and distinct features in the expression profiles. For this purpose we developed a cell culture model system in HaCaT cells for expression of the viral genomes under standardized conditions. We identified 25 miRNAs which were differentially regulated in two or three HPV types where 13 miRNAs were...... in common for all three types. Among the miRNAs identified, miR-125a-5p, miR-129-3p, miR-363, and miR-145 are related to human cancers. Noteworthy, miR-145 is found upregulated in the miRNA profiles of both high-risk HPV types. For selected differentially expressed miRNAs in HPV 16 predicted miRNA target...

  7. Proteomic analysis of differentially expressed proteins in hepatitis B virus-related hepatocellular carcinoma tissues

    Directory of Open Access Journals (Sweden)

    Li Cui

    2009-08-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC, a major cause of cancer death in China, is preceded by chronic hepatitis and liver cirrhosis (LC. Although hepatitis B virus (HBV has been regarded as a clear etiology of human hepatocarcinogenesis, the mechanism is still needs to be further clarified. In this study, we used a proteomic approach to identify the differential expression protein profiles between HCC and the adjacent non-tumorous liver tissues. Methods Eighteen cases of HBV-related HCC including 12 cases of LC-developed HCC and 6 cases of chronic hepatitis B (CHB-developed HCC were analyzed by two-dimensional electrophoresis (2-DE combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS, and the results were compared to those of paired adjacent non-tumorous liver tissues. Results A total of 17 differentially expressed proteins with diverse biological functions were identified. Among these, 10 proteins were up-regulated, whereas the other 7 proteins were down-regulated in cancerous tissues. Two proteins, c-Jun N-terminal kinase 2 and ADP/ATP carrier protein were found to be up-regulated only in CHB-developed HCC tissues. Insulin-like growth factor binding protein 2 and Rho-GTPase-activating protein 4 were down-regulated in LC-developed and CHB-developed HCC tissues, respectively. Although 11 out of these 17 proteins have been already described by previous studies, or are already known to be involved in hepatocarcinogenesis, this study revealed 6 new proteins differentially expressed in HBV-related HCC. Conclusion These findings elucidate that there are common features between CHB-developed HCC and LC-developed HCC. The identified proteins are valuable for studying the hepatocarcinogenesis, and may be potential diagnostic markers or therapeutic targets for HBV-related HCC.

  8. Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells.

    Science.gov (United States)

    Zhang, Meiling; Truscott, Jamie; Davie, Judith

    2013-11-27

    Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the defects present in these cells that block myogenesis. Protein and RNA analysis identified the loss of MEF2D in RMS cells. MEF2D was expressed in RD and RH30 cells by transient transfection and selection of stable cell lines, respectively, to demonstrate the rescue of muscle differentiation observed. A combination of techniques such as proliferation assays, scratch assays and soft agar assays were used with RH30 cells expressing MEF2D to demonstrate the loss of oncogenic growth in vitro and xenograft assays were used to confirm the loss of tumor growth in vivo. Here, we show that one member of the MEF2 family of proteins required for normal myogenesis, MEF2D, is largely absent in RMS cell lines representing both major subtypes of RMS as well as primary cells derived from an embryonal RMS model. We show that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find that MyoD and myogenin are bound with their dimerization partner, the E proteins, to the promoters of muscle specific genes in RMS cells. However, we cannot detect MEF2D binding at any promoter tested. We find that exogenous MEF2D expression can activate muscle specific luciferase constructs, up regulate p21 expression and increase muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility and anchorage independent growth in vitro. We have confirmed the inhibition of tumorigenicity by MEF2D in a tumor xenograft model, with a complete regression of tumor growth. Our data indicate that the oncogenic properties of RMS cells can be partially attributed to the loss of MEF2D expression and

  9. Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS

    DEFF Research Database (Denmark)

    Maezawa, Yoshiro; Onay, Tuncer; Scott, Rizaldy P;

    2014-01-01

    Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the pe...

  10. Post-transcriptional regulation of FUS and EWS protein expression by miR-141 during neural differentiation.

    Science.gov (United States)

    Svetoni, Francesca; De Paola, Elisa; La Rosa, Piergiorgio; Mercatelli, Neri; Caporossi, Daniela; Sette, Claudio; Paronetto, Maria Paola

    2017-07-15

    Brain development involves proliferation, migration and specification of neural progenitor cells, culminating in neuronal circuit formation. Mounting evidence indicates that improper regulation of RNA binding proteins (RBPs), including members of the FET (FUS, EWS, TAF15) family, results in defective cortical development and/or neurodegenerative disorders. However, in spite of their physiological relevance, the precise pattern of FET protein expression in developing neurons is largely unknown. Herein, we found that FUS, EWS and TAF15 expression is differentially regulated during brain development, both in time and in space. In particular, our study identifies a fine-tuned regulation of FUS and EWS during neuronal differentiation, whereas TAF15 appears to be more constitutively expressed. Mechanistically FUS and EWS protein expression is regulated at the post-transcriptional level during neuron differentiation and brain development. Moreover, we identified miR-141 as a key regulator of these FET proteins that modulate their expression levels in differentiating neuronal cells. Thus, our studies uncover a novel link between post-transcriptional regulation of FET proteins expression and neurogenesis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Differentially expressed nuclear proteins in human CCRF-CEM, HL-60, MEC-1 and Raji cells correlate with cellular properties.

    Science.gov (United States)

    Henrich, Silke; Crossett, Ben; Christopherson, Richard I

    2007-10-01

    The human cell lines CCRF-CEM (T-cell acute lymphocytic leukemia), HL-60 (acute myeloid leukemia), MEC-1 (B-cell chronic lymphocytic leukemia) and Raji (Burkitt's B-cell lymphoma) have been analysed for differences in their nuclear proteomes. Using 2-D DIGE, 55 nuclear proteins have been identified that are differentially expressed (p<0.025) between the four cell lines, including proteins associated with transcription, proliferation, DNA repair and apoptosis. Of these 55 proteins, 22 were over-expressed in just one cell line, and four were down-regulated in one cell line. Proteins uniquely over-expressed between myeloid and lymphoid cell lines include those that may have use as markers for diagnosis, disease progression and B-cell maturation and differentiation. Expression of various proliferation-associated nuclear proteins correlated with relative growth rates of the cell lines, giving these proteins potential diagnostic applications for distinction of chronic versus acute subtypes of haematological malignancies. Identification of these differentially expressed nuclear proteins should facilitate elucidation of the molecular mechanisms underlying leukocyte differentiation and transformation to leukemias and lymphomas. The nuclear expression profiles should enable classification of subtypes of leukemia, and identify potential nuclear protein targets for development of diagnostic and therapeutic strategies.

  12. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture

    Directory of Open Access Journals (Sweden)

    Hu Fen Z

    2008-04-01

    Full Text Available Abstract Dupuytren's contracture (DC is the most common inherited connective tissue disease of humans and is hypothesized to be associated with aberrant wound healing of the palmar fascia. Fibroblasts and myofibroblasts are believed to play an important role in the genesis of DC and the fibroproliferation and contraction that are hallmarks of this disease. This study compares the gene expression profiles of fibroblasts isolated from DC patients and controls in an attempt to identify key genes whose regulation might be significantly altered in fibroblasts found within the palmar fascia of Dupuytren's patients. Total RNA isolated from diseased palmar fascia (DC and normal palmar fascia (obtained during carpal tunnel release; 6 samples per group was subjected to quantitative analyses using two different microarray platforms (GE Code Link™ and Illumina™ to identify and validate differentially expressed genes. The data obtained was analyzed using The Significance Analysis of Microarrays (SAM software through which we identified 69 and 40 differentially regulated gene transcripts using the CodeLink™ and Illumina™ platforms, respectively. The CodeLink™ platform identified 18 upregulated and 51 downregulated genes. Using the Illumina™ platform, 40 genes were identified as downregulated, eleven of which were identified by both platforms. Quantitative RT-PCR confirmed the downregulation of three high-interest candidate genes which are all components of the extracellular matrix: proteoglycan 4 (PRG4, fibulin-1 (FBLN-1 transcript variant D, and type XV collagen alpha 1 chain. Overall, our study has identified a variety of candidate genes that may be involved in the pathophysiology of Dupuytren's contracture and may ultimately serve as attractive molecular targets for alternative therapies.

  13. Identification of differentially expressed genes under drought stress in perennial ryegrass.

    Science.gov (United States)

    Liu, Shuwei; Jiang, Yiwei

    2010-08-01

    Perennial ryegrass (Lolium perenne L.) is a widely used cool-season forage and turf grass species. Drought stress can significantly affect the growth and development of grass plants. Identification of genes involved in drought tolerance facilitates genetic improvement of perennial ryegrass. A forward and a reverse cDNA library were constructed in drought-tolerant (PI 440474) and drought-susceptible (PI 204085) accessions by using suppression subtractive hybridization (SSH). A BLAST search revealed that 95 of 256 expressed sequence tags (ESTs) obtained from the two libraries showed significant sequence homologies to genes with known functions. They were classified into different putative functional groups including amino acid metabolism, lipid metabolism, carbohydrate metabolism, transcription, protein synthesis and destination, energy, photosynthesis, signal transduction, cellular transport and detoxification. Among them, 50 ESTs were from forward library (the drought tolerant over the susceptible accession). The expression patterns (reverse transcriptase polymerase chain reaction) of the selected genes encoding mitogen-activated protein kinase, superoxide dismutase and glutathione peroxidase (GPX) in additional accessions contrasting in drought tolerance were generally consistent with patterns of differentially expressed genes identified through SSH. The GPX fragment had a high degree of nucleotide diversity (pi = 0.0251) in the selected perennial ryegrass accessions. The results suggest that differentially expressed genes between drought tolerant and susceptible accessions may play an important role in the drought tolerance of perennial ryegrass. They can be used as candidate genes in examining nucleotide polymorphisms and conducting the association analysis of genes with drought tolerance.

  14. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq.

    Science.gov (United States)

    Fernandes, Andrew D; Macklaim, Jean M; Linn, Thomas G; Reid, Gregor; Gloor, Gregory B

    2013-01-01

    Experimental variance is a major challenge when dealing with high-throughput sequencing data. This variance has several sources: sampling replication, technical replication, variability within biological conditions, and variability between biological conditions. The high per-sample cost of RNA-Seq often precludes the large number of experiments needed to partition observed variance into these categories as per standard ANOVA models. We show that the partitioning of within-condition to between-condition variation cannot reasonably be ignored, whether in single-organism RNA-Seq or in Meta-RNA-Seq experiments, and further find that commonly-used RNA-Seq analysis tools, as described in the literature, do not enforce the constraint that the sum of relative expression levels must be one, and thus report expression levels that are systematically distorted. These two factors lead to misleading inferences if not properly accommodated. As it is usually only the biological between-condition and within-condition differences that are of interest, we developed ALDEx, an ANOVA-like differential expression procedure, to identify genes with greater between- to within-condition differences. We show that the presence of differential expression and the magnitude of these comparative differences can be reasonably estimated with even very small sample sizes.

  15. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  16. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development.

    Science.gov (United States)

    Pytel, Peter; Karrison, Theodore; Can Gong; Tonsgard, James H; Krausz, Thomas; Montag, Anthony G

    2010-12-01

    A number of transcription factors have been identified as important in guiding normal Schwann cell development. This study used immunohistochemistry on tissue arrays to assess the expression of some of these transcription factors (Sox5, Sox9, Sox10, AP-2α, Pax7, and FoxD3) on 76 schwannomas, 105 neurofibromas, and 34 malignant peripheral nerve sheath tumors (MPNSTs). Sox9 and Sox10 were found to be widely expressed in all tumor types. FoxD3 reactivity was stronger and more frequently found in schwannomas and MPNSTs than neurofibromas. AP-2α was positive in 31% to 49% of all tumors, but strong reactivity was limited to MPNSTs and schwannomas. Pax7 and Sox5 expression was restricted to subsets of MPNSTs. Statistical analysis showed significant differences between the 3 tumor types in the expression of these markers. No differences were found in the analyzed tumor subgroups, including schwannomas of different sites, schwannomas with or without NF2 association, neurofibromas of different types, or sporadic versus NF1-associated MPNSTs. These results suggest that the transcription factors that guide normal Schwann cell development also play a role in the biology of neoplastic cells with Schwannian differentiation. FoxD3, AP-2α, Pax7, and Sox5 are upregulated in MPNSTs compared with neurofibromas and may be markers of malignant transformation. Screening the expression of FoxD3, Sox9, and Sox10 on 23 cases of other spindle-cell proliferations that may be considered in the differential diagnosis of MPNST, including synovial sarcoma and spindle cell melanoma, suggests that these 3 are helpful markers of Schwannian differentiation in the context of diagnosing MPNSTs.

  17. Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2006-12-01

    Full Text Available Abstract Background Limb-girdle muscular dystrophy (LGMD is a group of heterogeneous muscular disorders with autosomal dominant and recessive inheritance, in which the pelvic or shoulder girdle musculature is predominantly or primarily involved. Although analysis of the defective proteins has shed some light onto their functions implicated in the etiology of LGMD, our understanding of the molecular mechanisms underlying muscular dystrophy remains incomplete. Methods To give insight into the molecular mechanisms of AR-LGMD, we have examined the differentially expressed gene profiling between the relative normal and pathological skeletal muscles from the same AR-LGMD patient with the differential display RT-PCR approach. The research subjects came from a Chinese AR-LGMD family with three affected sisters. Results In this report, we have identified 31 known genes and 12 unknown ESTs, which were differentially expressed between the relative normal and dystrophic muscle from the same LGMD patient. The expression of many genes encoding structural proteins of skeletal muscle fibers (such as titin, myosin heavy and light chains, and nebulin were dramatically down-regulated in dystrophic muscles compared to the relative normal muscles. The genes, reticulocalbin 1, kinectin 1, fatty acid desaturase 1, insulin-like growth factor binding protein 5 (IGFBP5, Nedd4 family interacting protein 1 (NDFIP1, SMARCA2 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2, encoding the proteins involved in signal transduction and gene expression regulation were up-regulated in the dystrophic muscles. Conclusion The functional analysis of these expression-altered genes in the pathogenesis of LGMD could provide additional information for understanding possible molecular mechanisms of LGMD development.

  18. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. Sp. Multigermtubi

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi.To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M.brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE. About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.

  19. ROBUST HYPERPARAMETER ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO DETECT DIFFERENTIAL EXPRESSION

    Science.gov (United States)

    Phipson, Belinda; Lee, Stanley; Majewski, Ian J.; Alexander, Warren S.; Smyth, Gordon K.

    2017-01-01

    One of the most common analysis tasks in genomic research is to identify genes that are differentially expressed (DE) between experimental conditions. Empirical Bayes (EB) statistical tests using moderated genewise variances have been very effective for this purpose, especially when the number of biological replicate samples is small. The EB procedures can however be heavily influenced by a small number of genes with very large or very small variances. This article improves the differential expression tests by robustifying the hyperparameter estimation procedure. The robust procedure has the effect of decreasing the informativeness of the prior distribution for outlier genes while increasing its informativeness for other genes. This effect has the double benefit of reducing the chance that hypervariable genes will be spuriously identified as DE while increasing statistical power for the main body of genes. The robust EB algorithm is fast and numerically stable. The procedure allows exact small-sample null distributions for the test statistics and reduces exactly to the original EB procedure when no outlier genes are present. Simulations show that the robustified tests have similar performance to the original tests in the absence of outlier genes but have greater power and robustness when outliers are present. The article includes case studies for which the robust method correctly identifies and downweights genes associated with hidden covariates and detects more genes likely to be scientifically relevant to the experimental conditions. The new procedure is implemented in the limma software package freely available from the Bioconductor repository.

  20. Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display.

    Science.gov (United States)

    De Luca, V; Capasso, C; Capasso, A; Pastore, M; Carginale, V

    2011-06-01

    Phytoplasmas are small (0.2-0.8 μm), wall-less, pleiomorphic prokaryotes responsible of numerous economically important plant diseases. They are characterized by a very small genome and are obligate parasites of phloem tissues and some insects that act as vectors of infection. To investigate molecular mechanisms involved in pathogenesis, the differential display technique was here applied to identify plant genes whose transcription was significantly altered in leaves of Madagascar periwinkle (Catharanthus roseus (L.) G.Don) infected by 'Candidatus Phytoplasma pyri'. We detected, reamplified, cloned, and sequenced 16 putative differentially expressed cDNA fragments. Northern blot analysis revealed that seven of the 16 genes identified were up-regulated following phytoplasma infection, while three genes were down-regulated. The remaining six genes did not show significant changes in the level of expression. Identified genes are mainly involved in plant defence/stress responses, protein metabolism and transport, transcriptional regulation, vesicle trafficking, and carbohydrate metabolism. The possible role played by these genes in the phytoplasma infection is discussed.

  1. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    Science.gov (United States)

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  2. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments

    OpenAIRE

    2015-01-01

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray a...

  3. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    Science.gov (United States)

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  4. Differential microRNA expression is associated with androgen receptor expression in breast cancer

    Science.gov (United States)

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)-positive breast cancer compared with ER-negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone-dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR-positive and -negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR-positive compared with AR-negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug-resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer. PMID:27959398

  5. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives

    Directory of Open Access Journals (Sweden)

    Hummel Oliver

    2009-02-01

    Full Text Available Abstract Background Mouse embryonic stem (ES cells remain pluripotent in vitro when grown in the presence of the cytokine Leukaemia Inhibitory Factor (LIF. Identification of LIF targets and of genes regulating the transition between pluripotent and early differentiated cells is a critical step for understanding the control of ES cell pluripotency. Results By gene profiling studies carried out with mRNAs from ES cells and their early derivatives treated or not with LIF, we have identified i LIF-dependent genes, highly expressed in pluripotent cells, whose expression level decreases sharply upon LIF withdrawal [Pluri genes], ii LIF induced genes [Lifind genes] whose expression is differentially regulated depending upon cell context and iii genes specific to the reversible or irreversible committed states. In addition, by hierarchical gene clustering, we have identified, among eight independent gene clusters, two atypical groups of genes, whose expression level was highly modulated in committed cells only. Computer based analyses led to the characterization of different sub-types of Pluri and Lifind genes, and revealed their differential modulation by Oct4 or Nanog master genes. Individual knock down of a selection of Pluri and Lifind genes leads to weak changes in the expression of early differentiation markers, in cell growth conditions in which these master genes are still expressed. Conclusion We have identified different sets of LIF-regulated genes depending upon the cell state (reversible or irreversible commitment, which allowed us to present a novel global view of LIF responses. We are also reporting on the identification of genes whose expression is strictly regulated during the commitment step. Furthermore, our studies identify sub-networks of genes with a restricted expression in pluripotent ES cells, whose down regulation occurs while the master knot (composed of OCT4, SOX2 and NANOG is still expressed and which might be down

  6. Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus▿

    Science.gov (United States)

    Sánchez-Sutil, María Celestina; Gómez-Santos, Nuria; Moraleda-Muñoz, Aurelio; Martins, Lígia O.; Pérez, Juana; Muñoz-Dorado, José

    2007-01-01

    Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetative rods exhibit 15-fold-greater resistance against copper than developing cells. However, cells preadapted to this metal reach the same levels of resistance during both stages. Analysis of the M. xanthus genome reveals that many of the genes involved in copper resistance are redundant, three of which encode proteins of the multicopper oxidase family (MCO). Each MCO gene exhibits a different expression profile in response to external copper addition. Promoters of cuoA and cuoB respond to Cu(II) ions during growth and development; however, they show a 10-fold-increased copper sensitivity during development. The promoter of cuoC shows copper-independent induction upon starvation, but it is copper up-regulated during growth. Phenotypic analyses of deletion mutants reveal that CuoB is involved in the primary copper-adaptive response; CuoA and CuoC are necessary for the maintenance of copper tolerance; and CuoC is required for normal development. These roles seem to be carried out through cuprous oxidase activity. PMID:17483223

  7. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized...

  8. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  9. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  10. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  11. Identification and expression of a novel human testis-specific gene by digital differential display

    Institute of Scientific and Technical Information of China (English)

    李丹; 卢光琇

    2004-01-01

    Background Evidence for the importance of genetic factors in male infertility is accumulating. This study was designed to identify a novel testis-specific gene related to spermatogenesis by a new strategy of digital differential display (DDD).Methods Based on the generation of expressed sequenced tags (ESTs), comparing the testis libraries with other tissue or cell line libraries by the DDD program, we identified a new contig of the ESTs which were derived from testis libraries and represented a novel gene. Multi-tissue RT-PCR was performed to analyse its tissue-specific expression. The full-length cDNA of the new gene was obtained using the BLAST program. Sequencing was performed and the result was analysed. Semi-quantitative RT-PCR and Northern blot analyseis of mRNA from differential normal tissues were performed to clarify the expression pattern of the new gene. The sequence of the opening reading frame was integrated into the pQE-30 vector expressed in Escherichia coil strain M15(pREP4). With IPTG induction, the target protein was detected.Conclusions DDD can be confirmed by SPATA12 as a novel computational biology-based approach for identification of the testis-specific expression genes. SPATA12 may function as a testicular germ cell associated gene that plays some roles in spermatogenesis. Moreover, a great amount of SPATA12 protein could be obtained by the gene recombination technique, thus providing a reliable foundation for investigating the biological function of this new protein.

  12. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Directory of Open Access Journals (Sweden)

    Nora Adriana Hernández-Cuevas

    Full Text Available Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron, low-iron medium (around 123 µM iron, iron-deficient medium (around 91 µM iron, and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  13. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Science.gov (United States)

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  14. Effect of method of deduplication on estimation of differential gene expression using RNA-seq

    Directory of Open Access Journals (Sweden)

    Anna V. Klepikova

    2017-03-01

    Full Text Available Background RNA-seq is a useful tool for analysis of gene expression. However, its robustness is greatly affected by a number of artifacts. One of them is the presence of duplicated reads. Results To infer the influence of different methods of removal of duplicated reads on estimation of gene expression in cancer genomics, we analyzed paired samples of hepatocellular carcinoma (HCC and non-tumor liver tissue. Four protocols of data analysis were applied to each sample: processing without deduplication, deduplication using a method implemented in SAMtools, and deduplication based on one or two molecular indices (MI. We also analyzed the influence of sequencing layout (single read or paired end and read length. We found that deduplication without MI greatly affects estimated expression values; this effect is the most pronounced for highly expressed genes. Conclusion The use of unique molecular identifiers greatly improves accuracy of RNA-seq analysis, especially for highly expressed genes. We developed a set of scripts that enable handling of MI and their incorporation into RNA-seq analysis pipelines. Deduplication without MI affects results of differential gene expression analysis, producing a high proportion of false negative results. The absence of duplicate read removal is biased towards false positives. In those cases where using MI is not possible, we recommend using paired-end sequencing layout.

  15. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis.

    Science.gov (United States)

    Sumner, Seirian; Pereboom, Jeffrey J M; Jordan, William C

    2006-01-07

    Understanding how a single genome can produce a variety of different phenotypes is of fundamental importance in evolutionary and developmental biology. One of the most striking examples of phenotypic plasticity is the female caste system found in eusocial insects, where variation in reproductive (queens) and non-reproductive (workers) phenotypes results in a broad spectrum of caste types, ranging from behavioural through to morphological castes. Recent advances in genomic techniques allow novel comparisons on the nature of caste phenotypes to be made at the level of the genes in organisms for which there is little genome information, facilitating new approaches in studying social evolution and behaviour. Using the paper wasp Polistes canadensis as a model system, we investigated for the first time how behavioural castes in primitively eusocial insect societies are associated with differential expression of shared genes. We found that queens and newly emerged females express gene expression patterns that are distinct from each other whilst workers generally expressed intermediate patterns, as predicted by Polistes biology. We compared caste-associated genes in P. canadensis with those expressed in adult queens and workers of more advanced eusocial societies, which represent four independent origins of eusociality. Nine genes were conserved across the four taxa, although their patterns of expression and putative functions varied. Thus, we identify several genes that are putatively of evolutionary importance in the molecular biology that underlies a number of caste systems of independent evolutionary origin.

  16. Effect of method of deduplication on estimation of differential gene expression using RNA-seq

    Science.gov (United States)

    Chesnokov, Mikhail S.; Lazarevich, Natalia L.; Penin, Aleksey A.

    2017-01-01

    Background RNA-seq is a useful tool for analysis of gene expression. However, its robustness is greatly affected by a number of artifacts. One of them is the presence of duplicated reads. Results To infer the influence of different methods of removal of duplicated reads on estimation of gene expression in cancer genomics, we analyzed paired samples of hepatocellular carcinoma (HCC) and non-tumor liver tissue. Four protocols of data analysis were applied to each sample: processing without deduplication, deduplication using a method implemented in SAMtools, and deduplication based on one or two molecular indices (MI). We also analyzed the influence of sequencing layout (single read or paired end) and read length. We found that deduplication without MI greatly affects estimated expression values; this effect is the most pronounced for highly expressed genes. Conclusion The use of unique molecular identifiers greatly improves accuracy of RNA-seq analysis, especially for highly expressed genes. We developed a set of scripts that enable handling of MI and their incorporation into RNA-seq analysis pipelines. Deduplication without MI affects results of differential gene expression analysis, producing a high proportion of false negative results. The absence of duplicate read removal is biased towards false positives. In those cases where using MI is not possible, we recommend using paired-end sequencing layout. PMID:28321364

  17. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  18. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  19. Nylon Filter Arrays Reveal Differential Expression of Expressed Sequence Tags in Wheat Roots Under Aluminum Stress

    Institute of Scientific and Technical Information of China (English)

    Kai XIAO; Gui-Hua BAI; Brett F CARVER

    2005-01-01

    To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways.The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.

  20. Computational analysis of whole-genome differential allelic expression data in human.

    Science.gov (United States)

    Wagner, James R; Ge, Bing; Pokholok, Dmitry; Gunderson, Kevin L; Pastinen, Tomi; Blanchette, Mathieu

    2010-07-08

    Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (approximately 750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others o